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Improved foraging by switching between diffusion and advection:
benefits from movement that depends on spatial context
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Abstract
Animals use different modes of movement at different times, in different locations, and on different scales. Incorporating such
context dependence in mathematical models represents a substantial increase in complexity, but creates an opportunity to more
fully integrate key biological features. Here, we consider the spatial dynamics of a population of foragers with two subunits. In
one subunit, foragers move via diffusion (random search) whereas in the other, foragers move via advection (gradient-following
search). Foragers switch back and forth between the subunits as functions of their spatial context (i.e., depending on whether they
are inside or outside of a patch, or depending on whether or not they can detect a gradient in resource density). We consider a one-
dimensional binary landscape of resource patches and non-habitat and gauge success in terms of how well the mobile foragers
overlap with the distribution of resources. Actively switching between dispersal modes can sometimes greatly enhance this
spatial overlap relative to the spatial overlap possible when foragers merely blend advection and diffusion modes at all times.
Switching between movement modes is most beneficial when organism’s gradient-following abilities are weak compared to its
overall capacity for movement, but switching can actually be quite detrimental for organisms that can rapidly follow resource
gradients. An organism’s perceptual range plays a critical role in determining the conditions under which switching movement
modes benefits versus disadvantages foragers as they seek out resources.
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Introduction

Movement is critical to the success of animals as they seek out
resources, mates, and shelter. However, that success hinges
not just on whether or not animals move, but also on how,
when, and where they do so. Indeed, the same organism can
use multiple modes of movement at different times and at
different scales (Ward and Saltz 1994; Skalski and Gilliam

2000; Fryxell et al. 2008; Prevedello et al. 2011; Fleming
et al. 2014a, b; Rodríguez et al. 2017). In some cases, partic-
ularly those involving acquisition of food resources, certain
movement modes can be associated with seeking resources
while other modes may be used for obtaining those resources
once they have been located (Ward and Saltz 1994; Fortin
et al. 2002; Skalski and Gilliam 2003; Morales et al. 2004;
Newlands et al. 2004; McClintock et al. 2012; Nabe-Nielsen
et al. 2013; Fleming et al. 2014a, b).

This duality of oriented versus non-oriented modes of
movement is broadly distributed across species. For example,
analyses of the movement trajectories of many terrestrial ver-
tebrates indicate movement patterns that could be character-
ized as composite correlated random walks, strongly suggest-
ing the existence of multiphasic movement strategies
(Morales et al. 2004; Fryxell et al. 2008; Auger-Méthé et al.
2016). In some sharks, transitions between movement modes
are a matter of scale, with a form of oriented movement called
‘directed walks’ occurring at large spatial scales but far more
tortuous movements occurring at small scales (Papastamatiou
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et al. 2011). Magellanic woodpeckers switched between area-
restricted search and exploratory movement as they foraged in
forests of southern Chile, adopting an exploratory movement
mode featuring long-distance displacements when located in
landscapes with low quality habitat or low levels of heteroge-
neity (Vergara et al. 2019). These and other empirical studies
clearly suggest that animals do indeed switch between differ-
ent movement modes. In fact, estimating the hidden Markov
processes that characterize switching between two states is
one of the dominant approaches to analyzing movement data
(Patterson et al. 2008; McClintock et al. 2012; Langrock et al.
2012). Exploring the context for such switching remains a key
goal (Papastamatiou et al. 2011). Gurarie et al. (2016) provide
an overview of statistical techniques for decomposing move-
ment tracks into different movement modes and identifying
underlying changes in behavior.

Several studies involving individual based models have
explored the consequences of animals’ reliance on differ-
ent modes of movement. For example, in an evolutionary
model of foraging movements, Mueller et al. (2011) found
that simulated animals evolved to switch among three
modes of movement (non-oriented, oriented, and spatial
memory) as a function of the spatiotemporal availability
of resources. Nabe-Nielsen et al. (2013) found that
switching between searching and fine-scale foraging be-
haviors reproduced observed spatial behavior of porpoises
and produced stable home ranges. Bracis et al. (2015)
compared foraging efficiency and behavioral allocation
in resource-dependent state switching models with and
without spatial memory, finding that the benefits of mem-
ory (temporally non-local information) depended on the
complexity of the resource landscape. Accumulating evi-
dence suggests that such switching may be necessary to
capture the complex movement patterns of actual
organisms.

In contrast to their utility in individual-based models,
switching terms that allow animals to transition between
different forms of movement have only rarely been in-
cluded in mathematical models of animal dispersal.
Skalski and Gilliam (2003) developed a model in which
animals switch between slow and fast movement states,
demonstrating how such switching (which occurred inde-
pendent of spatial context) influenced the population’s
spatial distribution. More recently, switching terms (again
spatially independent) have appeared in foraging theory
such as when Tyson et al. (2011) developed a model in
which foragers switch between slow-moving diffusive and
fast-moving advective-diffusive states. This switching
model provided a stronger fit to data for both honeybees
and caribou than did single-movement-mode models in
which the forager population was homogeneously diffu-
sive or advective-diffusive. The apparent similarity of an-
imal movement to hyperdiffusive random movements

known as Lévy flights can largely be explained by behav-
ioral switching (Reynolds 2008; Bénichou et al. 2011;
Petrovskii et al. 2011; Edwards et al. 2007).

Perceptual ranges (i.e., the maximum distance at which
landscape elements can be identified) are highly relevant to
discussions of behavioral switching. Such ranges provide
non-local information that allows an animal to structure or
bias its movements in response to landscape features locat-
ed beyond its immediate position. This non-local informa-
tion offsets difficulties arising from spatial gradients that
are weak, spatially restricted, or hard to detect, any of
which could trap dispersers in low-quality areas.
Perceptual ranges vary tremendously, with magnitudes that
depend on species, individual state, sensory mode, and
spatial context (Zollner and Lima 1997; Zollner 2000;
Mech and Zollner 2002; Fletcher et al. 2013). Individual-
based models of moving animals routinely include some
version of a perceptual range, either in the context of
attraction–repulsion radii (e.g., Couzin et al. 2002; del
Mar Delgado et al. 2018) or in the context of resource
detection (e.g., Berec 2000; Mueller et al. 2011; Bläßle
and Tyson 2016). In contrast, perceptual ranges are rarely
considered explicitly in mathematical models of movement
because of the complexity they introduce, but when per-
ceptual ranges are included, they are important elements of
the model. For example, information derived from well
beyond an animal’s current location can shape the spatial
distribution of mobile consumers (e.g., Hillen et al. 2007;
Barnett and Moorcroft 2008; Martínez-García et al. 2013,
2014), and movement in response to non-local gradients is
critical to the swarming dynamics of animal groups
(Grünbaum and Okubo 1994; Mogilner and Edelstein-
Keshet 1999). Fagan et al. (2017) explored how the size
of an organism’s perceptual range influenced its foraging
success in landscapes featuring transient resource patches,
identifying optima in perceptual range under particular re-
source distributions and dynamics.

Here, we develop and explore a mathematical model that
includes context-dependent switching between different
modes of movement. The model makes realistic assumptions
about movement modes (random search versus gradient-fol-
lowing), introduces the idea that spatial cues may determine
the switching between movement modes, and explores the
role of non-local information in driving the switches in behav-
ior. We find that switching between movement modes is most
useful when a species’ gradient-following abilities are weak
relative to its capacity for movement. The size of the animal’s
perceptual range and presence or absence of habitat fragmen-
tation further shape the utility of switching between move-
ment modes. Overall, these results highlight how context-
dependent switching between movement modes may benefit
resource acquisition and hint at the potential utility of such
behavior in evolutionary settings.
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Methods

To explore the effects on context-dependent movement on
foraging success, we study a perception-based model of ani-
mal dispersal in which spatial redistribution is possible but
there are no population dynamics. This can be thought of as
representing the behavior of foragers in search of resources or
dispersers in search of favorable habitat. Following Fagan
et al. (2017), we are particularly interested in the role of ani-
mals’ perceptual range and how this influences decision-
making with regard to movement. However, unlike that work,
which focused on the interplay between perception and re-
source dynamics, we focus here on a static landscape to ex-
plore the effects of switching between movement behaviors.

We will assume a one dimensional binary landscape of
habitat patches and non-habitat such that the resource quality,
m(x), at position x can be written

m xð Þ ¼ 0 if outside a patch
1 if inside a patch

�
ð1Þ

More complex resource functions were considered in
Fagan et al. (2017), which explored how the interplay between
perception and edge sharpness shapes foraging success.

Building on ideas presented in Tyson et al. (2011), we
consider a population in which animals can switch between
two distinct modes of dispersal: a random search mode and a
resource gradient following mode. However, unlike in Tyson
et al. (2011), the gradient following considered in this paper is
always directed toward the resource, rather than simply a
means of relocating quickly to another area of space that can
then be explored via diffusion. The density of the population
that is engaged in gradient following at position x and time t is
denoted u(x,t), and the density that is engaged in random
search is denoted v(x,t). We write

∂u x; tð Þ
∂t

¼ ε
∂2

∂x2
u

zfflfflfflffl}|fflfflfflffl{
low level
random
movement

− γ
∂
∂x

u
dh xð Þ
dx

� �zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{advection

2
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random search
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zfflffl}|fflffl{

switching from
random search
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random
search
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switching to
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ð2Þ
where the term

ε
∂2

∂x2
u−

∂
∂x

u
dh xð Þ
dx

ð3Þ

represents the overall movement of the portion of the popula-
tion engaged in gradient following, with ε ≪ 1 representing a
small amount of background random movement (necessary
for certain theorems about partial differential equations to hold
true), γ quantifying the rate of advection (gradient following),

and dh xð Þ
dx representing the perceived spatial gradient in the

resource. The parameter D is the rate of diffusion undertaken
by the portion of the population that is in the random search
mode. The functions α[x] and β[x], defined below, are spatial-
ly explicit representations of the rates of switching between
the two dispersal modes. For simplicity, we kept ε = 0.01
throughout our analyses.

As discussed in Fagan et al. (2017), the available resources
m(x) are perceived by an animal only when those resources
fall within its perceptual range, R, and they are spatially
weighted by a detection function, g(x, y, R), which describes
modifications in the forager’s perception with distance y from
position x. We write

h xð Þ ¼ 1

2R
∫xþR
x−R m yð Þ

zfflffl}|fflffl{
available
resources

g x; y;Rð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

detection
function

2
66664

3
77775

p

dy

2
66664

3
77775

1=p

: ð4Þ

Note that (4) is the Lp norm of functionm(y)g(x, y, R) on the
interval [x − R, x + R] subject to the probability measure giv-
ing the uniform distribution on the interval. The parameter p
can be interpreted as a kind of post-perception information
processing because it represents the degree of spatial averag-
ing that the animals do, based on the landscape features that
they detect. Effectively, p serves to accentuate or de-
accentuate resources detected from different parts of the land-
scape. In one-dimensional models, this parameter merely
serves to bias the dispersing animals to the left or the right
depending on where the greater habitat signals are coming
from within the perceptual radius, R. In two-dimensional
models, this parameter serves a similar but even more impor-
tant role by biasing the movement in the direction of particular
habitat patches within the perceptual radius. The larger the
value of p, the greater the degree to which dispersing animals
can ‘home in’ on the strongest signal within their perceptual
radius, ignoring lesser signals. For simplicity, we kept p = 2
throughout our analyses. An alternative idea would have
p =∞, meaning foragers always move to the absolute best
perceived resource. We do not pursue this option here because
p =∞ will yield to mathematical discontinuities in h(x) and
because we feel it important to consider biological and ener-
getic constraints on the detection of and locomotion to optimal
resources.

For simplicity, we will consider only the Btop-hat^ detec-
tion function,
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g x; y;Rð Þ ¼
1

2R
−R

ffiffiffi
3

p
≤x−y≤R

ffiffiffi
3

p

0
else

8<
: ð5Þ

where R is the standard deviation of the forager’s detection
function. The consequences of choosing different functional
forms for g(x, y, R) are explored extensively in Fagan et al.
(2017).

The remaining terms in the model are the spatially explicit
functions that control the rates of behaviorally switching be-
tween the two dispersal modes. The term α[x], which controls
the rate of switching from gradient following mode to random
search mode, is written

α x½ � ¼
0 if m xð Þ ¼ 1

~α
dh
dx

����
����

� �
if m xð Þ ¼ 0

8<
: ; ð6Þ

which means that no such switching takes place for animals
inside a habitat patch. Outside of habitat patches, the rate of
switching depends upon the magnitude of the perceived re-

source gradient, dh
dx

�� ��; according to

~α
dh
dx

����
����

� �
¼

α0−α1
dh
dx

����
���� if

dh
dx

����
����≤α0

α1

0 if
dh
dx

����
���� > α0

α1

8>><
>>:

ð7Þ

where the rate of switching is α0 if there is no perceived
gradient and then declines in a piecewise linear fashion at rate
α1 as the magnitude of the perceived resource gradient in-
creases, eventually becoming zero for very strong gradients.

Similarly, the term β[x], which controls the rate of
switching from random search mode to gradient following
mode, is written

β x½ � ¼ β0 if m xð Þ ¼ 1
~β xð Þ if m xð Þ ¼ 0

�
; ð8Þ

implying that there is a baseline level of switching, β0, for
animals inside a patch. Outside patches, in non-habitat, the
switching depends on the perceived resource gradient accord-

ing to the function ~β xð Þ. Specifically, we write

~β xð Þ ¼

0 if
dh
dx

����
����≤h1

β0
dh
dx

����
����−h1

� �

β1 þ
dh
dx

����
����−h1

� � if
dh
dx

����
���� > h1

8>>>>>>><
>>>>>>>:

; ð9Þ

where the first condition means that there is no behavioral
switching unless the magnitude of the perceived resource

gradient is sufficiently strong (> h1) and the second con-
dition means that the rate of switching increases from zero
and saturates at a rate β0 as the gradient continues to
increase. Parameter β1 controls the rate of saturation as

a function of dh
dx

�� ��.
Note that the resource thresholds α0

α1
and h1 that control

the rates of switching between the two dispersal modes
may or may not be the same. If they are the same, it means
that there is a common criterion for switching between
random search and gradient following. In contrast, if the
thresholds are different, it implies a kind of behavioral
inertia exists. For example, if α0

α1
> h1, then animals, having

switched into gradient following mode, tend to stay in that
mode unless the magnitude of the perceived resource gra-
dient drops significantly. One can interpret this kind of
behavioral inertia as a kind of hysteresis.

Note further that the switching terms α[x] and β[x] depend
on the resources available at the foragers’ actual positions
rather than on the resources detected within their perceptual
range (Eqs. 6 and 8). In this way, local information determines
whether it is time to leave, but non-local information deter-
mines which way to go.

To quantify the effectiveness of switching between
movement modes as a foraging strategy, we adopt a mea-
sure of foraging success (Ω). This measure quantifies ‘re-
source matching’ in the sense that foragers must spatially
overlap with resources to be successful. Because our work
deals only with animal movement behavior and not pop-
ulation dynamics, we do not consider resource depletion.
Here, Ω is given by

Ω ¼ ∫∞−∞u xð Þm xð Þdx ð10Þ

which simply summarizes the spatial alignment of the
foragers and their resources. The entire model is solved
numerically, and we calculate this measure at a quasi-
equilibrium, after initial transients have faded (see Fagan
et al. 2017 for more details on this measure of foraging
success).

Throughout, we solved the initial-boundary value equa-
tions numerically using the method of lines by discretizing
in space over the domain x = [0,100] and solving the system
of ordinary differential equations in time. We implemented
numerical solutions in the MATLAB environment
(MathWorks 2019) using the PDEPE package (Skeel and
Berzins 1990), which in turn implements the variable-step,
variable-order differential algebraic equation solver ODE15S
(Shampine and Reichelt 1997).

We contrasted Switching On scenarios with Switching
Off scenarios where the population is permanently
subdivided into equal-sized gradient following and ran-
dom searching subunits. Switching On scenarios followed
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Eq. 2, but for the Switching Off scenarios, we used the
related form

δu x; tð Þ
∂t

¼ D
∂2

∂x2
u

zfflfflfflffl}|fflfflfflffl{
random
search

− γ
∂
∂x

u
∂h xð Þ
∂x

� �zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{advection

; ð11Þ

which has an exact analytical solution (see Cantrell et al.
2018 for an example). Note that the diffusion rate is the
same as in the second part of Eq. (2). Consequently, the
BSwitching Off^ case includes both diffusion and advec-
tion, but performed as a combined motion.

Initial conditions for Switching Off were u(x, 0) = 0.02 and
for Switching On were u(x, 0) = v(x, 0) = 0.01, both of which
yield total forager populations (u + v) that integrate to 2 over
the domain. We used zero flux boundary conditions on the
rectangular domain (x, t) ∈ [0, 100] × [0, 100]. In most of the
numerical solutions, we considered a single, centrally located
resource patch of 10 units, i.e., m(x) = 1 for x ∈ [45, 55], but
we also considered cases in which the resources were
fragmented spatially.

Results

In the Switching On scenarios, foragers actively switched be-
tween the gradient-following and random searching move-
ment modes as a function of their spatial context. Integrating
the populations spatially, transitions between the two move-
ment modes were clearly evident as equations evolved from
their initial conditions towards steady states (Fig. 1a, c).
Switching to the gradient-following mode allowed the for-
agers to concentrate inside the resource patch (Fig. 1b). As
that concentration occurred, the forager population became
increasingly dominated by the gradient-following mode be-
cause the context dependency on α[x] did not permit the for-
agers to switch back to random search mode once they were
inside the resource patch (Eq. 6). As expected, the final tran-
sition toward dominance by the gradient-following population
(i.e., the dominance by u over v) preceded the spatial concen-
tration inside the resource patch. However, the relative abun-
dance of the subpopulations undertaking gradient-following
and random-search modes could shift dramatically as the for-
agers sought out resources, sometimes undergoing more than
one reversal (Fig. 1c). In general, the switching parametersα0,

Fig. 1 Forager density as a function of time for a population that can
switch between gradient following and random search movement
modes (Eq. 2). The left panels (a, c, e, g) all show the foragers broken
down by behavioral subpopulations (those employing gradient following
versus random search), whereas the right panels (b, d, f, h) all show the
foragers broken down into location subpopulations (inside versus outside
the resource patch). Note that the crossover for the curves for the different
behavioral modes (left panels) precedes the crossover in spatial position
(right panels). The position of these crossover points, and the patterns of
transition between gradient-following and random search modes or from
outside the patch to inside the patch more generally, varies as a function of

the parameters α0, α1, β0, β1, and h1 that determine the rates of switching
and the spatial contexts under which switching occurs. In all panels, γ =
0.05, D = 1, and R = 0.9. In panels a, b (a case of Fast Switching to
Random Search), α0 = 4, α1 = 1, β0 = 2, β1 = 60, and h1 = 100. In panels
c, d (a case of Slow Switching to Random Search), α0 = 0.01, α1 = 1,
β0 = 2, β1 = 60, and h1 = 100. In panels e, f (a case of Slow Switching to
Gradient-following Search),α0 = 4,α1 = 1, β0 = 0.01, β1 = 60, and h1 = 5.
In panels g, h (a case of Fast Switching to Gradient-following Search),
α0 = 4,α1 = 1, β0 = 200, β1 = 60, and h1 = 5. Total forager density (u(x) +
v(x)) always integrates to 2
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α1, β0, β1, and h1 had pronounced influences on the rates at
which the subdivision of the forager population by behavioral
mode and spatial position occurred (Fig. 1). These parameters
tended to have lesser effects on the total success of the for-
agers in finding and remaining within the resource patch
(Supplementary Information).

Plotting forager density as a function of spatial position
highlights the ability of the population to concentrate within
the resource patch (Fig. 2). Interestingly, we found parameter

cases in which the Switching On scenario afforded better
matching of foragers to the resource (i.e., higher Ω; Fig.
2a, b) and other parameter cases in which the Switching Off
scenario performed better (Fig. 2c).

A little advection consistently improved foraging suc-
cess relative to the case of diffusion alone. This was true
whether the advection rate was a constant or depended on
context (Fig. 3). The capacity to switch between random
search and gradient search mechanisms (the Switching On
scenario) further enhanced foraging success, provided dif-
fusion was strong enough. However, when the diffusion
rate was small, the capacity to switch was detrimental to
foraging success.

Exploring this result systematically, we plotted forager suc-
cess as a joint function of γ and D, finding that resource
matching was greater for the Switching On scenario when γ
was small and D was large (Fig. 4a). For other combinations
of movement rates, the Switching Off case yielded greater
forager success, reaching the maximum possible level of
Ω = 2 for γ large and D small. We found that the transition
from Switching On performing better to Switching Off
performing better occurred for a fixed ratio of D/γ. The rela-
tive (dis)advantage of foragers in the Switching On scenario
was often quite substantial compared to the corresponding
Switching Off scenario. For example, for foragers with a weak
gradient-following ability relative to their overall capacity for
movement (i.e., for γ small and D large), the Switching On

Fig. 2 Total forager density as a function of spatial position illustrating
different levels of long-term concentration of foragers in the resource
patch (gray rectangle depicting m(x) = 1 for x ∈ [45, 55]). Results are
plotted for three parameter cases: a) γ = 0.01, D = 3, R = 1, b) γ = 0.08,
D = 1.5, R = 4, and c) γ = 0.2, D = 1, R = 2. These additional parameters
are constant for all three cases: α0 = 5, α1 = 25, β0 = 2, β1 = 60, and
h1 = 5. Results plotted are steady-state results. Squiggles in the
Switching On case are numerical artifacts associated with the transitions
between behavioral modes that take place near the sharp edges of the
resource patch. These persisted despite our attempts to minimize them
using various techniques for numerical analysis of PDEs

Fig. 3 Comparative foraging success for diffusion, advection, and
context-dependent switching. A little advection consistently improves
foraging success (Ω) relative to the case of diffusion alone. The
capacity to switch between random search and gradient search
mechanisms (the Switching On scenario) can further enhance foraging
success, provided diffusion is strong enough. However, when the
diffusion rate is small, the capacity to switch is detrimental to foraging
success. Parameters used were R = 2, α0 = 1, α1 = 25, β0 = 1, β1 = 60,
and h1 = 5
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scenarios could improve foraging success by as much as six-
fold (Fig. 4b).

The foragers’ perceptual range played a critical role in de-
termining when the capability to switch between gradient-
following and random search was advantageous versus disad-
vantageous (Fig. 5). In particular, the ratio ofD/γ above which
Switching On was advantageous decreased sharply as the per-
ceptual range R increased. This is because a larger perceptual
range allowed foragers to detect and respond to gradients in
the resource landscape more effectively than if their move-
ment decisions were based purely on immediately local

information. For a fixed diffusion rate, either an increase in
advection rate or an increase in perceptual range would im-
prove the foragers’ access to an existing resource gradient
(Fig. 5).

Spatially fragmented resources generally reduced the
benefits of switching between movement modes compared
to the equivalent cases in which the resources were concen-
trated in a single patch (Fig. 6). This is because the short-
ened average distance between foragers and the nearest re-
source patch made it easier for the foragers to detect and
advect up resource gradients even in the Switching Off
scenario. Consequently, the reduction in relative foraging
success was especially strong for parameter cases involving
large perceptual ranges. Note also that the performance of
the Switching On scenario improved for γ large andD small
when resources were spatially fragmented (Fig. 6b). This
occurred because fragmentation of the resource patch de-
creased the average distance between foragers and the
nearest patch. This proximity effect created more opportu-
nities for foragers with strong gradient-following abilities
to locate and move into a nearby resource patch when the
dissipative effects of diffusion were small.

Discussion

We introduced a mathematical model for animals moving in
search of resources that features context-dependent switching
between two different modes of movement (diffusive random
search and advective gradient-following search). Compared to
a situation in which animals merely blended advection and
diffusion modes at all times, actively switching between the
two different modes of movement greatly enhanced the spatial

Fig. 4 Forager performance as a function of movement rates for
populations with and without the ability to switch between gradient
following and random search movement modes. a Forager success,
quantified using Ω from Eq. 10, is greater for the Switching On case
when γ is small and D is large. For other combinations of movement
rates, the Switching Off case yields greater forager success, reaching
the maximum possible level of Ω = 2 for γ large and D small. Note that
the crossover between the Switching On and Switching Off surfaces

occurs for a fixed ratio of γ/D. The colors in a show the curvatures of
the surfaces away from the crossover. Panel b plots the relative
(dis)advantage of foragers in the Switching On scenario relative to the
Switching Off scenario. This exceeds a six-fold advantage for foragers
with a weak gradient-following ability relative to their overall capacity for
movement (i.e., when γ is small and D is large). Results are plotted for
R = 0.8, α0 = 1, α1 = 25, β0 = 1, β1 = 60, h1 = 5

Fig. 5 The interplay between movement rates and perceptual range
determines when switching between movement modes is advantageous.
The ratio of D/γ that determines when Switching On is advantageous
decreases sharply as the perceptual range R increases. Results are
plotted for α0 = 1, α1 = 25, β0 = 1, β1 = 60, h1 = 5
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overlap between the animals and their resources in certain
circumstances. More specifically, switching between move-
ment modes was most beneficial when an organism’s
gradient-following abilities were weak compared to its overall
capacity for movement. However, switching was actually
quite detrimental for organisms that can rapidly follow re-
source gradients (Figs. 4 and 5).

Multi-state random walk models, hidden Markov models,
and other types of models that are routinely fit to animal
movement data have included context-dependent switching
of behaviors for many years (e.g., Morales et al. 2004;
Fryxell et al. 2008; Patterson et al. 2008; McClintock et al.
2012; Langrock et al. 2012; Gurarie et al. 2016). A variety of
species appear to switch between movement modes
(Papastamatiou et al. 2011; Auger-Méthé et al. 2016) and, at
least in some cases, this switching depends explicitly on spa-
tial context (Prevedello et al. 2011; Vergara et al. 2019).
Despite such applications, which have a distinct statistical
component, context-dependent behavioral switching is not
well-investigated from the perspective of mathematical theo-
ry, which could help identify the general conditions under
which switching is beneficial.

As we have mathematized the problem, our framework
assumes that organisms have two ‘abilities.’ The first is that
they can detect and respond to a gradient in the availability
of resources. This gradient can range from immediately
local to integrated over a large region depending on the
perceptual range parameter, but the fundamental ability
pertains to gradient detection. The second required ability
is that the organisms must be able to tell whether they are
currently inside or outside a resource patch. This is clearly
related to the detection of a gradient, but it could potentially
involve different sensory modalities or information intake
for some species.

When interpreting the results, a key point to understand is
that once Switching On foragers encounter the resource

gradient associated with a resource patch, they will increas-
ingly switch into the gradient-following subpopulation and
thereby shut down diffusion. Because foragers cannot switch
from gradient-following mode to random search mode when
inside a resource patch (Eq. 6), this acted as a concentrating
mechanism that kept foragers in resource patches from leaving
those patches. Because foragers that are located inside of
patches but possess high diffusion rates would quickly leave
the patches unless something keeps them there, this concen-
trating mechanism contributes to the superior performance of
the Switching On scenario for those parameter cases involving
high diffusion and low advection (Figs. 4 and 5).

Our findings in Fig. 3 are consistent with results from pre-
vious work in the mathematics literature. For example, in spa-
tially varying domains that are one dimensional (or in the case
of higher dimensions, are convex), movement that blends ad-
vection and diffusion (but does not involve switching) always
improves resource matching compared to straight diffusion
(Cantrell et al. 2007). Likewise, in previous models that blend
diffusion and advection to explore alternative evolutionary
strategies of movement, some intermediate level of diffusion
is favored for any advection rate, but diffusion rates that are
too high or too low are not favored (Lam and Lou 2014). The
latter type of evolutionary disadvantage may be somewhat
analogous to the observation here that if diffusion rates are
low, then context-dependent advection is disadvantageous
(Figs. 3 and 4) relative to the corresponding No Switching
scenario. Roughly speaking, for a single movement mode,
having the right balance between advection and diffusion ap-
pears advantageous, but having either one too large relative to
the other is not.

Our results identified an interesting interplay between per-
ceptual range and the ratio of movement rates separating the
advantageous and disadvantageous effects of switching be-
tween movement modes (Fig. 5). This linkage is worth think-
ing about in the context of the evolution of sensory perception.

Fig. 6 Compared to a single resource patch (a), fragmented resources (b)
generally reduce the benefits of switching between movement modes.
Note, however, that the performance of the Switching On scenario
improves for γ large and D small. The relative (dis)advantages for
foragers in the Switching On scenario compared to the Switching Off

scenario are plotted for a a single resource patch of 10 units (m(x) = 1
for x = [45, 55]) versus b five resource patches, each of two units (i. e. ,
m(x) = 1 for x ∈ [9, 11] ∪ [29, 31] ∪ [49, 51] ∪ [69, 71] ∪ [89, 91]). Results
are plotted for R = 1, α0 = 1, α1 = 5, β0 = 1, β1 = 60, h1 = 5
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Operationally, the perceptual range in our model could refer to
perception via any number of sensory modalities, such as
vision, audition, or chemoreception. However, given pre-
existing empirical work on the evolution of vision, particular-
ly pertaining to issues of distance and detectability, it is per-
haps easier to discuss the linkage between perception and
behavioral switching in a visual context. The evolution of
the ability to see is one of the key transitions in life on earth,
and sight appears linked to diversification early in evolution-
ary history (Marcotte 1999; Aberhan et al. 2012;
Schoenemann and Clarkson 2013).

Let us consider random search as an evolutionary base-
line for movement. Compared to the corresponding No
Switching scenario, Switching between movement modes
offered the biggest advantage in resource-matching when
animals had substantial rates of random search but only
low rates of advective gradient following (i.e., D large
and γ small) (Fig. 4). Moreover, resource matching for
both the Switching and No Switching scenarios would nat-
urally exceed the resource matching achievable using only
random searching where dissipative effects would prevent
foragers from concentrating on a resource patch (Fig. 3).
This sequence of results (Switching outperforming No
Switching, which in turn outperformed random search)
suggests that an animal that was able to evolve even a
rudimentary level of gradient-following in a selective,
context-dependent fashion would be advantaged relative
to an animal that was always following gradients and rel-
ative to an animal that was just moving randomly. This
initial advantage could serve as an evolutionary jumping
off point for further refinements of a coupled system of
detection and movement.

Perceptual range is also highly relevant to this thought
problem. Early in evolution, perceptual ranges would likely
have been very narrow, as opportunities for visual detection
were just developing. In our model, narrow perceptual ranges
greatly restricted the region of parameter space in which
Switching was advantageous. Importantly, however, that re-
stricted region corresponded to the region of parameter space
where the gradient-following ability was weak, which is ex-
actly where the benefits of Switching were most pronounced.
Aweak gradient-following ability is again a feature that might
be expected early in evolution. It is intriguing that this three-
part convergence of narrow perceptual ranges, weak gradient-
following abilities, and selective, context-dependent use of
those gradient-following abilities afforded such dramatically
enhanced opportunities for resource matching relative to alter-
native baseline conditions (Figs. 4 and 5). Clearly, biological
systems that improved foragers’ abilities to find and remain
located in resource patches would be advantageous in an evo-
lutionary setting. We will explore the evolutionary relevance
of the convergent benefits of switching, gradient following,
and perception in future modeling work.
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