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THE FAMILY OF PERFECT IDEALS OF CODIMENSION 3, OF TYPE 2
WITH 5 GENERATORS

ELA CELIKBAS, JAI LAXMI, WITOLD KRASKIEWICZ, AND JERZY WEYMAN

ABSTRACT. In this paper we define an interesting family of perfect ideals of codimension
three, with five generators, of Cohen-Macaulay type two with trivial multiplication on the
Tor algebra. This family is likely to play a key role in classifying perfect ideals with five
generators of type two.

1. INTRODUCTION

Perfect ideals of codimension three have been investigated for a long time. Linkage theory
([10]) suggests such ideals might be possible to classify. Indeed, if one applies minimal linkage
to a perfect ideal of codimension three, one gets an ideal with a minimal free resolution with
the same sum of Betti numbers as the original one, and after double link one obtains the
ideal with the free resolution with modules of the same ranks as for the original ideal.

Since the Buchsbaum-Eisenbud discovery of the structure of Gorenstein ideals of codimen-
sion three ([4]), one can obtain via linkage also the structure of perfect ideals of codimension
three with four generators (almost complete intersections) (see [1], [2]). Hence the smallest
class of perfect ideals of codimension three, whose structure is not known are those with five
generators, of Cohen-Macaulay type two. Such ideals were classified via linkage with addi-
tional assumption that one of the Koszul relations on the generators is also one of minimal
generators of the first syzygy module of the ideal ([1]). Thus the next step is to deal with
the ideals for which it does not happen.

It is conceivable that such ideals are in the linkage class of complete intersections, as
one can prove (see [5]) that the grading obstruction of Huneke-Ulrich ([8]) does not occur
for resolutions of this type (at least for homogeneous ideals in a polynomial ring of three
variables.

One of the difficulties in classifying such ideals is that most of the known examples are
constructed via Macaulay inverse systems so there are many of them corresponding to dif-
ferent Hilbert functions and it is hard to see whether they come from few “generic” families.
The smallest class of examples known to authors was the class of ideals in the polynomial
ring with three variables, obtained by Macaulay inverse system from two forms of degree
four.

In this paper we define an interesting family of the ideals in question, over polynomial
ring in 17 variables. We prove its basic properties: the multiplicative structure on their
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resolutions has constants of positive degree, but they are in the linkage class of complete
intersections.

The family of ideals we describe was discovered using the results of [14]. In that paper
the author constructed the so-called generic rings ]A%gen for resolutions of length three for all
formats. However, the ring ]A%gen is Noetherian only in very few cases. Our format of five
generators and type two is one of those cases. The family we got comes from picking certain
slice in the spectrum of the ring Rgen. Analogous construction for the formats (1,n,n,1)
with n even and for the formats (1,4,n + 3,n) gives the generic perfect ideals for these
formats. Based on this, we expect our family to play a key role in classifying the perfect
ideals with five generators, of Cohen-Macaulay type two.

2. A FAMILY OF PERFECT IDEALS OF CODIMENSION THREE, OF TYPE TWO, WITH FIVE
GENERATORS.

Let K be a field of characteristics different from two. Let F and G be two vector spaces
over K of dimensions four and two, respectively. Consider the affine space

2 3
X=N\Fecol\r

whose elements are pairs consisting of a pencil of 4 x 4 skew-symmetric matrices and a
4-vector. The coordinate ring A of X can be identified with the symmetric algebra

A=sym(AFeGo \F).

We denote the coordinate functions in the coordinate ring A by z; ;, y;; (1 <i < j <4),
and z ;5 (1 <i<j<k<4). Ais a bigraded ring with deg(x; ;) = deg(v;;) = (1,0), and
deg(zi,j7k) = (0, ].) ,

Consider the equivariant ideal J in A generated by the representation Sso01F ® A\G
in bidegree (2,1) and the representation Ss2902F ® S22G in bidegree (4,0). We describe
generators of J explicitly. We use A(ij, kl) to denote the 2 X 2 minor of the matrix

T12 T13 T14 T23 T4 T34
Y12 Y13 Y14 Y23 Y24 Y34

corresponding to the columns labeled by (4, 7) and (k,1).
The cubic generators of bidegree (2,1) are uy 23, U124, U134 and ug 34 Where

U3 = —229.340(12,13) + 221 3 4A(12,23) — 221 4A(13,23) + 21.2.3(A(13,24) — A(12,34) + A(14,23))
U 9.4 = 22034A(12,14) — 221 5 4 A(12,24) + 21 54(A(12,34) + A(13,24) + A(14,23)) — 22 9. 3A(14, 24)

Uy 5.4 = 22054A(13,14) + 21 5.4(—A(12,34) — A(13,24) + A(14,23)) + 221 2 4A(13,34) — 221 5 3A(14, 34)
Up g4 = 22,3.4(—A(12,34) — A(13,24) — A(14,23)) — 221.54A(23, 24) + 221 2 4A(23, 34) — 221 5 3A(24, 34).



The generator of degree (4,0) is a discriminant of the Pfaffian of the skew-symmetric 4 x 4
matrix of linear forms treated as a binary form, so it equals u = b* — 4ac where

4 = T12T34 — L1324 + T14T23,
b= 12y34 — T13Y24 + T14Y23 + T34Y12 — T24Y1,3 + T2,3Y1,4,
C = Y1,2Y34 — Y1,3Y24 + Y1,4Y23-
Let uj = > (=1)'wijz, vi = 2=z, 0 = A(12,34), 6, = A(13,24), and
d3 = A(14,23). Then the minimal resolution of A/.J over A is

F,:0— A2 A6 2 A5 S 1 A where

dy = [U2,3,4 U134 Ul24 U123 U},

o w0 40— 8 2A(13,14)  —2A(12,14)  —2A(12,13)
vy —up —2A(23,24) —8 — Gy +05  2A(12,24)  2A(12,23)
dy= | vs ws  2A(23,34)  2A(13,34)  —6, — 0y — 85 —2A(13,23)]
(2 Uy 2A(24, 34) 2A(14, 34) —2A(14, 24) 51 - 52 - 53
| 0 0 —2234 —21,34 21,2,4 21,2,3
[ b 2a ]
—2¢ —b
ds = —U1 —ux
V2 U2
U3 Uus
| U4 —U4]

Proof. We use Buchsbaum-Eisenbud exactness criterion. The rank conditions are obviously
satisfied. So we need to show that for 1 < i < 3, depth(/(d;)) > 3. In fact, it is enough to
show that the codimension of the ideal J is 3 and that all the ideals I(d;) for 1 <i < 3 are
the same up to radical. In order to see it, we give a geometric interpretation of the ideal J.
The element u is the hyperdiscriminant for the representation /\2 F*® G*. Vanishing of this
polynomial on a pencil s(z; ;) +t(y; ;) means that in this pencil there is only one ( “double”)
member of rank < 2. The zero set V(.J) consists of pairs ((z;;,¥i ), (2ijx)) such that the
trivector (z; ;x) viewed as a functional on F™* vanishes on the kernel of rank two member of
the pencil.

The resolution with differentials ds, do, d; given above can be constructed by a geometric
method (see [13]) as follows. Let us first write it in terms of representation theory

Fo: 0= (\F)* e (/\G)* oG A(-5,-2) -
/\F®3®/\G®G®A /\F®2®/\F® /\G®2®A —1) =

%(/\F)@ /\G®2®A( 4,0) EB/\F@/\F@/\G@A —2,—1) = A

The desingularization Z of our set V(J) is given by the homogeneous bundle n* where
n has weights (1,1,0,0;1,0), (1,0,1,0;1,0), (0,1,1,0;1,0), (1,0,0,1;1,0), (1,1,0,0;0,1),
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(1,0,1,0;0,1), (1,1,1,0;0,0). This is a homogeneous bundle of rank 7 over Flag(1,3; F') x
Grass(1,G), so its rank is 7+ 5+ 1 = 13 as needed. One checks that the pushdown of the
Koszul complex gives our complex F,. Even better is to consider bundle £ with the weights
(0,0,1,1;0,1), (0,1,0,1;0,1), (1,0,0,1;0,1), (0,1,1,0;0,1), (1,0,1,0;0,1), (0,0,1,1;1,0),
(0,1,1,1;0,0), (1,0,1,1,0,0). This is a bundle desingularizing discriminant on the first
coordinate and a two-dimensional sub bundle on the second. The homogeneous space is
Grass(2, F') x Grass(1,G). So dimension of Z is 8 + 4 + 1 = 13. Pushing down the corre-
sponding Koszul complex gives our complex F,. It follows from the results of [13], chapter
5, that the variety V'(J) has rational singularities so A/.J is Cohen-Macaulay of codimension
three. The rest of the claims follow. O

3. THE DEFORMED IDEAL J(t)
In this section, we give a deformed ideal J(¢) which is an ideal in the bigger polynomial

4 2
ring B = A[t]. Equivariantly, the variable ¢ is just A F ® A G and we set deg(t) = 2.
If we let u; = >0 (—=1)'wiz, vj = D (—1)'yiz, 01 = A(12,34), 0y = A(13,24), and
d3 = A(14,23), then the matrices of differentials dy and d3 become

T wn —0 8 — 05+t 2A(13,14) COA(12,14)  —2A(12,13)
vy —us —2A(23,24)  —0 — G+ 05+t 2A(12,24) 2A(12, 23)
b)) = | vy us  2A(23,34) OA(13,34)  —0y — 8y — 05—t —2A(13,23) |,
v 20(24,34) 2A(14, 34) COA(14,24) 6y — 0y — 04 + 1
| 0 0 —29.3.4 —21,3.4 21,24 21,2,3
b+t 2a
—2¢ —b+t
—U1 —U
ds(t) = o I
U3 Uus
| — U4 —Uy

Then, im[d;(t)]7 = ker([da2(t)]T), where [da(t)]T and [di(¢)]T are transposes of matrices
dy(t) and dy(t), respectively. Thus we get
J(t) =im(di(t)) = (—ugaas + tzo3.4, —U1 34+ t2134, —Ur 24 + L2124, U123 — L2123, U — 7).
Theorem 3.1. The ideal J(t) is a perfect ideal of codimension three in B. The minimal
free resolution of B/J(t) over B is
0= B(-7? 2% p(—5)5 2% p(—4) @ B(-3)* 2% B

Proof. We use Buchsbaum-Eisenbud exactness criterion [3]. The rank conditions are obvi-
ously satisfied. So we need to show that depth(/(d(t);)) > 3 for 1 < i < 3. But we see
immediately by construction that the ideals (I(d(t);),t) are equal to (I(d;),t). So they have
depth four. Thus the claim follows. O

4. THE IDEALS J AND J(t) ARE IN THE LINKAGE CLASS OF COMPLETE INTERSECTIONS

Next we obtain sequences of links that link the ideals J and J(t) to complete intersection

ideals, respectively.
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Theorem 4.1. The ideals J and J(t) are in the linkage class of complete intersections.

Proof. First we show that the ideal J is in the linkage class of a complete intersection
by finding a regular sequence of elements of degree three in J. A good choice is taking
Ll = <U17273, U17274, U17374>. If we set Kl = (Ll . J), then

Kl = <U1,U1,pK1,QK1,TK1>

where
pK1 = (A(34, ]_2) —|— A(]_?), 24) —|— A(Q?), 14))217374 —|— 2A(14, 13)22’374),
qr, = (A(34,12) + A(13,24) + A(23,14)) 2124 + 2A(14,12) 25 34, and
Tk, = (A(34, ]_2) + A(]_?), 24))217273 + A(QB, 13)2’17274 + A(12, 23)2’173’4 + 2A(13, 12)2’27374.

Now let N7 = (vy,u1, pg,) and set P, = (N7 : K3). Then

P = <2’1,3,4> Y1,421,2,3 — Y1,321,2,4, L1,421,2.3 — L1,321,2/4, A(14, 13)>,

and a resolution of A/P; is

Py Py

Py
0 A2 %, 02y gt B 4 AP 0

0 0 Y1,421,23 —Y1,32124 T142123 — L1,321,24 A(14, 13)
Ti4  T13 —21,34 0 0
where di' = ’ ’ .
—Y14 —Y13 0 —21,34 0
2124 2123 0 0 —21,34

Note that d§ ! has three Koszul relations, and A/P; is a hyperplane section of a codimension
two determinantal ideal <y17421,273 —Y1,321,2,4,L1,421,2,3 — L1,371,24, A(14, 13)) The ideal P1 is
well known to be in the linkage class of a complete intersection.

Similarly, we show that the ideal J(¢) is in the linkage class of a complete intersection
by finding a regular sequence of elements of degree three in J(¢). This time we consider
L1 (t) = <—U1,273 + 2123t, U124 — 2124t, U134 — 2134t> and set Kl(t) = (Ll (t) : J(t)) Then

Ki(t) = (v1,u1, pr, + z134t, G, + 21248, TR, + 2193t),
Let Nl(t) = <’01,U1,p}(1 +t2134> and Pl(t> = (Nl(t) : Kl(t)> Then

P (t) = <2’1,3,4> Y1,421,2,3 — Y1,3%1,2,4, L1,421,2,3 — L1,321,2,4, A(14, 13)>>

and a resolution of B/P;(t) is

Py (t) dP1(t) Py (t)

0Bt g ot B S B/P() 0

where di'® = d1.

Here d§ ") also has three Koszul relations, and B/P;(t) is a hyperplane section of the codi-
mension two determinantal ideal (y142123 — ¥1,3%1.24,T14%123 — T1321,24, A(14,13)). The

ideal Pj(t) is well known to be in the linkage class of a complete intersection. 0
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5. BACKGROUND ON GENERIC RINGS

In this section, we work with finite free resolutions
Fo:0— F3 — Fy, — Fi — Fy

of length three over Noetherian rings R. If rank(F;) = f;, we say that this resolution has
format (fs, fo, f1, fo). If rank(d;) = r;, we should have f35 =r3, fo =r3+1ro, fi =ra+7r;. We
will be dealing with the resolutions of cyclic modules, i.e., with the case r; = rank(Fp) = 1.

In [14], the third author constructed the generic rings ]A%gen for resolutions of all formats
(rg,r3 + ro,r9 + 11,71). This ring was related to Kac-Moody Lie algebra corresponding to
the graph T, ,,, where

(p,q,?") = (Tl + 17T2 - 17T3+ 1)

In particular, the ring f%gen was Noetherian if and only if 7}, ,,, was the Dynkin graph. We
call the corresponding formats the Dynkin formats.

The decomposition of the ring Ry, to irreducible representations of the group [[;_, GL(F;)
was described in [14]. The generators of J%gen are expected to come from three graded
representations W(ds), W(dy), W(az) (see [2]).

The natural question that arises is the description of the open set Ugjs of points in
Spec(f%gen) of points P such that the corresponding ideals are perfect, i.e., the points that
the dual complex F7 is acyclic. One hopes that the points in the open set Uqy, give a generic
form of perfect ideals with the resolution of the format (2,6,5,1).

In [2], the authors formulated a conjecture for the description of the open set Ug)y, for all
Dynkin types. It says that three top graded components of representations W (ds), W (ds),
W (ay) can be thought of as differentials of a complex Fi over ]A%gen and that a point P in

A A

Spec(Ryen) is in Ugyy if and only if the complex Fi tensored with (Rgen)p is split exact.

~

We call this open set in Spec(Rgen) Uspiit-

6. THE IDEALS J(t) AND THE OPEN SET Ugyt

In the present paper, we work out for the format (2,6, 5, 1), the form of the resolution that
one gets over a point of Usyi. We recall (see [9]) the critical representations decompose as
follows:

2 4 2
Wds)=FeFBe \NReF e \Re \Fie Sk,
2 3 5
W(d)=FRolFfeFeRe \Ffo \FReS.Fe R,

3 2 4 5
Wi(as) = [F1@Fg@/\FlGB(/\F§®/\F1®F1@52F§®/\F1)@
® So1Fy ® So01,11 81 @ Sa2Fy @ Soa 1 F1.

To calculate the split form, one assumes that the original complex FJ"* splits and one
computes all higher structure theorems for this complex from W (d3), W (ds), W (az), working
over a polynomial ring in the defect variables, i.e., variables forming a basis of defect algebra

for this case (see [14]).
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In the following, UZ-(j ) (1 < j < 3) denotes the tensor corresponding to the i-th graded
component of W(d;) (j = 2,3) and vi(l) denotes the i-th graded component of W (az). We
also denote the basis of F3 by {g1, 92}, basis of F» by {f1,..., f¢}, basis of F by {ej,...,e5},
basis of Fy by 1. Putting the original complex FJ¢" in the split exact form, that is, d3(g;) =
f5,ds(g2) = f6, do(fi) = e; for 1 <i < 4, dy(e5) = 1 with all other differential on basis vectors
being 0, we introduce the defect variables (which correspond to the basis of the defect Lie
algebra L). In our case, L = Ly @ Ly, with Ly = Ff @ A’Fy and Ly = N°Ff 9o \' By
(see [14]). It is natural to name defect variables for our splitting form as follows. In Ly,
we have the variables b ;, b7; (1 <1 < j < 5), and, in Ly, we have the variables ¢; j, for
1 <i<j<k<l<5 Next, one works out the structure theorems UZ-(s) from W(ds). For
example, the map v§3) gives us the following component of the multiplication structure on
the complex F,:

€; €5 = b;,jf5 + b?,jf6
for1 <i<j <4,
ei-es = fj+ b},5f5 + b?,sfﬁ
for 1 <1¢<4.
The map vég) is the lifting of the cycle

0 —— /\2F3 E— F3®F2 e SQFQ _— SQFl

DN e
U2 4
N Fi
where we have to add the part involving defect variables ¢; j ;.
Finally, the map v§3) is the lifting

0—— /\2F3®F2 —_— F3®52F2 — SgFQ

(3)y(,,(3)
2

52714F1

One finds out that the tensor v§3) gives a matrix in which after the row and column
operations all variables bz{j and bz%j for which the index j is equal to 5 are redundant. The
remaining variables are renamed. The variables b;; (1 < i < j < 4) are named z;;, the
variables b7; (1 <4 < j < 4) are named y; ;, the variables ¢; ;5 (1 <7 < j < k < 4) are
named z; j  and the variable ¢ 2 34 is named ¢. The middle matrix dy of the resolution of the
deformed ideal J(t) given above is then the matrix one gets by working out the top graded
component of W (d3). Using Macaulay 2, one can get the other two matrices v§2) and vil).

One finds out that the tensor vég) gives a matrix in which after the row and column
operations all variables b; ; and b7 ; for which the index j is equal to 5 are redundant. The
remaining variables are renamed. The variables bl{j (1 <i < j <4) are named w; ;, the
variables b7; (1 <4 < j < 4) are named y; ;, the variables ¢; ;5 (1 <7 < j < k < 4) are

named z; ;  and the variable ¢ 2 34 is named ¢. The middle matrix dy of the resolution of the
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deformed ideal J(t) given above is then the matrix one gets by working out the top graded
component of W(ds). Using Macaulay 2, one can get the other two matrices véz) and Uil).

This approach implies the following result.

Theorem 6.1. Let R be a local Noetherian ring, with characteristic of R/m different than
two and I be a perfect ideal of codimension three with a resolution of R/I having the format
(1,5,6,2). Let us denote this resolution Go. Assume that the complex GLP is split exact.
Then there ezists a homomorphism v : B — R such that G, = F(t)s ®p R.

Proof. There exists a homomorphism ¢ : ]A%gen — R such that G, = F¢" ® Ryen R. Since
GlP is split exact, we can change bases in G3, Go, G so the complex G°? is in canonical
form. Then the relations described above in R, imply existence of homomorphism . It

sends the variables in B to their counterparts in R (after the appropriate renaming indicated
above). O

7. MULTIPLICATIVE STRUCTURE ON THE RESOLUTION OF A/J.

In this section, we assume that K is a field of characteristic zero. Since the group GL(F') x
GL(G) is reductive, we know that all structure theorems on our resolution have to exist in an
equivariant form. We determine the structure theorems on the resolution of the module A/.J.
It turns out that the equivariant property determines the structure theorems completely.

We start with the multiplication structure. The multiplication F; ® F; — F5 has nonzero

components
2 2

/\(5272)27117 & Sl,lG) = 5474)373F & SQ)QG(—ZL, —2) — (/\F & G) & 5373)373F ® Sg)lG(—?), —2),
3
522,21 F®511G®82222F®522G(—6,—1) = S4.4.43F®533G(—6,—1) /\ F)®833,32F®522G(—4,—1),
so they are determined (up to scalar). Also, all structure constants have positive degree.

The multiplication Fy ® Fy; — F3 has nonzero components
2
S3.3,3,2F ® 822G ® S2291F ® 51,1G(—6,-2) /\ F®G)®S1444F ® S32G(=5,-2),
3
S3333F ®8521G® S2221F @ 51,1G(—5,-3) /\F ® Sya,44F @ S32G(—5,—2),

S3137313F X SQJG (24 S2127212F X SQ72G(—7, —2) — (/\ F® SQG) (24 S4147414F X SngG(—5, —2),
so all components are determined by the equivariant property. All structure constants are
of positive degree.

4
Let us calculate the component vég).This is the map /\F 1 — F3® F5 has nonzero compo-

nents:
4

/\(52,2,2,1F ® S11G)(=8,—4) = S4.4,44F ® S32G ® S3333F ® Sz 1G(—8, —4),
so this component is a split monomorphism,

3
/\(82721271F®S111G)®82721272F®S212G( 10, 3 /\ F®G ®S4 4,4 4F®Sg 2G®S3 3,3, 2 F®S5s QG( 9, 3)

Finally, we calculate the nonzero component 1)3 . This is the map
2
S2.1,1,1,1F1 — /\F3 ® F.
8



One sees easily that \° Fy = Sg.99.0F ® S6.6G(—12,—4). Similarly, we have

2
/\F3 = Ss8,88F ®S55G(—10,—4).
The nonzero component of vé?’) is

Si1,11,11,10F ® S7.7G(—14,=5) = Si1,11,11,10F @ S7,7G(—14,-5),

which is a split isomorphism. So the nonzero component v§3) is completely split, as expected.

8. APPLICATION: THE PENCILS OF QUARTICS.

Let S = K[X,Y, Z] be the polynomial ring in three variables. We assume that K is a field
of characteristic zero. Let f1, fo be two general homogeneous polynomials of degree 4 in the
dual variables X™*, Y™, Z*. Then fi, fo define the ideal I, f, of the polynomials in X,Y, 7
vanishing on f1, fo (they act via differential operators). One can check easily that for general
choice of fi, fo the module S/Jy, f, has a minimal graded resolution

Fivf2 00 — S*(=7) — S%(=5) — S(—4) ® S*(=3) — S.
Theorem 8.1. For general f1, f2, the complex FIv/2 is a specialization of the complex F,.

Proof. A standard calculation shows that when the complex F/1i/2 has form as above, the
Poincaré polynomial of S/.Jy, 4, is 14 3t + 6% + 6t* + 2¢*. We notice that the last row of the
differential ds in the complex FJt/2 consists of six linear forms. For general f,, f, these forms
will generate the maximal ideal (XY, Z). This means after applying some column operations
we can bring this row to the form (0,0,0, X,Y,Z). Let Ly, y, be the ideal generated by four
cubics in Jy, f,. Then the Poincaré polynomial of S/Ly, s, is 1 + 3t + 6t* + 6¢> + 3t*. This
means the minimal free resolution of S/Ly, ¢, is

G20 — S3(—7) = S*(—5) ® S3(—6) — S*(—3) = S.
In fact we have the exact sequence
0— K(=3)—=S/Lsy s, = S/Jpp —0
which makes FJ"/2 quasiisomorphic to the mapping cone of the map of complexes
K(—3), — G/

where K, is the Koszul complex on X,Y, 7.
We know the structure of almost complete intersections [2]. Thus we know that the map
of the third differential of G, has to be

0 C12 (€13
—C1,2 0 C2.3
d —c13 —c3 0
U1 U2 U1,3
U2,1 U222 U3

| U31 U3z  U3,3
where u; ; are linear forms and ¢; ; are quadratic forms.
Now we start with the generic complex F,, make one on the z-variables, say 2234 to be

zero and we see that the linear row of dy has the same structure. So taking L to be the
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ideal generated by four cubics in J(t) we see that the third differential of the minimal free
resolution G, of A/L has the form

0 —-b —a
b 0 —A(23,14) + A(24,13) — A(34,12)
dG _ a A(23,14) — A(24,13) + A(34,12) 0
3 —Z1,3,4 Y3,4 3,4
—Z1,2,4 Y2,4 T2,4
—Z1,2,3 Y2,3 2,3

where a = 2(931,221,3,4 — X132124 + 931,421,2,3), b= 2(y1,221,3,4 —Y13%124 + y1,421,2,3)-

Thus we need to see that any matrix dj can be obtained from the matrix d§ by specializa-
tion. Without loss of generality, we can assume that the elements 2; 23, 2124, 21,34 generate
the maximal ideal (X,Y, Z). Then we notice the lower part of the matrix is a specialization
of the matrix with entries in A. This part of the matrix is determined by z; ; and by z; ;
and y; ; with 7,7 # 1. The quadrics ¢;2 and ¢; 3 can be also obtained as specialization be-
cause they are contained in the ideal (X,Y, Z). So the remaining problem is how to get the
remaining quadric in the proper form. We show that actually any quadric can be brought in
that form. In order to do that let us investigate how we can change the remaining quadric
A(23,14) — A(24,13) + A(34,12) without changing the others. This can be achieved for
example by changing z; 3 and x; 4 into x; 3 + a2y 23 and 1 4 + @z; 24 respectively. The total
change in A(23,14)—A(24, 13)+A(34, 12) will be a(21 2.4Y2.3—21.23Y2.4), 1.e. a multiple of the
2 x 2 minor of the lower block of d§ on the first two columns. Similarly we can get the other
2 % 2 minors on these columns as well as minors on the first and third column. So if these six
columns are linearly independent over K, we can change A(23,14) — A(24,13) + A(34,12)
to an arbitrary quadric. In order to see it happens on Zariski open set we need to exhibit a
3 X 3 matrix of linear forms such that all 2 x 2 minors in the first and second and on the
first and third columns are linearly independent. It is enough to take the matrix

y 2z 0
x Yy z
0 =z —y
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