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Highlights
There is a rapidly growing interest to
use interventions to enhance cogni-
tion. Although some interventions
show promise, there is often variability
in the magnitude of improvements
across individuals.

Graph theory analyses of human neu-
roimaging data are a useful tool to
examine large-scale network proper-
ties of the brain. Modularity is an
important organizational principle that
quantifies the extent to which a net-
work is divided into distinct subnet-
works, or modules.

Baseline assessments of brain modu-
larity predict intervention-related cog-
nitive improvements across several
different populations and interven-
tions, including patients with traumatic
brain injury and healthy individuals par-
ticipating in cognitive and exercise
interventions.

Brain modularity is a unifying biomar-
ker of potential for intervention suc-
cess and, more broadly, cognitive
plasticity.
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Interventions using methods such as cognitive training and aerobic exercise
have shown potential to enhance cognitive abilities. However, there is often
pronounced individual variability in the magnitude of these gains. Here, we
propose that brain network modularity, a measure of brain subnetwork segre-
gation, is a unifying biomarker of intervention-related plasticity. We present
work from multiple independent studies demonstrating that individual differ-
ences in baseline brain modularity predict gains in cognitive control functions
across several populations and interventions, spanning healthy adults to
patients with clinical deficits and cognitive training to aerobic exercise. We
believe that this predictive framework provides a foundation for developing
targeted, personalized interventions to improve cognition.

Neural Mechanisms of Individual Differences in Cognitive Plasticity
There is a rapidly growing interest to develop interventions that enhance aspects of cognition. A
large body of this research has recently focused on computer-based cognitive training (e.g., [1],
Box 1), although other interventions, such as aerobic exercise and brain stimulation (e.g.,
transcranial magnetic stimulation), have also been explored as a means to enhance cognitive
abilities. Some of this work has suggested that training can improve cognitive control (see
Glossary) abilities, such as attention, working memory, and multitasking (e.g., [2–4]; for reviews
see [1,5,6]), although it is important to note that the effects of training interventions on
enhancing cognitive functions have been mixed (Box 1). Nevertheless, cognitive control is
fundamental for goal-directed behavior and, importantly, is linked to scholastic success in
children [7,8] and the capacity for independent living in older adults [9]. Further, cognitive
control deficits are common in a variety of clinical populations, such as patients with traumatic
brain injury (TBI) and attention-deficit disorder. Thus, identifying interventions that can suc-
cessfully strengthen cognitive control abilities in a wide variety of populations is of critical
importance.

Training-related improvements in cognitive control suggest that these abilities are not immu-
table, as interventions can drive cognitive plasticity to ultimately enhance cognition. Here, we
define ‘cognitive plasticity’ as an individual’s capacity to change and adapt cognitive perfor-
mance [10]. Although numerous interventions have generally shown promise, there is fre-
quently variability in the magnitude of gains across individuals. In addition, there is also variability
in the effectiveness of training across types of interventions. It is therefore crucial to understand
the mechanisms that support effective interventions and, further, to understand why certain
interventions work for some individuals and not others [11]. Moreover, given the cost and time
investments required for training interventions, as well as the limited resources for rehabilitation
in our health care system, identifying reliable biomarkers that could predict which individuals
have the greatest likelihood of responding to an intervention would help clinicians make more
informed decisions before beginning training. Despite this, a common neural mechanism that
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Glossary
Biomarker: a biological marker that
can be used to characterize ongoing
normal or abnormal biological
processes, as well as to predict
responses to interventions or
treatments.
Brain network: a group of neural
components and the connections
between them. Neural components
can scale to represent individual
neurons to brain regions.
Connections can be anatomical (e.g.,
white matter tracts) or functional (e.
g., time series correlations of
functional brain imaging data).
Cognitive control: a set of complex
processes important for goal-
directed behavior, including aspects
of attention and working memory.
Cognitive plasticity: the capacity to
change and adapt cognitive
functioning.
Functional connectivity: a method
to identify connections between brain
regions based on statistical
correlations of their activity across
time. Functional connectivity is often
quantified using task-free ‘resting-
state’ functional MRI data.
Graph theory: a mathematical
approach to examine properties of
networks, or graphs (e.g., a
mathematical object). Graphs are
comprised of individual components
(nodes) and the relationships
between them (edges).
Network modularity: a network
property that quantifies the extent to
which a network is partitioned into
individual subnetworks, or modules.
A network with high modularity has
many connections within modules
and fewer connections between
modules.
Network modules: a collection of
nodes that form an individual
subnetwork in a graph, where nodes
within a module have many
connections to others in their own
subnetwork and fewer connections
to other subnetworks.

Box 1. Training Approaches to Enhance Cognitive Control

Cognitive control functions, such as attention and working memory, comprise a set of neural processes that underlie
successful goal-directed behavior. As such, there have been increasing efforts to develop noninvasive interventions to
improve cognitive control functions, particularly in the form of ‘cognitive training’. In this approach, individuals are trained
on one or more cognitive functions over a period of time, with the aim to improve this and related behaviors (termed
‘near-transfer’) as well as untrained behaviors (termed ‘far-transfer’).

Cognitive training interventions can take on the form of group-based therapies where participants are trained on
particular goals or strategies that they practice over time (e.g., [26,30]), or through computerized training where
participants are trained on tasks or games that tap particular cognitive functions (e.g., [2,4,68]). Importantly, both forms
of training have been shown to be effective in clinical populations and healthy young and older adults. For example,
group-based attention regulation training (i.e., strategies to reduce distractibility with mindfulness-based attention
techniques) improved cognitive control abilities in patients with TBI [26]. Further, training on computer-based video
games that tapped aspects of working memory and reasoning improved measures of divided attention in healthy young
adults [4] and multitasking training on a custom-designed video game, NeuroRacer, improved behavioral and neural
measures of cognitive control in healthy older adults [2].

It is important to note that the results of training studies to improve cognition have been mixed [69], especially regarding
the extent to which ‘far-transfer’ has been observed and those that have utilized computerized training approaches (e.
g., [70,71]). However, recent meta-analyses have suggested that training moderately improves cognitive abilities, for
example in healthy older adults [27–29]. Further, ‘near-transfer’ may be achievable with some training interventions
[72,73]. Since it is likely that not all training approaches will be effective at enhancing cognitive control, various
intervention parameters that may influence training efficacy, such as adaptivity, dosage, and subject expectancy
and motivation, should be considered [1]. Further, targeting subject’s abilities using real-time personalization during
training has shown promise to enhance capacity for transfer [1,2,74]. Finally, the heterogeneity of training outcomes
across individuals underscores the importance of identifying biomarkers of training-related cognitive plasticity to
ultimately develop personalized interventions.
can explain intervention-related plasticity across a variety of interventions and populations
remains relatively under-explored.

Here, we propose that a key organizing principle of brain networks (network modularity), is
a unifying biomarker of plasticity associated with interventions designed to enhance cognition.
A modularity metric can be derived from brain imaging data using a mathematical approach
called graph theory (Box 2). This metric can be used to quantify the extent to which individual
brain subnetworks, or network modules, are segregated from other modules in the whole-
brain network, where networks with high modularity have many connections within modules
and sparser connections between modules [12,13].

A Network Perspective for Studying Cognitive Plasticity
Noting heterogeneity of intervention-related outcomes across individuals, previous studies
have attempted to identify neural biomarkers of one’s potential for successful learning. This
work has demonstrated that certain types of brain measurements, such as regional brain
volume (e.g., striatal volume) or brain activity (e.g., frontal alpha power), are related to complex
skill learning [14–17] and can also predict improvements in untrained cognitive control abilities
[14]. Importantly, however, these types of predictors are not consistent across studies,
demonstrating a need for neural biomarkers of outcomes that generalize across subject
populations and interventions. Further, these previously identified biomarkers were largely
limited to measuring structure or function within isolated brain regions, rather than identifying a
biomarker of network-level interactions. We propose that the latter will lead to a more reliable
biomarker of intervention-related cognitive plasticity.

As expected, there is significant individual variability in functional brain networks. This unique-
ness can be captured with novel brain imaging analytic methods to identify individual
2 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Box 2. Brain Networks and Modularity: A Brief Methodological Framework

Graph theory is a mathematical approach to examine network properties, where networks can be represented as
graphs (e.g., a mathematical object) comprised of individual units (nodes) and the relationships between them (edges).
Large-scale brain networks are comprised of individual brain regions (nodes) and the connections between them
(edges). Nodes can be defined anatomically (e.g., the AAL atlas [36]) or functionally, such as through task-based
activation maps (e.g., brain regions that are more or less active when comparing different task conditions) or
connectivity patterns that define region boundaries (e.g., the Power atlas [37]) (Figure IA). Similarly, edges can be
defined anatomically or functionally, such as through white matter structural connectivity (derived from diffusion imaging)
or correlations of activity between brain regions obtained over time (e.g. a time series derived from methods such as
fMRI, EEG, or magnetoencephalography), respectively (Figure IB). In human studies, large-scale brain networks are
often quantified from task-free rs-fMRI data. For functional connections, the time series from every possible pair of brain
regions is correlated to form the network edges for the entire brain atlas. The resulting correlation matrix (Figure IC) can
then be thresholded and binarized to form unweighted edges (e.g., connections equal 0 or 1 based on a specific
network density or correlation value) or the correlation value can be retained to form weighted edges (e.g., connections
equal their original correlation value).

After a graph has been defined, various network properties can be quantified. One particularly important organization
principle is modularity: the extent to which a network can be segregated into distinct subnetworks, or modules [75]
(Figure ID). Modules are groups of nodes that can be identified in a data-driven manner by using various community
detection algorithms or by applying previously identified subnetworks (see [13] for a more in-depth discussion of
methodological considerations related to examining network modularity). Highly modular networks have many con-
nections within modules and fewer connections between modules. In addition to quantifying modularity of the entire
network, the roles of individual nodes, or brain regions, can also be quantified based on their within- and between-
module connections. For example, nodes with a high within-module degree score have many connections to other
nodes in their own module and nodes with a high participation coefficient have connections distributed across many
network modules [76,77].

Importantly, previous work has demonstrated evidence for modular brain network organization across a variety of
organisms, including Caenorhabditis elegans [78], Drosophila [79], mouse [80], rat [81], cat [82], macaque [82], and
human [83] brains. Further, recent evidence suggests that the diversity of connector hubs (i.e., brain regions with a high
participation coefficient) maintains modular organization and supports task performance [84].
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Figure I. Functional Brain Network Analysis Pipeline. (A) The brain is first parcellated into a set of brain regions to
form network nodes (e.g., the Power et al. atlas [37]). (B) For functional network analyses, the time series of each node is
then extracted. (C) The time series of every possible pair of brain regions is then correlated to form the network edges.
(D) The network is then partitioned into subnetworks or modules. Finally, the modularity of the network can be calculated
by comparing within- and between-module connections. Brain network images in (A) and (D) were visualized with the
BrainNet Viewer [85].
participants based on their network connectivity patterns [18,19]. There are increasing efforts
to use such prediction frameworks to understand individual differences in cognition as well as to
predict future behavioral outcomes [20]. Thus, we believe that a whole-brain network per-
spective is critical to identifying a common biomarker of intervention-related cognitive plasticity.
Focusing on brain networks is likely to be particularly informative, as many interventions aim to
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 3
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enhance complex cognitive processes, such as cognitive control. Such functions cannot be
localized to individual brain regions or pairs of brain regions, but rather are thought to rely on the
communication across widely distributed brain networks [21,22].

In this opinion article, we argue that brain modularity is a network-level biomarker of potential for
intervention success and, more broadly, underlying cognitive plasticity. We base our argument
on prior work with several different interventions and populations, showing that individuals with
higher brain network modularity at baseline exhibit greater intervention-related cognitive gains
[23–25] (Figure 1, Key Figure). After describing these empirical studies, we review other
empirical and theoretical work that relates modular network organization and plasticity, forming
the basis for potential mechanisms underlying the relationship between modularity and inter-
vention-induced cognitive gains.

Brain Modularity Predicts Plasticity across Populations and Interventions
Modularity is an important feature of brain networks. Moreover, both theoretical and empirical
work demonstrates that modular organization in large-scale brain networks is beneficial for
behavior. Taken together, we hypothesize that a more modular network architecture confers
cognitive plasticity during interventions aimed to enhance cognitive abilities, such as cognitive
control. In support of this hypothesis, we present results from three studies demonstrating that
individuals with higher brain network modularity at baseline (i.e., pre-intervention) exhibit larger
gains in cognitive control abilities (Figure 1A). Critically, each of these studies showed that brain
modularity was predictive of training outcomes beyond individual differences in baseline
cognition, demonstrating that brain modularity adds unique predictive information regarding
future intervention-related gains in cognition.

Patients with TBI Undergoing Cognitive Training
Initial work examining the relationship between baseline brain modularity and intervention gains
was conducted in patients with TBI [23]. Here, patients with chronic TBI who exhibited
impairments in cognitive control abilities were enrolled in a 5-week goal-oriented attention
self-regulation intervention. The intervention incorporated group-based training, individual
sessions with trainers, and at-home practice, with a focus on mindfulness attention regulation
and practical application of these skills in daily life. Participants were randomized to this
intervention or an active control brain-health education intervention. Compared with the control
intervention, performance on a composite measure of cognitive control (e.g., letter number
sequencing, response inhibition and switching, fluency) improved after the cognitive interven-
tion [26]. To examine the relationship between baseline brain modularity and training-related
gains, modularity was quantified from a 5-minute eyes-open ‘resting-state’ fMRI (rs-fMRI) scan.
Remarkably, patients with higher modularity at baseline exhibited greater training-related
cognitive gains (Figure 1B) [23]. Importantly, there was no relationship between baseline
modularity and cognitive changes in the education intervention group. Further, the relationship
between modularity and training-related gains could not be explained by individual differences
in cognitive abilities prior to training, suggesting that modularity was a unique contributor to
predicting training gains.

Healthy Individuals Undergoing Cognitive Training
In a second study, the relationship between brain modularity and training-related cognitive
gains was examined in healthy older individuals [24]. While TBI patients typically exhibit
cognitive control deficits, healthy older adults can also experience difficulties in these functions.
A large body of recent work suggests that interventions can improve cognitive control abilities in
older adults with moderate effect sizes [27–29]. In one example, a previous study demonstrated
4 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Key Figure

Brain Network Modularity Predicts Training-related Cognitive Gains
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that training improved cognitive control abilities in a group of older adults compared with a no-
contact control group [30]. Here, older adults (aged 56–71 years) with nonclinical cognitive
control difficulties were enrolled in 12-week gist reasoning training [strategic memory and
reasoning training (SMART)] that incorporated training in small groups and at-home practice.
Compared with no-contact controls, individuals in the SMART group improved on measures of
gist reasoning (test of strategic learning [TOSL] [31]) and concept abstraction (Wechsler Adult
Intelligence Scale-III similarities [32]). To examine the relationship between baseline brain
modularity and training-related gains, modularity was quantified from a 4-minute rs-fMRI scan.
As in TBI patients who completed a different type of cognitive training [23], older adults with
higher brain modularity at baseline exhibited greater SMART-related improvements on the
TOSL (Figure 1C) [24]. Importantly, there was no relationship between baseline brain modularity
and TOSL changes in the control group. Further, the relationship between baseline brain
modularity and SMART-related TOSL gains was not related to age, in-scanner motion, or
baseline cognitive abilities.

While the findings in TBI patients focused on whole-brain modularity measures, there is
evidence that aging has more pronounced effects on subnetworks mediating ‘associative’
functions, such as the fronto-parietal control network, compared with subnetworks mediating
sensory-motor functions, such as the visual network [33]. In a secondary analysis, it was
demonstrated that association cortex modularity, but not sensory-motor cortex modularity,
was related to TOSL gains in the SMART group, suggesting that modularity of association
networks may be more informative in predicting training-related gains in older adults.

Healthy Individuals Undergoing Exercise Training
Although a large focus of recent efforts to improve cognitive functioning has utilized group-
based or computerized cognitive training, exercise interventions have also shown positive
effects on brain function and behavior, particularly in older adults [34,35]. In a final study, the
association between brain modularity and cognitive improvements associated with exercise
training was examined [25]. Here, healthy, low active, older adults (aged 60–80 years) were
enrolled in a 6-month physical exercise intervention led by trained exercise specialists. Par-
ticipants were randomized to one of four groups: (i) participants in the Walk group walked within
their target heart rate during training; (ii) participants in the Walk+ group walked in the same
target heart rate and were provided a daily beta-alanine supplement; (iii) participants in the SSS
group performed exercises focused on stretching, strengthening, and stability; and (iv) par-
ticipants in the Dance group were instructed on social dance sequences. Compared with the
Figure 1. (A) Brain modularity calculated at baseline is predictive of intervention-related cognitive gains across several interventions and populations. Specifically,
individuals with higher brain network modularity have larger cognitive gains than those with lower brain network modularity. Toy brain networks are comprised of nodes
(circles) and edges that connect them (lines). Nodes are colored according to their module membership; within-module connections are colored to match that of nodes
in their own module, while between-module connections are colored black. The network with higher modularity (right side of graph) has many within-module
connections and fewer between-module connections, while the network with lower modularity (left side of graph) has fewer within-module connections and many
between-module connections. (B) Baseline brain modularity predicted cognitive control gains (on a composite of attention and executive function tasks) in traumatic
brain injury (TBI) patients who participated in group-based attention training, but not those who participated in a control education intervention (adapted with permission
from Wolters Kluwer Health, Inc. [23]). (C) Baseline brain modularity predicted cognitive control gains (on the test of strategic learning [TOSL] [31]) in healthy older adults
who participated in group-based reasoning training, but not those who were in a no-contact control group (adapted from [24]). (D) Baseline brain modularity predicted
cognitive control gains [on a composite of executive function (EF) tasks] in healthy older adults who participated in exercise training, but not those who participated in a
control dance intervention (after controlling for age, in-scanner motion, and baseline cognitive control functioning; adapted from [25]). It is important to note that the
range of measured brain modularity values varied across studies due to differences in graph theoretical methodological decisions, such as the number of network nodes
and edges and choice of atlas. Nevertheless, the relationship between baseline modularity and intervention-related gains was robust to varying analytic methods.
Dance, instructed on social dance sequences; SSS, performed exercises focused on stretching, strengthening, and stability; Walk, walked within their target heart rate;
Walk+, walked in their target heart rate and were provided a daily beta-alanine supplement.

6 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Dance group, individuals in the Walk, Walk+, and SSS groups improved on a composite
measure of cognitive control (e.g., spatial working memory, task switching) and cardiorespira-
tory fitness. To examine the relationship between baseline brain modularity and training-related
gains, modularity was quantified from a 6-minute eyes-closed rs-fMRI scan. Similar to previous
work, higher baseline modularity was related to greater exercise-related cognitive control gains,
specifically in the groups that exhibited intervention-related cognitive improvements (i.e., Walk,
Walk+, and SSS; Figure 1D) [25]. In the Walk and Walk+ groups, this relationship was stronger
in individuals with lower baseline cognitive control abilities. Importantly, there was no relation-
ship between brain modularity and cognitive changes in the Dance control group, indicating
that this predictive relationship was selective to groups that showed training-related cognitive
and cardiorespiratory fitness gains. Further, the relationship between baseline modularity and
cognitive gains was not related to individual differences in age, in-scanner motion, years of
education, or brain volume.

Robustness of Brain Modularity as a Biomarker of Plasticity
Together, the findings of these three empirical studies suggest that brain network modularity
assessed during task-free rs-fMRI may be a biomarker of potential for training-related cognitive
control gains that generalizes across a variety of populations and interventions (Figure 1). First,
the modularity-gain relationship was observed in several different populations that exhibited
intervention-related gains, on average, ranging from patients with clinical deficits to healthy
individuals. Importantly, this relationship was found across individuals with a range of educa-
tional backgrounds. Second, the modularity-gain relationship was observed in several different
interventions that improved functioning, ranging from group-based cognitive therapies to
physical fitness interventions. Third, this relationship was found for a variety of outcome
measures that were unique to each study, but all tapped aspects of cognitive control
functioning.

The modularity-gain relationship also appears to be robust to methodological choices in terms
of data collection and analysis. This relationship was observed in datasets with varying rs-fMRI
scan length and parameters, including eyes-open or eyes-closed rest. Importantly, several
steps were also taken to demonstrate that the relationship between modularity and cognitive
gains was not related to in-scanner head motion. Further, the modularity-gain relationship
generalized across graph theoretical analysis methods, including node selection [e.g., auto-
mated anatomical labeling (AAL) [36] or Power [37] atlases], edge selection (e.g., thresholding
and binarization or retention of edge weights [33]), and methods for modularity optimization (e.
g., simulated annealing [38], spectral clustering [39], or imposing predefined modules). Given
that some of these methodological choices (e.g., node and edge number) can affect the range
of measured modularity values, it is difficult to meaningfully compare the magnitude of the
modularity metric between studies and, instead, should be compared within studies where the
same analytic methods are used. Nonetheless, the correlation between baseline brain modu-
larity and intervention-related gains was replicated in several independent studies that used
somewhat different graph theoretical methods (Figure 1).

Interestingly, a similar robustness to in-scanner motion, scan sequence, and atlas selection has
been found for other functional connectome prediction studies [19]. However, it should be
noted that some of these choices may result in lower prediction accuracy (i.e., prediction of
individual participants based on connectivity patterns), such as the use of anatomically based
atlases with large network nodes or insufficient processing to account for motion artifacts
[19,40]. Additionally, some work has suggested that performing a task in the scanner may
increase the detectability of interindividual variability and reduce subject motion [41]. Future
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 7
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work could examine the relationship between modularity quantified during a cognitive task and
intervention-related cognitive gains.

Additional Work Supporting a Brain Modularity-plasticity Relationship
Results from the independent studies described above demonstrate that baseline brain
network modularity is predictive of cognitive control gains in multiple populations after
cognitive and exercise training. Broadly, these results suggest that modularity indexes
cognitive and underlying neural plasticity. Notably, brain modularity has also recently been
shown to be predictive of task learning rates in early stages of working memory training [42]. In
further support of modularity as a biomarker of intervention plasticity, a metric of baseline
default and visual network modularity also predicts reductions in symptom severity after
cognitive behavioral therapy in patients with obsessive-compulsive disorder (OCD) [43] and
default network segregation predicts clinical treatment outcomes in patients with schizo-
phrenia [44].

Moreover, brain modularity metrics also predict outcomes associated with forms of plasticity
that are not directly intervention-related, such as recovery from injury. In one study, modularity
measured from resting electroencephalography (EEG) data predicted future behavioral out-
comes in patients with disorders of consciousness [45]. Specifically, patients with higher
modularity had more positive outcomes (i.e., recovered consciousness) approximately 1 year
later. In a second study, rs-fMRI connectivity within brain subnetworks predicted future
cognitive decline in cognitively normal older adults [46]. Specifically, older adults with higher
baseline connectivity within ‘associative’ networks had the least cognitive decline approxi-
mately 3 years later.

Collectively, these additional studies demonstrate that brain modularity is also predictive of
other clinically based outcomes, such as OCD severity and recovery of consciousness. Further,
they suggest that brain modularity can be related to forms of plasticity even in the absence of an
active intervention, such as recovery from brain injury and cognitive decline from normal aging.

Potential Mechanisms Underlying the Relationship between Brain Modularity
and Plasticity
There is a large body of empirical and computational work demonstrating the advantages of a
modular network organization. While recent reviews have described the behavioral relevance of
modular network organization in detail (e.g., [47]), the specific focus of this opinion article is to
propose network-level mechanisms relating brain modularity to cognitive plasticity that may, in
turn, explain how interventions lead to cognitive benefits.

Empirical Work
Human studies have shown that modular brain networks are beneficial for cognitive perfor-
mance. First, higher network modularity quantified from task-free ‘resting’ functional con-
nectivity data is related to better working memory capacity [48] and episodic memory [33]
across individuals. Further, greater modularity of sensorimotor networks is related to future
motor skill learning [49] and functional networks become more segregated over the course of
practice and learning [50]. Second, modular network organization is disrupted in both healthy
older individuals and patients with cognitive control deficits [33,51–56]. Finally, lesions to brain
regions important for maintaining modular organization [57] lead to more extensive cognitive
deficits [58]. Network modularity also increases over the first weeks to months during stroke
recovery and, importantly, is associated with recovery of complex cognitive functions,
such as attention and memory [59]. Collectively, these empirical studies in humans suggest
8 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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that trait-like features of brain modularity predict behavioral performance, namely that a more
modular intrinsic network organization measured in ‘resting’ states is advantageous for
behavior.

Although recent work has described state-like changes in modular network organization (e.g.,
during task performance) in depth (e.g., [47,60]), one particularly relevant study found that
individuals with higher general intelligence have smaller changes in connectivity between a
task-free ‘resting-state’ and task performance, suggesting that these individuals have a more
‘optimal’ intrinsic network organization that supports more efficient changes in patterns of
connectivity during task performance [61]. During cognitive training, we propose that individu-
als with higher network modularity may also be in a more ‘optimal’ network state that requires
less network reconfiguration to achieve the ‘optimal’ network state necessary for a successful
response to a training intervention. Although our hypotheses and review of previous studies
emphasize trait-level differences in brain modularity, we believe that leveraging both state- and
trait-based approaches in future work will be informative for identifying biomarkers, as well as
understanding network-level mechanisms underlying cognitive plasticity.

Theoretical Work
Computational modeling studies provide a mechanistic framework for the empirical findings
described above, as well as demonstrate evolutionary benefits of having a modular network
architecture. In particular, network modularity may offer information encapsulation that, in
turn, allows for faster processing [62]. Further, previous work has shown that modular
networks spontaneously evolve to solve varying task goals and, additionally, networks that
are more modular have greater adaptability in changing environments [63]. Similarly, other
work has shown that modular networks are better at learning new skills without forgetting old
ones [64]. In particular, a problem in the field of artificial intelligence referred to as catastrophic
forgetting (i.e., forgetting previously acquired skills after learning new ones) was reduced in
modular neural networks. It is proposed that modular networks aid new learning because
processing occurs selectively in a module dedicated to learning a new task [64]. Modular
biological networks may have also evolved to reduce network wiring costs [65]. Specifically,
this may allow modular networks of sufficient size, similar to the scale of many biological
networks, to be more efficient and faster at problem solving (e.g., identifying a subset of
specific patterns from a larger set [66]).

Taken together, this computational work suggests that modular networks are more adaptable
and are better at learning and problem solving. These advantages of modular networks have
been attributed to the compartmentalization of connections offered by a modular organization
[13]. Here, networks with many connections concentrated within modules can more indepen-
dently adapt to changing external demands [67] and, further, are not as affected if other
modules are modified or damaged. Relatedly, modular networks are thought to act more
independently from the rest of the network because they have relatively few between-module
connections, which leads to increased flexibility.

Considering the empirical and computational evidence for advantages of a modular network
organization, we propose possible network-level mechanisms underlying the relationship
between brain modularity and intervention-induced cognitive gains. Specifically, we hypothe-
size that higher network modularity represents a brain network trait that allows for greater
plasticity during interventions. As the empirical work suggests, robust trait-like differences in
modularity exist across individuals that are related to better behavioral performance in a variety
of cognitive domains, such as working memory and episodic memory. Further, as the
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 9
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Outstanding Questions
Is brain modularity also predictive of
underlying neural changes that occur
with interventions? Intervention studies
also frequently report concurrent
changes in brain structure and func-
tion, but the relationship between brain
modularity and training-related neural
changes remains unexplored.

Is brain modularity related to interven-
tion-related outcomes, learning, and
academic achievement in children
and adolescents? Variability in cogni-
tive control abilities is related to scho-
lastic success in children and
adolescents, but the relationship
between modularity and these abilities
is not well understood.

Is brain modularity predictive of brain
stimulation-based cognitive improve-
ments or intervention-related gains in
other cognitive domains? For example,
brain stimulation (e.g., transcranial
magnetic stimulation) is another prom-
ising method to improve cognitive con-
trol. Further, interventions have also
shown potential to improve other
aspects of complex behavior (e.g.,
mnemonic training to improve mem-
ory). Future research should examine
the relationship between brain modu-
larity and other interventions that
enhance cognitive control as well as
abilities in other cognitive domains.

Can brain network biomarkers be used
prospectively to develop and guide
personalized interventions? Thus far,
brain modularity and other biomarkers
have been used to predict intervention
outcomes retrospectively. A promising
line of future work will be to use net-
work biomarkers prospectively to
maximize outcomes. For example,
can baseline brain modularity mea-
sures be used to identify optimal inter-
vention dosage? Further, could brain
state be manipulated prior to an inter-
computational work suggests, modular networks show greater adaptability in changing envi-
ronments and are better at learning and problem solving.

In the context of cognitive training interventions, we propose that individuals with more modular
brains are better at adapting to changing training demands and faster at solving novel tasks that
must be learned during training. In this way, given the relationship between brain modularity and
cognitive performance, individuals with a more modular brain are likely better at learning training
paradigms [49]. This proposal is supported by empirical work linking modularity to early learning
rates during training [42], in which individuals with more modular brains exhibited faster learning
of the training paradigm than those with less modular brains. Thus, we propose that during the
course of cognitive training, individuals with higher brain network modularity have a greater
capacity to train more and at higher levels of difficulty sooner than individuals with lower brain
network modularity, leading to larger intervention-induced cognitive improvements. Future
studies can directly test these hypotheses.

Concluding Remarks and Future Directions
Based on recent studies, we propose that assessments of brain network modularity serve as
a key biomarker that predicts intervention-related cognitive plasticity across individuals
engaging in various forms of training. Moreover, modularity may also be a valuable metric
for understanding recovery from brain injury and progression of brain pathology. We believe
that this level of analysis (i.e., examining large-scale brain network organization) is critical for
capturing information that is not as well explained by behavior or the activity and structure of
individual brain regions. For complex behaviors like cognitive control, examining the inter-
actions within and between brain subnetworks is likely to be informative. The extant literature
provides evidence for the significance of modular brain network organization in shaping both
current and future behavioral outcomes. Further, it broadly points to modularity as an
important index of underlying plasticity and, as such, offers potential mechanisms for
individual differences in intervention success. Finally, we anticipate that this framework
can be used prospectively to guide personalized interventions that improve outcomes across
individuals. Future studies should examine whether the relationship between modularity and
cognitive plasticity extends to other populations, such as learning in children and adolescents
(see Outstanding Questions). Importantly, these future lines of work will help generate testable
hypotheses for underlying neurobiological mechanisms of brain modularity as a biomarker of
plasticity.
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