
Pin Status

An Arduino debugging library for high school e-textile courses

Michael Schneider
 Computer Science

 University of Colorado

 Boulder CO USA
 Michael.J.Schneider@colorado.edu

ABSTRACT

When learning to code a student must learn both to create a

program and then how to debug said program. Novices often start

with print statements to help trace code execution and isolate

logical errors. Eventually, they adopt advance debugger tools

such as breakpoints, “stepping” through code execution, and

“watching” variables as their values are updated. Unfortunately

for students working with Arduino devices, there are no debugger

tools built into the Arduino IDE. Instead, a student would have to

move onto a professional IDE like Atmel Studio or acquire a

hardware debugger. Except, these options have a steep learning

curve and are not intended for a student who has just started to

learn how to write code. We are developing an Arduino software

library, called Pin Status, to assist novice programmers debug

common logic errors and provides features specific to the e-textile

microcontroller, Adafruit Circuit Playground Classic. This work

has been funded by NSF STEM+C, award #1742081.

CCS CONCEPTS

• Social and professional topics ~ Computing education

KEYWORDS

Arduino, e-textiles, debugging tool, novice programmer

ACM Reference format:

Michael Schneider. 2020. Pin Status: An Arduino debugging library for

high school e-textiles. In Proceedings of ACM SIGCSE conference

(SIGCSE’20). ACM, New York, NY, USA, 2 pages.

1 Problem and Motivation

The Pin Status library is part of a suite of tools designed for

our Debugging By Design project [4,5,8] which focuses on

creating debugging tools for high school students who are

learning to program with e-textiles . Current tools for debugging

embedded systems are intended for experienced programmers and

engineers, with advanced IDEs that provide breakpoints and

“watch variables” or hardware debuggers which are physical

devices that can be connected to a development board or directly

to the microchip.

Because an IDE like Atmel or Visual Studio would be

intimidating and difficult for a novice programmer to learn, high

school students start with the Arduino IDE, which provides a

basic text editor, library manager, serial monitor, and can compile

and upload code onto the Arduino microcontroller. This basic

IDE works well to start with but lacks necessary debugging tools

for students as they expand their knowledge. There needs to be

some scaffolding that helps beginners to gain basic debugging

skills so that they can fix their starter code and then prepares them

to move on to more advance tools when they are ready. The Pin

Status library provides the initial scaffolding with methods that

emulate debugger tools, breakpoints and variable “watching”,

found in more advance IDEs, while keeping the students in the

Arduino IDE.

2 Background and Related Work

The lack of beginner friendly debugger tools for Arduino is a

known concern within the Maker community [3,4,5,6,7,8]. Tools

have been created that provide debugging features (breakpoints,

variable “watch”) via plug-ins to Visual Studio or Atmel Studio

[1,2,6]. These plug-ins allow the student to use the IDE’s

debugger with the Arduino core library they are familiar with and

do not require a hardware debugger (on supported Arduino

boards). This pairing of the familiar Arduino libraries with

professional IDE debugger tools, makes these plug-ins a great

option for more advance undergraduates. But these tools still

require a student to learn how to work with a complex IDE like

Visual Studio, which can be intimidating for first time

programmers.

 Recognizing this need for novices to work within a simple

IDE, [7] created a customized version of the Arduino IDE and its

drivers to provide breakpoints and allow students to step through

their code but did not allow for students to view their variables.

Also, their system, as of 2019, is not publicly available and may

not still be in development.

3 Approach and Uniqueness

The goal of the Pin Status library is to assist students in

finding errors in their e-textile projects. More specifically, it has

been designed to address common software errors found in

beginner code [4]. This section will provide examples of these

bugs and detail how the Pin Status library has addressed them.
Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

SIGCSE’20, March, 2020, Portland, Oregon USA

© 2020 Copyright held by the owner/author(s). 978-1-4503-0000-0/18/06...$15.00

SIGCSE ‘20, March, 2020, Portland, Oregon USA M. Schneider

Figure 1: Adafruit Circuit

Playground Classic’s Pin to Neopixel

LED mapping. The Neopixel LEDs

map to the nearest Pin, with the

center Neopixels being unused.

3.1 Problems with Variables

Kafai, et.al. define two key problems students face when

dealing with variables, incorrect variable initialization and

variables not matching the circuit [4]. These two errors relate to a

common Arduino practice of using variables to keep track of what

components are connected to each Pin. For example, a student

might connect a potentiometer to Pin 12 and an LED to Pin 3.

Their code would look something like:

 int pot_pin = 12;//Potentiometer

 int led_pin = 3;//LED

The first line code is an example of incorrect variable

initialization. Although a potentiometer might be connected to

Pin 12 (See Diagram 1 for image of Circuit Playground), a

potentiometer provides an analog signal and requires the code to

use the Pin’s analog designation (A11). Referencing the correct

Pin number for analog, digital, or PWM can be difficult because

they share the same physical location on the Circuit Playground!

In order to read the potentiometer’s value correctly, the code

would need to be updated to use A11.

 int pot_pin = A11;//Potentiometer

The second line of code could be an example of variables not

matching the circuit. Either because the value 3 was typo or

perhaps the student accidentally wired the LED to another Pin.

Nevertheless, the value of led_pin no longer points to the correct

Pin number. To handle both errors, I designed a selection of

methods that can provide detailed Serial output to describe each

Pin’s power status (On, Off, Receiving Power). Also, the

debugging methods will set a corresponding Circuit Playground

Neopixel LED (White=On, Off, Green=Receiving Power). Figure

1 details how the Pins are mapped to the on board Neopixel

LEDs. With this detailed information, the student will be able to

see how power is currently flowing into and out of their

microcontroller at any given point in the program and help

determine the source of an error (software logic error or hardware

failure). The debugging methods created can be divided into two

groups, Passive Debugging and Active Debugging.

3.1.1 Passive Debugging

Passive debugging is a way to automatically provide the

power status of a pin each time its state changes or is read. A set

of C macros replace method calls to the core Arduino library in a

student’s code with a corresponding Pin Status method call. The

Arduino core methods are digitalWrite(), digitalRead(),

analogWrite(), analogRead(). The Pin Status equivalents are

digitalWriteD() … analogReadD(). The Pin Status methods will

perform three actions: validate method parameters and provide

appropriate error messages, display the updated Pin state, and

update the Pin’s Neopixel LED.

3.1.2 Active Debugging

Active debugging requires the student to explicitly determine

where to place a debugging method call. For example, if a student

needed to check which Pins were receiving power, they could

iterate over each Pin reading and then displaying the Pin’s state.

But with the Pin Status library they can reduce this tedious task to

a single method call. The method debug() was created to describe

each Pin’s digital

state with Serial

output and update

each Pin’s

Neopixel LED.

The debug()

method was

overloaded to

instead check a

single pin’s state

and choose

between reading

the Pin’s Digital,

Analog (if

supported), or

PWM (if

supported) state.

3.1.3 Breakpoint Proxy

As stated earlier, the Arduino IDE does not provide a way for

students to add breakpoints to their code and pause the program’s

execution. The Pin Status library contains a pause() method

which will halt the code’s execution until the student hits enter in

the Serial monitor, i.e. “Press enter to continue”.

4 Results and Contributions

The Pin Status library is still under development, but we have

begun testing with undergraduate students in an informal demo

session. Students appreciated the detailed printed information the

debugging methods provided but weren’t sure whether the

Neopixel LEDs actually helped. During the demo session,

students had difficulty with the pause feature. For example, when

testing a button, the program would pause before reading the

button’s state/value. Students would press the button and then un-

pause the program. Because the program had been paused, the

button press was never read. Instead the students would have

needed to hold the button down while they un-paused the program

in order to register the button press. This shows a need to further

understand the usability constraints for providing a breakpoint

scheme for novice programmers dealing with live sensor input.

Overall students found the Pin Status library helpful, but a

more formal study is needed to (1) better understand how students

utilize the library to determine how effective its current features

are, (2) what other features might be included to help students

learn debugging techniques, and (3) analyze how students

transition, if they do transition, from using the Passive Debugging

to the Active Debugging methods.

ACKNOWLEDGMENTS

Craft Tech Debugging Team: Arielle Blum, Chris Hill, and Rona
Sadan. Principal Investigators: Ann Eisenberg, and Mark Gross.

NSF STEM + C funding, award #1742081.

Pin Status: An Arduino debugging library for high school e-textile

courses
SIGCSE ‘20, March, 2020, Portland, Oregon USA

REFERENCES
[1] Anon. (Oct. 2019). Arduino IDE for Microsoft Visual Studio. [Online].

Available: http://www.visualmicro.com

[2] Anon. (Oct. 2019). Cross-Platform debugger for Microsoft Visual Studio.

[Online]. Available: https://visualgdb.com/

[3] Deborah A. Fields, Kristin A. Searle, and Yasmin B. Kafai. 2016.

Deconstruction Kits for Learning: Students' Collaborative Debugging of

Electronic Textile Designs. In Proceedings of the 6th Annual Conference on

Creativity and Fabrication in Education (FabLearn '16). ACM, New York, NY,

USA,82-85.DOI:https://doi-

org.colorado.idm.oclc.org/10.1145/3003397.3003410

[4] Fields, D. A., Nakajima, T., Amely, J., Fields, D., Landa, J., Amaya, P., &

Ottina, J. (2018). Stitching the Loop: A Resource Guide for using Electronic

Textiles in Exploring Computer Science. Exploring Computer Science.

Available at http://exploringcs.org.

[5] Fields, D. A., Kafai, Y. B., Searle, K. A., and Min, H. S. 2012b. Debuggems to

assess student learning in e-textiles. In Proceedings of ACM Special Interest

Group on Computer Science Education (SIGCSE).

[6] Dolinay, Jan, Petr Dostálek, and Vladimír Vašek. "Arduino Debugger." IEEE

Embedded Systems Letters 8.4 (2016): 85-88.

[7] Torroja, Yago, et al. "A serial port based debugging tool to improve learning

with arduino." 2015 Conference on Design of Circuits and Integrated Systems

(DCIS). IEEE, 2015.

[8] Yasmin B. Kafai, Eunkyoung Lee, Kristin Searle, Deborah Fields, Eliot Kaplan,

and Debora Lui. 2014. A Crafts-Oriented Approach to Computing in High

School: Introducing Computational Concepts, Practices, and Perspectives with

Electronic Textiles. Trans. Comput. Educ. 14, 1, Article 1 (March 2014), 20

pages. DOI=http://dx.doi.org.colorado.idm.oclc.org/10.1145/2576874

http://exploringcs.org/

