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ARTICLE INFO ABSTRACT

The brain operates via networked activity in separable groups of regions called modules. The quantification of
modularity compares the number of connections within and between modules, with high modularity indicating
greater segregation, or dense connections within sub-networks and sparse connections between sub-networks.
Previous work has demonstrated that baseline brain network modularity predicts executive function outcomes in
older adults and patients with traumatic brain injury after cognitive and exercise interventions. In healthy young
adults, however, the functional significance of brain modularity in predicting training-related cognitive improve-
ments is not fully understood. Here, we quantified brain network modularity in young adults who underwent
cognitive training with casual video games that engaged working memory and reasoning processes. Network
modularity assessed at baseline was positively correlated with training-related improvements on untrained tasks.
The relationship between baseline modularity and training gain was especially evident in initially lower perform-
ing individuals and was not present in a group of control participants that did not show training-related gains.
These results suggest that a more modular brain network organization may allow for greater training responsive-
ness. On a broader scale, these findings suggest that, particularly in low-performing individuals, global network
properties can capture aspects of brain function that are important in understanding individual differences in
learning.
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1. Introduction

Computer-based cognitive training is an increasingly popular ap-
proach to improve cognitive function, yet training-related benefits can
vary greatly across studies and individuals (Boot and Kramer, 2014;
Jaeggi et al., 2014). To better inform the implementation of such in-
terventions, it is important to examine individual differences that can
predict training effectiveness. Pre-training patterns of neural activity
(Mathewson et al., 2012; Vo et al.,, 2011) and brain volume (Basak
et al., 2011; Erickson et al., 2010; Verghese et al., 2016) have been
found to correlate with improvements after cognitive training, although
these brain measures were often limited to a single region or to a small
group of regions, which varied across studies. Furthermore, since com-
plex cognitive functions likely involve widespread interactions between
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groups of brain regions (Cole et al., 2013; Medaglia et al., 2015), or
sub-networks, it is critical to consider whether baseline brain network
properties can serve as a useful biomarker in assessing training out-
comes (Gabrieli et al., 2015). Indeed, recent work has shown that func-
tional brain networks are relatively stable within individuals (Gratton et
al., 2018), suggesting that such individual brain characteristics can be
reliably used to guide the implementation of interventions.

Graph theory can be used to describe the brain as a complex net-
work, where individual brain regions represent network nodes and the
structural or functional connections between them represent network
edges. Previous work using structural and functional MRI has shown
that brain networks exhibit a modular organization, comprised of sep-
arable sub-networks or modules (Bertolero, Yeo, & D'Esposito, 2015;
Betzel et al., 2014; Bullmore and Sporns, 2009; Chen et al., 2008;
Meunier et al., 2010; Newman, 2006b; Newman and Girvan, 2004).



P.L. Baniqued et al.

The extent of segregation of network modules can be quantified with a
modularity metric (Newman and Girvan, 2004), where networks with
high modularity have dense connections within modules and sparser
connections between modules.

Modular brain organization is thought to be important for sup-
porting cognitive functioning. While modularity has been observed to
change during task “states” (Kitzbichler et al., 2011; Stanley et al., 2014;
Cohen et al., 2016), in the current study, we focus on the “trait-level”
modularity differences observed at rest, as functional brain networks
have been shown to be dominated by individual factors (Gratton et al.,
2018). Across individuals, modular organization at rest has been shown
to correlate with inter-individual variability in working memory capac-
ity (Stevens et al., 2012) and episodic memory (Chan et al., 2014).
Moreover, computational models of biological networks show that a
modular organization is more efficient and adaptable to changing envi-
ronments (Kashtan and Alon, 2005; Tosh and McNally, 2015). Extend-
ing this concept to the human brain suggests that modularity is an ideal
structure that allows for specialized functions via local or within-mod-
ule processing and complex functions through global processing across
modules. Taken together, these results suggest that modularity is a crit-
ical component of learning, with a more modular structure potentially
allowing for more efficient and greater adaptive reorganization in re-
sponse to changing demands (Bassett et al., 2011; Russo et al., 2014). In
addition, modular brain organization has been shown to be disrupted in
patients with neuropsychiatric disorders (Alexander-Bloch et al., 2010,
2012; Fornito et al., 2015) and in patients with lesions to highly con-
nected brain areas (Gratton et al., 2012), highlighting the importance
of modularity for healthy brain function by enabling both stability and
flexibility (Sporns and Betzel, 2016).

We propose that brain modularity may uniquely predict outcomes
of cognitive interventions when baseline behavioral measures may not
reliably distinguish between individuals or cannot be reliably obtained
(Gabrieli et al., 2015; Gallen & D'Esposito, 2019). Recent work has
shown that higher brain network modularity at baseline predicts greater
training-related cognitive improvements in healthy older adults (Gallen
et al., 2016; Baniqued et al., 2018) and in patients with traumatic brain
injury (TBI; Arnemann et al., 2015), above and beyond individual differ-
ences in baseline behavioral measures. Although previous studies have
suggested that cognitive training can improve aspects of cognition in
healthy young adults (Au et al., 2015; Baniqued et al., 2015; Boot et
al., 2008; Karbach and Verhaeghen, 2014; Strobach et al., 2012; but
see Boot and Kramer, 2014; Dougherty et al., 2016; Melby-Lervdg and
Hulme, 2013; Redick et al., 2013), the functional significance of brain
network modularity in predicting training outcomes in young adults has
not yet been examined.

In the present study, we sought to test whether pre-training brain
modularity is a useful predictor of training effectiveness in a large sam-
ple of healthy young adults (n = 68) who displayed training-related
improvements after 15h of playing video games that engaged work-
ing memory and reasoning processes (WM-REAS), compared to an ac-
tive control group (n = 37) and a no-contact control group (n = 38)
(Baniqued et al., 2014, 2013). Based on previous findings (Arnemann et
al., 2015; Baniqued et al., 2018; Gallen et al., 2016), we hypothesized
that higher baseline brain modularity would predict greater training-re-
lated gains in the WM-REAS group, but not in the control groups. In
addition, we hypothesized that in the WM-REAS group, the relationship
between baseline brain modularity and training-related gain would be
driven by connectivity in “association” networks that support processes
such as working memory and reasoning (e.g., the default mode and
fronto-parietal networks; Chan et al., 2014). These networks have also
been shown to drive the relationship between baseline brain modularity
and training-related gains in older adults (Gallen et al., 2016).
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2. Materials and methods
2.1. Participants

209 right-handed adults aged 18-30 participated in a multi-session
study (see Baniqued et al., 2014, Nikolaidis et al., 2017 and Kranz et
al., 2017, for behavioral data and MRI spectroscopy data published from
this same cohort). Individuals were recruited from the University of Illi-
nois at Urbana-Champaign and surrounding communities through news-
paper and web-based announcements advertising a “cognitive training
study.” Eligible applicants had normal or corrected-to-normal vision, no
major medical or psychiatric conditions, and must have reported play-
ing video and board games for 3h or less per week in the last 6 months.
Upon study enrollment, participants were randomly assigned to one of
four groups: working memory and reasoning game group (WM-REAS
1), adaptive working memory and reasoning game group (WM-REAS
2), active control game group, or a no-contact control group. All games
in each of the three game groups increased in difficulty within a ses-
sion. More details about each group are provided in the next section.
Participants were compensated $15/hour if they completed all required
sessions. To encourage study completion, individuals who discontinued
study participation were paid $7.50/hr for every session attended. The
University of Illinois Institutional Review Board approved study pro-
cedures and all participants provided written informed consent. Addi-
tional details about recruitment procedures (e.g., initial e-mail survey,
phone screening) are provided in the original publication of this study
(Baniqued et al., 2014). Participants were excluded from the study if
they reported in a post-experiment questionnaire that they 1) played
any of the games used for training or testing and/or 2) were active
video game players as defined by game play of more than 3h per
week in the last 6 months (N = 39). In this study, we excluded addi-
tional participants due to poor MRI data quality (N = 27 due to artifacts
and motion, see MRI Preprocessing), leaving 143 participants for analy-
sis (WM-REAS 1 = 34, WM-REAS 2 = 34, active control = 37, no-con-
tact = 38). Given their comparable training-related effects (Baniqued
et al., 2014) and the reduced sample size after excluding participants
with unusable MRI data, in the main MRI-behavioral analyses, we com-
bined the two WM-REAS groups into one group and the active control
group and no-contact control group into another group, referred to as
“WM-REAS” and “CONTROL,” respectively.

The final sample of participants did not significantly differ in age
(t(141) = 1.94, p = 0.055; WM-REAS M = 21.41, SD = 2.34; CONTROL
M = 20.71, SD = 2.01), years of education (t(141) =1.21, p = 0.230;
WM-REAS M = 15.06, SD = 1.50; CONTROL M = 14.76, SD = 1.43),
and sex (¥*(1) =0.17, p=0.69; WM-REAS =51 females; CON-
TROL = 54 females). We also confirmed that there were no signifi-
cant group differences when analyzing the final sample as the four ini-
tial groups instead of the two combined groups (age: F(3,139) = 1.27
p=0.29; years of education: F(3,139)=0.98 p=0.40; sex:
2(3)=0.98,p=0.81).

2.2. Behavioral methods

2.2.1. Protocol summary

Participants completed four baseline testing sessions in a fixed ses-
sion and task order (three behavioral sessions followed by one MRI ses-
sion). For the training groups, participants then completed 10 sessions
of casual game play. After training or after a comparable amount of
time (3-4 weeks) elapsed for the no-contact control group, participants
completed four testing sessions in reverse session order (MRI session fol-
lowed by three behavioral sessions in reverse order as baseline testing).
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2.2.2. Training games

Participants assigned to the training groups completed 10 sessions
at a rate of two to three sessions per week. During each session, par-
ticipants played four games in pseudo-random order for 20 min each.
Training games were selected based on results from a study that corre-
lated performance on casual games with performance on various tests of
cognitive abilities (Baniqued et al., 2013, 2014). Casual games range in
genre and involve relatively simple rules and do not require long-term
commitment or specialized skills for gameplay. These games are typ-
ically freely available on the web and can be easily played on per-
sonal devices (Casual Games Market Report, 2007). The WM-REAS
groups played casual games that were highly correlated with perfor-
mance on working memory and reasoning tests (Baniqued et al., 2013),
while the active control group played games that were not highly cor-
related with these tests. Table 1 contains brief descriptions of each
game. The WM-REAS 1 and WM-REAS 2 groups differed primarily in
the adaptiveness of the training games: all WM-REAS 2 games were

Table 1
Training games.
Note. Table adapted from Baniqued et al. (2014).

Training
Games Group Description Source
Silversphere WM- Move a sphere to a blue miniclip.com

REAS vortex by creating a path
1, WM- using blocks of different
REAS 2  features and avoiding
obstacles along the path.
In the main game, switch

Digital Switch WM- miniclip.com

REAS 1 “digibot” positions to collect
falling coins corresponding to
the same “digibot” color.
TwoThree WM- Target rapidly presented armorgames.com
REAS 1 numbers by pointing the
mouse to the numbers and
subtracting the numbers
down to exactly zero in units
of 2 or 3.
Sushi Go WM- Serve a certain number of miniclip.com
Round REAS 1 customers in the allotted

time by learning and
preparing different recipes
correctly, cleaning tables,
and ordering ingredients.
Move across the board and

Aengie Quest WM- freegamesjungle.com

REAS 2 exit each level by pushing
switches and boxes, finding
keys, and opening doors.
Gude Balls WM- Remove all plates by filling a bigfishgames.com
REAS 2  plate with four of the same
colored balls and switching
balls to other plates while
navigating around obstacles.
Block Drop WM- Move around a gem on three- miniclip.com
REAS 2 dimensional blocks of
varying shapes to remove all
blocks except the checkered
block.
Alphattack Active Prevent bombs from landing miniclip.com
Control by quickly typing the
characters presented on the
approaching bombs.
Crashdown Active Prevent the wall from miniclip.com
Control  reaching the top of the
screen by clicking on groups
of three or more same
colored blocks.
Music Catch 2 Active Earn points by mousing over reflexive.com
Control streams of colored shapes
and avoiding contiguously
appearing red shapes.
Enigmata Active Navigate a ship while maxgames.com
Control  avoiding and destroying

enemies, and collecting
objects that provide armor or
power.
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adaptive across sessions such that the level of difficulty increased not
only within, but also across training sessions. Three out of 4 games in
the WM-REAS 1 and active control groups were adaptive only within
and not across training sessions. Since the two WM-REAS groups
showed similar effects of training (Baniqued et al., 2014), they are an-
alyzed together in the MRI section of this study. The no-contact group
did not undergo any training and only completed pre- and post-testing.

2.2.3. Cognitive tests

Here, we focused on the behavioral measures that demonstrated
training-related effects, although additional details about other behav-
ioral measures assessed can be found in the original publication
(Baniqued et al., 2014). Significant group by time interactions were
found in three tests: Attentional Blink (Raymond et al., 1992), Trail
Making (Raymond et al., 1992), and Dodge (Armor Games), with the
WM-REAS groups showing better performance after training. These
three tests all showed high loadings on the fifth principal component
in a principal components analysis of pre-training behavioral measures
(Baniqued et al., 2014); this component was called “Divided Attention”
in the original publication, which we will simply refer to here as “train-
ing-related gain” when discussing improvement in this component, and
“baseline performance” when referring to pre-test score on this compo-
nent. Moreover, improvement in these tests was negatively correlated
with baseline fluid intelligence scores (Gf; Ravens, 1962; Salthouse and
Salthouse, 2005; Salthouse et al., 2008) as assessed by six tests: Form
Boards (Ekstrom et al., 1976), Spatial Relations (Bennett et al., 1997),
Matrix Reasoning (Crone et al., 2009; Ravens, 1962), Paper Folding
(Ekstrom et al., 1976), Shipley Abstraction (Zachary, 1986), and Letter
Sets (Ekstrom et al., 1976). We re-analyzed data from these cognitive
tests using the subset of participants with usable MRI data.

For baseline performance and baseline Gf, we computed standard-
ized scores (z-scores) for each test and averaged the z-scores accord-
ingly to create a composite “baseline performance” score and a com-
posite “baseline Gf” score. We computed a composite measure of train-
ing-related improvement for each participant by averaging standardized
gain scores of each test that showed improvement. For each test, stan-
dardized gain scores were computed by taking the difference between
post-test and pre-test performance and dividing this gain measure by the
standard deviation of pre-test performance (collapsed across all groups).
To reduce the influence of remaining extreme values in the correla-
tion analyses, the composite scores were then winsorized (Tukey, 1962;
Wilcox, 2005): any value 3 SD away from the mean was replaced with
the 3 SD cut-off value. We replaced the scores of only one subject in the
WM-REAS 1 group with training gain score >3 SD from the mean and
baseline performance score <3 SD from mean.

In the next sections are brief descriptions of each cognitive test and
the measures used for analyses. Attentional Blink, Trail Making, and
Dodge were used to measure baseline performance and training gains,
while Form Boards, Spatial Relations, Matrix Reasoning, Paper Folding,
Shipley Abstraction, and Letter Sets were used to measure Gf.
2.2.3.1. Attentional blink (Raymond et al., 1992) Participants were
asked to identify the white letter (target 1) in a sequence of rapidly
presented black letters, and identify whether the white letter was fol-
lowed by a black “X” (target 2). The attentional blink was computed
from trials when target 1 was accurately detected, as the difference in
target 2 accuracy when detection is easiest (appearing 8 letters after
target 1) and when detection is most difficult (appearing 2 letters after
target 1).
2.2.3.2. Trail Making (Reitan, 1958) In “Trails A”, participants con-
nected numbered circles as quickly as possible by drawing a line be-
tween them in numerical order. In “Trails B,” participants connected
both numbered and lettered circles by drawing a line between them,
alternating between numbers and letters in numerical and alphabetical
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order. The trail-making cost was computed by taking the difference in
Trails B and Trails A completion time.

2.2.3.3. Dodge (Armor Games) In this game, participants were directed
to avoid enemy missiles and destroy enemy ships by guiding enemy
missiles (directed at the participant's ship) into other enemies. Partici-
pants pressed four buttons to navigate around the screen, which was
increasingly populated with enemy ships and their missiles. Partici-
pants completed the first two levels on a laboratory computer, and
practiced the same two levels in an MRI environment. Data used for
analysis was the highest level reached after 8 min of game play in an
fMRI environment.

2.2.3.4. Shipley Abstraction (Zachary, 1986) Participants were given a
list of 20 word, letter, or number sequences and instructed to fill in the
missing letters or numbers in each sequence. We analyzed the total
number of correctly answered items within 5min.

2.2.3.5. Matrix Reasoning (Crone et al., 2009; Ravens, 1962) Partici-
pants were shown a 3 X 3 matrix of abstract patterns with one cell
missing, and instructed to select which among three options best com-
pletes the matrix along both the rows and columns. We analyzed the
total number of correctly answered items.

2.2.3.6. Paper Folding (Ekstrom et al., 1976) Participants were asked
to select the pattern of holes that would result from a punch through a
sheet of paper folded in a certain sequence. We analyzed the total num-
ber of correctly answered items within 10 min.

2.2.3.7. Spatial Relations (Bennett et al., 1997) Participants were in-
structed to identify the 3-dimensional object that would match a 2-di-
mensional object when folded. We analyzed the total number of cor-
rectly answered items in 10 min.

2.2.3.8. Form Boards (Ekstrom et al., 1976) Participants were in-
structed to choose pieces that will exactly fill a certain shape. We ana-
lyzed the total number of correctly answered items in 8 min.

2.2.3.9. Letter Sets (Ekstrom et al., 1976) Participants were presented
with five sets of letter strings and asked to determine which letter set
was different from the other four. We analyzed the total number of cor-
rectly answered items within 10 min.

2.3. MRI acquisition and preprocessing

During the fourth session of baseline testing, participants under-
went MRI scanning on a 3TS Trio MR scanner with a 12-channel
head array receive coil. Anatomical data consisting of T1-weighted
MPRAGE images were acquired with the following parameters: GRAPPA
acceleration factor 2, voxel size = 0.9 X 0.9 X 0.9mm, TR = 1900 ms,
TI = 900 ms, TE = 2.32ms, flip angle = 9°, FoV = 230 mm). Functional
data during a 6-min resting state scan were obtained using a
T2*-weighted echoplanar imaging (EPI) pulse sequence with the follow-
ing parameters: GRAPPA acceleration factor 2, 180 volumes, in-plane
resolution = 2.4mm?, TR =2000ms, TE =25ms, flip angle = 80°,
FoV = 220mm; 38 3.5mm ascending slices, no slice gap). The rest-
ing-state scan was performed immediately after 5 6-min fMRI runs of
performance of the Attention Network Task (Fan et al., 2002). During
the resting-state scan, participants were instructed to close their eyes,
stay awake, and remain as still as possible. We excluded three partic-
ipants from analyses due to potential artifacts in the anatomical and
functional scans (N = 1 in WM-REAS 1, N = 2 in no-contact).

Brain extraction of anatomical images was performed with Advanced
Normalization Tools (ANTs; Avants et al., 2011, 2010) using the LP-
BA40 template (Shattuck et al,, 2008). Subjects with remaining
non-brain tissue after this step were run through ANTs brain extraction
using the Kirby/MMRR template (Landman et al., 2011) instead of the
LPBA40 template. The skull-stripped structural images and raw func-
tional images were preprocessed through the Configurable Pipeline for
the Analysis of Connectomes (CPAC; Giavasis et al., 2015). Structural
scans were registered to the MNI152 template (Fonov et al., 2009) us-
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ing ANTs and segmented into grey matter (probability threshold = 0.7),
white matter (probability threshold =0.96) and CSF (probability
threshold = 0.96) via FSL/FAST (Zhang et al., 2001). EPI scans were
slice-time corrected, motion-corrected using the Friston 24-Parameter
Model (Friston et al., 1996), and co-registered to the anatomical im-
ages. Nuisance signal correction was performed by regressing out the
aforementioned motion parameters, signals from the first five princi-
pal components from white matter and CSF voxels (CompCor; Behzadi,
Restom, Liau and Liu, 2007), and linear and quadratic trends. The func-
tional data was then bandpass filtered from 0.009 to 0.08 Hz. Partici-
pants with maximum absolute displacement greater than 3.4 mm were
excluded from analysis (N = 8 in WM-REAS 1, N = 6 in WM-REAS 2,
N = 9 in active control, N = 4 in no-contact).

2.4. Functional connectivity and brain modularity analyses

The functional scans were warped to the MNI template and parcel-
lated into 264 regions of interest (Power et al., 2011). Time series were
averaged for all voxels in an ROI. Due to uneven partial coverage of
the cerebellum in the functional data, we excluded the four cerebel-
lum module ROIs prior to running the network analyses. Nine additional
ROIs (2 in “default mode” module, 7 in “uncertain” module containing
unassigned nodes, as identified in Power et al., 2011) were excluded due
to lack of EPI coverage in at least one subject. For each participant, func-
tional connectivity matrices were created by correlating the time-series
between each pair of ROIs using Pearson's coefficient and applying a
Fisher z-transformation.

In the remaining 143 participants, the 251 x 251 functional connec-
tivity matrices were binarized to create adjacency matrices that indi-
cate the presence or absence of a connection between a pair of regions.
Matrices were binarized over a range of connection density thresholds
or “costs” (here, the top 2-10% of all possible connections in the net-
work in 2% increments, following Power et al., 2011, 2012). Each of
these thresholded matrices was used to create unweighted, undirected
whole-brain graphs with which network metrics were examined. Net-
work metrics were created separately for each connection threshold to
determine the consistency of results. We report results at the middle
6% connection threshold and show that the results are consistent across
connection density thresholds. The BrainX (https://github.com/nipy/
brainx) and NetworkX Python packages (Hagberg et al., 2008), as well
as custom python scripts were used for network analyses.

To examine the role in modular network organization in predicting
training-related gains, we quantified network modularity, a global net-
work measure that compares the number of connections within to the
number of connections between modules (Newman and Girvan, 2004).
Modularity is defined as Y, (¢;; — fl?), where e;is the fraction of connec-
tions that connect two nodes within module i, %is the fraction of con-
nections connecting a node in module i to any other node, and m is the
total number of modules in the network (Newman and Girvan, 2004).
Modularity will be close to 1 if all connections fall within modules and
it will be 0 if there are no more connections within modules than would
be expected by chance.

As there are multiple methods for identifying network modules, we
used several approaches. We first quantified modularity using a spec-
tral algorithm (Newman, 2006a) to identify the most optimal modular
partition (i.e., maximal modularity) for each subject at each connec-
tion threshold. We also computed modularity using pre-defined mod-
ules, by assigning each node to a module as previously identified in
Power et al. (2011) using the Infomap algorithm (Fortunato, 2010;
Rosvall and Bergstrom, 2008). Thirteen modules were used for sub-
sequent analysis (as identified in Power et al., 2011), with certain
modules classified as an “association cortex” network (default mode,
fronto-parietal, cingulo-opercular, salience, dorsal attention, ventral at-
tention) or “sensory-mo-
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tor” network: auditory, visual, sensory/somatomotor hand and sensory/
somatomotor mouth (Chan et al., 2014). Three modules were not classi-
fied as either association or sensory-motor networks: memory, subcorti-
cal and “uncertain” (module containing unassigned nodes).

2.5. Statistical analysis

2.5.1. Behavioral data

Although we combine the WM-REAS groups and the control groups
in the subsequent analyses, we also verified that the pattern of train-
ing effects across the four groups in this study's reduced sample was
similar to the published findings in the larger sample (Baniqued et al.,
2014). Training-related gains were primarily assessed at 1) a construct
level using a one-way ANOVA with a between-subjects factor of training
group (WM-REAS 1, WM-REAS 2, active control, no-contact) and with a
composite score of training-related gain as the dependent measure (de-
scribed in Cognitive Tests) and at 2) a task-level using repeated-measures
ANOVAs with a within-subjects factor of time (pre- and post-test score)
and between-subjects factor of training group. Effect size for ANOVAs is
provided as partial-eta squared (72p).

2.5.2. Baseline brain modularity and training-related gain

The relationship between baseline brain modularity and training-re-
lated gains was assessed with 1) correlations between modularity iden-
tified with spectral clustering (performed at 6% cost threshold, but con-
firmed pattern of results at other costs) and a composite training gain
score, and tested with 2) linear regressions with factors of training
group, modularity (6% cost threshold), and an interaction term of train-
ing group and modularity, with mean-centering of the input variables.
We also verified that the patterns of results were similar for whole-brain
modularity values derived using a predefined partition (Power et al.,
2011).

Unless otherwise noted, for all analyses, we report two-tailed Pear-
son correlations (r), partial correlations (rp) and 95% bias-corrected
and accelerated (BCa) confidence intervals based on 5000 samples. Fol-
low-up correlation analyses (e.g., controlling for motion or baseline cog-
nitive ability) were assessed with one-tailed tests to confirm the initial
pattern of results. In the regression analyses, 95% BCa Cls were also
computed for the beta () coefficients, and p(AF) denotes changes in fit
when comparing models.
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2.5.3. Contributions of specific sub-networks to the relationship between
global modularity and training gain

Specific network contributions to the relationship between global
brain modularity and training gains were assessed with the modular-
ity of each sub-network (degree of within-to-between connectivity) us-
ing modules as defined in Power et al. (2011). In these sub-network
analyses, we used the average modularity value across connection den-
sity thresholds. In the analysis of sub-network contributions to global
modularity in the WM-REAS group, we first confirmed whether mod-
ularity values differed across the 12 modules (as defined in Power et
al., 2011, excluding the “uncertain” module) using repeated-measures
ANOVA with a within-subjects factor of module. F-values and P-val-
ues were corrected for sphericity using the Greenhouse-Geisser method
(GG). Motivated by previous findings (Baniqued et al., 2018; Gallen et
al., 2016), we then correlated training gain with the modularity of the
association cortex sub-network, and with the modularity of each mod-
ule in the association cortex sub-network.

2.5.4. Controlling for in-scanner motion

Follow-up analyses were conducted to control for motion, which
may influence functional connectivity estimates (Power et al., 2012;
Satterthwaite et al., 2013, 2012; Van Dijk, Sabuncu and Buckner, 2012).
We first examined whether mean framewise displacement (FD) differed
across groups. The brain-behavior analyses were also repeated while
controlling for mean FD. We also repeated all analyses after censoring
volumes with FD > 0.2mm, which included removing one volume be-
fore and two volumes after the flagged volume. It is important to note
however, that motion censoring comes at a cost of a shorter time series,
reduced degrees of freedom, and unequal numbers of volumes across
subjects, and has been shown to confer no additional benefit when Com-
pCor is applied (Muschelli et al., 2014).

3. Results
3.1. Behavioral data

Consistent with findings from a larger sample of participants
(Baniqued et al., 2014), the WM-REAS groups in this study showed
greater training-related gains (Fig. la) as measured by a one-way
ANOVA with a between-subjects factor of the four training groups
on the composite improvement score, (group effect: F(3,139) = 5.253,
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Fig. 1. Behavioral training effects. A) Mean training-related gain for all four groups. Error bars are 95% bootstrapped confidence intervals. The right panels (B, C) show the relationship
between baseline fluid intelligence (Gf) and training-related gain in the WM-REAS groups (B) and control groups (C). Shown is the Pearson's coefficient (r) and the two-tailed p-value.

Shaded areas represent 95% confidence region of the regression line.
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p =0.002 52 = 0.102), and by repeated-measures ANOVAs of pre- and
post-test performance on each task (group by time interactions: Trail
Making: F(3,135) = 3.721, p = 0.013, n2p = 0.076; Attentional Blink:
F(3,139) = 3.464, p =0.018, »2p = 0.070; Dodge: F(3,133) = 3.153,
p = 0.027, n2p = 0.066).

Consistent with previous findings (Baniqued et al., 2014), base-
line Gf was negatively correlated with training gain (Fig. 1b) in the
WM-REAS groups (WM-REAS all: r(66) = -0.296, p = 0.014, BCa 95%
CI [-0.510 -0.054]; WM-REAS 1: r(32) = -0.307, p = 0.077, BCa 95%
CI [-0.599 -0.004]; WM-REAS 2: r(32) = -0.280, p = 0.109, BCa 95%
CI [-0.562 0.033]) but not in the control groups (Fig. 1c; CONTROL
all: r(73) = 0.081, p = 0.490, BCa 95% CI [-0.148 0.306]; no-contact:
r(36) = 0.055, p=0.743, BCa 95% CI [-0.281 0.369]; active:
r(35) = 0.137, p = 0.417, BCa 95% CI [-0.177 0.454]). Specifically, in
the WM-REAS groups, those with lower baseline Gf scores showed
greater training gains.

As a follow-up analysis, we probed the relationship between train-
ing-related gain and baseline performance (on the tests with training-re-
lated gains), and found that higher baseline performers showed smaller
gains. This significant negative relationship was observed in each of
the two groups (WM-REAS all: r(66) = -0.665, p < 0.001, BCa 95% CI
[-0.508 -0.775]; CONTROL all: r(73) = -0.579, p < 0.001, BCa 95% CI
[-0.725 -0.399]). Further, across all participants, baseline performance
was positively correlated with baseline Gf, r(141) = 0.306, p < 0.001,
BCa 95% CI [0.150 0.462]. However, including baseline Gf or baseline
performance as a covariate in the analysis of group effects in training-re-
lated gain did not significantly change the results (one-way ANOVA on
composite improvement score with baseline Gf as a covariate, group ef-
fect: F(3,138) = 4.061, p = 0.008, 2 = 0.081; one-way ANOVA on com-
posite improvement score with baseline performance as a covariate,
group effect: F(3,138) =5.392, p = 0.002 52 = 0.105). Similar results
were found when using a composite score of post-training performance
instead of composite improvement score.

Given their comparable training-related effects and the reduced sam-
ple size after excluding participants with unusable MRI data, in the sub-
sequent MRI analyses, we combined the two WM-REAS groups into one
group (“WM-REAS”) and the active control group and no-contact con-
trol group into another group (“CONTROL”). We verified that the train-
ing effects were similar when analyzing the combined groups. There
was a similar group effect in composite improvement score even after
controlling for baseline Gf (F(1,140) = 15.220, p < 0.001, 2 = 0.098)
or baseline performance (F(1,140) = 16.185, p < 0.001, 2 = 0.104), in
which the WM-REAS group showed greater training-related improve-
ments than the CONTROL group.

3.2. Brain network modularity data

3.2.1. Baseline brain modularity and training-related gain

First, we determined whether the observed training-related gains
could be predicted by baseline brain modularity (i.e., global modu-
larity identified with spectral clustering). In the combined WM-REAS
group, we found a significant positive relationship between training-re-
lated gain and baseline modularity (Fig. 2a; 6% cost: r(66) = 0.253,
p = 0.037, BCa 95% CI [0.006 0.468]), whereas no such relationship
was found in the combined control group (Fig. 2a; 6% cost:
r(73) = -0.200, p = 0.086, BCa 95% CI [-0.356 -0.029]). Further, the
correlations between baseline modularity and training gain were signif-
icantly different between the WM-REAS and control groups (6% cost:
Z = 2.70, p = 0.007, two-tailed). We confirmed that these relationships
were similar at different cost thresholds applied to binarize each sub-
ject's correlation matrix (Fig. 2 inset). In the WM-REAS group, we also
confirmed that the pattern of results was similar when using modularity
values derived using the Power partition (see Supplementary Material).
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Fig. 2. Relationship between baseline modularity (6% threshold) and training-related
gain. Shown is the Pearson's coefficient (r) and the two-tailed p-value. Shaded areas repre-
sent 95% confidence region of the regression line. Inset: Correlation (Pearson's coefficient)
between baseline modularity and training-related gain for each tested threshold. Solid di-
amonds indicate where the effect was significant at p < 0.05, two-tailed. Half-solid dia-
monds indicate where the effect was significant at p < 0.10, two-tailed.

To further confirm this pattern of results, we ran a multiple regres-
sion analysis to predict training gain using the following variables: train-
ing group, modularity (6% cost) and a centered interaction term of
group and modularity. The model was significant, R? = 0.15, Adjusted
R? =0.13, F(3,139) = 8.055, p < 0.001, with training group (§ = 0.38,
p < 0.001, BCa 95% CI [0.19 0.56]) and the interaction term ( = 3.72,
p = 0.007, BCa 95% CI [1.25 6.54]) as significant predictors. Modu-
larity itself was only partially informative as a predictor (p = —1.54,
p = 0.081, BCa 95% CI [-2.84 -0.22]). These results, namely the sig-
nificant interaction term, indicated that the relationship between mod-
ularity and training gain relationship was dependent on group. This
model was a significantly better fit than a model with training group
alone (p(AF) = 0.026, R? = 0.10, Adjusted R? = 0.10, F(1,141) = 16.00,
p <0.001) and a model with only training group and modularity
(p(AF) = 0.007, R?=0.10, Adjusted R?=0.09, F(2,140)=7.95,
p = 0.001). Similar patterns of results were found when using other
cost thresholds for spectral-derived modularity values (Supplementary
Material), and when using modularity values derived using the Power
partition (Supplementary Material).

3.2.2. Baseline brain modularity, baseline cognition, and training-related
gain

As previous studies demonstrated that brain modularity is a bet-
ter predictor of training-related cognitive gains than baseline behav-
ioral measures, (Arnemann et al., 2015; Gallen et al., 2016), we ex-
amined the relationship between baseline modularity and baseline cog-
nition (baseline Gf and baseline task performance) in this sample of
young adults. Across all participants, baseline modularity was not signif-
icantly associated with baseline Gf (6% cost: r(141) = -0.074, p = 0.381,
BCa 95% CI [-0.256 0.105]) or baseline task performance (6% cost:
r(141) =-0.133, p = 0.113, BCa 95% CI [-0.276 0.010]). We confirmed
this pattern of results at different cost thresholds, and using
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modularity values derived using the Power partition (Supplementary
Material).

As baseline Gf was correlated with training gain in the WM-REAS
group (Fig. 1b), we also re-examined the relationship between modu-
larity and training gain in the WM-REAS group while controlling for
baseline Gf. This relationship remained significant after controlling for
baseline Gf (6% cost: rp(65) = 0.236, p = 0.027, one-tailed, BCa 95% CI
[-0.030 0.450]). We confirmed this pattern of results at different cost
thresholds: except for 2% cost with r = 0.106, p = 0.197, one-tailed, all
others r > 0.181, p < 0.071, one-tailed (Supplementary Material). The
pattern of results was also similar when using modularity values derived
using the Power partition (Supplementary Material).

To further examine the relationship between modularity and Gf in
predicting training outcomes in the WM-REAS group, we performed a
multiple regression analysis to predict training gain using baseline mod-
ularity (6% cost) and baseline Gf. This model was significant R* = 0.14,
Adjusted R? =0.11, F(2,65) = 5.22, p = 0.008, with baseline Gf as a
significant predictor (f = —0.22, p = 0.021, BCa 95% CI [-0.40 -0.04])
and modularity as a near-significant predictor (§ = 1.95, p = 0.054, BCa
95% CI [-0.22 4.25]). A model with an interaction term was not a bet-
ter fit (p(AF) = 0.345, R? = 0.15, Adjusted R? = 0.11, F(3,64) = 3.77,
p = 0.015). These results confirmed that, in the WM-REAS sample, mod-
ularity and Gf independently predict training-related gains and, further,
that the relationship between modularity and training gain was not
moderated by baseline Gf. Similar patterns of results were found when
using other cost thresholds for spectral-derived modularity values, and
when using modularity values derived using the Power partition (Sup-
plementary Material).

As baseline task performance was also correlated with training gain,
we re-examined the relationship between modularity and training gain
in the WM-REAS group while controlling for baseline performance. Un-
like controlling for baseline Gf, controlling for baseline performance at-
tenuated the relationship between baseline modularity and training gain
(6% cost: rp(65) = 0.038, p = 0.379, one-tailed, BCa 95% CI [-0.218
0.278]). We confirmed this pattern of results at different cost thresholds
and when using modularity values derived using the Power partition
(Supplementary Material).

These results may have been driven by a potential behavioral ceil-
ing effect described previously, where higher performers at baseline
showed smaller gains. There was also a positive correlation between
baseline performance and post-training performance in both groups (all
r > 0.457, all p < 0.0001). Taken with the negative correlation between
baseline performance and training gain, these findings point to a ceil-
ing effect on training-related gains. To incorporate a potential moder-
ating effect of baseline performance, we performed a multiple regres-
sion analysis to predict training gain using baseline modularity, baseline
performance, and a centered interaction term. This model was signif-
icant R? = 0.49, Adjusted R? = 0.46, F(3,64) = 20.37, p < 0.001, with
significant predictors of baseline performance (§ = —0.45, BCa 95% CI
[-0.60 -0.32], p < 0.001) and the interaction of baseline performance
and baseline modularity (p =-2.94, p =0.020, BCa 95% CI [-4.99
-0.74]). Modularity itself was not a significant predictor, p = 0.37, BCa
95% CI [-1.26 2.37], p = 0.652. This model was a significantly better
fit than a model with only baseline performance and baseline modu-
larity (p(AF) = 0.020, R? = 0.44, Adjusted R? = 0.43, F(2,65) = 25.87,
p < 0.001). These results confirmed that, in the WM-REAS sample, base-
line performance independently predicted training-related gains and,
further, that the relationship between modularity and training gains was
moderated by baseline task performance. Specifically, modularity was a
stronger predictor of training gains in lower-performing individuals at
baseline. Similar patterns of results were found when using other cost
thresholds for spectral-derived modularity values, and when using mod-
ularity values derived using the Power partition.
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3.2.3. Contributions of specific sub-networks to the relationship between
global modularity and training gain

Since modularity in the association system networks (i.e., DMN,
FP, CO, VAN, DAN, Sal) has been shown to drive the relationship be-
tween baseline modularity and training gain, in the WM-REAS group,
we examined the contribution of specific brain sub-networks to global
modularity, which is the sum of contributions from all sub-networks.
For these analyses, instead of using the spectral algorithm to iden-
tify sub-networks, we used those determined by the InfoMap algorithm
(Fortunato, 2010; Rosvall and Bergstrom, 2008) in a previous study
(Power et al., 2011), which yields modularity measures that are highly
correlated with the spectral maximization approach (using the average
modularity value across connection density thresholds, r(66) = 0.874,
p < 0.001, BCa 95% CI [0.82 0.92])). A repeated measures ANOVA with
a within-subjects factor of module revealed that modularity differed
across the 12 sub-networks (excluding the “Uncertain” and cerebellum
modules; F(3.037,203.467) = 375.794, p(GG) < 0.001, 52p = 0.849),
suggesting that connectivity of specific sub-networks may be contribut-
ing to training-related gains.

We then examined whether modularity in the association networks
was correlated with training-related gains in the WM-REAS group. The
correlation was significant, r(66) = 0.226, p = 0.032, one-tailed BCa
95% CI [0.008 0.417]. For comparison, the correlation between modu-
larity in the sensory-motor system networks (Visual, Auditory, Somato-
motor: hand and mouth) and training-related gains was not significant,
r(66) = 0.066, p = 0.297, one-tailed BCa 95% CI [-0.179 0.289].

We then examined whether specific modules in the association net-
work drove the relationship with training gain, as connectivity in spe-
cific brain networks has been shown to predict clinical outcomes
(Reggente et al., 2018; Doucet et al., 2018). Thus, for each associa-
tion sub-network, we examined the relationship between modularity
and training gain and found a positive correlation in one of the mod-
ules, labeled the default mode network (DMN; Fig. 3; r(66) = 0.271,
p =0.026, BCa 95% CI [0.028 0.465]). Specifically, higher baseline
within-DMN connectivity was related to greater training gains, although
this result was not statistically significant after Bonferroni correction for
multiple comparisons across the six association modules. Nonetheless,
we further examined whether DMN modularity interacts with baseline
task performance to predict training gain using the following variables.
The three-factor model of baseline task performance, DMN modularity
and interaction of baseline task performance and DMN modularity was
significant, R? = 0.47, Adjusted R? = 0.45, F(3,64) = 19.22, p < 0.001,
with baseline performance as a significant predictor (p = —0.47, BCa
95% CI [-0.65 -0.34], p<0.001) and the in-
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Fig. 3. Association sub-network module contributions to the relationship between global
modularity and training-related gain. Shown is the correlation between training-related
gain and module-specific modularity (i.e., in each association sub-network module, degree
of within-to-between connectivity, averaged across thresholds). Error bars are 95% boot-
strapped confidence intervals.
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teraction term as a near-significant predictor of training gain,
(p = —6.35, BCa 95% CI [-11.95 0.08], p = 0.063). DMN modularity it-
self was not a significant predictor (f = 0.53, BCa 95% CI [-3.01 5.29],
p = 0.815).

As the above network-specific metrics were examined using modu-
larity values averaged across thresholds, we also examined module seg-
regation (Chan et al., 2014), a metric that retains the weights of all
connections (lower than 2-10% of connections). Module segregation is
quantified by (Z,, -Zy)/Z,,, where Z,, is the average Fisher-transformed
correlation between nodes in the same module (within-module connec-
tivity) and Z, is the average Fisher-transformed correlation between
nodes in a module to nodes in any other module (between-module con-
nectivity). Guided by previous findings, we focused on whole-brain seg-
regation and segregation in the association sub-network. Both segrega-
tion measures were not significantly related with training-related gain,
although the whole-brain segregation results were in the same direction
as the modularity vs. training-related gain results.

3.2.4. Controlling for in-scanner motion

As in-scanner motion can spuriously affect functional connectivity
estimates (Power et al., 2012; Satterthwaite et al., 2012, 2013; Van Dijk
et al., 2012), we confirmed that the relationship between baseline brain
modularity and training-related gains was not due to motion.

First, mean framewise displacement (FD; Power et al., 2012) did
not differ between the two groups, F(1,141) =0.084, p = 0.772,
n2p = 0.001 (WM-REAS: M =0.141, SD=0.047; CONTROL:
M = 0.143, SD = 0.052). Second, in both groups, controlling for mean
FD in the correlation analyses and including it as a predictor in the re-
gression analyses did not substantially change the relationship between
baseline modularity and training gain, even when factoring in baseline
Gf and baseline performance (Supplementary Material). Also, control-
ling for mean FD did not alter the findings in the association network
and segregation analyses.

It has been suggested that prior to functional connectivity analyses
with fMRI data collected in the resting state, one volume before and two
volumes after any volume with a FD > 0.2 mm should be removed. This
is not a widely accepted procedure, especially when a limited amount of
resting state data is available because motion censoring comes at a cost
of a shorter time series, reduced degrees of freedom, and unequal num-
bers of volumes across subjects (Muschelli et al., 2014). Moreover, it has
been shown to confer no additional benefit when CompCor is applied,
which is a procedure we implemented in our analyses (Muschelli et al.,
2014). Nevertheless, we re-analyzed this dataset after removing 9356
out of 25740 volumes across subjects (36% of total volumes excluded
after 573 volumes were flagged with FD > 0.2mm). As expected by the
reduced power of our analyses with this smaller dataset, the magnitude
of the statistical significance of most of the analyses we performed was
reduced. However, the patterns of relationships we found between brain
modularity, baseline Gf, baseline performance and training gain did not
change direction (Supplementary Material).

4. Discussion

Here, we demonstrate that higher baseline brain modularity pre-
dicts larger cognitive training-related gains in young adults after train-
ing with casual video games that engage working memory and rea-
soning processes. This modularity-gain relationship was more promi-
nent in individuals with lower baseline performance in the tasks that
showed training-related gains and remained significant after control-
ling for baseline cognitive ability. Critically, this relationship was not
present in a control group composed of participants that played ca-
sual video games that were not significantly related to working memory
and reasoning processes (Baniqued et al., 2013) as well as participants
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that did not undergo any cognitive training (Baniqued et al., 2014).
These results are consistent with previous findings in smaller samples
of TBI patients (Arnemann et al., 2015) and cognitively normal older
adults (Baniqued et al., 2018; Gallen et al., 2016) and more impor-
tantly, demonstrate the predictive power of brain modularity for cog-
nitive training outcomes in a young, high-functioning population. On a
broader scale, these findings suggest that global network properties can
capture unique aspects of brain function that are important in under-
standing individual differences in learning and neuroplasticity (Gallen
& D'Esposito, 2019).

4.1. Baseline whole-brain modularity and training-related gains

Considering individual differences is important for determining and
maximizing cognitive intervention effectiveness. Here, we show that
brain modularity provides useful information about training-related
gains in addition to those captured by behavioral measures. Specifically,
even when controlling for baseline Gf, which also significantly predicted
training-related gains, there was still a positive relationship between
modularity and training-related gain in the WM-REAS group. Further,
modularity was not correlated with baseline Gf, suggesting that a rela-
tionship between baseline modularity and Gf was not driving the mod-
ularity-gain prediction in the WM-REAS group.

Although controlling for baseline performance on the tests that
showed training-related gains attenuated the modularity-gain relation-
ship in the whole WM-REAS sample, this was likely due to a very high
correlation between baseline performance and training-related gain on
those measures. Re-evaluating this relationship in a multiple regression
analysis that factors in a moderating effect of individual differences in
baseline performance showed that the modularity-gain relationship was
driven by low performers. It is important to note, however, that we ob-
served a ceiling effect in high-performing individuals (i.e., high perform-
ers tended to not improve as much with training, although maintaining
a high level of performance), which may have prevented us from de-
tecting any potential relationships between brain modularity and cogni-
tive improvement in this group. Baseline modularity and baseline per-
formance were not significantly correlated, however, which indicates
that baseline modularity only partly captures individual differences in
baseline performance.

Although the WM-REAS group did not show gains in working mem-
ory and reasoning tests, which may be partly due to ceiling effects or
lack of sensitivity in the assessments used, gains were observed in “di-
vided attention™ tasks where attention needed to be quickly deployed
or coordinated between multiple elements. Six out of the eight train-
ing games played by the WM-REAS group involved speeded tasks (Sil-
versphere, Sushi- Go-Round, DigiSwitch, TwoThree, Gude Balls), which
demanded both planning ahead and paying attention to multiple stim-
uli on the screen. These additional demands in the WM-REAS groups
are likely to have led to the improvements in “divided attention” tasks.
Taken together with previous studies (Arnemann et al., 2015; Gallen et
al., 2016; Baniqued et al., 2018), these results point to modularity as
an index of neuroplasticity. Specifically, a more modular brain may be
more “primed” to benefit from an intervention, such that it can more
easily learn and respond to the demands of training. Moreover, although
the specific outcome metrics varied widely in the previous studies, the
metrics that showed a relationship with modularity can all be argued to
tap “cognitive control” processes.

Together with findings in TBI patients (Arnemann et al., 2015) and
healthy older adults (Baniqued et al., 2018; Gallen et al., 2016), these
results suggest that brain modularity may be a useful biomarker for
predicting training outcomes, especially in lower-performing individu-
als. Positive correlations between modularity and training gain were ob-
served across all four studies, despite differences in study design and
cohorts. Importantly, in the TBI patients, modularity predicted training
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gain when baseline behavioral measures did not. Likewise, in the older
adult studies, modularity predicted training gain even after taking into
account baseline cognitive performance. Modularity may thus be a use-
ful metric in populations where behavioral measures may not reliably
distinguish between individuals, be difficult to collect, or faced with
confounds, such as in clinical populations that present with cognitive
deficits (Gabrieli et al., 2015). In this way, brain measures can be more
sensitive than behavioral measures in capturing individual variability in
training responsiveness and may be used to better inform interventions,
for example, by increasing training intensity or duration in an individ-
ual with lower baseline modularity.

Modular brain network organization is thought to be critical for sup-
porting a range of behaviors (Sporns and Betzel, 2016), from specialized
functions through local processing within modules, to complex func-
tions through global processing across modules (Meunier et al., 2010;
Meunier et al., 2009). Brain network modularity is related to both state-
and trait-like aspects of cognition, such as stimulus detection on a trial
by trial basis (Sadaghiani, Poline, Kleinschmidt, & D'Esposito, 2015) and
working memory capacity (Stevens et al., 2012). In addition, compu-
tational work has demonstrated that modular organization allows for
a system that is more adaptable to new environments (Clune et al.,
2013; Kashtan and Alon, 2005; Tosh and McNally, 2015). A recent fMRI
study found that high-performing individuals showed smaller connectiv-
ity changes between a “resting state” and task performance, suggesting
that these individuals have a more “optimal” brain network organiza-
tion at rest (Schultz and Cole, 2016). In this sense, our findings suggest
that individuals with higher brain modularity during a task-free state
may have a more optimally organized network that allows them to more
efficiently reconfigure in response to complex task demands, such as
those encountered during learning or cognitive training.

More broadly, individual differences in other aspects of functional
connectivity have been shown to be predictive of learning an artifi-
cial language (Sheppard et al., 2012), a new motor skill (Bassett et al.,
2011, 2013; Mattar et al., 2018 and a perceptual task (Baldassarre et al.,
2012), underscoring the value of network analysis in providing a parsi-
monious characterization of brain interactions (Medaglia et al., 2015).
Unlike these studies, the intervention in the current study involved more
complex training that targeted processes such as working memory and
reasoning, rather than a specific skill, and showed training-related gains
on untrained tasks. Although other studies have examined how indi-
vidual differences in neural measures predict training-related improve-
ments in more complex tasks, these studies have often focused on a sin-
gle brain region or small set of brain regions thought to be most rele-
vant to the training task (Baldassarre et al., 2012; Basak et al., 2011;
Erickson et al., 2010; Garner and Dux, 2015; Verghese et al., 2016). For
example, volumetric measurements of the striatum and prefrontal cor-
tex have been related to training gains in complex strategy-based video
game (Basak et al., 2011; Erickson et al., 2010) and multi-tasking per-
formance (Verghese et al., 2016), but the contribution of connectivity
patterns among these regions remains to be examined. Our study goes
a step further in examining how large scale, whole-brain network prop-
erties can predict training gains in untrained tasks, which may better
capture individual variations that support complex task processing. Al-
though there is some controversy about whether cognitive training is
truly effective for enhancing performance on distantly-related tasks, or
general cognition (Melby-Lervag and Hulme, 2013; Simons et al., 2016;
Katz et al., 2018; Green et al., 2019), there is value in examining the
mechanisms that lead to improvements in behavioral performance. Fur-
thermore, training itself requires a considerable investment of time, if
not money, such that assessing the mechanisms underlying efficacy is
worthwhile in terms of saving resources and guiding therapeutic use.
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Our findings suggest that there is a relationship between brain mod-
ularity and training gains despite differences in the type of training.
Specifically, the current study involved only laboratory-based video
game exercises, while the TBI (Arnemann et al., 2015) and older adult
cohorts (Gallen et al., 2016) underwent group-based sessions on atten-
tion and self-regulation, and gist-reasoning, respectively. We have also
recently found the same relationship between modularity and train-
ing gains in an older adult population after an exercise intervention
(Baniqued et al., 2018). Given these convergent findings, we speculate
that network modularity may provide insight into the neural mecha-
nisms that support individual differences in neuroplasticity and, conse-
quently, training outcomes across interventions and populations (Gallen
& D'Esposito, 2019). Importantly, these results reveal a potential mech-
anism for neuroplasticity and learning. Higher brain network modular-
ity has also been related to faster learning rates (Mattar et al., 2018; ;
Tordan et al., 2018), suggesting that this brain network “trait” indexes
capacity for change. Indeed, computational work has shown that a more
modular structure allows for a system that is more adaptable to new
environments. (Kashtan and Alon, 2005; Clune et al., 2013; Tosh and
McNally, 2015). Future research is needed to determine the significance
of using such network-based measures to inform the implementation of
interventions, such as determining training dosage or the ‘optimal’ type
of intervention prior to training.

4.2. Baseline association network properties and training-related gains

In addition to examining whole-brain modularity, we also exam-
ined specific subnetworks’ contribution to predicting training gains and
found that individuals with greater modularity in the association net-
works, and specifically in the DMN, showed greater training gains. Dur-
ing task-free “resting” states, high connectivity within DMN regions is
well-documented (Fox et al., 2005; Greicius et al., 2003; Raichle and
Snyder, 2007). Despite being linked to resting states, the modular orga-
nization of DMN regions has also been found to play active roles during
task performance. For example, previous studies examining the recon-
figuration of brain network properties due to cognitive demands have
reported decreased within-module (Liang et al., 2016) and increased be-
tween-module (Stanley et al., 2014) connectivity in DMN regions with
increasing cognitive demand. The functional significance of the DMN
is an area of active research (Raichle, 2015); recent studies show that
DMN regions flexibly couple with other brain systems depending on
task demands (Dixon et al., 2016; Spreng et al., 2012; Vatansever et
al., 2015), thus pointing to a central role of the DMN in supporting
large-scale adaptive reconfiguration.

4.3. Limitations and future directions

Although this study involved a fairly large sample, a larger sam-
ple size would allow for examination of a variety of demographic and
lifestyle factors (e.g., education, socioeconomic status, physical health;
Smith et al., 2015) that, in addition to brain modularity, could provide
more reliable and converging information regarding individual differ-
ences in training-related cognitive gains and, potentially, neuroplastic-
ity. Here, we focused on training outcomes assessed immediately af-
ter completion of training; it would be important to determine if base-
line network properties are also predictive of longer-lasting benefits
from training. Finally, future research is needed to determine the neural
changes that accompany the observed behavioral outcomes and the
mechanisms by which pre-intervention brain modularity supports these
neural alterations.
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