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ABSTRACT: Pd(II)-catalyzed C-H lactonization of o-methyl benzoic acid substrates has been achieved using molecular oxygen as 
the oxidant. This finding provides a rare example of C-H oxygenation through Pd(II)/Pd(0) catalysis, as well as a method to construct 
biologically important benzolactone scaffolds. The use of a gas mixture of 5% oxygen in nitrogen demonstrated the possibility for its 
application in pharmaceutical manufacturing.

Benzolactones are prominent scaffolds in bioactive natural 
products and important pharmaceutical compounds(Figure 1).1 
Additionally, the lactone structural motif is a common synthetic 
intermediate and building block for the synthesis of complex 
molecules.2 Traditionally, the benzolactone skeleton is con-
structed through the cyclization of hydroxy acids or the halo-
lactonization processes.3 While these methods are well estab-
lished for the synthesis of such motifs, a direct C-H lactoniza-
tion would be highly attractive. A number of studies towards 
C-H lactonization using the Shilov system has been reported.4 
In 2006, Chang reported a platinum(II)-catalyzed lactonization 

 
Figure 1. Bioactive and natural benzolactone derivatives 
of benzylic C-H bonds affording benzolactones in the presence 
of 3 equiv. of CuCl2 as the oxidant. Synthetically useful yields 
can be obtained with a di-ortho-methylated benzoic acid sub-
strate (Scheme 1).4d In 2011, Martin developed a palladium-cat-
alyzed C(sp3)–H lactonization with o-methyl benzoic acid using 
MPAA ligand and stoichiometric silver(I) as an oxidant.4e Sub-
stitution at the 5 or 6-position on the benzoic acid was required 
to block the C(sp2)-H bond to prevent the facile ortho-C-H ac-
tivation accelerated by the MPAA ligand. In our search for an 
efficient route for the preparation of a pharmaceutical ingredi-
ent bearing the benzolactone motif, we began to develop new 
ligands and conditions to achieve such C–H lactonization of 
simple mono-o-methyl benzoic acids in which a ligand will se-
lectively accelerate the activation of the C(sp3)-H bond over the 
C(sp2)-H bond. For potential scaling up to kilograms, the use 
of expensive oxidant needs to be avoided. To be compatible 

with safe operation in process, O2 at low concentration, for ex-
ample, 5% in N2, will be the ideal oxidant. 

In the past decade, a wide range of palladium-catalyzed C-H 
functionalization reactions have been realized.5 While both 
Pd(II)/Pd(IV) and Pd(II)/Pd(0) redox catalysis have been estab-
lished for C-C coupling reactions, C-O and C-N formations 
are largely limited to Pd(IV) catalysis using chalcogenide-type 
oxidants or by-standing oxidants.6 For example, TBHP, Ag(I), 
CuCl2, K2S2O8, BQ, and PIDA have been extensively adopted.6 
From the practical viewpoint, it is highly desirable to develop 
Pd(II)/Pd(0) catalysis using O2 as the sole oxidant.7 However, 
achieving C-H oxygenation via Pd(II)/Pd(0) catalysis is chal-
lenging due to the lack of a ligand that can promote both C-H 
activation and C-O reductive elimination from the Pd(II) cen-
ter. Herein, we report the development of Pd(II)-catalyzed 
C(sp3)-H lactonization using molecular oxygen as the oxidant. 
The absence of oxidants other than oxygen provides a rare ex-
ample to further investigate the mechanism of C-H oxygena-
tion via Pd(II)/Pd(0) catalysis. 
Scheme 1. Palladium-catalyzed C-H functionalizations to-
wards the synthesis of benzolactones

 



 

 

After considerable optimization, we were pleased to observe 
that using Pd(PhCN)2Cl2, K2HPO4, and chlorobenzene as the 
solvent in the presence of 1 atm oxygen provided the desired 
product 2a in 10% yield (Scheme 2). To ensure safe use of ox-
ygen in process, we attempted to replace pure oxygen with the 
gas mixture of 5% oxygen in nitrogen which is below the limit-
ing oxygen concentration (LOC) of most organic solvent8 as the 
oxygen source. To our delight, the same result was obtained 
with the gas mixture of 5% oxygen in nitrogen under 400 psi. 
We next evaluated several mono-dentate pyridine-based ligands 
(L1, L2), which have been shown to promote C-H activation.9 
Interestingly, the yield was improved to 31% by using the pyr-
idine-based ligand (L2). Subsequently, we tested Ac-Leu-OH 
(L3) which afforded a remarkable ligand effect in previous 
Martin’s work4e. However, ligand L3 only gave a poor yield of 
the desired product. We then turned our attention to bidentate 
ligands (L4-L7) developed in our laboratory.10 Unfortunately, 
no further improvement was observed. Guided by our recent 
finding that 2-pyridone ligands can accelerate C-H activation,11 
we turned to investigate this type of ligand. Encouragingly, the 
yield increased to 34% with a simple 2-pyridone ligand (L8). 
Based on our previous successes with electron-deficient 2-pyr-
idones,12 we set out to extensively screen 2-pyridone ligands 
with electron-withdrawing substituents. To our delight, the use 
of 5-chloro-2-pyridone (L9) increased the yield to 50%. Further 
tuning the substitution at the 5-position did not enhance the re-
activity (L10-L12). We next evaluated 2-pyridone ligands bear-
ing 3-substituents (L13-L17). Intriguingly, the yield increased 

Scheme 2. Ligand optimization a.b 

 
aReaction conditions: substrate 1a (0.1 mmol), Pd(PhCN)2Cl2 

(10 mol %), ligand (30 mol %), K2HPO4 (2.5 equiv), PhCl (1.0 
mL), 140 °C, 20 h. bThe yields were determined by 1H NMR 
analysis of the crude product using 1,3,5-Trimethoxybenzene as 
the internal standard. c1 atm O2. dAc2O (2.0 equiv) were used.  

Scheme 3. Substrate scope a, b 

 
aReaction conditions: substrate 1a (0.2 mmol), Pd(PhCN)2Cl2 

(10 mol %), L8 (30 mol %), K2HPO4 (2.5 equiv), Ac2O (2.0 
equiv)  PhCl (2.0 mL), 140 °C, 20 h. bisolated yield 
to 58% when 3-trifluoromethyl-2-pyridone (L14) was used. In-
stalling another trifluoromethyl group on L14 gave slightly 
lower yield (L18). And the use of 5-nitro-3-trifluoromethyl-2-
pyridone (L19) resulted in loss of reactivity. These results indi-
cated that this lactonization is highly sensitive to the electronic 
and steric environments of the 2-pyridone ligands. With L14 as 
the top performing ligand, we next investigated the effect of ad-
ditives towards Pd(II)-catalyzed C(sp3)-H lactonization. To our 
delight, the addition of acetic anhydride was found to be bene-
ficial to the reaction, and the yield was further increased to 72%. 
The acetic anhydride could act as a transient protecting group 
for benzoic acid and prevent the decarboxylation of the starting 
material. 
With the optimal conditions in hand, the scope of benzoic ac-

ids was evaluated. As shown in Scheme 3, a wide range of func-
tional groups are well accommodated in this transformation. 
Benzoic acids bearing electron-donating groups, such as methyl 
(2a-2f, 2i and 2n), methoxy (2l) and phenyl (2f) gave the de-
sired lactones in moderate to excellent yield. Electron deficient 



 

 

benzoic acids, such as fluoro (2e and 2j), trifluoromethyl (2k) 
and ketone (2g) are also well tolerated. Furthermore, our meth-
odology can react with C(sp3)-H bonds selectively over 
C(sp2)-H (2h-2r). More interestingly, the selectivity is not de-
termined by steric effects since benzoic acids without 5-substi-
tution (2m-2q) still gave the desired product, while previous 
method4e only tolerated 5-substituted benzoic acids. Moreover, 
aryl halides (2d, 2h, 2o and 2q) were well tolerate in the reac-
tion, which enabled further transformations with classical cross-
coupling reactions. Besides benzoic acid derivatives, the de-
sired lactone product was formed with naphthenic acid, albeit 
with slightly lower yield (2r). This result showed the potential 
of employing our methodology with more complex aromatic 
ring system.  
In order to gain experimental data in support of the involve-

ment of Pd(II)/Pd(0) redox catalysis, a control experiment un-
der nitrogen atmosphere was conducted and 4% yield of the de-
sired product was observed (Scheme 4). This result indicated 
that the reductive elimination still occurred in the absence of 
any oxidant, hence suggesting that the reaction is more likely to 
proceed through a Pd(II)/Pd(0) catalytic cycle. 

Scheme 4. Control experiment with N2 

 
To demonstrate the scalability of this protocol, a gram-scale 

reaction was conducted under the standard lactonization condi-
tions affording desired lactone product 2a in 61% yield 
(Scheme 5). 

Scheme 5. Gram scale reaction 

 
In conclusion, Pd(II)-catalyzed C(sp3)-H lactonizations of a 

range of benzoic acids using molecular oxygen as the oxidant 
have been developed with a broad functional group tolerance. 
The reaction is conducted under pressurized gas mixture of 5% 
oxygen in nitrogen (below the limiting oxygen concentration 
for most organic solvents) which meets the safety requirement 
in process chemistry. This rare example of catalytic C-H oxy-
genation reaction via Pd(II)/Pd(0) catalysis using O2 as the sole 
oxidant also provides a valuable example for probing the mech-
anism of the C-O reductive elimination from a Pd(II) center in 
C-H activation reactions. 
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