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Abstract

Empirical studies show that gradient-based methods can learn
deep neural networks (DNNs) with very good generaliza-
tion performance in the over-parameterization regime, where
DNNs can easily fit a random labeling of the training data.
Very recently, a line of work explains in theory that with over-
parameterization and proper random initialization, gradient-
based methods can find the global minima of the training
loss for DNNs. However, existing generalization error bounds
are unable to explain the good generalization performance of
over-parameterized DNNs. The major limitation of most ex-
isting generalization bounds is that they are based on uniform
convergence and are independent of the training algorithm. In
this work, we derive an algorithm-dependent generalization
error bound for deep ReLU networks, and show that under
certain assumptions on the data distribution, gradient descent
(GD) with proper random initialization is able to train a suffi-
ciently over-parameterized DNN to achieve arbitrarily small
generalization error. Our work sheds light on explaining the
good generalization performance of over-parameterized deep
neural networks.

1 Introduction

Deep learning achieves great successes in almost all
real-world applications ranging from image processing
(Krizhevsky, Sutskever, and Hinton 2012), speech recogni-
tion (Hinton et al. 2012) to Go games (Silver et al. 2016).
Understanding and explaining the success of deep learning
has thus become a central problem for theorists. One of the
mysteries is that the neural networks used in practice are of-
ten heavily over-parameterized such that they can even fit
random labels to the input data (Zhang et al. 2017), while
they can still achieve very small generalization error (i.e.,
test error) when trained with real labels.

There are multiple recent attempts towards answering the
above question and demystifying the success of deep learn-
ing. (Soudry and Carmon 2016; Safran and Shamir 2016;
Arora, Cohen, and Hazan 2018; Haeffele and Vidal 2015;
Nguyen and Hein 2017) showed that over-parameterization
can lead to better optimization landscape. (Li and Liang
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2018; Du et al. 2019b) proved that with proper random ini-
tialization, gradient descent (GD) and/or stochastic gradient
descent (SGD) provably find the global minimum for train-
ing over-parameterized one-hidden-layer ReLU networks.
(Arora et al. 2018a) analyzed the convergence of GD to
global optimum for training a deep linear neural network
under a set of assumptions on the network width and ini-
tialization. (Du et al. 2019a; Allen-Zhu, Li, and Song 2019;
Zou et al. 2019) studied the convergence of gradient-based
method for training over-parameterized deep nonlinear neu-
ral networks. Specifically, (Du et al. 2019a) proved that gra-
dient descent can converge to the global minima for over-
parameterized deep neural networks with smooth activa-
tion functions. (Allen-Zhu, Li, and Song 2019; Zou et al.
2019) independently proved the global convergence results
of GD/SGD for deep neural networks with ReLU activation
functions in the over-parameterization regime. However, in
such an over-parametrized regime, the training loss func-
tion of deep neural networks may have potentially infinitely
many global minima, but not all of them can generalize well.
Hence, convergence to the global minimum of the training
loss is not sufficient to explain the good generalization per-
formance of GD/SGD.

There are only a few studies on the generalization theory
for learning neural networks in the over-parameterization
regime. (Brutzkus et al. 2018) showed that SGD learns over-
parameterized networks that provably generalize on lin-
early separable data. (Song, Montanari, and Nguyen 2018)
showed that when training two-layer networks in a suit-
able scaling limit, the SGD dynamic is captured by a cer-
tain non-linear partial differential equation with nearly ideal
generalization error. (Li and Liang 2018) relaxed the linear
separable data assumption and proved that SGD learns an
over-parameterized network with a small generalization er-
ror when the data comes from mixtures of well-separated
distributions. (Allen-Zhu, Li, and Liang 2019) proved that
under over-parameterization, SGD or its variants can learn
some notable hypothesis classes, including two and three-
layer neural networks with fewer parameters. (Arora et al.
2019) provided a generalization bound of GD for two-layer
ReLU networks based on a fine-grained analysis on how
much the network parameters can move during GD. Nev-



ertheless, all these results are limited to two or three layer
neural networks, and cannot explain the good generaliza-
tion performance of gradient-based methods for deep neu-
ral networks. For deep neural networks, existing generaliza-
tion error bounds (Neyshabur, Tomioka, and Srebro 2015;
Bartlett, Foster, and Telgarsky 2017; Neyshabur et al. 2018a;
Golowich, Rakhlin, and Shamir 2018; Dziugaite and Roy
2017; Arora et al. 2018b; Li et al. 2018; Neyshabur et
al. 2018b; Wei et al. 2019) are mostly based on uniform
convergence and independent of the training algorithms.
(Daniely 2017) established a generalization bound for over-
parameterized neural networks trained with one-pass SGD.
However, they considered a setting where the training of hid-
den layers are neglectable and only the output layer training
is effective.
In this paper, we aim to answer the following question:

Why gradient descent can learn an over-parameterized
deep neural network that generalizes well?

Specifically, we consider learning deep fully connected
ReLU networks with cross-entropy loss using over-
parameterization and gradient descent.

1.1 Our Main Results and Contributions

The following theorem gives an informal version of our
main results.

Theorem 1.1 (Informal version of Corollaries 3.2,3.3). Un-
der certain data distribution assumptions, for any ¢ > 0, if

the number of nodes per each hidden layer is set to Q( —14)

and the sample size n = Q( 4), then with high probabil-
ity, gradient descent with properly chosen step size and ran-
dom initialization method learns a deep ReLU network and
achieves a population classification error at most €.

Here in Theorem 1.1 we use O(-) and €)() to hide some
logarithmic terms in standard Big-O and Big-Omega nota-
tions. The result of Theorem 1.1 holds for ReLU networks
with arbitrary constant number of layers, as long as the data
distribution satisfies certain separation condition, which will
be discussed in Section 3.2.

Our contributions. Our main contributions are as follows:

e We provide a generalization error bound specifically suit-
able for wide neural networks of arbitrary depth. The
bound enjoys better dependency in terms of the net-
work width compared with existing generalization error
bounds for deep neural networks (Neyshabur, Tomioka,
and Srebro 2015; Bartlett, Foster, and Telgarsky 2017;
Neyshabur et al. 2018a; Golowich, Rakhlin, and Shamir
2018; Arora et al. 2018b; Li et al. 2018; Wei et al. 2019).
Moreover, we also provide an optimization result on the
convergence of gradient descent for over-parameterized
neural networks. Combining these two results together
gives an algorithm dependent bound of expected error that
is independent of the network width.

e We investigate two types of data distribution assumptions,
and show that under each of them, gradient descent can
train an over-parameterized neural network to achieve e

expected error provided 5(6*4) training examples. The

data distribution assumptions we consider in this paper
are standard and have been studied in recent literature.
This demonstrates that our analysis can give meaning-
ful generalization bounds even for very wide neural net-
works, and can provide insights on the practical success
of over-parameterized neural networks.

1.2 Notation

Throughout this paper, scalars, vectors and matrices are
denoted by lower case, lower case bold face, and up-
per case bold face letters respectively. For a positive in-

teger n, we denote [n] = {1,...,n}. For a vector x =
1

(01, ,2a) 7. we denote by Ixl, = (XL, aif?)"”,

Ixlloo = maxi—y, e, and [x[o = [{z; : z; # 0,0 =

1,...,d}| the ¢, ¢, and ¢y norms of x respectively. We use
Diag(x) to denote a square diagonal matrix with the entries
of x on the main diagonal. For a matrix A = (A4;;) € R™*™,
we use |Al2 and |A | to denote the spectral norm (maxi-
mum singular value) and Frobenius norm of A respectively.
We also denote by |Al|p the number of nonzero entries of
A. We denote by S1 = {x € R? : |x|2 = 1} the unit
sphere in R?. For a function f : R? — R, we denote by
[f()]loo = nf{C = 0: |f(x)| < C for almost every x} the
essential supreme of f.

We use the following standard asymptotic notations. For
two sequences {a,, } and {b, }, we write a,, = O(b,) if a,, <
C1 by, for some absolute constant C; > 0, and a,, = (b,,) if
ap = Czbn for some absolute constant C5 > 0. In addition,
we use O(+) and €2(+) to hide some logarithmic terms in Big-
O and Big-Omega notations.

2 Problem Setup and Training Algorithm

In this paper, for the sake of simplicity, we study the binary
classification problem on some unknown but fixed data dis-
tribution D over R? x {+1, —1}. An example (x,y) drawn
from D consists of the input x € R? and output label
y € {+1,—1}. We denote by D the marginal distribution of
x. Given an input x, we consider predicting its correspond-
ing label y using a deep neural network with the ReLLU acti-
vation function o(z) := max{0, z}. We consider L-hidden-
layer neural networks with m; hidden nodes on the I-th layer
forl = 1,..., L. The neural network function (mapping) is
defined as follows
fw(x) = v o(WLo(W]_, - o(W]x)-+),

where o (+) denotes the entry-wise ReLU activation function
(with a slight abuse of notation), W; = (W 1,..., Wy, ) €
RMi—1xmu | = 1, ..., L are the weight matrices, and v €
(17, —1T)T € {—1, +1}™ is the fixed output layer weight
vector with half 1 and half —1 entries. In particular, set
mo = d. We denote by W = {W,}£ | the collection of
matrices Wq,..., Wp.

Given n training examples (z1,91), ..., (€n, yn) drawn
independently from D, the training of the neural network
can be formulated as an empirical risk minimization (ERM)
problem as follows:

. 1
min Ls(W 7;1 - fw ()] 2.1)
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where S = {(x1,91),...,(®n,yn)} is the training sample
set, and £(z) is the loss function. In this paper, we focus on
cross-entropy loss function, which is in the form of ¢(z) =
log[1 4+ exp(—z)]. Our result can be extended to other loss
functions such as square loss and hinge loss as well.

2.1 Gradient Descent with Gaussian Initialization

Here we introduce the details of the algorithm we use to
solve the empirical risk minimization problem (2.1). The en-
tire training algorithm is summarized in Algorithm 1.

Algorithm 1 Gradient descent for DNNs starting at Gaus-

sian initialization

Require: Training data {(x;,y;)}r_;, number of iterations
K, step size .

Generate each entries of Wl(o)

N(0,2/my), 1 € [L].
fork=0,1,2,..., K —1do
Wit = W — U, Lo (W), 1e [1]
end for *)
k* = argmilgeqo . g1} _% i1 gl(yi “Iw (wl))
Ensure: W W)

independently from

In detail, Algorithm 1 consists of two stages: random ini-
tialization and gradient descent (GD). In the random initial-
ization stage, we initialize W(®) = {VVI(O)}IL=1 via Gaus-

sian initialization for all [ € [ L], where each entries of Wl(o)

are generated independently from N (0, 2/m;). Note that the
initialization scheme of W (©) is essentially the initialization
proposed in (He et al. 2015). In the gradient descent stage,
we do gradient descent starting from W (%), where > 0 is
the step size, and the superscript (k) is the iteration index of
GD. One can also use stochastic gradient descent (SGD) to
solve (2.1), and our theory can be extended to SGD as well.
Due to space limit, we only consider GD in this paper.

3 Main Theory

In this section we present our main result. We first introduce
several assumptions.

Assumption 3.1. The input data are normalized:
supp(D,,) < S4L

Assumption 3.1 is widely made in most existing work
on over-parameterized neural networks (Li and Liang 2018;
Allen-Zhu, Li, and Song 2019; Du et al. 2018; 2019b;
Zou et al. 2019). This assumption can be relaxed to the
case that ¢; < ||x||2 < ¢ for all x € supp(D,), where
c2 > c1 > 0 are absolute constants. Such relaxation will not
affect our final generalization results.

Assumption 3.2. We have M /m = O(1), where M =
max{my,...,mr}, m = min{mq,...,mp}.

Assumption 3.2 essentially says that the width of each
layer in the deep neural network is in the same order, and the
neural work architecture is balanced. Throughout this paper,
we always assume Assumptions 3.1 and 3.2 hold. We there-
fore omit them in our theorem statements.

For the ease of exposition we introduce the following def-
initions.
Definition 3.1. For the collection of random parameters
WO = {Wl(o)}lL:1 generated in Algorithm 1, we call

W, = (W = {Wi}E,  [W, - W |p <7 Le[L]}

the T-neighborhood of W (©),

The definition of W, is motivated by the observation
that in a small neighborhood of initialization, deep ReLU
networks satisfy good scaling and landscape properties. It
also provides a small subset of the entire hypothesis space
and enables a sharper capacity bound based on Rademacher
complexity for the generalization gap between empirical and
generalization errors.

Definition 3.2. For a collection of parameter matrices W =
{W L |, we define its empirical surrogate error Eg(W)
and population surrogate error Ep(W) as follows:

Es(W) = —% 2 Oy - fw ()],
i=1

Ep(W) i= Eey)n{ — Oy - fw ()]}

The intuition behind the definition of surrogate error is
that, for cross-entropy loss we have —¢'(z) = 1/[1 +
exp(z)], which can be seen as a smooth version of the in-
dicator function 1{z < 0}, and therefore —¢'[y - fw (x)] is
related to the classification error of the neural network. Sur-
rogate error plays a pivotal role in our generalization analy-
sis: on the one hand, it is closely related to the derivative of
the empirical loss function. On the other hand, by —2¢'(z) >
1{z < 0}, it also provides an upper bound on the classifica-
tion error. It is worth noting that the surrogate error is com-
parable with the ramp loss studied in margin-based general-
ization error bounds (Neyshabur, Tomioka, and Srebro 2015;
Bartlett, Foster, and Telgarsky 2017; Neyshabur et al. 2018a;
Golowich, Rakhlin, and Shamir 2018; Arora et al. 2018b;
Li et al. 2018) in the sense that it is Lipschitz continuous
in W, which ensures that £s(W) concentrates on Ep (W)
uniformly over the parameter space WV, .

3.1 Generalization and Optimization of
Over-parameterized Neural Networks

In this section, we provide (i) a generalization bound for
neural networks with parameters in a neighborhood of ran-
dom initialization, (ii) a convergence guarantee of gradi-
ent descent for training over-parameteried neural networks.
Combining these two results gives a bound on the expected
error of neural networks trained by gradient descent.

Theorem 3.1. For any § > 0, there exist absolute constants
C, 6/,Q such that, if
m = C max{L?log(mn/d), L=837=%3log[m/(16)]},
7 < CL™[log(m)] %2,
then with probability at least 1 — 0,
P~y - fw(x) < 0]

< 2-E5(W) + T [Lr - /mfn + L'/ Tog(m) ]

forall W e W,.



Remark 3.1. For neural networks initialized with He ini-
tialization(He et al. 2015), the generalization bound given
by Theorem 3.1 has a better dependency in network width
m compared with existing uniform convergence based gen-
eralization error bounds (Neyshabur, Tomioka, and Srebro
2015; Bartlett, Foster, and Telgarsky 2017; Neyshabur et
al. 2018a; Golowich, Rakhlin, and Shamir 2018; Arora et
al. 2018b; Li et al. 2018; Wei et al. 2019). For instance,

W e W, implies [W] —W'OT |, < \/mrand |[W, |, =

6(1) Plugging these bounds into the generalization bound
given by (Bartlett, Foster, and Telgarsky 2017)

\VHz L W(O)T 2/3 3/2
1_[ [Wall2 Z |W H2/3
=1

or the bound given by (Neyshabur et al. 2018a)

L L w212
5<Lﬁ2ﬂ|wl|2 $ WmIW: - W) |F>1 )
n =1 =

W3
results in a generalization bound of the order O(mr/\/1).
In comparison, when T is small enough, our bound on the

generalization gap is in the order of 5(7 - a/m/n), which

has a better dependency in m.

Theorem 3.1 in particular suggests that if gradient descent
finds a parameter configuration with small surrogate error
in Wg,,,—1/2 for some R independent of m, then the ob-
tained neural network has a generalization bound decreas-
ing in m. The following lemma shows that under a gradient
lower bound assumption, gradient descent indeed converges
to a global minima in Wg,,, -1/ with R independent of m.

Theorem 3.2. Suppose that the training loss function
Ls(W) satisfies the following inequality

|Vw, Ls(W)| . = By/m - Es(W) 3.1)

for all W € W., where B is independent of m, and
7 = O(B~ e 'm~'2). For any €,6 > 0, there exist ab-
solute constants C,C and m* = O(L*?B~*¢~2) -1og(1/9)
such that, if m = m*, then with probability at least 1 — 0,
Algorithm 1 with step size 1 = O(L™3B?m™") generates
K = O(L*B~*¢7?) iterates W) | ..., W) that satisfy:
(i) WR e W, ke [K].

(ii) There exists k € {0, ..., K —1} such that Es(W®*)) < e.

Remark 3.2. The gradient lower bound assumption (3.1) is
by no means an unrealistic assumption. In fact, this assump-
tion has been verified by several papers (Allen-Zhu, Li, and
Song 2019; Zou et al. 2019; Zou and Gu 2019) under the
assumption that |x; — x;|2 = ¢ for all i,j € [n], where
¢ > 0 is an absolute constant. The corresponding value of
B under this assumption is )(poly (¢, n1)).

Combining Theorems 3.1 and 3.2 directly gives the fol-
lowing corollary:

Corollary 3.1. Suppose that the training loss function
Ls(W) satisfies inequality (3.1) for all W € W,, where

B is independent of m, and T = 5(B_le_lm_1/2). For
any €,6 > 0, there exist absolute constants C,C and
* — O(L'2B~*¢2) - log(1/6) such that, if m > m*,
then with probability at least 1 — 5, Algorithm 1 with step
sizen) = O(L™3B*m™") finds a point W*) that satisfies

Pxy)~p|y - fw(x) < 0]

e+O(L2 —1-1, 71/2+L4Bf4/3€74/3m—1/6)

within K = O(L3B~*¢~2) iterations.

As we discussed in Remark 3.2, if the pairwise distance
between training inputs can be lower bounded by a constant
¢, then (3.1) holds with B = O(poly(¢,n~1)). However,
plugging this value of B into the population error bound in
Corollary 3.1 will give a bound O(poly(n)-n~2) (when m
is large enough) which is vacuous and does not decrease in
sample size n. We remark that this result is natural, because
B = Q(poly(¢,n~!)) corresponds to the condition that
data inputs are separated, and in fact no assumption on the
distribution of labels is made through out our analysis. Sup-
pose that the labels are simply Rademacher variables and are
independent of inputs, then clearly the expected error of any
classifier cannot go below 1/2, no matter how many training
samples are used to learn the classifier. In the next subsec-
tion, we study particular data distribution assumptions under
which (3.1) holds with a B that is not only independent of
m, but also independent of n.

3.2 Generalization Error Bounds under Specific
Data Distribution Assumptions

In this section we introduce two specific data distributions
that have been studied in the literature, and show that if one
of them holds, then (3.1) holds with a B independent of m
and n. Assumption 3.3 below is related to a random feature
model studied in (Rahimi and Recht 2009).

Assumption 3.3 (Separable by Random ReLU Feature).
Denote by p(Q) the density of standard Gaussian random
vectors. Define

F {00 = [ ctmo@xop@ans e <1},

We assume that there exist an f(-) € F and a constant v > 0
such that y; - f(x;) = v foralli€ [n].

F defined in Assumption 3.3 corresponds to the random
feature function class studied in (Rahimi and Recht 2009)
when the feature function is chosen to be ReLU. Assump-
tion 3.3 essentially states that there exists a function f in the
function class F that can separate the data distribution D
with a constant margin ~. According to the definition of F,
each value of u can be considered as a node in an infinite-
width one-hidden-layer ReLU network, and the correspond-
ing product ¢(@)p(@) can be considered as the second-layer
weight. Therefore F contains infinite-width one-hidden-
layer ReLU networks whose second-layer weights decay
faster than p(W). Also note that Assumption 3.3 is strictly
milder than linearly separable assumption.



The following corollary gives an expected error bound of
neural networks trained by gradient descent under Assump-
tion 3.3.

Corollary 3.2. Under Assumption 3.3, for any €,§ > 0,
there exist

m*(e, L,7,8) = O(poly(2",47")) -
n*(e, L,7,6) = O(poly(2",771)) -~ - log(1/0)
such that, if m = m*(e,L,vy,0) and n = n*(e, L,7,0),
then with probability at least 1—0, Algorithm 1 with step size
n =04 FL=3y>m™") finds a point W) that satisfies
P(x,y)~D [y fw (x) > O] =>1—e€
within K = O(poly(2L,771)) - e~
We now introduce another data distribution assumption
which has been made in (Daniely 2017).

Assumption 3.4 (Separable by Conjugate Kernel). The con-
Jjugate kernel of fully connected neural networks is defined
recursively as

e~ -log(1/9),

2 iterations.

kO (x,x') =
£ (x,x")

(x,x"),
= EfNN(O’H(l))[O'(f(X))U(f(X/))]-

We assume that there exists a function f in the reproducing
kernel Hilbert space (RKHS) H induced by the conjugate
kernel function kF=V (- ) with | f|% < 1 such that y; -
f(xi) =~ >0

Under Assumption 3.4, we have the following result.
Corollary 3.3. Under Assumption 3.4, for any €, > 0,
there exist

m* (e, L,7y,8) = O(poly(L,y 1)) - e - log(1/9),

n*(e, L, 7> 5) = 5(pOIY(La ’771)) : 674 : IOg(l/(S)
such that, if m = m*(e,L,v,0) and n = n*(e, L,~,0),
then with probability at least 1—0, Algorithm 1 with step size
n =04 "FL=3y>m™") finds a point W) that satisfies

Poey~p|¥ - fwm (x) > 0] =1 —¢

within K = é(poly(v’l)) €2
Remark 3.3. Corollary 3.3 shows that under Assump-
tion 3.4, a neural network trained by gradient descent can
achieve e-expected error given 5(674) training examples.
We remark that although (Daniely 2017) studied the same
assumption, our result is not a re-derivation of the results
given by (Daniely 2017), because while they considered one-
pass SGD and square loss, while we consider GD and cross-
entropy loss. More importantly, Assumption 3.4 is just one
specific setting our result can cover, and therefore Corol-
lary 3.3 demonstrates the power of our general theory.

Remark 3.4. A follow-up work (Cao and Gu 2019) stud-
ied the generalization performance of over-parameterized
neural networks trained with one-pass SGD, and relate the
generalization bound to the neural tangent kernel function
studied in recent work (Jacot, Gabriel, and Hongler 2018).
We remark that their generalization bound is based on an
online-to-batch conversion argument, which cannot be ap-
plied to the standard gradient descent algorithm we study
in this paper. Therefore our result and their result are not
directly comparible.

iterations.

4 Proof of the Main Theory

In this section we provide the proofs of the main results
given in Section 3. The omitted proof can be found in the
supplementary material.

4.1 Proof of Theorem 3.1

Here we provide the detailed proof of Theorem 3.1. We first
present the lemma below, which gives an upper bound on
the gradients of Lg(W), and relates the gradients with the
empirical surrogate error Eg(W).

Lemma 4.1. Forany 6 > 0, if
m = C max{L?log(mn/s),
7 < CL™[log(m)] "

L8343 1og[m/(10)]},

for some large enough absolute constant C and small
enough absolute constant C, then with probability at least
1=, foral W e W, andl € [L],

Hsz fwo (CBJHF < Cy/m,
IVw, Ls(W)| . < Cv/m - E5(W),
where C is an absolute constant.

Lemma 4.2 below reveals the fact that near initialization,
the neural network function is almost linear in terms of its
weight parameters. As a consequence, the empirical loss
function Lg(W) is almost smooth in a small neighborhood

around W (0)

Lemma 4.2. Forany § > 0, if
m > C max{L?log(mn/s),
7 < CL™"[log(m)]~*?

I,-8/3,—4/3 log[m/(76)]},

for some large enough absolute constant C and small
enough absolute constant C, then there exists an absolute
constant C such that with probability at least 1 — 6, for all

WWEWT,

\fa (i) — P ()]

< C’L271/3x/mlog Z HW; VV;H27
=1

where
L
Fw(X) = fg () + Y, Te[(Wi = W)V, fz ()],
=1
and
Ls(W) — Ls(W)

<C Z L2713 /mlog(m) - |[W; — W, - Es(W

Tr[(Wy — W) Vi, Ls(W)]

M= ¢

+

_|_
Q
M“H

mL? - [Wy — W3-

N
Il
—



Proof of Theorem 3.1. Let F, = {fw(x) : W € W;}.
We consider the empirical Rademacher complexity (Bartlett
and Mendelson 2002; Mohri, Rostamizadeh, and Talwalkar
2018; Shalev-Shwartz and Ben-David 2014) of F,. defined
as follows

{ﬁn[]:] ]EE Sup - Zfsz mz

where ¢ = (&1,...,&,)" is an n-dimensional vector
consisting of independent Rademacher random variables
&1,...,&y. Since y € {+1,1}, [¢'(2)] < 1 and ¢'(2) is
1-Lipschitz continuous, by symmetrization and the stan-
dard uniform convergence results in terms of empirical
Rademacher complexity (Mohri, Rostamizadeh, and Tal-
walkar 2018; Shalev-Shwartz and Ben-David 2014), with
probability at least 1 — § we have

sup |Es(W) — Ep(W)]

ew,
R | .

- log(1/5
<R[F ]+ Oy %,

where C is an absolute constant. We now bound the term
R, [Fr]. By definition, we have

Ru[F] < I + I, .1

where

I = Eg{ sup — Zfz fw(x;) — Fww),w(wi)]}v

Wew.
I, = Eg{ sup — Z & Fw o W(wz)}
Wew.
and
Fwo w( Z Tr[(W, = WV, fwo (%)]

=1
+ fwo (x).

For I, by Lemma 4.2, we have

I < rn[ax (z;) — Fywo wizs)|
< C,L* mlog(m)7'4/3

for all i € [n], where Cs is an absolute constant. For I5, note
that B¢ { supweyy, 2 & fw (x:)} = 0, and therefore

I, = ;ZEg{ sup Trlwl Z &Vw, fwo (331)]}

W r<r i=1
=1 l

Y &Vw, fwo (2:)

i=1

N
S|
NS

&

F

By Jensen’s inequality,

L
L <t E

- % 2, \ > ”lefw<°>(mi)”;
=1\ i=1

D6V Fwo ()

i=1

|

Now by Lemma 4.1, we have |Vw, fwo) (2:)] , < Csv/m
for all [ € [L], where C’3 is an absolute constant. Therefore
I, < C5L7 - n/m/n. Plugging in the bounds of I; and I5
into (4.1) and applying Markov’s inequality

Exy)~pi — [y fw(x)]}

= Picyyon{ =y fw(x)] > 1/2}/2
= P~y - fw(x) < 0]/2
completes the proof. O

4.2 Proof of Theorem 3.2

The following lemma is given by (Zou et al. 2019), which
gives a bound on the neural network output at initialization.

Lemma 4.3 ((Zou et al. 2019)). For any 6 > 0, with prob-
ability at least 1 — 6, |fwo (x;)] < C+/log(n/d) for all
i € [n], where C is an absolute constant

Proof of Theorem 3.2. Set 7 = O(B~'e~'m~'/2). Then
there exist n = O(L3B2m™!), K = O(L3B~*¢2) and
m* = O(L*2B*¢2) - log(1/0) such that when m > m*,
all assumptions of Lemmas 4.1, 4.2 hold, and

(Kn)2B~[log(n/8)]*? < vr, (4.2)
L3mn < vB2, 4.3)
L2783 [mlog(m)]V? < vB*m (4.4)
(Kn-m)™Y2B7! < (4.5)

for some small enough absolute constant v. We now prove
by induction that W) e W(W©) 7/2) k € {0} U[K]. By
definition clearly we have W (9 ¢ W(W (9 7/2). Suppose
that W) ¢ W(W () 7/2) for all k = 0,...,t. Then for
all [ € [L] we have

Wi =W

< IW =W lr + 0| Vv, Ls (W) |
<T/247/2=T,
where the last inequality follows by Lemma 4.1 and the

definition of 7 and 7 (note that a comparison between
(3.1) and Lemma 4.1 implies that B = O(1)). There-

fore W1 e .. Plugging in the gradient upper bound
given by Lemma 4.1 and assumption (3.1) into the result of
Lemma 4.2, we obtain

Ls(WHkHD) — Lo(W k)

L
< C Z [LQTl/?’nm\/log(m) + LP*m?*n?] - E2(Wk)

1=1
—n-B*m- gg(w(k))



for all k = 0,...,t, where C7, 5 are absolute constants.
Plugging in the bounds (4.3) and (4.4), we have

Ls(WFD) — Lg(WH) < —nB*meF(W ™M) /2 (4.6)
forallk =0,...,¢. Combining (4.6) with Lemma 4.1 gives
HVWLLS(W(]C))”F
< C2n—1/2B—1[LS(W(k)) _ LS(W(k+1))]1/2

forall £k = 0,...,t, where C} is an absolute constant. Note
that by Lemma 4.3 and the fact that /(z) < 1+ |z|, we
have Lg(W () — Lg(WE)) < Cs[log(n/5)]"/? for some
absolute constant Cs. Therefore by Jensen’s inequality,

(Wi = Wi

t
<7 Z HVWZLS(W(k))HF
k=0

t
< 02771/23—1 Z [LS(W(k)) _ LS(W(k+1))]1/2
k=0

< Oon/K Bfl. [Ls( (0))_

< Cy\/KnB Hlog(n/8)]*/?
<7/2,

where C, is an absolute constant, and the last inequal-
ity follows by (4.2). Therefore by induction, W) ¢
W(W© 7/2) for all £ € [K]. This also implies that
(4.6) holds for all k¥ = 0,...,K — 1. Let k* =
argmingeqo . g1} Es(W k). Telescoping over k gives

Ls(WEF) = Lg(WO) < —KnB?m - E2(WH).
Hence by (4.5) we have

Es(WED) < (Kn-m)™2B~! <,

This completes the proof. O

4.3 Proof of Corollary 3.2

In this section we give the proof of Corollary 3.2. The fol-
lowing lemma verifies that under Assumption 3.3, (3.1) in-
deed holds with B independent in both m and n.

Lemma 4.4. Forany § > 0, if
m = C - max{4* L2y~ % log(mnL/5),
L=~ log[m/(70)]},
r<C- 8_LL_2’y3[log(m)]_3/2

Ls(W®)]/2

for some large enough absolute constant C and small
enough absolute constant C, then with probability at least
1 — 9, there exists an absolute constant C' such that

|Vw,Ls(W)|, >C-27" - yy/m-Es(W)
forall W € W,..

Proof of Corollary 3.2. Corollary 3.2 directly follows by
plugging in B = 0(2_ ~) given by Lemma 4.4 and the as-

umptlons m > O(L2428Ly=8) . =14 > O(L*4L~2).
¢~ into Corollary 3.1. O

4.4 Proof of Corollary 3.3

In this section we give the proof of Corollary 3.3. Similar
to the proof of Corollary 3.2, we mainly need to derive a
gradient lower bound of the form (3.1). The result is given
in the following lemma, which gives a similar result in part
of the proof of Claim 1 in (Daniely 2017).

Lemma 4.5. Forany § > 0, if

m = C - max{y~?log(mn/d), 743 log[m/(74)]},

7 < C - ~*[log(m)] /2

for some large enough absolute constant C and small
enough absolute constant C, then with probability at least
1 — 6, there exists an absolute constant C' such that

|[Vw, Ls(W)| = Cyv/m - Es(W)
forall W e W,.

Proof of Corollary 3.3. Corollary 3.3 directly follows by
plugging in B = O(~) given by Lemma 4.5 and the as-
sumptions m > O(L**y78) - 714, n > O(L*y72) - e
into Corollary 3.1. O

5 Conclusions and Future Work

In this paper, we provided a generalization guarantee of gra-
dient descent for training deep ReLU networks under over-
parameterization, which hold under mild data distribution
assumptions. Although we only focus on gradient descent
and cross-entropy loss for binary classification, our results
can be extended to stochastic gradient descent, other loss
functions and multi-class classification. In addition, we will
derive generalization bounds for deep learning based on
the “small-ball” assumption proposed in (Mendelson 2014).
Another interesting direction is to investigate the general-
ization of gradient descent using stability-based analysis
(Hardt, Recht, and Singer 2016).
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