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Encounter rates link movement strategies to intra- and inter-specific interactions, and therefore translate
individual movement behavior into higher-level ecological processes. Indeed, a large body of interacting
population theory rests on the law of mass action, which can be derived from assumptions of Brownian
motion in an enclosed container with exclusively local perception. These assumptions imply completely
uniform space use, individual home ranges equivalent to the population range, and encounter dependent
on movement paths actually crossing. Mounting empirical evidence, however, suggests that animals use
space non-uniformly, occupy home ranges substantially smaller than the population range, and are of-
ten capable of nonlocal perception. Here, we explore how these empirically supported behaviors change
pairwise encounter rates. Specifically, we derive novel analytical expressions for encounter rates under
Ornstein-Uhlenbeck motion, which features non-uniform space use and allows individual home ranges
to differ from the population range. We compare OU-based encounter predictions to those of Reflected
Brownian Motion, from which the law of mass action can be derived. For both models, we further explore
how the interplay between the scale of perception and home-range size affects encounter rates. We find
that neglecting realistic movement and perceptual behaviors can lead to systematic, non-negligible biases
in encounter-rate predictions.

© 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

movement to higher-level dynamics is to understand how move-
ment behaviors translate into encounter rates among potentially

A key goal of movement ecology is to use knowledge of
movement behaviors to understand large-scale ecological processes
(Nathan et al., 2008; Mueller and Fagan, 2008; Hawkes, 2009;
Morales et al.,, 2010; Borchering et al., 2017; Atkins et al., 2019).
This ‘upscaling’ from individual movement to population- and
community-level consequences, including competition, predation,
mate finding, and disease transmission, will be mediated by pair-
wise interactions. A key step in the transition from individual
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interacting individuals. Indeed, encounter rates can be seen as
a key contact point in movement ecology, as they directly gov-
ern how different movement strategies affect intra- and interspe-
cific interactions (Barraquand and Murrell, 2013; Hein and Martin,
2020; Holling, 1959; Merrill et al., 2010; Turchin, 2003).
Analytical results on encounter rates are typically derived from
two extremes of a continuum of movement processes with in-
termediate models being explored through numerical simulations
(BldBle and Tyson, 2016). On the one end is simple ballistic mo-
tion, which describes straight-line movement of individuals in ran-
dom directions (Mosimann, 1958; Gerritsen and Strickler, 1977;
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Hutchinson and Waser, 2007). On the other extreme is Brown-
ian motion (BM), which describes infinitely tortuous trajectories
(Visser and Kiegrboe, 2006; Visser, 2008). Both types of move-
ment, when confined to an enclosed container with reflecting
boundaries, and when coupled with purely local perception, lead
to the frequently invoked law of mass action. Mass-action en-
counter has been the cornerstone of interacting population mod-
els going back to the Verhulst equation for intraspecific compe-
tition (Verhulst, 1838), the Lotka-Volterra predator-prey equations
(Lotka, 1926; Volterra, 1926), and the Kermack-McKendrick SIR dis-
ease transmission model (Kermack and McKendrick, 1927). More
recently, mass-action encounters have been also applied to investi-
gate sexual reproduction in single species models (Calabrese et al.,
2008; Snyder et al., 2017). Therefore, a huge swath of ecological
theory now rests on the mass action assumption (Hutchinson and
Waser, 2007; O'Dwyer, 2020).

For much of the history of ecology, elemental movement pro-
cesses such as ballistic and Brownian motion have been used to
understand the consequences of animal movement. Key reasons
for the ubiquity of these models include their analytical tractabil-
ity, and the long-standing dearth of empirical data with which to
better characterize real movement processes. Recent advances in
animal tracking technology (Cagnacci et al., 2010; Coyne and God-
ley, 2005; Kays et al., 2015), movement modeling (Patterson et al.,
2008; Gurarie and Ovaskainen, 2011; Fleming et al., 2014a; 2014b;
Pyke, 2015), and statistical analyses (Kie et al., 2010; Fleming et al.,
2015; Hooten et al., 2017; Winner et al., 2018) have removed both
of these bottlenecks, and we are now in position to critically re-
assess the core assumptions undergirding classical encounter the-
ory. Two immediately apparent areas where existing encounter
models fall short of empirical reality are in adequately accounting
for range residency and nonlocal perception.

In the former case, ecologists have long known that most ani-
mals move within well-defined home ranges, and a large and di-
verse literature has developed around how to best estimate home
ranges from tracking data (Odum and Kuenzler, 1955; Jennrich
and Turner, 1969; Dixon and Chapman, 1980; Worton, 1987; 1989;
Powell, 2000; Fleming et al., 2015). Mounting empirical evidence
suggests that animals tend to use their home ranges unevenly and
that individual home ranges typically cover only a fraction of the
population range (Burt, 1943; Bowen, 1982; Harris et al., 1990;
Fieberg and Kochanny, 2005; Kie et al., 2010; Moorcroft and Lewis,
2013; Benson and Patterson, 2015; Winner et al., 2018). In stark
contrast, simple bounded movement processes that lead to mass
action, like Reflected Brownian Motion (RBM; Harrison et al., 1985;
Dieker, 2011), result in uniform space use and individual “home
ranges” that are equivalent to the population range. To the best
of our knowledge, only one study has previously studied the ef-
fect of partial home range overlap on encounter rates, but it as-
sumed a one-dimensional landscape and uniform space use within
individual home ranges (Giuggioli et al., 2013). Similarly, increasing
evidence now suggests an important and widespread role for non-
local perception in shaping the movement and foraging strategies
of many animals (Zollner and Lima, 1997; Zollner, 2000; Mech and
Zollner, 2002; Prevedello et al., 2010; Fletcher et al., 2013; Schu-
macher et al., 2017; Aben et al., 2018; Rios-Uzeda et al., 2019),
whereas mass-action encounter assumes purely local perception.
Even though a finite scale of perception has been considered a
tunable parameter in previous studies, its effect on encounter pro-
cesses have been analyzed mostly through numerical simulations
(Bartumeus et al., 2002; Martinez-Garcia et al., 2013; 2014; 2017;
Fagan et al., 2017), with only very few analytical results existing for
one-dimensional dynamics (Bartumeus et al., 2014) or very partic-
ular spatial distributions of targets (Gurarie and Ovaskainen, 2013).

The Ornstein-Uhlenbeck process (OU; Uhlenbeck and Orn-
stein, 1930), which is related to RBM, is the simplest stochastic

movement model that captures non-even space use within a home
range, and allows individual home ranges to differ from the popu-
lation range. To the best of our knowledge, however, no encounter
theory exists for this model. Importantly, the OU process is increas-
ingly used in empirical tracking studies, and has well developed
statistical estimators (Hines et al., 2005; Fieberg, 2007; Fleming
et al., 2014b; 2017). It can also serve as the basis for more compli-
cated estimation procedures, including composite movement mod-
els (Blackwell, 1997; Breed et al., 2017), and autocorrelated kernel
density estimation (AKDE) (Fleming et al., 2015; Fleming and Cal-
abrese, 2017). Indeed, in a recent comparative study of home range
estimators, the OU process was selected as the AIC-best model on
which to base AKDE home range estimates for 128 of 369 datasets
(Noonan et al., 2019).

Here, we compare the OU and RBM models to explore how in-
dividually restricted movement and uneven space use within home
ranges affect encounter processes. For both models, we account for
nonlocal perceptual ranges and study how a tunable scale for indi-
vidual perception interacts with the spatial extent of home ranges
to determine encounter frequency. We derive novel, exact expres-
sions for the mean instantaneous encounter rate of OU and RBM
processes to quantify how empirically supported departures from
classical encounter assumptions change encounter rates, and sup-
plement these with numerical results where necessary. We out-
line the conditions under which RBM-and by extension, the law
of mass action-fails to provide a reasonable approximation to the
more realistic OU process, and discuss the potential consequences
of this incongruity for interacting population models that invoke
mass action encounter.

2. Methods
2.1. Encounter metrics

For simplicity, we will limit our analysis to the encounter be-
tween a pair of individuals in which one of them acts as a searcher
and the other as a mobile target. This scenario mimics, for in-
stance, a simple prey-predator or infected-susceptible encounter.
Because we do not consider cross-correlations between the trajec-
tories of the individuals, long-range chasing or avoidance mecha-
nisms are neglected. We will introduce and discuss our results in
terms of a predator-prey interaction, but generalizations to broader
encounter scenarios in which two individuals show home-ranging
behavior and long-range perception are straightforward. In disease
transmission scenarios, for example, the infected and the suscep-
tible individual play the role of the predator and the prey respec-
tively, and the perceptual range translates into a disease transmis-
sion range. Throughout the manuscript, we will use a notation in
which the subscript 1 refers to the predator and 2 to the prey.

In this context, the probability that an encounter, E, occurs dur-
ing some small time interval dt is,

Pr(E in {t, t +dt}) = £(r(t))dt (1)

where £(r(t)) is the instantaneous encounter rate, which defines,
for a given distance between the pair of individuals, the prob-
ability per unit of time of an encounter occurring. Following
Holling (1959), we decompose the instantaneous encounter rate
in the two main components of predation: the instantaneous en-
counter risk, which defines the potential for an encounter to take
place, and the conditional risk of encounter given that potential,
which in our context can be thought as a proxy for predator at-
tacking efficiency (see also Gurarie and Ovaskainen, 2013; Hebble-
white et al., 2005). In their most general form, both the instanta-
neous encounter risk and the conditional risk of encounter depend
on the distance between individuals, r(t), and the predator percep-
tual range, g, which results in an instantaneous encounter rate of
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the form

E(r(t)) = yq(r(t)) Pq(r(t)). (2)

where ®g(r(t)) is the probability density function for the instan-
taneous encounter risk, also called encounter kernel (Gurarie and
Ovaskainen, 2013), and y4(r(t)) is the conditional risk of encoun-
tering, or predator attacking efficiency, also termed encounter pa-
rameter in the literature (Gurarie and Ovaskainen, 2013). Because
Dg4(r(t)) is a probability density function, it has to meet a normal-
ization condition such that [ ®4(r)dr =1.

To keep the calculations analytically tractable, we consider a
constant encounter parameter, y4(r(t)) = y, and a top-hat en-
counter kernel entirely defined by the predator perceptual range

0 ifr(t) > q
Dy(r(t)) = {ﬂlqz ifr(t) < g (3)

The top-hat encounter kernel assumes that predator’s attention
is uniformly distributed over the coverage area of the perceptual
range. In the limit ¢ — 0, it becomes a Dirac delta function, which
means that the risk of encounter occurrence is concentrated at
the position of the predator and zero everywhere else. For longer
perceptual ranges, the risk of encounter occurrence decreases at
a zero prey-predator distance because it is higher further away
from the predator. However, because OU movement models de-
scribe continuous trajectories, for the prey to get to the same loca-
tion as the predator, it must first pass through the predator’s per-
ceptual range and a long-range perceptive predator has many more
opportunities to notice and encounter an incoming prey individual
than would a predator with g = 0. Moreover, by assuming top-hat
encounter kernels and constant encounter parameters, we neglect
the effect of processes acting at scales shorter than the percep-
tual range that may influence the encounter probability, such as
increased attack efficiency or greater encounter risk close to the
predator. Accounting for these effects is beyond the scope of our
study, but it constitutes an important direction of future work. Pre-
liminary results using smoother encounter kernels are provided in
Appendix A.

Finally, because the movement models used to describe the
trajectories of both individuals are stochastic, both the distance
between individuals and the instantaneous encounter rate are
stochastic processes. We introduce the mean encounter rate, de-
fined as the instantaneous encounter rate averaged over realiza-
tions of the movement processes,

£t = / E(r(D) F(r(t))dr, (4)

where f(r(t)) is the probability density function (PDF) of the time-
dependent distance between individuals, 1(t), and £(r(t)) is the in-
stantaneous encounter rate as defined in Eq. (1). Notice that, since
we perform the average over space, the mean encounter rate is still
an instantaneous measure of the encounter rate.

2.2. Movement models

To investigate the influence of home ranging on encounter pro-
cesses, we compare OU-based encounter statistics with those de-
rived from RBM. OU allows individual home ranges to differ from
the population range and also permits a non-uniform use of the
space within each home range. RBM, in contrast, leads to indi-
vidual home ranges that are equal to the range of the popula-
tion and to individuals exploring the entire population range uni-
formly. As an additional point of contrast, we supplement our anal-
ysis with encounter statistics derived for Brownian motion (BM),
which allows us to investigate the long-term impact that unre-
stricted movement has on encounter rates (details of the BM cal-
culations are provided in Appendix B).

2.2.1. Ornstein-Uhlenbeck
In two dimensions, the OU movement model is described by a
pair of independent stochastic differential equations,

25(0) = 2 [25(0) ~ A5 + VEES (). (5)

where the subscript 8 indicates each of the two coordinates in
the 2D space and hence B e {x, y}, z is the location of the indi-
vidual and the dot indicates a time derivative, (Ax, Ay) gives the
home-range center (Okubo and Levin, 2001), and (&4, &y) is a zero-
mean and unit-variance Gaussian white noise process with units of
time~1/2. Note that the OU model neglects correlations in the ve-
locity and hence the model equations only describe changes in in-
dividual location. For simplicity, we impose isotropy on the move-
ment, so T and g are scalar quantities. =1 accounts for the average
home-range crossing rate, has units of time~!, and quantifies the
rate at which individuals return to the center of their home ranges
after a stochastically initiated excursion that takes them away from
it. Therefore, 7 is a proxy for home-range affinity that goes from
=1 - 0 for nomadic species to 7=! — oo for sedentary species
that do not abandon the home-range center. Finally, g sets the size
of the home range by modulating the intensity of the stochastic
component of the movement and has units of area/time.

Because the only stochastic terms in Eq. (5), &, are Gaussian
processes, the OU model is also a Gaussian process, and is there-
fore completely defined by the mean of each coordinate, g, and
the variance o2 (see Appendix C for detailed calculations),

/ng(t) = /Lﬁ(O)eft/T +)L/3(1 - e’t/’), (6)

o2(0) = 2O X+ £ (1 - e ), (7)

where we have considered that the initial condition is likely
to be stochastic and have thus maintained wg(0) and 02(0) in
Egs. (6) and (7), respectively. For deterministic initial conditions,
02(0) =0 and u(0) is the initial position of the individual. Notice
that, because we assume isotropy in the movement, the variance
o2(t) is the same for each component of the position and we do
not include the subscript 8 in Eq. (7). In the long-time limit, OU
positions converge to a bivariate Normal distribution with mean
(Ax, Ay) and variance gt/2 regardless of the initial conditions. The
normality of the positions reflects non-homogeneous individual
space use, while the finite variance leads to home ranges that can
be smaller than the range of the population.

Individual home range and population range: definitions. We de-
fine the home-range area as the smallest region of the space in
which the probability of finding an OU individual is equal to an
arbitrarily chosen quantile, h. Due to movement isotropy, individ-
ual home-ranges that result from this definition are circles with a
radius that can be obtained by integrating the individual position
PDF,

1 P2 /202
2717/0/0 rdrdfe _h, (8)

and therefore

o= [202In (1%,1) - JaTK, 9)

where K =.,/—In(1 —h). For all the results presented here, we
fix h =0.95, which is the conventional value used in the home
range literature. Our results, however, are not qualitatively sensi-
tive to changes in h. Importantly, even though the movement is re-
stricted to an area, the individual position PDF has infinite support
and therefore OU allows for occasional excursions in which ani-
mals leave their home range (Fig. 1A, B), which is consistent with
the widely-cited conceptual definition of home range introduced



Fig. 1. Sample trajectories for OU (A, B) and RBM (C, D). For the OU panels, the gray
dashed and blue dashed-point circles delimit individual home ranges. The colored
circles mark the home-range centers and the black dashed circle limits the popula-
tion range, obtained from Eq. (10). Movement parameters are identical for both OU
panels (A and B) other than the spatial distribution of the home ranges through R;.
In the RBM panels, the encounter arena is limited by the solid circle, representing
the reflecting boundary conditions.
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Fig. 2. Contour plot of the population range as a function of the distance between
home-range centers, R, and predator home-range radius, p;. The prey home-range
radius is kept constant, p, = 1. The white dashed lines mark the transitions in the
branch of Eq. (11) that defines the radius of the population range, R. The horizontal
black lines mark the values of R, used in Fig. 4.

in Burt, 1943. In contrast, when individuals are constrained within
reflecting boundaries, such excursions are not possible (Fig. 1C, D).

Based on this definition of home range, we define the popu-
lation range as the circular region whose radius, R, is equal to
the radius of the smallest circular area that contains the stationary
home range of both the OU prey and the OU predator (Fig. 1A, B).
Depending on the distance between home-range centers, R;, and
the movement parameters defining each individual home-range ra-
dius, p1 and p, (Eq. 9), the population-range radius is,

+p02+R
R= max(,o], 02, W) (10)
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and it thus differs from individual home ranges except for the very
particular case in which p; = p, and R; = 0. With some algebra,
we can obtain the conditions for which the population range is
defined either by the prey home range (Region I), by the preda-
tor home range (Region III), or by a combination of both and the
distance between home-range centers (Region II) (Fig. 2 and Fig.

13),

Region (I)
Region (II) (11)
Region (III)

02 if p1<p2—R,
R = %Z‘FR‘A if P2 — R, < p1 < p2+R,
p1 if p1>p2+R;

2.2.2. Reflected Brownian Motion

RBM individuals move according to a pure BM enclosed within
a finite container with reflecting boundaries that defines the popu-
lation range. Because RBM does not account for home range affin-
ity, the prey and the predator explore the whole population range
in which they move and both individual home ranges are equal to
each other and to the population range. In contrast to OU models,
due to the reflecting boundary conditions, the PDF for individual
RBM positions is not Normal in the long-term. In general, it is a
function of the geometry of the population range (Harrison et al.,
1985), but for the circular population ranges considered here, the
stationary PDF for RBM positions is a uniform distribution defined
inside the population range

1

TR?
0 otherwise

1 2 2
Fo (%, 9, E = 00) = if x4yt =R (12)

Therefore, RBM individuals use space uniformly for circular and
other sufficiently smooth boundary geometries, while more com-
plicated home range geometries might lead to nonuniform space
use. In these cases, however, the shape of the PDF for the individ-
ual location is determined by the shape of the reflecting borders
rather than by intrinsic properties of individual movement or the
landscape of resources in which individuals move (Harrison et al.,
1985).

3. Results
3.1. Pairwise distance distributions and mean encounter rate

3.1.1. Ornstein-Uhlenbeck

Because the position of each individual, z, is normally dis-
tributed, the difference between them, Az = (Ax, Ay), follows a
Normal distribution with mean equal to the difference between
the mean positions of the two individuals, and variance equal
to the sum of the variances in the positions of the individu-
als. In addition, due to movement isotropy, each component of
Az has the same variance, o2 + 07, and we can define a nondi-
mensional squared-distance u(t) =r?(t)/o?, where 02 =02 + 02
and r2(t) = Ax2(t) + Ay?(t). This new variable u is a noncentral
chi-squared variable with nondimensional noncentrality parame-
ter A=A/jo? = (W%, +14,)/0f, where jip, and jip, are the
mean differences in the position of the individuals in the x and
y coordinate respectively. They are calculated as @y = tx1 — Mx2
and way = py1 — [y Tespectively. Because the nondimensional
squared-distance, u, is a noncentral chi-squared variable, its PDF
is

~ —(u+A =
fOU(u(t),A(t))zéexp W Io<\/E>, (13)

where we have suppressed the time dependence in u and A on the
right side of the equation for simplicity in the notation. Iy is the
modified Bessel function of the first kind and order 0. The shape of
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f(u; A) for different numerical values of both A and o/ is shown
in Fig. J.1.

Inserting Eq. (13) in the definition of the mean encounter rate
and solving the integral in Eq. (4) (see Appendix D for detailed
calculations), we obtain the mean encounter rate

% [l_Ql(ﬁ\(t) q )} (14)

ba(t-0) = Tq? or(t) " or(t)

where Q; is the Marcum-Q-function (Bocus et al.,, 2013). Impor-
tantly, because we have not made any assumption about the par-
ticular form of A and o, Eq. (14) is a general expression that
gives the mean encounter rate for any isotropic movement model
in which the position of the individuals have Gaussian PDF with
covariances equal to zero. Although Eq. (14) provides an exact
expression for the mean OU encounter rate, its dependence on
the Marcum-Q-function makes it difficult to develop a quantita-
tive understanding of how encounter rates are determined by the
movement and perception parameters. To eliminate the Marcum-
Q-function from the encounter rate, we study Eq. (14) in the short
perception limit (q « R). Following the calculations provided in
Appendix E.1, we obtain

r[8ofO+@ (A0 ~202O)] [ A©)
16705 (t) S 202(t) )

Eut.q)~

(15)

Finally, in the local-perception limit (¢ =0), the mean en-
counter rate can be written in terms of the overlap between
each individual’s home range, measured either through the Bhat-
tacharyya coefficient (BC; Fieberg and Kochanny, 2005; Winner
et al.,, 2018) or through the inner product of both individual-
position PDFs in the function space, f; - f,. The functions f; and f,
are, respectively, the PDFs for the position of the predator and the

prey, and the inner product, denoted by the symbol -, is defined
as the spatial integral of the product of both PDFs.
In terms of the BC, the OU mean encounter rate is,
2
al Y oy (t) 2
Ey(t;q=0)= ——="—5—BC"(t), 16
w(6:0=0) = g 3 B (16)

where the BC is a function of the movement parameters of the
prey and the predator. Therefore, after a transient period in which
the home range overlap and hence the BC changes with time, the
BC reaches a stationary, constant value. In terms of the inner prod-
uct of the individual-position PDFs we get

Eu(t:q=0)=y fi-fo. (17)

3.1.2. Reflected Brownian Motion

For RBM, individuals perform BM within a reflecting population
range of radius R. Therefore, to obtain the position PDF for each
individual at any time, we need to solve the diffusion equation on
a disk of radius R with reflecting boundary conditions, which is
mathematically more challenging than the OU case. At short times,
however, the effect of the reflecting boundaries is negligible and
RBM converges to BM. Therefore, the pairwise distance distribution
is given by Eq. (13) with noncentrality parameter equal to the dis-
tance between the initial position of each individual and rescaling
variance o2 = (g, + &)t (see Appendix B). In the stationary limit,
because the use of space is uniform and population ranges are cir-
cular, the pairwise distance PDF is equal to the PDF for the distance
between two random points within a disk of radius R (Garcia-
Pelayo, 2005),

4r r 2r? r2
A Ty [p2_ T
fRBM (nt—o0) =3 7Rr2 AFCCOS(ZR) TRA R 4 if r<2R, (18)

0 otherwise,

which is shown in Fig. J.2 for various values of R. Inserting the PDF
from Eq. (18) in the definition of the mean encounter rate, Eq. (4),
we obtain the stationary RBM mean encounter rate, Egpm,

atBM (t — 00, q) =
= L[SR(RZArcCs%Z—R) + 2ArcSec(2£>>_
472@2R3 q q q (19)

qZ
—.¢* /4 7z +2qR/4AR2 — ¢2 |.

Finally, we can also obtain the approximate encounter rate in
the short-perception limit (see E.2 for detailed calculations),

Y 4q
TR2 (1 37172)' (20)

In summary, OU encounter rates depend on four spatial scales,
to which we can give different ecological meanings. First, the
predator perceptual range, q, contains all the information about
the encounter process itself, assuming that the encounter kernel is
fixed. Second, the distance between home-range centers, R, pro-
vides information about the spatial distribution of home ranges.
Finally, each of the home-range radii, p; and p,, contains infor-
mation about individual movement process and habitat use. RBM
encounter rates, in contrast, only depend on two spatial scales: the
predator perceptual range, q and the population range, R. This is
a very important difference between OU and RBM encounters: in
RBM, the long-term encounter rate is completely determined by
the population range (if the perceptual range is constant), but in
OU the long-term encounter rate depends on the combination of
values for pq, p, and R, that leads to that particular population
range.

g (t = 00,q) ~

3.2. Short-term encounter rates

3.2.1. Ornstein-Uhlenbeck

In this section, we investigate the transient behavior of the en-
counter rate, that is, before the OU moments reach their station-
ary values. We consider a pair of individuals that follow identi-
cal OU models (g; =g =g and 177 = 7, = 7) departing from their
individual-specific home-range centers. Mathematically, this initial
condition is given by p£(0) = (Ax, Ay) and o2(0) = 0. Therefore, R;,
is both the mean and the initial distance between individuals. In-
serting these initial conditions in Eqs. (6) and (7), the mean po-
sition of each individual is constant and fixed at its home-range
center whereas the variance increases monotonically from zero un-
til it reaches its steady value. The noncentrality parameter and the
rescaling variance are,

A=R? (21)

of (t) =gr(1—e2/7). (22)

Inserting Eq. (21) and (22) into Eq. (14), we obtain a closed ex-
pression for the mean encounter rate that only depends on preda-
tor perceptual range, g, and the various movement parameters. Be-
cause we start with deterministic initial conditions, the initial en-
counter rate is zero unless both individuals have the same home-
range center. As time elapses, however, the position of each in-
dividual becomes uncertain due to movement stochasticity, and
the probability that individual trajectories cross with each other
increases. Consequently, the mean encounter rate increases too.
The mean encounter rate grows monotonically until it stops at a
constant, stationary value if the overlap between home ranges is
low (R, large, g small). The mean encounter rate shows, however,
a maximum at an intermediate time during the transient regime
when individual home ranges get closer (R, decreases) or larger
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Fig. 3. Transient dynamics in the mean encounter rate for OU (analytical solution, solid lines), BM (analytical solution, dashed lines), and RBM (numerical averages over
5 x 107 realizations with identical initial conditions, dotted lines). In each panel, curves with the same color are obtained starting from the same initial conditions and
using the same movement parameters. In panel A, the intensity of the stochasticity in individual movement is kept constant, g = 0.3, and blue and black curves differ in
the distance between home-range centers, R, ; in panel B, contrarily, the position of the individual home ranges is constant, R; = 0.3, and movement stochasticity, g, varies.
Other parameters remain constant and take the same value in both panels, T = 0.3 (for OU models) and g = 0.05.

(g increases) because in those situations the maximum overlap
between home ranges is reached at intermediate times (Fig. 3).
Moreover, if the distance between home-range centers is kept
constant, the intensity of the stochastic movement component, g,
controls a tradeoff between short-term and long-term mean en-
counter rate. More stochastic movements favor early encounters
because individuals spread faster from their initial positions and
are more likely to encounter each other quickly. However, in the
long term, because home ranges are larger, the encounter proba-
bility is smaller (Fig. 3B).

3.2.2. Reflected Brownian Motion

Next, we compare OU mean encounter rates with those ob-
tained for a pair of RBM individuals that move within the pop-
ulation range, R, defined by the OU movement parameters with
which we want to make the comparison. Therefore, we calculate
the population range of each pair of OU individuals considered in
the previous section and use that value to constrain the move-
ment of a pair of RBM individuals. Because an analytical expression
for the time-dependent pairwise distance PDF is not accessible for
RBM, we perform numerical simulations of the encounter process.
We find that while some aspects of the qualitative behavior are
similar to OU, others differ in important ways. For fixed move-
ment parameters, when the population range is large and individu-
als start far from each other, the encounter rate is a monotonically
increasing function of time. Conversely, if the population range is
small and individuals start close to each other, the maximum over-
lap between trajectories, and hence the maximum encounter rate,
is reached at an intermediate time (Fig. 3A). However, the transi-
tion from monotonically increasing encounter rates to first increas-
ing and then decreasing encounter rates does not necessarily occur
at the same R, for OU and RBM models. For a fixed initial dis-
tance Ry, the stochasticity in the movement also controls a trade-
off between short-term and long-term encounter rate qualitatively
similar to the one featured by OU encounters (Fig. 3B). Finally,
for completeness, we also study the pure BM case, in which indi-
vidual movement is not constrained by the population range (see
Appendix B for details). In the short-time limit RBM and BM pro-
vide identical results because the effect of the boundary conditions
on RBM is negligible and the movement statistics in both cases are,
consequently, the same. As border reflections become more impor-
tant in RBM, however, BM and RBM encounter rates diverge from

each other: &, stabilizes to its stationary value whereas &, de-
cays to zero.

3.3. Steady state encounter rates

Next, we evaluate the encounter rate in the stationary limit,
when the moments of the movement models have reached a con-
stant value. We first analyze the dependence of OU encounter rates
on predator home-range size and perceptual range and then in-
vestigate whether the main features of range residency, nonuni-
form use of space and restricted use of the population range, lead
to qualitative differences between OU and RBM-based encounter
rates.

3.3.1. Ornstein-Uhlenbeck encounter rate

In this stationary regime (t — oo), the rescaling variance
and the noncentrality parameter of the nondimensional squared-
distance PDF are constant

A=R2, (23)
2 _PItP)
) C

where we have used the definition of the home-range radius, p =

J8TK, so the pairwise distance PDF depends explicitly on all the

spatial scales that, together with the perceptual range, determine

the encounter rate.

For a first analysis of the encounter statistics, we keep the
home-range radius of the prey constant, p, = 1, and study the be-
havior of the encounter rate for different distances between home-
range centers, R,, perceptual ranges, g, and predator home-range
radii, p;. The distance between home-range centers, R, quantifies
the habitat configuration; the perceptual range, ¢, contains all the
information about the encounter process for a given shape of the
encounter kernel; and p; informs us about predator space use. In
addition, because p, =1, p; gives the size of the predator home
range relative to the prey’s. Finally, each set of values for pq, po,
and R, define a population range, R, according to Eq. (10) (Fig. 2).
Varying either R, or p; changes the home range overlap and hence
the encounter rate. Increasing R, with constant predator home-
range radius, p1, and perceptual range, g, decreases the overlap be-
tween home ranges and, as a result, decreases the encounter rate
(Fig. 4A, B).

The predator home-range radius has different effects on home-
range overlap depending on the value of R;. If home-range cen-
ters are far from each other (large R, ), as predator home range in-
creases with respect to prey home range (increasing 1) the over-
lap between home ranges and thus the encounter rate increases.

(24)
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Fig. 4. OU mean encounter rate versus p; with g = 0.1 (A), and versus q with p; =1 (B). Symbols correspond to numerical simulations and p, =1 in both panels.

However, if the predator home range continues to grow and be-
comes much larger than the prey’s (0 > 1), encounters start be-
coming rarer and encounter rates decrease (Fig. 4A except solid
line). When the distance between home-range centers is short
(small Ry), larger predator home ranges immediately make en-
counters rarer and thus the mean encounter rate is a monotoni-
cally decreasing function of p; (solid line in Fig. 4A). We there-
fore observe a transition in the predator home-range size that
maximizes the encounter rate, that is, on the amount of terri-
tory that it should explore to maximize its predation success. If
predator and prey home ranges are close to each other or the
prey home range is sufficiently large, then the optimal preda-
tor home range is p; = 0, which represents an ambush predation
strategy. On the contrary, if the prey’s home range is small or lo-
cated far away from the home-range center of the predator, then
the encounter rate is maximum for some predator mobility (see
Appendix G for detailed calculations). This richness of behaviors
in the encounter rate is due to the home ranging features intro-
duced by OU movement. Using Eq. (10), any pair of values (p1,
R, ), together with the constant p, = 1, define a population range
R that contains the home ranges of both individuals (see Fig. 2).
If we neglect the effect of range residency and calculate the en-
counter rate between a pair of RBM individuals moving within
that same population range, we find that the RBM encounter
rate is a decreasing function of R, and p; (see Appendix H for
more details). This occurs because larger values of R, and p,
result in larger population ranges (see transects in Fig. 2), and
the RBM encounter rate is a monotonically decreasing function of
R.

If p; remains constant and the perceptual range q varies, the
OU encounter rates behave qualitatively similar to the fixed g and
variable p; case (Fig. 4B). However, in the limit ¢ — oo, the pair-
wise CDF reaches 1 and all the encounter rates decay as ~ 1/(rq?)
regardless of the distance between home-range centers and re-
gardless of the movement model. Therefore, for short perceptual
ranges, the OU encounter rate may be either a decreasing or an in-
creasing function of g. In the former case, local perception (g = 0)
leads to a maximum of the encounter rate. In the latter, g =0 is a
local minimum and the encounter rate might be maximal for in-
termediate perceptual ranges (See Appendix I for details). Finally,
because p1, p3, and R, are kept constant for each curve in Fig. 4B,
the population range remains constant as well. Hence, if we ne-
glect the effect of range residency and enclose a pair of RBM in-
dividuals within the population range defined by the set of val-
ues for (p1, p2, Ry) used in each curve, the encounter rate loses
its complex dependence on the perceptual range and it becomes a
monotonically decreasing function of q (see Appendix H for more
details).

3.3.2. OU-vs-RBM: the role of nonuniform space use

To isolate the effect of nonuniform space use on encounter rates
from other factors, such as individual home ranges being smaller
than the population home range, we first consider the case in
which the home range of both the prey and predator are equal
to each other and to the population range, R. This only occurs
if the prey and predator individual position PDFs are identical to
each other (i.e., they have the same mean and variance), which
leads to A =0 and o? = p?/K?. Notice that we have omitted the
individual subscript in the notation of the home-range radii and
used p = p; = p,. Substituting these values for the noncentrality
parameter and the rescaling variance in Eq. (15), we obtain, in the

short-perception limit,
KZqZ
4R2 )’

where we have already used that p = R. Therefore, if both individ-
uals occupy the whole population range but space use is nonuni-
form, the encounter rate decreases with the square of the per-
ceptual range (Fig. 5A). This behavior is different than the linear
decay of Eq. (20) for RBM encounters, in which space use is uni-
form. Therefore, even though individual home ranges are identical
to each other and to the population range for the OU and the RBM
setups considered in this section, the nonuniform use of space fea-
tured by OU movement leads to a faster decay of the encounter
rate as perceptual range increases. Moreover, because OU individ-
uals have affinity to their home-range centers and both prey and
predator home-range centers are located at the same position, the
OU encounter rate is always larger than the RBM encounter rate
(Fig. 5A).

Regarding the decay of the encounter rate with the popula-
tion range (Fig. 5B), we first observe that OU and RBM take the
same values for small population ranges, because the home ranges
are small and the effect of home range affinity in the encounter
rate is negligible. As the population range becomes larger, however,
the RBM encounter rate decays faster than the OU encounter rate.
The lack of home-range affinity in the RBM case allows individu-
als to explore the borders of the population range more frequently
and thus to be farther from each other. For very large population
ranges, encounter rates from the two models tend to converge to-
gether because the intensity of OU home-range affinity is weaker.
However, they never take the same value, because both OU and
RBM decay asymptotically as R~2 when R > q (inset in Fig. 5B).

- K2
& (t = co.q)~ 213/1722(1 (25)

3.3.3. OU-vs-RBM: the role of restricted use of the population range
The second feature of the OU movement model, as opposed to
RBM, is that it allows individual home ranges to differ from the
population range. This limits the area in which encounter may oc-
cur (i.e., from the entire population range to the overlap between
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the more restricted home ranges), which may introduce important
qualitative differences between RBM and OU encounter statistics.
In this section, we evaluate the ratio between the OU and the RBM
mean encounter rate, n = EOU /ENRBM, over a range of conditions that
include changing the distribution and sizes of home ranges within
a population range at constant perceptual range, Fig. 6, and varying
perceptual ranges on a constant spatial distribution of home ranges
and home-range sizes, Fig. 7. This analysis will therefore quan-
tify the accuracy of approximating more realistic OU movement
with RBM. More specifically, if SNOU /§RBM > 1, then RBM underes-
timates the effect of home ranging behavior on encounter rates;
if gou /ERBM < 1, RBM overestimates the effect of home ranging be-
havior; finally, RBM is an accurate approximation to home ranging
behavior if 50U /5RBM ~ 1.

First, we keep the prey home-range radius, p,, and the percep-
tual range, g, constant and allow the predator home-range radius,
p1, and the distance between home ranges, R;, to change. As both
p1 and R, change, the population range R also changes according
to Eq. (10) (see Fig. 2). The way the population range changes with
the distance between home ranges and the predator home range
defines three regions in the (R, p;) parameter space, delimited
by the white-dashed lines in Fig. 6A. In region (I), the population
range is equal to the prey home range; in region (II), the popula-
tion range is a linear combination of both home-range radii and

the distance between their centers; in region (IIl), the population
range is equal to the predator home-range radius (see Fig. .3 for
schematic examples of how home ranges arrange within the pop-
ulation range in each case). To understand how restricted use of
the population range impacts encounter rates, we need to move in
each of these regions in a way that the population range remains
constant despite changes in R, and/or pj.

In region (I), the population range, R, is equal to the prey
home-range radius and thus remains constant in the entire region
regardless of the value of R, and p;. Because the RBM mean en-
counter rate only depends on R, it is also constant in the entire
region. The OU mean encounter rate, however, depends on the size
and the location of the predator home range. In general, when p,
and R, are small, range residency maintains individuals closer to
each other and thus the mean encounter rate is larger for the OU
model than for the RBM. As R, and p; increase, the OU mean en-
counter rate decreases. Finally, for the largest R, allowed in this
region, the mean encounter rate is smaller for OU than for RBM
because the predator home range is centered close to the bound-
ary of the prey home range, which is rarely visited by the prey. In
region (II), for the population range to remain constant, the size
of the predator home range must decrease as the distance be-
tween home-range centers increases (black-dashed line in Fig. 6A
and Fig. 2). Along such a transect of constant population range, the
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but along transects with constant q.

OU-to-RBM mean encounter rate ratio decreases as R, increases
because the RBM encounter rate is constant and the OU encounter
rate decreases monotonically as R, increases and p; decreases si-
multaneously (Fig. 6B). In region (IIl), we observe the same trend
in the OU-to-RBM mean encounter rate ratio as R, increases for
constant population range (Fig. 6C; notice that the population-
range radius is equal to the predator home-range radius in this
region). Finally, both in regions (II) and (III), the RBM encounter
rate may transition from underestimating to overestimating OU en-
counter depending on the size of the population range.

Second, we keep the predator home-range radius constant and
equal to p,, i.e. p; =1, and explore the effect of the perceptual
range on the OU-to-RBM mean encounter rate ratio. Importantly,
because individual home ranges are equal to each other, the pop-
ulation range is always defined by the branch (II) of Eq. (11) and
depends linearly on the distance between home-range centers,

R
5
The perceptual range is a central parameter for encounter rates
and hence helps determine the accuracy of assuming simplified
movement models. Perceptual ranges vary importantly across dif-
ferent species and within individuals of the same species (Zollner
and Lima, 1997; Zollner, 2000; Mech and Zollner, 2002; Fletcher
et al.,, 2013). Therefore, for the same spatial distribution of home
ranges, R;, and predator movement properties, o1, a RBM approx-
imation to home ranging might give accurate results for some
species but inaccurate results for others. Our results show a more
important disagreement between RBM and OU encounters (RBM
either underestimates or overestimates the OU encounter rate) at
short perceptual ranges regardless of the distance between home-
range centers. Shorter perceptual ranges require a more precise de-
scription of the encounter of the trajectories because the predator
detects prey at very short distances. Therefore, neglecting range
residency in movement models has a higher impact in this limit
(Fig. 7). Finally, for large g, OU and RBM mean encounter rates are
equal to each other because both decay as ~ g2 (see Fig. ].4).

R=1+ (26)

4. Discussion

Understanding how different movement processes affect pair-
wise encounter rates is a key step in upscaling from individual

movement behavior to population- and community-level conse-
quences. Recent years have seen rapid developments in move-
ment ecology, in particular with respect to statistical methods for
extracting information from tracking data (Fleming et al., 2015;
Hooten et al., 2017; Winner et al., 2018). However, encounter rate
modeling has remained largely locked in the past, focusing on
overly simplistic models such as Brownian or ballistic motion that,
while conceptually useful, do a poor job of describing tracking data
(Noonan et al,, 2019). An accurate description of the pairwise en-
counters occurring within predator and prey populations is crucial
for constructing well-grounded models of interacting populations.
In such models, encounter terms have historically been based on
the principle of mass action, which assumes that individuals fol-
low RBM and encounter each other whenever their paths directly
cross (Hutchinson and Waser, 2007). Because every individual is
assumed equally likely to occupy any region of the space in RBM,
predator-prey encounters are proportional to the product of the
densities of the two species. More sophisticated versions of these
models feature modified encounter terms that account for com-
plexities including predator handling times or functional responses
(Holling, 1959; Oaten and Murdoch, 1975; Berryman, 1992). How-
ever, all of these elaborations still rest on the principle of mass
action and its underlying assumptions about individual movement.

Here, we set the basis of an analytical theory for encounter
rates between a pair of OU individuals, the simplest movement
model that accounts for individual home ranges. We focused on a
prey-predator interaction, but extensions to other encounter sce-
narios such as disease or parasite transmission are straightfor-
ward. Attraction to a home-range center, as featured by OU, does
not introduce important qualitative differences in the transient en-
counter rate as compared to RBM (Fig. 3). In both cases, the tran-
sient encounter rate grows monotonically when individuals start
close to each other and the movement is dominated by determin-
istic attraction to the home-range center, but the transient en-
counter rate has a maximum at intermediate times if the initial
prey-predator distance is large and their trajectories more stochas-
tic. Moreover, both for OU and RBM, stochasticity in individual tra-
jectories controls a tradeoff between short-term and long-term en-
counter probability, with more stochastic movement patterns fa-
voring earlier encounters.

For steady-state encounter rates, uneven space utilization itself
does not introduce qualitative differences between OU and RBM
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encounters either. However, neglecting uneven space utilization
consistently leads to underestimations of the encounter probabil-
ity, especially for short perceptual ranges and intermediate popu-
lation ranges. In fact, RBM broadly fails to estimate encounter rates
when perceptual ranges are short, providing either over or un-
derestimated values depending on whether home ranges are close
together or far apart, respectively. More importantly, fundamen-
tal qualitative differences between OU and RBM encounter mod-
els emerge from OU movement restricting individual ranges to a
subregion of the population range. This sets a spatial scale, shorter
than the population range, at which encounters can potentially oc-
cur. In RBM, in contrast, this scale is absent and individuals may
interact all over the population range. Moreover, when coupled to
a finite range of perception, this short scale at which OU encoun-
ters occur leads to complex functional shapes for the OU encounter
rate (Fig. 4). For perception and pairwise distance-independent at-
tacking efficiency, as considered here, these manifest as intermedi-
ate optimal perceptual ranges and predator home-range sizes (see
Martinez-Garcia et al. (2013, 2014, 2017); Fagan et al. (2017) for
other scenarios where intermediate perceptual range turn out to
be optimal). When both nonuniform space utilization and individ-
ually restricted ranges are turned off, as in RBM, this richness of
behaviors is lost.

Despite its unrealistic assumptions, one could pontentially view
the RBM model as a pragmatic approximation to the more real-
istic OU model. Indeed, a simpler model that yields qualitatively
correct behavior can sometimes be a useful tool for gaining in-
sight (Durrett, 2005). However, we feel that this is not the case
with RBM for three reasons. First, RBM is actually less analytically
tractable than OU, as evidenced by our inability to obtain an ex-
act, time-dependent expression for its mean encounter rate. Sec-
ond, estimation procedures for RBM have not been developed, and
likely will not be developed, because of the above-noted incongru-
ence with realistic home-ranging behavior, combined with the rar-
ity of situations where an individual’s home range is completely
defined by hard, reflecting boundaries (Noonan et al., 2019). So un-
like OU, RBM cannot be rigorously applied to real tracking data.
Finally, as we have demonstrated, the qualiative behavior of the
RBM encounter model differs importantly from its OU-based coun-
terpart in many cases. For these reasons, we recommend OU as the
best available framework for modeling encounter processes in the
presence of home-ranging behavior.

By explicitly incorporating range residency in the underlying
movement model, our analyses here have helped place encounter
rate modeling on firmer empirical ground. However, the OU model
itself still requires tracking data that are coarse enough to not
show autocorrelated velocities, and many modern, high-resolution
tracking datasets do not meet this criterion. The OUF process
(Ornstein-Uhlenbeck with Foraging; Fleming et al. (2014a,b)) is
a generalization of OU that, in addition to range residency, also
includes velocity autocorrelation. While OU does describe many
datasets well, the OUF model is, in our experience, a preferred
model for range resident data. For example, in the comparative
home range analysis performed by Noonan et al. (2019), the OUF
model was selected for 240 out of 369 datasets, while the OU
model was selected for 128. Deriving encounter metrics for corre-
lated velocity models like OUF will clearly be mathematically chal-
lenging, but this represents an important future opportunity build-
ing on our results.

Our main focus here has been quantifying encounter rates be-
tween a pair of predator and prey inviduals. Predator-prey interac-
tions, however, are likely to occur among many individuals within
populations of each species. For a single predator navigating a
prey population, the home range that provides a maximum en-
counter rate is determined by the overlap between the predator
home range and multiple prey home ranges. This predator home

range can differ greatly from that which maximizes a given pair-
wise encounter rate. More importantly, for more crowded situ-
ations, the optimal predator home-range size could also be de-
termined by the overlap between the various prey home ranges
(prey packing). This suggests the possibility of a tradeoff between
maximizing the per-prey-individual encounter rate and maximiz-
ing the number of available prey. For example, under what condi-
tions does increasing the predator home-range size result in gain-
ing access to enough new prey individuals that the overall prey en-
counter rate still increases despite decreasing per-prey-individual
encounter rates? Scaling our results to more crowded populations
will eventually facilitate revisiting the large amount of ecological
theory constructed upon the principle of mass action and inves-
tigating the conditions in which more realistic encounter models
can qualitatively change the outcome of the population models in
which they are embedded.

We have considered here the encounter between a pair of OU
processes, representing a prey and a predator that move inde-
pendently from each other. Even though this is a reasonable first
approximation that allows us to obtain analytical expressions for
the mean instantaneous encounter rate, long-range perception and
the use of sensory information by both prey and predator re-
sult in attraction-avoidance forces between individuals that may
compete with home-range attraction (Barbier and Watson, 2016;
Folmer et al.,, 2010; Hein and Martin, 2020; Hein and McKinley,
2013; Potts et al., 2014). These long-range interactions introduce
cross-correlations between individual trajectories, whose effect on
encounter statistics has been treated only through numerical sim-
ulations (Martinez-Garcia et al., 2013; 2014) or very simplified sce-
narios (Martinez-Garcia et al, 2015). Such forces may be espe-
cially important once individuals get close to each other for the
first time, making other encounter metrics, such as the mean first
encounter time, i.e., the expected time until the first encounter
(McKenzie et al., 2009), or the survival function, which gives the
probability of not having recorded encounters as a function of
time, better descriptors of the encounter statistics in certain sce-
narios. Finally, relaxing our assumptions about the shape of the
encounter kernel and the encounter parameter may also increase
the richness of complex behaviors for the OU encounter rate. In-
corporating all these features into the analytical framework started
here constitutes important directions for future work.
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Appendix A. The effect of the encounter kernel

In this Appendix, we consider the effect of the shape of the en-
counter kernel on encounter rates. In particular, we extend the re-
sults of the main text considering a family of normalized encounter
kernels that are defined by,

exp (—-r/q)?
P

where g gives the spatial scale of perception and p is a positive
parameter that controls the steepness of the kernel. In the limit
p — oo, these kernels converges to the top-hat kernel used in the
main text, whereas they show fatter tails as p decreases (Fig. A.1).
The gamma function, I", defined as

Dq(r) = (A1)

oo
T'(z) = / X-le—*dx (A2)
0
ensures the normalization of the kernel.

Our results show a complex relationship between the mean en-
counter rate and the shape of the encounter kernel controlled by
the spatial distribution and size of the home ranges (Fig. A.2). For
fatter-tail kernels defined by low p, the encounter rate tends to
become constant earlier in time (long-dashed lines in Fig. A.2), be-
cause the home range of the prey is always within the extension of
the encounter kernel. In addition, p controls a short-term vs long-
term encounter tradeoff, similar to the one controlled by g and dis-
cussed for top-hat kernels in the main text (Fig. 3). Sharper, high-p
kernels favor long-term encounters but penalize them in the short-
term; smoother, low-p kernels favor short-term encounters at the
cost of reduced long-term ones.

Appendix B. Brownian motion derivations

Brownian Motion (BM) is obtained in the limit in which OU has
vanishing home range affinity, 7-! — 0, and the movement of the
individuals is not bounded. Taking this limit in Egs. (6) and (7) we
obtain,

wp(0) = s (0), (B1)

o%(t) =o%(0) +gt. (B.2)

The mean position thus remains equal to its initial value, and
because individuals have no home-range affinity, the variance di-
verges linearly with time (unrestricted movement). In addition, in-
dividual space occupation is uniform in the long-time limit. Start-
ing from the same initial condition used to study transient OU en-
counter rates in the main text, that is, a fixed (deterministic) prey-
predator distance equal to R,, the BM noncentrality parameter and
rescaling variance, obtained from Eq. (B.1) and (B.2), are

A=R: (B.3)

o2 (t) =2gt. (B.4)

Inserting Eqs. (B.3) and (B.4) into Eq. (14) returns the BM mean
encounter rate, which tends to zero in the long-time limit. This is
a consequence of considering unbounded movement, which makes
the variance in the position of both individuals diverge on the long
time. At short times, however, RBM and BM provide identical re-
sults because the movement statistics in both cases are the same
and the effect of the boundary conditions on RBM is still negligi-
ble. As border reflections become more important in RBM, BM and
RBM encounter rates diverge from each other: gRBM stabilizes in
its stationary value whereas 5131\/1 decays to zero (Fig. 3).

Appendix C. Moments of the OU model

We start from the description of the OU movement in terms of
a stochastic differential equation for the one of the coordinates of
the 2D position, Eq. (5),

25(0) = 2 [25(0) ~ 1s] + VE £ (D).

and our goal is to obtain expression for the mean, ug, and the

variance, aé, of the 2D position (B8 € {x, ¥}). Notice that because

g and t are the same for each component of Z they do not have

a subscript in Eq. (C.1). In the following, we will also remove the

subscript B from zg, Ag and &g to make the notation simpler.
First, we integrate Eq. (C.1),

(C1)

t t
z(t) = z(0)e /T + %/ ds e~ =9/ 4 JE/ dW (s) e t9/7
0 0
(C2)

where dW (s) = £(s)ds is a Wiener process. Solving the determin-
istic equation, we get

z(t) =z(0)e /T + A[1—e ] + @/t dW(s) e @9/T  (C3)
0
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and finally, taking averages on both sides of Eq. (C.3) the stochas-
tic integral vanishes because (dW(s)) = 0 and we obtain the mean
position in one of the dimensions

e (t) = p1z(0)e /T + A[1—e77], (C4)

where u;(0) = (z(0)) assuming that the initial condition is
stochastic.

Next, we calculate the variance of the position. To this end, we
start from the definition of the variance, 07 = ,» — u2 and use
Egs. (C.3) and (C4) to obtain p,, and w2 respectively,

o7 (t) = <(Z(0)e*t/f + )»[1 _ e—t/r])2>

¢ 2
+g<( fo AW (s) e<f5>/f> >

+<2g(z(0)ef/f + A[1 _ e—t/t]) /t dw (s) e(ts)/r>
0

—(12(0)e T 4 A[1 - e 7)), (C5)

Because (dW (s)) = 0, and calculating all the other mean values,

¢ 2
02 (t) = [ (0) — u2(0)]e /7 +g< ( f dw (s) e“””) >
0

(C.6)

To calculate the mean value of the square of the integral in
Eq. (C.6), we use Ito isometry

2
! —(t-s)/T ! —2(t-s)/t T =2t/T
<(/Odw(s)e( )/>>=</0dse2( )/>:2(1—e2/)

(C.7)

Finally, because the first term on the right-hand side of
Eq. (C.6) is the variance of the initial condition, and substituting
the second term by the result of Eq. (C.7), we obtain the variance

in the position for OU motion with random initial condition,
02(t) = 02(0)e 2/T + %(1 —e ), (C8)
which is Eq. (7) in the main text.

Appendix D. Calculation of the mean encounter rate

We depart from the definition of the mean encounter rate in
Eq. (4)

&) = /g(r, ) f(r, t)dr,

which using the piecewise definition of the encounter kernel in
Eq. (3) becomes,

q
2(t) = Nqu fo F(r.tdr.

Next, we change the variable in Eq. (D.2) from r to u so we can use
Eq. (13) for the PDF of the nondimensional square distance u,

&
/O flu; A)du,

and finally, using the cumulative distribution function for the non-
central x2-distribution, we arrive to Eq. (14) in the main text

(D.1)

(D.2)

14

E@t) = e

(D.3)

N P VA q
Et) = pp [1 Q1< o ’m)] (D.4)
where Qy(a, b) is the Marcum-Q-function defined as
a2 +bh2\ & sa\k
Qu(a, b) = exp (- - >k=1ZM (B) I (ab). (D.5)

where I, is the Modified Bessel function of the first kind and order
k.

Appendix E. £ in the small q limit

The exact expressions for the mean encounter rate, £, involve
complicated expressions and special functions, both for OU and
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RBM movement models. In this Appendix, we derive approximated
expressions for the mean encounter rate in the stationary state. In
this limit, we can truncate the series expansion of the pairwise dis-
tance PDF at the quadratic order, which simplifies its integration
and the expressions for the mean encounter rate.

E1. Ornstein-Uhlenbeck models

We depart from the distribution of pairwise nondimensional
distances in the stationary state, Eq. (13),

oo (us 1~\) = %exp <_(HZ+A)>IO< Au). (E1)

First, we obtain the Taylor series of foy, up to linear order. No-
tice that because uxr?, our approximation is up to quadratic order
in the pairwise distance,

exp (—%) —1- %u+0(u2), (E2)
10(\/2\11) =1+ %quO(uz) (E3)

Multiplying the expansions in Eq. (E.2) and (E.3) and rearrang-
ing the additional terms in Eq. (E.1), we obtain the linear approxi-
mation to Eq. (E.1),

fuu (1 B) = 3 exp (é) [1 - ‘2‘<1 - ’;‘)} o)

Next, to calculate the mean encounter rate, we must integrate
the pairwise distance distribution,

&) =

(E.4)

(= 00.q)~ nq2 Sou (us A)du
yexp( 252 )
m]ZGZ/ fou (r: Myrdr = Tsf[sa;‘+q2(A—2ar2)]. (E.5)

E2. Reflected Brownian Motion

We depart from Eq. (18), that gives the stationary RBM pairwise
distance PDF when 0 <r < 2R,

r 2r2 r2
_ e 2_
ArcCos ( ZR) p— R a

in the limit r << R, we can truncate the Taylor series for frgy at
the quadratic order

S (1t — 00) = (E.6)

2r r2
fRBM(r’t_) oo): 2 7TR3 +O( ) (E7)
and integrate it to obtain the mean instantaneous encounter rate
Y 4q
RBM (t - 0, q) ~ TR2 (1 37TR> (ES)

Appendix F. OU encounter rate versus home range overlap

In this Appendix, we present the calculation of the overlap be-
tween two home ranges using both the Bhattacharyya coefficient
(BC) and the inner product of the individual position PDFs, and
write the pairwise encounter rate in terms of it. We consider two
OU processes with, in general, time-dependent mean, u;(t), and
covariance matrix, X;(t), defined by the mean and the variance of
Egs. (6) and (7) in the main text,

L (t ol (t) 0
u,~<t)=<ﬁ;y§t§> (t)—( A sz(t)) (F1)

where j =1, 2 for the predator and the prey respectively and we
have already considered that individual movement is isotropic.
Therefore, the x — y covariances are zero and the covariance ma-
trices are scalar matrices.

F1. The Bhattacharyya coefficient (BC)

For two continuous probability distributions f{x) and g(x), it is
defined as

BC(f.g) = / JF)gR)dx. (F2)

For the particular case in which f and g are bivariate Normal
distributions, a closed expression for the BC can be derived (Abou-
Moustafa et al., 2010),

|24 |14 2,14

BC = [Z[172

exp (—%;LTZ‘UL), (F3)

where ¥ = (%1 + X3)/2 and 0 = pq — [,. Inserting the mean and
the covariance matrices given by Eq. (F1) in Eq. (F.3), we obtain

o1(H)oz(t) A(t)
7@2(0 ex (—4@2(0). (F4)

On the other hand, the OU encounter rate is

y A®)
0= oz P (_ 202 (0)’ (F2)

where we have taken g = 0 in Eq. (15) to simplify the calculations.
Next, from Eq. (F.4), we obtain

BC(t) =2

gOU (t q

A o}
expl| —=— ——T__BC(t)? F.6
p( 203> Hoo? KO (F6)
that can be inserted in Eq. (E.5) to obtain the OU encounter rate as
a function of the home range overlap, BC,

Yoi(t)

2
Tro?(00I0 (t)azz(t)BC(t) (E7)

gou (t’ q= 0) =
Eq. (F7) reveals a quadratic scaling law between encounter rate
and home-range overlap with the encounter rate at maximum
overlap, BC = 1, depending on home-range areas through 012 and

2
0y

F2. PDFs inner product

Alternatively, we can quantify the overlap between home ranges
using the inner product of the individual position PDFs. Given two
function, f(x) and g(x), we define the inner product, f - g, as

fg= / F()g()dx. (F8)

For the particular case in which f and g are the individual posi-
tion PDFs, namely f; and f,, we have to compute the inner product
of two bivariate Normal distributions with mean and covariance
matrices defined by Eqgs. (F.1). We obtain

A&y -y t) = / dxdy fi(x.y: ) f(%.y: )

A(D)
2<7r2(t)>’ (F9)

1
2moZ(n) P (
and hence

Eu(t.q=0)= (F10)

v fix,y:0)-fr(x, y: ).
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Appendix G. Effect of predator home range

In this Appendix, we provide detailed results on the effect that
predator home ranges have on OU stationary encounter rates. To
simplify the calculations, we consider the local-perception limit
(q=0) of Eq. (14) and to simplify the notation we do not write
explicitly the stationary-state condition t — oo. With this consid-
erations, the stationary OU mean encounter rate is,

~ y A
fu(@=0)= 2o P <_M>'
r T

where the predator home-range radius enters through the defini-
tion of the rescaling variance, o2,

First, we calculate the optimal predator home-range size, p;,
that maximizes the encounter rate for a given prey home-range
radius, p,, and distance between home-range centers, R;. This op-
timal predator home-range size indicates how much space the
predator should explore, depending on the configuration of the
landscape and the movement of the prey, to maximize its preda-
tion rate. Because we are interested in the p; that maximizes the
encounter rate, we need to solve,

(G1)

aE,
u _ 0, G.2
30, (G.2)

for p;. Performing the derivatives, we obtain

Y (A=207 Y
27'[( o )P 202 )iz =0

which has two solutions. The first one, pj =0, accounts for the
existence of a maximum or local minimum of the encounter rate
for ambush predation. The second one is obtained from solving
A — 202, which gives, using the definition of the noncentrality pa-
rameter and the rescaling variance in Eqs. (23) and (24),

P = /K2R — p2.

Because the home-range radius must be positive, Eq. (G.4) indi-
cates that the encounter rate is maximum for ambushing strate-
gies if R, < p,/K. This condition is met if the prey frequently
crosses the predator home-range center, which may happen ei-
ther if R, is small (home ranges are close to each other) or if
po is large (the prey shows a high mobility and therefore a large

(G.3)

(G4)

home range). If neither of these conditions are met, the mean
encounter rate is maximum for some predator mobility given by
Eq. (G.4) (Figure G.3).

In addition, using the short-perception expansion of the en-
counter rate,

~ _v[80f +a*(A-207)] exp <_A>
202 )

gou (q) ~ 16756
¥

(G.5)

we can derive scaling relationships between the encounter rate
and the predator home-range radius when all the other model
parameters are kept constant. For instance, in nomadic predators,
represented by large home ranges (p; — oo and hence 02 — o)
the encounter rate is a monotonically decreasing function of the
predator home-range size, decaying as oy 2. This result follows
from the fact that the exponential term in Eq. (G.5) tends to a con-
stant when o, — oo and the dominant terms in the numerator
and the denominator of Eq. (G.5) are of fourth and sixth order in
p1 respectively. The opposite limit, p; — 0, represents ambushing
strategies by sedentary predators that do not abandon their home-
range centers. The encounter rate in this limit can be obtained by
retaining up to the linear terms in p; on an additional Taylor ex-
pansion of Eq. (G.5) around p; = 0.

Appendix H. Steady-state encounter rates for Reflected
Brownian Motion

In this appendix, we calculate the stationary mean encounter
rate between a predator-prey pair of RBM individuals that move
within the population ranges defined by the set of OU movement
parameters used in the main text to study the steady-state OU
mean encounter rate. To establish a more direct comparison with
OU results, we will present RBM results as a function of the under-
lying OU movement parameters that define the population range.
In particular, using Eq. (11), we obtain the radius of the population
range, R, as a function of the distance between home-range cen-
ters, R,, and the radii of the individual OU home ranges, p; and
P2.

We find that the mean encounter rate first remains constant
for small p; and then decreases as p; increases, while it is a
monotonically decreasing function of g. Because RBM individuals
visit all the regions of the encounter arena with the same fre-
quency and they do not have home range affinity, changing ei-
ther p; or R, only affects R, without influencing the overlap be-
tween individual position PDFs, which is always maximum. There-
fore, larger p; and R, may lead to larger R, and because encoun-
ters occur in a larger arena, they are less likely (smaller encounter
rate). In fact, considering the definition of the population range,
if p; < p2 — Ry, then R = p, and the encounter rate is constant
(solid line in Fig. H.4A). For larger pq, the size of the encounter
arena increases with p; and hence the encounter rate decreases
(Fig. H4A). How quickly the mean encounter rate decreases with
p1 depends on the branch of Eq. (11) that determines the radius of
the encounter arena. Moreover, Eq. (20) recovers the linear decay
of the encounter rate with g at short perception ranges (Fig. H.4B).
This is an important difference between OU and RBM encounters;
while nonlocal perception (¢ > 0) maximizes the OU mean en-
counter rate when home ranges are small and far from each other
(Fig. 4B), the RBM mean encounter rate is always maximum for
q = 0 (Fig. H.4B; Appendix Appendix [ for further details).

Appendix 1. Effect of the perceptual range

In this Appendix, we extend the calculations for the effect of
nonlocal predator perception on encounter rates. We depart from
the steady state limit (t — oo) of the OU mean encounter rate in
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the short-perception limit, Eq. (15) in the main text,

4. 2(A _ 92
g~ 2O 2200 (—2{:2> (11)
r

gou (q) ~ 167'[0}6

From its second derivative with respect to g, it follows that
the mean encounter rate is maximum for local perception (q = 0)
if A <202 If A>20?, however, ¢=0 is a local minimum and
hence the encounter rate increases if the perceptual range in-
creases. Using nondimensional quantities, we can write the con-
dition for this switch in the behavior of the encounter rate as
(Fig. L.5A),

2
> /14 <&> .
P2
Interestingly, in the limit ¢ — oo, 50U ~ q~2, which means that
the mean encounter rate tends to zero as the perceptual range be-
comes infinitely large. Therefore, when the OU mean encounter
rate, gou, has a local minimum at q =0, an intermediate range
of perception ¢ > 0 may maximize the encounter rate. The ex-
istence of such optimal mid-range perception aligns with results
from our own previous studies in which we investigated the in-
terplay between long-range information gathering and foraging ef-
ficiency in different contexts (Colombo et al., 2019; Fagan et al.,
2017; Martinez-Garcia et al., 2013, 2014, 2017). Because Eq. (I.1)
gives an approximated OU mean encounter rate that is only ac-
curate in the short-perception limit, we cannot, in general, obtain
an analytical expression for the optimal perceptual range when it
is larger than zero. Instead, we need to evaluate the exact expres-
sion in terms of the Marcum-Q-function, Eq. (14) in the main text,

Ry

o (12)

gou (q) = (13)

y VA q
w[l“l1(or ’m)}'

This analysis reveals that, when optimal perception is achieved
for g > 0, the optimal perceptual range scales quickly with R, and
can lead to an unrealistic regime in which the optimal perceptual
range exceeds the radius of the predator home range (Fig. 1.5B).

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi: 10.1016/j.jtbi.2020.110267.
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