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a b s t r a c t 

Encounter rates link movement strategies to intra- and inter-specific interactions, and therefore translate 

individual movement behavior into higher-level ecological processes. Indeed, a large body of interacting 

population theory rests on the law of mass action, which can be derived from assumptions of Brownian 

motion in an enclosed container with exclusively local perception. These assumptions imply completely 

uniform space use, individual home ranges equivalent to the population range, and encounter dependent 

on movement paths actually crossing. Mounting empirical evidence, however, suggests that animals use 

space non-uniformly, occupy home ranges substantially smaller than the population range, and are of- 

ten capable of nonlocal perception. Here, we explore how these empirically supported behaviors change 

pairwise encounter rates. Specifically, we derive novel analytical expressions for encounter rates under 

Ornstein-Uhlenbeck motion, which features non-uniform space use and allows individual home ranges 

to differ from the population range. We compare OU-based encounter predictions to those of Reflected 

Brownian Motion, from which the law of mass action can be derived. For both models, we further explore 

how the interplay between the scale of perception and home-range size affects encounter rates. We find 

that neglecting realistic movement and perceptual behaviors can lead to systematic, non-negligible biases 

in encounter-rate predictions. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

A key goal of movement ecology is to use knowledge of

ovement behaviors to understand large-scale ecological processes

 Nathan et al., 2008; Mueller and Fagan, 2008; Hawkes, 2009;

orales et al., 2010; Borchering et al., 2017; Atkins et al., 2019 ).

his ‘upscaling’ from individual movement to population- and

ommunity-level consequences, including competition, predation, 

ate finding, and disease transmission, will be mediated by pair-

ise interactions. A key step in the transition from individual
∗ Corresponding author. 

E-mail address: j.calabrese@hzdr.de (J.M. Calabrese). 
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ovement to higher-level dynamics is to understand how move-

ent behaviors translate into encounter rates among potentially

nteracting individuals. Indeed, encounter rates can be seen as

 key contact point in movement ecology, as they directly gov-

rn how different movement strategies affect intra- and interspe-

ific interactions ( Barraquand and Murrell, 2013; Hein and Martin,

020; Holling, 1959; Merrill et al., 2010; Turchin, 2003 ). 

Analytical results on encounter rates are typically derived from

wo extremes of a continuum of movement processes with in-

ermediate models being explored through numerical simulations

 Bläßle and Tyson, 2016 ). On the one end is simple ballistic mo-

ion, which describes straight-line movement of individuals in ran-

om directions ( Mosimann, 1958; Gerritsen and Strickler, 1977;
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Hutchinson and Waser, 2007 ). On the other extreme is Brown-

ian motion (BM), which describes infinitely tortuous trajectories

( Visser and Kiørboe, 2006; Visser, 2008 ). Both types of move-

ment, when confined to an enclosed container with reflecting

boundaries, and when coupled with purely local perception, lead

to the frequently invoked law of mass action. Mass-action en-

counter has been the cornerstone of interacting population mod-

els going back to the Verhulst equation for intraspecific compe-

tition ( Verhulst, 1838 ), the Lotka-Volterra predator-prey equations

( Lotka, 1926; Volterra, 1926 ), and the Kermack-McKendrick SIR dis-

ease transmission model ( Kermack and McKendrick, 1927 ). More

recently, mass-action encounters have been also applied to investi-

gate sexual reproduction in single species models ( Calabrese et al.,

2008; Snyder et al., 2017 ). Therefore, a huge swath of ecological

theory now rests on the mass action assumption ( Hutchinson and

Waser, 2007; O’Dwyer, 2020 ). 

For much of the history of ecology, elemental movement pro-

cesses such as ballistic and Brownian motion have been used to

understand the consequences of animal movement. Key reasons

for the ubiquity of these models include their analytical tractabil-

ity, and the long-standing dearth of empirical data with which to

better characterize real movement processes. Recent advances in

animal tracking technology ( Cagnacci et al., 2010; Coyne and God-

ley, 2005; Kays et al., 2015 ), movement modeling ( Patterson et al.,

2008; Gurarie and Ovaskainen, 2011; Fleming et al., 2014a; 2014b;

Pyke, 2015 ), and statistical analyses ( Kie et al., 2010; Fleming et al.,

2015; Hooten et al., 2017; Winner et al., 2018 ) have removed both

of these bottlenecks, and we are now in position to critically re-

assess the core assumptions undergirding classical encounter the-

ory. Two immediately apparent areas where existing encounter

models fall short of empirical reality are in adequately accounting

for range residency and nonlocal perception. 

In the former case, ecologists have long known that most ani-

mals move within well-defined home ranges, and a large and di-

verse literature has developed around how to best estimate home

ranges from tracking data ( Odum and Kuenzler, 1955; Jennrich

and Turner, 1969; Dixon and Chapman, 1980; Worton, 1987; 1989;

Powell, 20 0 0; Fleming et al., 2015 ). Mounting empirical evidence

suggests that animals tend to use their home ranges unevenly and

that individual home ranges typically cover only a fraction of the

population range ( Burt, 1943; Bowen, 1982; Harris et al., 1990;

Fieberg and Kochanny, 2005; Kie et al., 2010; Moorcroft and Lewis,

2013; Benson and Patterson, 2015; Winner et al., 2018 ). In stark

contrast, simple bounded movement processes that lead to mass

action, like Reflected Brownian Motion (RBM; Harrison et al., 1985;

Dieker, 2011 ), result in uniform space use and individual “home

ranges” that are equivalent to the population range. To the best

of our knowledge, only one study has previously studied the ef-

fect of partial home range overlap on encounter rates, but it as-

sumed a one-dimensional landscape and uniform space use within

individual home ranges ( Giuggioli et al., 2013 ). Similarly, increasing

evidence now suggests an important and widespread role for non-

local perception in shaping the movement and foraging strategies

of many animals ( Zollner and Lima, 1997; Zollner, 20 0 0; Mech and

Zollner, 2002; Prevedello et al., 2010; Fletcher et al., 2013; Schu-

macher et al., 2017; Aben et al., 2018; Ríos-Uzeda et al., 2019 ),

whereas mass-action encounter assumes purely local perception.

Even though a finite scale of perception has been considered a

tunable parameter in previous studies, its effect on encounter pro-

cesses have been analyzed mostly through numerical simulations

( Bartumeus et al., 2002; Martínez-García et al., 2013; 2014; 2017;

Fagan et al., 2017 ), with only very few analytical results existing for

one-dimensional dynamics ( Bartumeus et al., 2014 ) or very partic-

ular spatial distributions of targets ( Gurarie and Ovaskainen, 2013 ).

The Ornstein-Uhlenbeck process (OU; Uhlenbeck and Orn-

stein, 1930 ), which is related to RBM, is the simplest stochastic
ovement model that captures non-even space use within a home

ange, and allows individual home ranges to differ from the popu-

ation range. To the best of our knowledge, however, no encounter

heory exists for this model. Importantly, the OU process is increas-

ngly used in empirical tracking studies, and has well developed

tatistical estimators ( Hines et al., 2005; Fieberg, 2007; Fleming

t al., 2014b; 2017 ). It can also serve as the basis for more compli-

ated estimation procedures, including composite movement mod-

ls ( Blackwell, 1997; Breed et al., 2017 ), and autocorrelated kernel

ensity estimation (AKDE) ( Fleming et al., 2015; Fleming and Cal-

brese, 2017 ). Indeed, in a recent comparative study of home range

stimators, the OU process was selected as the AIC-best model on

hich to base AKDE home range estimates for 128 of 369 datasets

 Noonan et al., 2019 ). 

Here, we compare the OU and RBM models to explore how in-

ividually restricted movement and uneven space use within home

anges affect encounter processes. For both models, we account for

onlocal perceptual ranges and study how a tunable scale for indi-

idual perception interacts with the spatial extent of home ranges

o determine encounter frequency. We derive novel, exact expres-

ions for the mean instantaneous encounter rate of OU and RBM

rocesses to quantify how empirically supported departures from

lassical encounter assumptions change encounter rates, and sup-

lement these with numerical results where necessary. We out-

ine the conditions under which RBM–and by extension, the law

f mass action–fails to provide a reasonable approximation to the

ore realistic OU process, and discuss the potential consequences

f this incongruity for interacting population models that invoke

ass action encounter. 

. Methods 

.1. Encounter metrics 

For simplicity, we will limit our analysis to the encounter be-

ween a pair of individuals in which one of them acts as a searcher

nd the other as a mobile target. This scenario mimics, for in-

tance, a simple prey-predator or infected-susceptible encounter.

ecause we do not consider cross-correlations between the trajec-

ories of the individuals, long-range chasing or avoidance mecha-

isms are neglected. We will introduce and discuss our results in

erms of a predator-prey interaction, but generalizations to broader

ncounter scenarios in which two individuals show home-ranging

ehavior and long-range perception are straightforward. In disease

ransmission scenarios, for example, the infected and the suscep-

ible individual play the role of the predator and the prey respec-

ively, and the perceptual range translates into a disease transmis-

ion range. Throughout the manuscript, we will use a notation in

hich the subscript 1 refers to the predator and 2 to the prey. 

In this context, the probability that an encounter, E , occurs dur-

ng some small time interval dt is, 

r (E in { t , t + dt } ) = E(r(t)) dt (1)

here E(r(t)) is the instantaneous encounter rate , which defines,

or a given distance between the pair of individuals, the prob-

bility per unit of time of an encounter occurring. Following

olling (1959) , we decompose the instantaneous encounter rate

n the two main components of predation: the instantaneous en-

ounter risk, which defines the potential for an encounter to take

lace, and the conditional risk of encounter given that potential,

hich in our context can be thought as a proxy for predator at-

acking efficiency (see also Gurarie and Ovaskainen, 2013; Hebble-

hite et al., 2005 ). In their most general form, both the instanta-

eous encounter risk and the conditional risk of encounter depend

n the distance between individuals, r ( t ), and the predator percep-

ual range, q , which results in an instantaneous encounter rate of
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he form 

(r(t)) = γq (r(t))�q (r(t)) , (2) 

here �q ( r ( t )) is the probability density function for the instan-

aneous encounter risk, also called encounter kernel ( Gurarie and

vaskainen, 2013 ), and γ q ( r ( t )) is the conditional risk of encoun-

ering, or predator attacking efficiency, also termed encounter pa-

ameter in the literature ( Gurarie and Ovaskainen, 2013 ). Because

q ( r ( t )) is a probability density function, it has to meet a normal-

zation condition such that 
∫ 

�q (r) dr = 1 . 

To keep the calculations analytically tractable, we consider a

onstant encounter parameter, γ q ( r ( t )) ≡ γ , and a top-hat en-

ounter kernel entirely defined by the predator perceptual range

q (r(t)) = 

{
0 if r(t) > q 
1 

πq 2 
if r(t) ≤ q 

(3) 

The top-hat encounter kernel assumes that predator’s attention

s uniformly distributed over the coverage area of the perceptual

ange. In the limit q → 0, it becomes a Dirac delta function, which

eans that the risk of encounter occurrence is concentrated at

he position of the predator and zero everywhere else. For longer

erceptual ranges, the risk of encounter occurrence decreases at

 zero prey-predator distance because it is higher further away

rom the predator. However, because OU movement models de-

cribe continuous trajectories, for the prey to get to the same loca-

ion as the predator, it must first pass through the predator’s per-

eptual range and a long-range perceptive predator has many more

pportunities to notice and encounter an incoming prey individual

han would a predator with q = 0 . Moreover, by assuming top-hat

ncounter kernels and constant encounter parameters, we neglect

he effect of processes acting at scales shorter than the percep-

ual range that may influence the encounter probability, such as

ncreased attack efficiency or greater encounter risk close to the

redator. Accounting for these effects is beyond the scope of our

tudy, but it constitutes an important direction of future work. Pre-

iminary results using smoother encounter kernels are provided in

ppendix A . 

Finally, because the movement models used to describe the

rajectories of both individuals are stochastic, both the distance

etween individuals and the instantaneous encounter rate are

tochastic processes. We introduce the mean encounter rate, de-

ned as the instantaneous encounter rate averaged over realiza-

ions of the movement processes, 

˜  (t) = 

∫ 
E(r (t)) f (r (t)) dr, (4)

here f ( r ( t )) is the probability density function (PDF) of the time-

ependent distance between individuals, r ( t ), and E(r(t)) is the in-

tantaneous encounter rate as defined in Eq. (1) . Notice that, since

e perform the average over space, the mean encounter rate is still

n instantaneous measure of the encounter rate. 

.2. Movement models 

To investigate the influence of home ranging on encounter pro-

esses, we compare OU-based encounter statistics with those de-

ived from RBM. OU allows individual home ranges to differ from

he population range and also permits a non-uniform use of the

pace within each home range. RBM, in contrast, leads to indi-

idual home ranges that are equal to the range of the popula-

ion and to individuals exploring the entire population range uni-

ormly. As an additional point of contrast, we supplement our anal-

sis with encounter statistics derived for Brownian motion (BM),

hich allows us to investigate the long-term impact that unre-

tricted movement has on encounter rates (details of the BM cal-

ulations are provided in Appendix B ). 
.2.1. Ornstein-Uhlenbeck 

In two dimensions, the OU movement model is described by a

air of independent stochastic differential equations, 

˙  β (t) = − 1 

τ

[
z β (t) − λβ

]
+ 

√ 

g ξβ (t) , (5) 

here the subscript β indicates each of the two coordinates in

he 2 D space and hence β ∈ { x, y }, z is the location of the indi-

idual and the dot indicates a time derivative, ( λx , λy ) gives the

ome-range center ( Okubo and Levin, 2001 ), and ( ξ x , ξ y ) is a zero-

ean and unit-variance Gaussian white noise process with units of

ime −1 / 2 . Note that the OU model neglects correlations in the ve-

ocity and hence the model equations only describe changes in in-

ividual location. For simplicity, we impose isotropy on the move-

ent, so τ and g are scalar quantities. τ−1 accounts for the average

ome-range crossing rate, has units of time −1 , and quantifies the

ate at which individuals return to the center of their home ranges

fter a stochastically initiated excursion that takes them away from

t. Therefore, τ is a proxy for home-range affinity that goes from
−1 → 0 for nomadic species to τ−1 → ∞ for sedentary species

hat do not abandon the home-range center. Finally, g sets the size

f the home range by modulating the intensity of the stochastic

omponent of the movement and has units of area/time. 

Because the only stochastic terms in Eq. (5) , ξβ , are Gaussian

rocesses, the OU model is also a Gaussian process, and is there-

ore completely defined by the mean of each coordinate, μβ , and

he variance σ 2 (see Appendix C for detailed calculations), 

β (t) = μβ(0)e −t/τ + λβ

(
1 − e −t/τ

)
, (6) 

2 (t) = σ 2 (0)e −2 t/τ + 

gτ

2 

(
1 − e −2 t/τ

)
, (7) 

here we have considered that the initial condition is likely

o be stochastic and have thus maintained μβ (0) and σ
2 (0) in

qs. (6) and (7) , respectively. For deterministic initial conditions,
2 (0) = 0 and μ(0) is the initial position of the individual. Notice

hat, because we assume isotropy in the movement, the variance
2 ( t ) is the same for each component of the position and we do

ot include the subscript β in Eq. (7) . In the long-time limit, OU

ositions converge to a bivariate Normal distribution with mean

 λx , λy ) and variance g τ /2 regardless of the initial conditions. The
ormality of the positions reflects non-homogeneous individual

pace use, while the finite variance leads to home ranges that can

e smaller than the range of the population. 

Individual home range and population range: definitions. We de-

ne the home-range area as the smallest region of the space in

hich the probability of finding an OU individual is equal to an

rbitrarily chosen quantile, h . Due to movement isotropy, individ-

al home-ranges that result from this definition are circles with a

adius that can be obtained by integrating the individual position

DF, 

1 

2 πσ 2 

∫ ρ

0 

∫ 2 π
0 

r dr dθe −r 2 / 2 σ 2 = h, (8) 

nd therefore 

= 

√ 

2 σ 2 ln 

(
1 

1 − h 

)
= 

√ 

gτK, (9) 

here K ≡
√ 

− ln (1 − h ) . For all the results presented here, we

x h = 0 . 95 , which is the conventional value used in the home

ange literature. Our results, however, are not qualitatively sensi-

ive to changes in h . Importantly, even though the movement is re-

tricted to an area, the individual position PDF has infinite support

nd therefore OU allows for occasional excursions in which ani-

als leave their home range ( Fig. 1 A, B), which is consistent with

he widely-cited conceptual definition of home range introduced
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Fig. 1. Sample trajectories for OU (A, B) and RBM (C, D). For the OU panels, the gray 

dashed and blue dashed-point circles delimit individual home ranges. The colored 

circles mark the home-range centers and the black dashed circle limits the popula- 

tion range, obtained from Eq. (10) . Movement parameters are identical for both OU 

panels (A and B) other than the spatial distribution of the home ranges through R λ . 

In the RBM panels, the encounter arena is limited by the solid circle, representing 

the reflecting boundary conditions. 

Fig. 2. Contour plot of the population range as a function of the distance between 

home-range centers, R λ and predator home-range radius, ρ1 . The prey home-range 

radius is kept constant, ρ2 = 1 . The white dashed lines mark the transitions in the 

branch of Eq. (11) that defines the radius of the population range, R . The horizontal 

black lines mark the values of R λ used in Fig. 4 . 
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in Burt, 1943 . In contrast, when individuals are constrained within

reflecting boundaries, such excursions are not possible ( Fig. 1 C, D).

Based on this definition of home range, we define the popu-

lation range as the circular region whose radius, R , is equal to

the radius of the smallest circular area that contains the stationary

home range of both the OU prey and the OU predator ( Fig. 1 A, B).

Depending on the distance between home-range centers, R λ, and

the movement parameters defining each individual home-range ra-

dius, ρ1 and ρ2 ( Eq. 9 ), the population-range radius is, 

R = max 

(
ρ1 , ρ2 , 

(ρ1 + ρ2 + R λ) 

2 

)
. (10)
nd it thus differs from individual home ranges except for the very

articular case in which ρ1 = ρ2 and R λ = 0 . With some algebra,

e can obtain the conditions for which the population range is

efined either by the prey home range (Region I), by the preda-

or home range (Region III), or by a combination of both and the

istance between home-range centers (Region II) ( Fig. 2 and Fig.

.3), 

 = 

{ 
ρ2 if ρ1 < ρ2 − R λ Region (I) 

ρ1 + ρ2 + R λ
2 

if ρ2 − R λ < ρ1 < ρ2 + R λ Region (II) 
ρ1 if ρ1 > ρ2 + R λ Region (III) 

(11)

.2.2. Reflected Brownian Motion 

RBM individuals move according to a pure BM enclosed within

 finite container with reflecting boundaries that defines the popu-

ation range. Because RBM does not account for home range affin-

ty, the prey and the predator explore the whole population range

n which they move and both individual home ranges are equal to

ach other and to the population range. In contrast to OU models,

ue to the reflecting boundary conditions, the PDF for individual

BM positions is not Normal in the long-term. In general, it is a

unction of the geometry of the population range ( Harrison et al.,

985 ), but for the circular population ranges considered here, the

tationary PDF for RBM positions is a uniform distribution defined

nside the population range 

f 
RBM ( x, y, t → ∞ ) = 

{ 
1 

πR 
2 

if 
√ 

x 2 + y 2 ≤ R 

0 otherwise 
(12)

Therefore, RBM individuals use space uniformly for circular and

ther sufficiently smooth boundary geometries, while more com-

licated home range geometries might lead to nonuniform space

se. In these cases, however, the shape of the PDF for the individ-

al location is determined by the shape of the reflecting borders

ather than by intrinsic properties of individual movement or the

andscape of resources in which individuals move ( Harrison et al.,

985 ). 

. Results 

.1. Pairwise distance distributions and mean encounter rate 

.1.1. Ornstein-Uhlenbeck 

Because the position of each individual, z , is normally dis-

ributed, the difference between them, �z = (�x, �y ) , follows a

ormal distribution with mean equal to the difference between

he mean positions of the two individuals, and variance equal

o the sum of the variances in the positions of the individu-

ls. In addition, due to movement isotropy, each component of

z has the same variance, σ 2 
1 

+ σ 2 
2 
, and we can define a nondi-

ensional squared-distance u (t) ≡ r 2 (t) /σ 2 
r , where σ 2 

r ≡ σ 2 
1 

+ σ 2 
2 

nd r 2 (t) = �x 2 (t) + �y 2 (t) . This new variable u is a noncentral

hi-squared variable with nondimensional noncentrality parame-

er ˜ 
 ≡ 
/σ 2 
r = (μ2 

�x 
+ μ2 

�y 
) /σ 2 

r , where μ�x and μ�y are the

ean differences in the position of the individuals in the x and

 coordinate respectively. They are calculated as μ�x = μx, 1 − μx, 2 

nd μ�y = μy, 1 − μy, 2 respectively. Because the nondimensional

quared-distance, u , is a noncentral chi-squared variable, its PDF

s 

f 
OU 

(
u ( t ) , ̃  
( t ) 

)
= 

1 

2 
exp 

( 
−
(
u + ̃

 

)

2 

) 
I 0 

(√ ˜ 
u 

)
, (13)

here we have suppressed the time dependence in u and ˜ 
 on the

ight side of the equation for simplicity in the notation. I 0 is the

odified Bessel function of the first kind and order 0. The shape of
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f (u ; ˜ 
) for different numerical values of both ˜ 
 and σ 2 
r is shown

n Fig. J.1. 

Inserting Eq. (13) in the definition of the mean encounter rate

nd solving the integral in Eq. (4) (see Appendix D for detailed

alculations), we obtain the mean encounter rate 

˜ 
 
OU ( t, q ) = 

γ

πq 2 

[
1 − Q 1 

(√ 


( t ) 

σr ( t ) 
, 

q 

σr ( t ) 

)]
, (14) 

here Q 1 is the Marcum- Q -function ( Bocus et al., 2013 ). Impor-

antly, because we have not made any assumption about the par-

icular form of 
 and σ r , Eq. (14) is a general expression that

ives the mean encounter rate for any isotropic movement model

n which the position of the individuals have Gaussian PDF with

ovariances equal to zero. Although Eq. (14) provides an exact

xpression for the mean OU encounter rate, its dependence on

he Marcum-Q-function makes it difficult to develop a quantita-

ive understanding of how encounter rates are determined by the

ovement and perception parameters. To eliminate the Marcum-

-function from the encounter rate, we study Eq. (14) in the short

erception limit (q 	 R ) . Following the calculations provided in

ppendix E.1 , we obtain 

˜ 
 
OU ( t, q ) ≈

γ
[
8 σ 4 

r ( t ) + q 2 
(

( t ) − 2 σ 2 

r ( t ) 
)]

16 πσ 6 
r ( t ) 

exp 

(
− 
( t ) 

2 σ 2 
r ( t ) 

)
. 

(15) 

Finally, in the local-perception limit (q = 0) , the mean en-

ounter rate can be written in terms of the overlap between

ach individual’s home range, measured either through the Bhat-

acharyya coefficient (BC; Fieberg and Kochanny, 2005; Winner

t al., 2018 ) or through the inner product of both individual-

osition PDFs in the function space, f 1 · f 2 . The functions f 1 and f 2 
re, respectively, the PDFs for the position of the predator and the

rey, and the inner product, denoted by the symbol · , is defined
s the spatial integral of the product of both PDFs. 

In terms of the BC, the OU mean encounter rate is, 

˜ 
 
OU ( t; q = 0 ) = 

γ σ 2 
r ( t ) 

8 πσ 2 
1 ( t ) σ

2 
2 ( t ) 

BC 2 ( t ) , (16) 

here the BC is a function of the movement parameters of the

rey and the predator. Therefore, after a transient period in which

he home range overlap and hence the BC changes with time, the

C reaches a stationary, constant value. In terms of the inner prod-

ct of the individual-position PDFs we get ˜ 
 
OU ( t; q = 0 ) = γ f 1 · f 2 . (17) 

.1.2. Reflected Brownian Motion 

For RBM, individuals perform BM within a reflecting population

ange of radius R . Therefore, to obtain the position PDF for each

ndividual at any time, we need to solve the diffusion equation on

 disk of radius R with reflecting boundary conditions, which is

athematically more challenging than the OU case. At short times,

owever, the effect of the reflecting boundaries is negligible and

BM converges to BM. Therefore, the pairwise distance distribution

s given by Eq. (13) with noncentrality parameter equal to the dis-

ance between the initial position of each individual and rescaling

ariance σ 2 
r = (g 1 + g 2 ) t (see Appendix B ). In the stationary limit,

ecause the use of space is uniform and population ranges are cir-

ular, the pairwise distance PDF is equal to the PDF for the distance

etween two random points within a disk of radius R ( Garcia-

elayo, 2005 ), 

f 
RBM 

( r, t → ∞ ) = 

⎧ ⎨ ⎩ 4 r 

πR 
2 
ArcCos 

(
r 

2 R 

)
− 2 r 2 

πR 
4 

√ 
R 

2 − r 2 

4 
if r ≤ 2 R , 

0 otherwise , 

(18) 
hich is shown in Fig. J.2 for various values of R . Inserting the PDF

rom Eq. (18) in the definition of the mean encounter rate, Eq. (4) ,

e obtain the stationary RBM mean encounter rate, ˜ E RBM 
, ˜ 

 
RBM ( t → ∞ , q ) = 

 

γ

4 π2 q 2 R 
3 

[ 
8 R 

(
R 2 ArcCsc 

(
2 R 

q 

)
+ q 2 ArcSec 

(
2 R 

q 

))
−

− .q 3 

√ 

4 − q 2 

R 
2 

+ 2 q R 

√ 

4 R 
2 − q 2 

] 
. 

(19) 

Finally, we can also obtain the approximate encounter rate in

he short-perception limit (see E.2 for detailed calculations), 

˜ 
 
RBM ( t → ∞ , q ) ≈ γ

πR 
2 

(
1 − 4 q 

3 πR 

)
. (20) 

In summary, OU encounter rates depend on four spatial scales,

o which we can give different ecological meanings. First, the

redator perceptual range, q , contains all the information about

he encounter process itself, assuming that the encounter kernel is

xed. Second, the distance between home-range centers, R λ , pro-

ides information about the spatial distribution of home ranges.

inally, each of the home-range radii, ρ1 and ρ2 , contains infor-

ation about individual movement process and habitat use. RBM

ncounter rates, in contrast, only depend on two spatial scales: the

redator perceptual range, q and the population range, R . This is

 very important difference between OU and RBM encounters: in

BM, the long-term encounter rate is completely determined by

he population range (if the perceptual range is constant), but in

U the long-term encounter rate depends on the combination of

alues for ρ1 , ρ2 and R λ that leads to that particular population

ange. 

.2. Short-term encounter rates 

.2.1. Ornstein-Uhlenbeck 

In this section, we investigate the transient behavior of the en-

ounter rate, that is, before the OU moments reach their station-

ry values. We consider a pair of individuals that follow identi-

al OU models ( g 1 = g 2 ≡ g and τ1 = τ2 ≡ τ ) departing from their

ndividual-specific home-range centers. Mathematically, this initial

ondition is given by μ(0) = (λx , λy ) and σ 2 (0) = 0 . Therefore, R λ
s both the mean and the initial distance between individuals. In-

erting these initial conditions in Eqs. (6) and (7) , the mean po-

ition of each individual is constant and fixed at its home-range

enter whereas the variance increases monotonically from zero un-

il it reaches its steady value. The noncentrality parameter and the

escaling variance are, 

= R 2 λ (21) 

2 
r (t) = gτ

(
1 − e −2 t/τ

)
. (22) 

Inserting Eq. (21) and (22) into Eq. (14) , we obtain a closed ex-

ression for the mean encounter rate that only depends on preda-

or perceptual range, q , and the various movement parameters. Be-

ause we start with deterministic initial conditions, the initial en-

ounter rate is zero unless both individuals have the same home-

ange center. As time elapses, however, the position of each in-

ividual becomes uncertain due to movement stochasticity, and

he probability that individual trajectories cross with each other

ncreases. Consequently, the mean encounter rate increases too.

he mean encounter rate grows monotonically until it stops at a

onstant, stationary value if the overlap between home ranges is

ow ( R λ large, g small). The mean encounter rate shows, however,

 maximum at an intermediate time during the transient regime

hen individual home ranges get closer ( R decreases) or larger
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Fig. 3. Transient dynamics in the mean encounter rate for OU (analytical solution, solid lines), BM (analytical solution, dashed lines), and RBM (numerical averages over 

5 × 10 7 realizations with identical initial conditions, dotted lines). In each panel, curves with the same color are obtained starting from the same initial conditions and 

using the same movement parameters. In panel A, the intensity of the stochasticity in individual movement is kept constant, g = 0 . 3 , and blue and black curves differ in 

the distance between home-range centers, R λ; in panel B, contrarily, the position of the individual home ranges is constant, R λ = 0 . 3 , and movement stochasticity, g , varies. 

Other parameters remain constant and take the same value in both panels, τ = 0 . 3 (for OU models) and q = 0 . 05 . 
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( g increases) because in those situations the maximum overlap

between home ranges is reached at intermediate times ( Fig. 3 ).

Moreover, if the distance between home-range centers is kept

constant, the intensity of the stochastic movement component, g ,

controls a tradeoff between short-term and long-term mean en-

counter rate. More stochastic movements favor early encounters

because individuals spread faster from their initial positions and

are more likely to encounter each other quickly. However, in the

long term, because home ranges are larger, the encounter proba-

bility is smaller ( Fig. 3 B). 

3.2.2. Reflected Brownian Motion 

Next, we compare OU mean encounter rates with those ob-

tained for a pair of RBM individuals that move within the pop-

ulation range, R , defined by the OU movement parameters with

which we want to make the comparison. Therefore, we calculate

the population range of each pair of OU individuals considered in

the previous section and use that value to constrain the move-

ment of a pair of RBM individuals. Because an analytical expression

for the time-dependent pairwise distance PDF is not accessible for

RBM, we perform numerical simulations of the encounter process.

We find that while some aspects of the qualitative behavior are

similar to OU, others differ in important ways. For fixed move-

ment parameters, when the population range is large and individu-

als start far from each other, the encounter rate is a monotonically

increasing function of time. Conversely, if the population range is

small and individuals start close to each other, the maximum over-

lap between trajectories, and hence the maximum encounter rate,

is reached at an intermediate time ( Fig. 3 A). However, the transi-

tion from monotonically increasing encounter rates to first increas-

ing and then decreasing encounter rates does not necessarily occur

at the same R λ for OU and RBM models. For a fixed initial dis-

tance R λ, the stochasticity in the movement also controls a trade-

off between short-term and long-term encounter rate qualitatively

similar to the one featured by OU encounters ( Fig. 3 B). Finally,

for completeness, we also study the pure BM case, in which indi-

vidual movement is not constrained by the population range (see

Appendix B for details). In the short-time limit RBM and BM pro-

vide identical results because the effect of the boundary conditions

on RBM is negligible and the movement statistics in both cases are,

consequently, the same. As border reflections become more impor-

tant in RBM, however, BM and RBM encounter rates diverge from

each other: ˜ E 
RBM 

stabilizes to its stationary value whereas ˜ E 
BM 

de-

cays to zero. 
.3. Steady state encounter rates 

Next, we evaluate the encounter rate in the stationary limit,

hen the moments of the movement models have reached a con-

tant value. We first analyze the dependence of OU encounter rates

n predator home-range size and perceptual range and then in-

estigate whether the main features of range residency, nonuni-

orm use of space and restricted use of the population range, lead

o qualitative differences between OU and RBM-based encounter

ates. 

.3.1. Ornstein-Uhlenbeck encounter rate 

In this stationary regime ( t → ∞ ), the rescaling variance

nd the noncentrality parameter of the nondimensional squared-

istance PDF are constant 

= R 2 λ, (23)

2 
r = 

ρ2 
1 + ρ2 

2 

2 K 2 
, (24)

here we have used the definition of the home-range radius, ρ =
 

gτK, so the pairwise distance PDF depends explicitly on all the

patial scales that, together with the perceptual range, determine

he encounter rate. 

For a first analysis of the encounter statistics, we keep the

ome-range radius of the prey constant, ρ2 = 1 , and study the be-

avior of the encounter rate for different distances between home-

ange centers, R λ, perceptual ranges, q , and predator home-range

adii, ρ1 . The distance between home-range centers, R λ, quantifies

he habitat configuration; the perceptual range, q , contains all the

nformation about the encounter process for a given shape of the

ncounter kernel; and ρ1 informs us about predator space use. In

ddition, because ρ2 = 1 , ρ1 gives the size of the predator home

ange relative to the prey’s. Finally, each set of values for ρ1 , ρ2 ,

nd R λ define a population range, R , according to Eq. (10) ( Fig. 2 ).

arying either R λ or ρ1 changes the home range overlap and hence

he encounter rate. Increasing R λ with constant predator home-

ange radius, ρ1 , and perceptual range, q , decreases the overlap be-

ween home ranges and, as a result, decreases the encounter rate

 Fig. 4 A, B). 

The predator home-range radius has different effects on home-

ange overlap depending on the value of R λ. If home-range cen-

ers are far from each other (large R λ), as predator home range in-

reases with respect to prey home range (increasing ρ1 ) the over-

ap between home ranges and thus the encounter rate increases.
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Fig. 4. OU mean encounter rate versus ρ1 with q = 0 . 1 (A), and versus q with ρ1 = 1 (B). Symbols correspond to numerical simulations and ρ2 = 1 in both panels. 
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owever, if the predator home range continues to grow and be-

omes much larger than the prey’s ( ρ1 � 1), encounters start be-

oming rarer and encounter rates decrease ( Fig. 4 A except solid

ine). When the distance between home-range centers is short

small R λ), larger predator home ranges immediately make en-

ounters rarer and thus the mean encounter rate is a monotoni-

ally decreasing function of ρ1 (solid line in Fig. 4 A). We there-

ore observe a transition in the predator home-range size that

aximizes the encounter rate, that is, on the amount of terri-

ory that it should explore to maximize its predation success. If

redator and prey home ranges are close to each other or the

rey home range is sufficiently large, then the optimal preda-

or home range is ρ1 = 0 , which represents an ambush predation

trategy. On the contrary, if the prey’s home range is small or lo-

ated far away from the home-range center of the predator, then

he encounter rate is maximum for some predator mobility (see

ppendix G for detailed calculations). This richness of behaviors

n the encounter rate is due to the home ranging features intro-

uced by OU movement. Using Eq. (10) , any pair of values ( ρ1 ,

 λ), together with the constant ρ2 = 1 , define a population range

 that contains the home ranges of both individuals (see Fig. 2 ).

f we neglect the effect of range residency and calculate the en-

ounter rate between a pair of RBM individuals moving within

hat same population range, we find that the RBM encounter

ate is a decreasing function of R λ and ρ1 (see Appendix H for

ore details). This occurs because larger values of R λ and ρ1 

esult in larger population ranges (see transects in Fig. 2 ), and

he RBM encounter rate is a monotonically decreasing function of

 . 

If ρ1 remains constant and the perceptual range q varies, the

U encounter rates behave qualitatively similar to the fixed q and

ariable ρ1 case ( Fig. 4 B). However, in the limit q → ∞ , the pair-

ise CDF reaches 1 and all the encounter rates decay as ~ 1/( πq 2 )

egardless of the distance between home-range centers and re-

ardless of the movement model. Therefore, for short perceptual

anges, the OU encounter rate may be either a decreasing or an in-

reasing function of q . In the former case, local perception (q = 0)

eads to a maximum of the encounter rate. In the latter, q = 0 is a

ocal minimum and the encounter rate might be maximal for in-

ermediate perceptual ranges (See Appendix I for details). Finally,

ecause ρ1 , ρ2 , and R λ are kept constant for each curve in Fig. 4 B,

he population range remains constant as well. Hence, if we ne-

lect the effect of range residency and enclose a pair of RBM in-

ividuals within the population range defined by the set of val-

es for ( ρ1 , ρ2 , R λ) used in each curve, the encounter rate loses

ts complex dependence on the perceptual range and it becomes a

onotonically decreasing function of q (see Appendix H for more

etails). 

c  
.3.2. OU-vs-RBM: the role of nonuniform space use 

To isolate the effect of nonuniform space use on encounter rates

rom other factors, such as individual home ranges being smaller

han the population home range, we first consider the case in

hich the home range of both the prey and predator are equal

o each other and to the population range, R . This only occurs

f the prey and predator individual position PDFs are identical to

ach other (i.e., they have the same mean and variance), which

eads to 
 = 0 and σ 2 
r = ρ2 /K 2 . Notice that we have omitted the

ndividual subscript in the notation of the home-range radii and

sed ρ ≡ ρ1 = ρ2 . Substituting these values for the noncentrality

arameter and the rescaling variance in Eq. (15) , we obtain, in the

hort-perception limit, 

˜ 
 
OU ( t → ∞ , q ) ≈ γ K 2 

2 πR 
2 

(
1 − K 2 q 2 

4 R 
2 

)
, (25) 

here we have already used that ρ ≡ R . Therefore, if both individ-

als occupy the whole population range but space use is nonuni-

orm, the encounter rate decreases with the square of the per-

eptual range ( Fig. 5 A). This behavior is different than the linear

ecay of Eq. (20) for RBM encounters, in which space use is uni-

orm. Therefore, even though individual home ranges are identical

o each other and to the population range for the OU and the RBM

etups considered in this section, the nonuniform use of space fea-

ured by OU movement leads to a faster decay of the encounter

ate as perceptual range increases. Moreover, because OU individ-

als have affinity to their home-range centers and both prey and

redator home-range centers are located at the same position, the

U encounter rate is always larger than the RBM encounter rate

 Fig. 5 A). 

Regarding the decay of the encounter rate with the popula-

ion range ( Fig. 5 B), we first observe that OU and RBM take the

ame values for small population ranges, because the home ranges

re small and the effect of home range affinity in the encounter

ate is negligible. As the population range becomes larger, however,

he RBM encounter rate decays faster than the OU encounter rate.

he lack of home-range affinity in the RBM case allows individu-

ls to explore the borders of the population range more frequently

nd thus to be farther from each other. For very large population

anges, encounter rates from the two models tend to converge to-

ether because the intensity of OU home-range affinity is weaker.

owever, they never take the same value, because both OU and

BM decay asymptotically as R 
−2 when R � q (inset in Fig. 5 B). 

.3.3. OU-vs-RBM: the role of restricted use of the population range 

The second feature of the OU movement model, as opposed to

BM, is that it allows individual home ranges to differ from the

opulation range. This limits the area in which encounter may oc-

ur (i.e., from the entire population range to the overlap between
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Fig. 5. OU and RBM mean encounter rates as a function of the perceptual range, q , with population range R = 5 (A); and as a function of the population range with q = 0 . 1 

(B). Solid lines correspond to the exact mean encounter rate and dashed lines to the short- q approximation. The inset of panel B shows the asymptotic decay of the OU and 

RBM mean encounter rate (log-log plot). In every panel: R λ = 0 , and R ≡ ρ1 = ρ2 so that both OU and RBM explore the whole population range. 

Fig. 6. A) OU-to-RBM mean encounter-rate ratio for varying distance between OU home-range centers, R λ , and OU predator home-range radius, ρ1 . The contour lines have a 

spacing equal to 0.1; the thicker-dotted line represents the contour equal to 1. The white-dashed lines mark the transitions in the branch of Eq. (11) (I, II or III) that defines 

the radius of the population range, R . The black lines (dashed and dot-dashed) mark transects of the parameter space with R constant. B, C) OU and RBM encounter rate 

versus R λ for each of the transects traced in panel A. The type of line in each of the transects of panel A is maintained to plot the encounter rates in these panels (panel B 

corresponds to region II and panel C to region III). The color code of panel B is maintained in C. 
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the more restricted home ranges), which may introduce important

qualitative differences between RBM and OU encounter statistics.

In this section, we evaluate the ratio between the OU and the RBM

mean encounter rate, η ≡ ˜ E 
OU 

/ ̃  E 
RBM 

, over a range of conditions that

include changing the distribution and sizes of home ranges within

a population range at constant perceptual range, Fig. 6 , and varying

perceptual ranges on a constant spatial distribution of home ranges

and home-range sizes, Fig. 7 . This analysis will therefore quan-

tify the accuracy of approximating more realistic OU movement

with RBM. More specifically, if ˜ E 
OU 

/ ̃  E 
RBM 

> 1 , then RBM underes-

timates the effect of home ranging behavior on encounter rates;

if ˜ E 
OU 

/ ̃  E 
RBM 

< 1 , RBM overestimates the effect of home ranging be-

havior; finally, RBM is an accurate approximation to home ranging

behavior if ˜ E 
OU 

/ ̃  E 
RBM 

≈ 1 . 

First, we keep the prey home-range radius, ρ2 , and the percep-

tual range, q , constant and allow the predator home-range radius,

ρ1 , and the distance between home ranges, R λ, to change. As both

ρ1 and R λ change, the population range R also changes according

to Eq. (10) (see Fig. 2 ). The way the population range changes with

the distance between home ranges and the predator home range

defines three regions in the ( R λ, ρ1 ) parameter space, delimited

by the white-dashed lines in Fig. 6 A. In region (I), the population

range is equal to the prey home range; in region (II), the popula-

tion range is a linear combination of both home-range radii and
he distance between their centers; in region (III), the population

ange is equal to the predator home-range radius (see Fig. J.3 for

chematic examples of how home ranges arrange within the pop-

lation range in each case). To understand how restricted use of

he population range impacts encounter rates, we need to move in

ach of these regions in a way that the population range remains

onstant despite changes in R λ and/or ρ1 . 

In region (I), the population range, R , is equal to the prey

ome-range radius and thus remains constant in the entire region

egardless of the value of R λ and ρ1 . Because the RBM mean en-

ounter rate only depends on R , it is also constant in the entire

egion. The OU mean encounter rate, however, depends on the size

nd the location of the predator home range. In general, when ρ1 

nd R λ are small, range residency maintains individuals closer to

ach other and thus the mean encounter rate is larger for the OU

odel than for the RBM. As R λ and ρ1 increase, the OU mean en-

ounter rate decreases. Finally, for the largest R λ allowed in this

egion, the mean encounter rate is smaller for OU than for RBM

ecause the predator home range is centered close to the bound-

ry of the prey home range, which is rarely visited by the prey. In

egion (II), for the population range to remain constant, the size

f the predator home range must decrease as the distance be-

ween home-range centers increases (black-dashed line in Fig. 6 A

nd Fig. 2 ). Along such a transect of constant population range, the
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Fig. 7. A) OU-to-RBM mean encounter rate ratio for varying distance between OU home-range centers, R λ , and perceptual range, q . Both individual home-range radii are 

constant, ρ1 = ρ2 = 1 . The population range increases with increasing R λ but it always lies in region II as defined by Eq. (26) ( Fig. 2 ). The contour lines have a spacing equal 

to 0.1 with the thicker-dotted line representing the contour equal to 1. B) OU-to-RBM mean encounter rate ratio along three transects with constant R λ . C) Same as panel B) 

but along transects with constant q . 
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d  
U-to-RBM mean encounter rate ratio decreases as R λ increases

ecause the RBM encounter rate is constant and the OU encounter

ate decreases monotonically as R λ increases and ρ1 decreases si-

ultaneously ( Fig. 6 B). In region (III), we observe the same trend

n the OU-to-RBM mean encounter rate ratio as R λ increases for

onstant population range ( Fig. 6 C; notice that the population-

ange radius is equal to the predator home-range radius in this

egion). Finally, both in regions (II) and (III), the RBM encounter

ate may transition from underestimating to overestimating OU en-

ounter depending on the size of the population range. 

Second, we keep the predator home-range radius constant and

qual to ρ2 , i.e. ρ1 = 1 , and explore the effect of the perceptual

ange on the OU-to-RBM mean encounter rate ratio. Importantly,

ecause individual home ranges are equal to each other, the pop-

lation range is always defined by the branch (II) of Eq. (11) and

epends linearly on the distance between home-range centers, 

 = 1 + 

R λ
2 

. (26)

The perceptual range is a central parameter for encounter rates

nd hence helps determine the accuracy of assuming simplified

ovement models. Perceptual ranges vary importantly across dif-

erent species and within individuals of the same species ( Zollner

nd Lima, 1997; Zollner, 20 0 0; Mech and Zollner, 20 02; Fletcher

t al., 2013 ). Therefore, for the same spatial distribution of home

anges, R λ, and predator movement properties, ρ1 , a RBM approx-

mation to home ranging might give accurate results for some

pecies but inaccurate results for others. Our results show a more

mportant disagreement between RBM and OU encounters (RBM

ither underestimates or overestimates the OU encounter rate) at

hort perceptual ranges regardless of the distance between home-

ange centers. Shorter perceptual ranges require a more precise de-

cription of the encounter of the trajectories because the predator

etects prey at very short distances. Therefore, neglecting range

esidency in movement models has a higher impact in this limit

 Fig. 7 ). Finally, for large q , OU and RBM mean encounter rates are

qual to each other because both decay as ∼ q −2 (see Fig. J.4). 

. Discussion 

Understanding how different movement processes affect pair-

ise encounter rates is a key step in upscaling from individual
ovement behavior to population- and community-level conse-

uences. Recent years have seen rapid developments in move-

ent ecology, in particular with respect to statistical methods for

xtracting information from tracking data ( Fleming et al., 2015;

ooten et al., 2017; Winner et al., 2018 ). However, encounter rate

odeling has remained largely locked in the past, focusing on

verly simplistic models such as Brownian or ballistic motion that,

hile conceptually useful, do a poor job of describing tracking data

 Noonan et al., 2019 ). An accurate description of the pairwise en-

ounters occurring within predator and prey populations is crucial

or constructing well-grounded models of interacting populations.

n such models, encounter terms have historically been based on

he principle of mass action, which assumes that individuals fol-

ow RBM and encounter each other whenever their paths directly

ross ( Hutchinson and Waser, 2007 ). Because every individual is

ssumed equally likely to occupy any region of the space in RBM,

redator-prey encounters are proportional to the product of the

ensities of the two species. More sophisticated versions of these

odels feature modified encounter terms that account for com-

lexities including predator handling times or functional responses

 Holling, 1959; Oaten and Murdoch, 1975; Berryman, 1992 ). How-

ver, all of these elaborations still rest on the principle of mass

ction and its underlying assumptions about individual movement.

Here, we set the basis of an analytical theory for encounter

ates between a pair of OU individuals, the simplest movement

odel that accounts for individual home ranges. We focused on a

rey-predator interaction, but extensions to other encounter sce-

arios such as disease or parasite transmission are straightfor-

ard. Attraction to a home-range center, as featured by OU, does

ot introduce important qualitative differences in the transient en-

ounter rate as compared to RBM ( Fig. 3 ). In both cases, the tran-

ient encounter rate grows monotonically when individuals start

lose to each other and the movement is dominated by determin-

stic attraction to the home-range center, but the transient en-

ounter rate has a maximum at intermediate times if the initial

rey-predator distance is large and their trajectories more stochas-

ic. Moreover, both for OU and RBM, stochasticity in individual tra-

ectories controls a tradeoff between short-term and long-term en-

ounter probability, with more stochastic movement patterns fa-

oring earlier encounters. 

For steady-state encounter rates, uneven space utilization itself

oes not introduce qualitative differences between OU and RBM
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encounters either. However, neglecting uneven space utilization

consistently leads to underestimations of the encounter probabil-

ity, especially for short perceptual ranges and intermediate popu-

lation ranges. In fact, RBM broadly fails to estimate encounter rates

when perceptual ranges are short, providing either over or un-

derestimated values depending on whether home ranges are close

together or far apart, respectively. More importantly, fundamen-

tal qualitative differences between OU and RBM encounter mod-

els emerge from OU movement restricting individual ranges to a

subregion of the population range. This sets a spatial scale, shorter

than the population range, at which encounters can potentially oc-

cur. In RBM, in contrast, this scale is absent and individuals may

interact all over the population range. Moreover, when coupled to

a finite range of perception, this short scale at which OU encoun-

ters occur leads to complex functional shapes for the OU encounter

rate ( Fig. 4 ). For perception and pairwise distance-independent at-

tacking efficiency, as considered here, these manifest as intermedi-

ate optimal perceptual ranges and predator home-range sizes (see

Martínez-García et al. (2013, 2014, 2017) ; Fagan et al. (2017) for

other scenarios where intermediate perceptual range turn out to

be optimal). When both nonuniform space utilization and individ-

ually restricted ranges are turned off, as in RBM, this richness of

behaviors is lost. 

Despite its unrealistic assumptions, one could pontentially view

the RBM model as a pragmatic approximation to the more real-

istic OU model. Indeed, a simpler model that yields qualitatively

correct behavior can sometimes be a useful tool for gaining in-

sight ( Durrett, 2005 ). However, we feel that this is not the case

with RBM for three reasons. First, RBM is actually less analytically

tractable than OU, as evidenced by our inability to obtain an ex-

act, time-dependent expression for its mean encounter rate. Sec-

ond, estimation procedures for RBM have not been developed, and

likely will not be developed, because of the above-noted incongru-

ence with realistic home-ranging behavior, combined with the rar-

ity of situations where an individual’s home range is completely

defined by hard, reflecting boundaries ( Noonan et al., 2019 ). So un-

like OU, RBM cannot be rigorously applied to real tracking data.

Finally, as we have demonstrated, the qualiative behavior of the

RBM encounter model differs importantly from its OU-based coun-

terpart in many cases. For these reasons, we recommend OU as the

best available framework for modeling encounter processes in the

presence of home-ranging behavior. 

By explicitly incorporating range residency in the underlying

movement model, our analyses here have helped place encounter

rate modeling on firmer empirical ground. However, the OU model

itself still requires tracking data that are coarse enough to not

show autocorrelated velocities, and many modern, high-resolution

tracking datasets do not meet this criterion. The OUF process

(Ornstein-Uhlenbeck with Foraging; Fleming et al. (2014a,b) ) is

a generalization of OU that, in addition to range residency, also

includes velocity autocorrelation. While OU does describe many

datasets well, the OUF model is, in our experience, a preferred

model for range resident data. For example, in the comparative

home range analysis performed by Noonan et al. (2019) , the OUF

model was selected for 240 out of 369 datasets, while the OU

model was selected for 128. Deriving encounter metrics for corre-

lated velocity models like OUF will clearly be mathematically chal-

lenging, but this represents an important future opportunity build-

ing on our results. 

Our main focus here has been quantifying encounter rates be-

tween a pair of predator and prey inviduals. Predator-prey interac-

tions, however, are likely to occur among many individuals within

populations of each species. For a single predator navigating a

prey population, the home range that provides a maximum en-

counter rate is determined by the overlap between the predator

home range and multiple prey home ranges. This predator home
ange can differ greatly from that which maximizes a given pair-

ise encounter rate. More importantly, for more crowded situ-

tions, the optimal predator home-range size could also be de-

ermined by the overlap between the various prey home ranges

prey packing). This suggests the possibility of a tradeoff between

aximizing the per-prey-individual encounter rate and maximiz-

ng the number of available prey. For example, under what condi-

ions does increasing the predator home-range size result in gain-

ng access to enough new prey individuals that the overall prey en-

ounter rate still increases despite decreasing per-prey-individual

ncounter rates? Scaling our results to more crowded populations

ill eventually facilitate revisiting the large amount of ecological

heory constructed upon the principle of mass action and inves-

igating the conditions in which more realistic encounter models

an qualitatively change the outcome of the population models in

hich they are embedded. 

We have considered here the encounter between a pair of OU

rocesses, representing a prey and a predator that move inde-

endently from each other. Even though this is a reasonable first

pproximation that allows us to obtain analytical expressions for

he mean instantaneous encounter rate, long-range perception and

he use of sensory information by both prey and predator re-

ult in attraction-avoidance forces between individuals that may

ompete with home-range attraction ( Barbier and Watson, 2016;

olmer et al., 2010; Hein and Martin, 2020; Hein and McKinley,

013; Potts et al., 2014 ). These long-range interactions introduce

ross-correlations between individual trajectories, whose effect on

ncounter statistics has been treated only through numerical sim-

lations ( Martínez-García et al., 2013; 2014 ) or very simplified sce-

arios ( Martínez-García et al., 2015 ). Such forces may be espe-

ially important once individuals get close to each other for the

rst time, making other encounter metrics, such as the mean first

ncounter time, i.e., the expected time until the first encounter

 McKenzie et al., 2009 ), or the survival function, which gives the

robability of not having recorded encounters as a function of

ime, better descriptors of the encounter statistics in certain sce-

arios. Finally, relaxing our assumptions about the shape of the

ncounter kernel and the encounter parameter may also increase

he richness of complex behaviors for the OU encounter rate. In-

orporating all these features into the analytical framework started

ere constitutes important directions for future work. 
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Fig. A1. Encounter kernels defined by Eq. (A.1) for different values of the shape parameter p and q = 0 . 05 . 
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ppendix A. The effect of the encounter kernel 

In this Appendix, we consider the effect of the shape of the en-

ounter kernel on encounter rates. In particular, we extend the re-

ults of the main text considering a family of normalized encounter

ernels that are defined by, 

q (r ) = 

exp ( −r /q ) 
p 

�
(
2+ p 
p 

)
πq 2 

, (A.1) 

here q gives the spatial scale of perception and p is a positive

arameter that controls the steepness of the kernel. In the limit

 → ∞ , these kernels converges to the top-hat kernel used in the

ain text, whereas they show fatter tails as p decreases ( Fig. A.1 ).

he gamma function, �, defined as 

(z) = 

∫ ∞ 

0 

x z−1 e −x dx (A.2)

nsures the normalization of the kernel. 

Our results show a complex relationship between the mean en-

ounter rate and the shape of the encounter kernel controlled by

he spatial distribution and size of the home ranges ( Fig. A.2 ). For

atter-tail kernels defined by low p , the encounter rate tends to

ecome constant earlier in time (long-dashed lines in Fig. A.2 ), be-

ause the home range of the prey is always within the extension of

he encounter kernel. In addition, p controls a short-term vs long-

erm encounter tradeoff, similar to the one controlled by g and dis-

ussed for top-hat kernels in the main text ( Fig. 3 ). Sharper, high- p

ernels favor long-term encounters but penalize them in the short-

erm; smoother, low- p kernels favor short-term encounters at the

ost of reduced long-term ones. 

ppendix B. Brownian motion derivations 

Brownian Motion (BM) is obtained in the limit in which OU has

anishing home range affinity, τ−1 → 0 , and the movement of the

ndividuals is not bounded. Taking this limit in Eqs. (6) and (7) we

btain, 

β (t) = μβ(0) , (B.1) 
2 (t) = σ 2 (0) + gt. (B.2)

The mean position thus remains equal to its initial value, and

ecause individuals have no home-range affinity, the variance di-

erges linearly with time (unrestricted movement). In addition, in-

ividual space occupation is uniform in the long-time limit. Start-

ng from the same initial condition used to study transient OU en-

ounter rates in the main text, that is, a fixed (deterministic) prey-

redator distance equal to R λ, the BM noncentrality parameter and

escaling variance, obtained from Eq. (B.1) and (B.2) , are 

= R 2 λ (B.3) 

2 
r (t) = 2 gt. (B.4) 

Inserting Eqs. (B.3) and (B.4) into Eq. (14) returns the BM mean

ncounter rate, which tends to zero in the long-time limit. This is

 consequence of considering unbounded movement, which makes

he variance in the position of both individuals diverge on the long

ime. At short times, however, RBM and BM provide identical re-

ults because the movement statistics in both cases are the same

nd the effect of the boundary conditions on RBM is still negligi-

le. As border reflections become more important in RBM, BM and

BM encounter rates diverge from each other: ˜ E RBM 
stabilizes in

ts stationary value whereas ˜ E BM 
decays to zero ( Fig. 3 ). 

ppendix C. Moments of the OU model 

We start from the description of the OU movement in terms of

 stochastic differential equation for the one of the coordinates of

he 2 D position, Eq. (5) , 

˙  β (t) = − 1 

τ

[
z β (t) − λβ

]
+ 

√ 

g ξβ (t) , (C.1)

nd our goal is to obtain expression for the mean, μβ , and the

ariance, σ 2 
β
, of the 2 D position ( β ∈ { x, y }). Notice that because

 and τ are the same for each component of ˙ z they do not have

 subscript in Eq. (C.1) . In the following, we will also remove the

ubscript β from z β , λβ and ξβ to make the notation simpler. 

First, we integrate Eq. (C.1) , 

(t) = z(0)e −t/τ + 

λ

τ

∫ t 
0 

d s e −(t−s ) /τ + 

√ 

g 

∫ t 
0 

d W (s ) e −(t−s ) /τ , 

(C.2) 

here dW (s ) = ξ (s ) ds is a Wiener process. Solving the determin-

stic equation, we get 

(t) = z(0)e −t/τ + λ
[
1 − e −t/τ

]
+ 

√ 

g 

∫ t 
dW (s ) e −(t−s ) /τ , (C.3)
0 
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Fig. A2. Effect of the encounter kernel on OU mean encounter rates. a) R λ = 0 . 3 , g = 0 . 3 ; b) R λ = 0 . 3 , g = 0 . 1 ; c) R λ = 0 . 5 , g = 0 . 3 ; d) R λ = 0 . 3 , g = 0 . 7 . τ = 0 . 3 and q = 0 . 05 

in all the panels. 
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and finally, taking averages on both sides of Eq. (C.3) the stochas-

tic integral vanishes because 〈 dW (s ) 〉 = 0 and we obtain the mean

position in one of the dimensions 

μz (t) = μz (0)e −t/τ + λ
[
1 − e −t/τ

]
, (C.4)

where μz (0) = 〈 z(0) 〉 assuming that the initial condition is

stochastic. 

Next, we calculate the variance of the position. To this end, we

start from the definition of the variance, σ 2 
z = μz 2 − μ2 

z and use

Eqs. (C.3) and (C.4) to obtain μz 2 and μ
2 
z respectively, 

σ 2 
z (t) = 

〈 (
z(0)e −t/τ + λ

[
1 − e −t/τ

])2 〉 
+ g 

〈 (∫ t 
0 

dW (s ) e −(t−s ) /τ

)2 〉 

+ 

〈
2 g 
(
z(0)e −t/τ + λ

[
1 − e −t/τ

]) ∫ t 
0 

dW (s ) e −(t−s ) /τ

〉
−
(
μz (0)e −t/τ + λ

[
1 − e −t/τ

])2 
. (C.5)

Because 〈 dW (s ) 〉 = 0 , and calculating all the other mean values,

σ 2 
z (t) = [ μz 2 (0) − μ2 

z (0)]e −2 t/τ + g 

〈 (∫ t 
0 

dW (s ) e −(t−s ) /τ

)2 〉 
(C.6)

To calculate the mean value of the square of the integral in

Eq. (C.6) , we use Ito isometry 〈 (∫ t 
0 

dW (s ) e −(t−s ) /τ

)2 〉 
= 

〈∫ t 
0 

ds e −2(t−s ) /τ

〉
= 

τ

2 

(
1 − e −2 t/τ

)
(C.7)

Finally, because the first term on the right-hand side of

Eq. (C.6) is the variance of the initial condition, and substituting

the second term by the result of Eq. (C.7) , we obtain the variance
n the position for OU motion with random initial condition, 

2 
z (t) = σ 2 

z (0)e −2 t/τ + 

gτ

2 

(
1 − e −2 t/τ

)
, (C.8)

hich is Eq. (7) in the main text. 

ppendix D. Calculation of the mean encounter rate 

We depart from the definition of the mean encounter rate in

q. (4) 

˜  (t) = 

∫ 
E(r, t) f (r, t) dr, (D.1)

hich using the piecewise definition of the encounter kernel in

q. (3) becomes, 

˜  (t) = 

γ

πq 2 

∫ q 
0 

f (r, t) dr. (D.2)

ext, we change the variable in Eq. (D.2) from r to u so we can use

q. (13) for the PDF of the nondimensional square distance u , 

˜  (t) = 

γ

πq 2 

∫ ( q σr ) 
2 

0 

f 
(
u ; ˜ 

)
du, (D.3)

nd finally, using the cumulative distribution function for the non-

entral χ2 -distribution, we arrive to Eq. (14) in the main text 

˜  (t) = 

γ

πq 2 

[
1 − Q 1 

(√ 




σr 
, 
q 

σr 

)]
, (D.4)

here Q M 
( a, b ) is the Marcum-Q-function defined as 

 M (a, b) = exp 

(
−a 2 + b 2 

2 

) ∞ ∑ 

k =1 −M 

(
a 

b 

)k 
I k (ab) , (D.5)

here I k is the Modified Bessel function of the first kind and order

 . 

ppendix E. ˜ E in the small q limit 

The exact expressions for the mean encounter rate, ˜ E , involve
omplicated expressions and special functions, both for OU and
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OU ( t, q = 0 ) = γ f 1 ( x, y ; t ) · f 2 ( x, y ; t ) . (F.10) 
BM movement models. In this Appendix, we derive approximated

xpressions for the mean encounter rate in the stationary state. In

his limit, we can truncate the series expansion of the pairwise dis-

ance PDF at the quadratic order, which simplifies its integration

nd the expressions for the mean encounter rate. 

1. Ornstein-Uhlenbeck models 

We depart from the distribution of pairwise nondimensional

istances in the stationary state, Eq. (13) , 

f 
OU 

(
u ; ˜ 

)

= 

1 

2 
exp 

( 
−
(
u + ̃

 

)

2 

) 
I 0 

(√ ˜ 
u 

)
. (E.1) 

First, we obtain the Taylor series of f OU , up to linear order. No-

ice that because u ∝ r 2 , our approximation is up to quadratic order

n the pairwise distance, 

xp 

(
−u 

2 

)
= 1 − 1 

2 
u + O(u 2 ) , (E.2)

 0 

(√ 

˜ 
u 

)
= 1 + 

˜ 


4 
u + O(u 2 ) (E.3)

Multiplying the expansions in Eq. (E.2) and (E.3) and rearrang-

ng the additional terms in Eq. (E.1) , we obtain the linear approxi-

ation to Eq. (E.1) , 

f 
OU 

(
u ; ˜ 

)

= 

1 

2 
exp 

(
−
˜ 


2 

)[
1 − u 

2 

(
1 −
˜ 


2 

)]
+ O 

(
u 2 
)
. (E.4) 

Next, to calculate the mean encounter rate, we must integrate

he pairwise distance distribution, 

˜ E 
OU 

( t → ∞ , q ) ≈ γ

πq 2 

∫ ( q 
σr 

)2 
0 

f 
OU 

(
u ; ˜ 

)
du 

= 

γ

πq 2 σ 2 
r 

∫ q 
0 

f 
OU 

( r;
) rdr = 

γ exp 

(
− 


2 σ2 
r 

)
16 πσ 6 

r 

[
8 σ 4 

r + q 2 
(

 − 2 σ 2 

r 

)]
. (E.5) 

2. Reflected Brownian Motion 

We depart from Eq. (18) , that gives the stationary RBM pairwise

istance PDF when 0 ≤ r ≤ 2 R , 

f 
RBM ( r, t → ∞ ) = 

4 r 

πR 
2 
ArcCos 

(
r 

2 R 

)
− 2 r 2 

πR 
4 

√ 

R 
2 − r 2 

4 
(E.6) 

n the limit r << R , we can truncate the Taylor series for f RBM 
at

he quadratic order 

f 
RBM ( r, t → ∞ ) = 

2 r 

R 
2 

− 4 r 2 

πR 
3 

+ O 

(
r 4 
)
, (E.7) 

nd integrate it to obtain the mean instantaneous encounter rate 

˜ 
 
RBM ( t → ∞ , q ) ≈ γ

πR 
2 

(
1 − 4 q 

3 πR 

)
. (E.8) 

ppendix F. OU encounter rate versus home range overlap 

In this Appendix, we present the calculation of the overlap be-

ween two home ranges using both the Bhattacharyya coefficient

BC) and the inner product of the individual position PDFs, and

rite the pairwise encounter rate in terms of it. We consider two

U processes with, in general, time-dependent mean, μi ( t ), and

ovariance matrix, �i ( t ), defined by the mean and the variance of

qs. (6) and (7) in the main text, 

j (t) = 

(
μ j,x (t) 
μ j,y (t) 

)
� j (t) = 

(
σ 2 

j 
(t) 0 

0 σ 2 
j 
(t) 

)
(F.1) 
here j = 1 , 2 for the predator and the prey respectively and we

ave already considered that individual movement is isotropic.

herefore, the x − y covariances are zero and the covariance ma-

rices are scalar matrices. 

1. The Bhattacharyya coefficient (BC) 

For two continuous probability distributions f ( x ) and g ( x ), it is

efined as 

C( f, g) = 

∫ √ 

f (x ) g(x ) dx. (F.2) 

For the particular case in which f and g are bivariate Normal

istributions, a closed expression for the BC can be derived ( Abou-

oustafa et al., 2010 ), 

C = 

| �1 | 1 / 4 | �2 | 1 / 4 
| �| 1 / 2 exp 

(
−1 

8 
μT �−1 μ

)
, (F.3) 

here � = ( �1 + �2 ) / 2 and μ = μ1 − μ2 . Inserting the mean and

he covariance matrices given by Eq. (F.1) in Eq. (F.3) , we obtain 

C(t) = 2 
σ1 (t) σ2 (t) 

σ 2 
r (t) 

exp 

(
− 
(t) 

4 σ 2 
r (t) 

)
. (F.4) 

On the other hand, the OU encounter rate is 

˜ 
 
OU ( t, q = 0 ) = 

γ

2 πσ 2 
r ( t ) 

exp 

(
− 
( t ) 

2 σ 2 
r ( t ) 

)
, (F.5) 

here we have taken q = 0 in Eq. (15) to simplify the calculations.

Next, from Eq. (F.4) , we obtain 

xp 

(
− 


2 σ 2 
r 

)
= 

σ 4 
r 

4(σ1 σ2 ) 2 
BC(t) 2 (F.6) 

hat can be inserted in Eq. (F.5) to obtain the OU encounter rate as

 function of the home range overlap, BC, 

˜ 
 
OU ( t, q = 0 ) = 

γ σ 2 
r ( t ) 

8 πσ 2 
1 ( t ) σ

2 
2 ( t ) 

BC ( t ) 
2 (F.7) 

q. (F.7) reveals a quadratic scaling law between encounter rate

nd home-range overlap with the encounter rate at maximum

verlap, BC = 1 , depending on home-range areas through σ 2 
1 

and
2 
2 . 

2. PDFs inner product 

Alternatively, we can quantify the overlap between home ranges

sing the inner product of the individual position PDFs. Given two

unction, f ( x ) and g ( x ), we define the inner product, f · g , as 

f ·g = 

∫ 
f (x ) g(x ) dx. (F.8)

For the particular case in which f and g are the individual posi-

ion PDFs, namely f 1 and f 2 , we have to compute the inner product

f two bivariate Normal distributions with mean and covariance

atrices defined by Eqs. (F.1) . We obtain 

f 1 (x, y ; t) · f 2 (x, y ; t) = 

∫ 
d xd y f 1 (x, y ; t) f 2 (x, y ; t) 

= 

1 

2 πσ 2 
r (t) 

exp 

(
− 
(t) 

2 σ 2 
r (t) 

)
, (F.9) 

nd hence ˜ 
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Fig. G1. OU optimal predator home-range radius ρ∗
1 for different habitat structures, 

represented by the distance between home-range centers, R λ , and prey home-range 

radii, ρ2 . The white dashed line traces the transition from ρ∗
1 = 0 (ambush preda- 

tion) to some exploration ( ρ∗
1 � = 0 ). 
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Appendix G. Effect of predator home range 

In this Appendix, we provide detailed results on the effect that

predator home ranges have on OU stationary encounter rates. To

simplify the calculations, we consider the local-perception limit

( q = 0 ) of Eq. (14) and to simplify the notation we do not write

explicitly the stationary-state condition t → ∞ . With this consid-

erations, the stationary OU mean encounter rate is, 

˜ E 
OU ( q = 0 ) = 

γ

2 πσ 2 
r 

exp 

(
− 


2 σ 2 
r 

)
. (G.1)

where the predator home-range radius enters through the defini-

tion of the rescaling variance, σ 2 
r . 

First, we calculate the optimal predator home-range size, ρ∗
1 
,

that maximizes the encounter rate for a given prey home-range

radius, ρ2 , and distance between home-range centers, R λ. This op-

timal predator home-range size indicates how much space the

predator should explore, depending on the configuration of the

landscape and the movement of the prey, to maximize its preda-

tion rate. Because we are interested in the ρ1 that maximizes the

encounter rate, we need to solve, 

∂ ̃  E 
OU 

∂ρ1 

= 0 , (G.2)

for ρ1 . Performing the derivatives, we obtain 

γ

2 π

(

 − 2 σ 2 

r 

σ 6 
r 

)
exp 

(
− 


2 σ 2 
r 

)
ρ1 

K 2 
= 0 , (G.3)

which has two solutions. The first one, ρ∗
1 

= 0 , accounts for the

existence of a maximum or local minimum of the encounter rate

for ambush predation. The second one is obtained from solving


 − 2 σ 2 
r , which gives, using the definition of the noncentrality pa-

rameter and the rescaling variance in Eqs. (23) and (24) , 

ρ∗
1 = 

√ 

K 2 R 2 
λ

− ρ2 
2 
. (G.4)

Because the home-range radius must be positive, Eq. (G.4) indi-

cates that the encounter rate is maximum for ambushing strate-

gies if R λ < ρ2 / K . This condition is met if the prey frequently

crosses the predator home-range center, which may happen ei-

ther if R λ is small (home ranges are close to each other) or if

ρ is large (the prey shows a high mobility and therefore a large
2 
ome range). If neither of these conditions are met, the mean

ncounter rate is maximum for some predator mobility given by

q. (G.4) ( Figure G.3 ). 

In addition, using the short-perception expansion of the en-

ounter rate, 

˜ 
 
OU ( q ) ≈

γ
[
8 σ 4 

r + q 2 
(

 − 2 σ 2 

r 

)]
16 πσ 6 

r 

exp 

(
− 


2 σ 2 
r 

)
. (G.5)

e can derive scaling relationships between the encounter rate

nd the predator home-range radius when all the other model

arameters are kept constant. For instance, in nomadic predators,

epresented by large home ranges ( ρ1 → ∞ and hence σ 2 
r → ∞ )

he encounter rate is a monotonically decreasing function of the

redator home-range size, decaying as ρ−2 
1 

. This result follows

rom the fact that the exponential term in Eq. (G.5) tends to a con-

tant when σ r → ∞ and the dominant terms in the numerator

nd the denominator of Eq. (G.5) are of fourth and sixth order in

1 respectively. The opposite limit, ρ1 → 0, represents ambushing

trategies by sedentary predators that do not abandon their home-

ange centers. The encounter rate in this limit can be obtained by

etaining up to the linear terms in ρ1 on an additional Taylor ex-

ansion of Eq. (G.5) around ρ1 = 0 . 

ppendix H. Steady-state encounter rates for Reflected 

rownian Motion 

In this appendix, we calculate the stationary mean encounter

ate between a predator-prey pair of RBM individuals that move

ithin the population ranges defined by the set of OU movement

arameters used in the main text to study the steady-state OU

ean encounter rate. To establish a more direct comparison with

U results, we will present RBM results as a function of the under-

ying OU movement parameters that define the population range.

n particular, using Eq. (11) , we obtain the radius of the population

ange, R , as a function of the distance between home-range cen-

ers, R λ, and the radii of the individual OU home ranges, ρ1 and

2 . 

We find that the mean encounter rate first remains constant

or small ρ1 and then decreases as ρ1 increases, while it is a

onotonically decreasing function of q . Because RBM individuals

isit all the regions of the encounter arena with the same fre-

uency and they do not have home range affinity, changing ei-

her ρ1 or R λ only affects R , without influencing the overlap be-

ween individual position PDFs, which is always maximum. There-

ore, larger ρ1 and R λ may lead to larger R , and because encoun-

ers occur in a larger arena, they are less likely (smaller encounter

ate). In fact, considering the definition of the population range,

f ρ1 < ρ2 − R λ, then R = ρ2 and the encounter rate is constant

solid line in Fig. H.4 A). For larger ρ1 , the size of the encounter

rena increases with ρ1 and hence the encounter rate decreases

 Fig. H.4 A). How quickly the mean encounter rate decreases with

1 depends on the branch of Eq. (11) that determines the radius of

he encounter arena. Moreover, Eq. (20) recovers the linear decay

f the encounter rate with q at short perception ranges ( Fig. H.4 B).

his is an important difference between OU and RBM encounters;

hile nonlocal perception ( q > 0) maximizes the OU mean en-

ounter rate when home ranges are small and far from each other

 Fig. 4 B), the RBM mean encounter rate is always maximum for

 = 0 ( Fig. H.4 B; Appendix Appendix I for further details). 

ppendix I. Effect of the perceptual range 

In this Appendix, we extend the calculations for the effect of

onlocal predator perception on encounter rates. We depart from

he steady state limit ( t → ∞ ) of the OU mean encounter rate in
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Fig. H1. RBM mean encounter rate versus ρ1 with q = 0 . 1 (A) and versus q with ρ1 = 1 (B). Symbols correspond to numerical simulations. Changes in the slope of the 

curves in panel (A) are due to jumps in R given by Eq. (11) . 

Fig. I1. A) Phase diagram for the benefits of long-range versus local perception depending on the distance between home-range centers and their relative sizes. In the gray 

region, the OU mean encounter rates is maximum for local perception ( q = 0 ). In the white region, q = 0 is a local minimum of the encounter rate and there exists an 

optimal intermediate perceptual range. The orange rectangle indicates the subregion of the parameter space covered in panel B. B) Ratio between the OU mean encounter 

range and its value for local perception, q = 0 , as a function of the predator perceptual range normalized by home-range radius. As the distance between predator and prey 

home-range centers increases, the optimal perceptual range increases, and it eventually reaches unrealistic values q > ρ1 . 
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he short-perception limit, Eq. (15) in the main text, 

˜ 
 
OU ( q ) ≈

γ
[
8 σ 4 

r + q 2 
(

 − 2 σ 2 

r 

)]
16 πσ 6 

r 

exp 

(
− 


2 σ 2 
r 

)
. (I.1) 

From its second derivative with respect to q , it follows that

he mean encounter rate is maximum for local perception ( q = 0 )

f 
 < 2 σ 2 
r . If 
 > 2 σ 2 

r , however, q = 0 is a local minimum and

ence the encounter rate increases if the perceptual range in-

reases. Using nondimensional quantities, we can write the con-

ition for this switch in the behavior of the encounter rate as

 Fig. I.5 A), 

R λ
ρ2 

> 

√ 

1 + 

(
ρ1 

ρ2 

)2 
. (I.2) 

Interestingly, in the limit q → ∞ , ˜ E 
OU 

∼ q −2 , which means that

he mean encounter rate tends to zero as the perceptual range be-

omes infinitely large. Therefore, when the OU mean encounter

ate, ˜ E 
OU 

, has a local minimum at q = 0 , an intermediate range

f perception q > 0 may maximize the encounter rate. The ex-

stence of such optimal mid-range perception aligns with results

rom our own previous studies in which we investigated the in-

erplay between long-range information gathering and foraging ef-

ciency in different contexts ( Colombo et al., 2019; Fagan et al.,

017; Martínez-García et al., 2013, 2014, 2017 ). Because Eq. (I.1)

ives an approximated OU mean encounter rate that is only ac-

urate in the short-perception limit, we cannot, in general, obtain

n analytical expression for the optimal perceptual range when it

s larger than zero. Instead, we need to evaluate the exact expres-

ion in terms of the Marcum-Q-function, Eq. (14) in the main text,
˜ 
 
OU 

(q ) = 

γ

πq 2 

[
1 − Q 1 

(√ 




σr 
, 
q 

σr 

)]
. (I.3) 

This analysis reveals that, when optimal perception is achieved

or q > 0, the optimal perceptual range scales quickly with R λ and

an lead to an unrealistic regime in which the optimal perceptual

ange exceeds the radius of the predator home range ( Fig. I.5 B). 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2020.110267 . 
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