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Abstract—To provide an effective and safe therapy to persons
with neurological impairments, accurate determination of their
residual volitional ability is required. However, accurate mea-
surement of the volitional ability, through non-invasive means
(e.g., electromyography), is challenging due to signal interference
from neighboring muscles or stimulation artifacts caused by
functional electrical stimulation (FES). In this work, a new
model-based intention detection method that combines signals
from both surface electromyography (sEMG) and ultrasound
(US) sonography to predict isometric volitional ankle dorsiflexion
moment is proposed. The work is motivated by the fact that the
US-derived signals, unlike sEMG, provide direct visualization
of the muscle activity, and hence may enhance the prediction
accuracy of the volitional ability, when combined with sEMG.
The weighted summation of sEMG and US imaging signals,
measured on the tibialis anterior muscle, is utilized as an
input to a modified Hill-type neuromusculoskeletal model that
predicts the ankle dorsiflexion moment. The effectiveness of the
proposed model-based moment prediction method is validated by
comparing the predicted and the measured ankle joint moments.
The new modeling method has a better prediction accuracy
compared to a prediction model that uses sole sEMG or sole
US sonography. This finding provides a more accurate approach
to detect movement intent in the lower limbs. The approach can
be potentially beneficial for the development of US sonography-
based robotic or FES-assisted rehabilitation devices.

Index Terms—Ankle dorsiflexion, Voluntary contraction force,
Ultrasound sonography, Electromyography, Pennation angle,
Muscle fascicle, Neuromusculoskeletal model

I. INTRODUCTION

Robotic rehabilitation or functional electrical stimulation
(FES)-based therapy often uses knowledge of a person’s
residual volitional ability to determine compensation torque
or force such as during assist-as-needed therapy [1]–[3]. To
predict the volitional ability, both mechanical and neuromus-
cular sensors have been implemented. Mechanical sensors
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measure physical human-machine-interaction (pHMI) directly.
For example, several types of compliant actuators [4], [5]
have been developed that use embedded elastic elements for
detecting interaction forces. However, installation of mechan-
ical sensors relies on a rigid and bulky structure, which
limits the portability of the devices. In addition, inaccuracies
can creep in because the powered exoskeleton frames are
prone to human-robot misalignment that can induce undesired
interaction forces [6]–[8]. Neuromuscular sensors approaches,
such as surface electromyography (sEMG), have also been
proposed to identify user’s movement intent [9]. sEMG signals
are combined muscle potentials that act as surrogates to neural
signals that originate from the central nervous system. A major
challenge that limits the implementation of neuromuscular
sensors to predict human movement intent is the difficulty to
bridge the connection between events taking place at the neu-
rophysiological level (i.e. neural signals descending from the
spinal cord) with those at the musculoskeletal level (i.e. muscle
contraction force or joint moment) [10]. Two methodologies,
a model-free approach and a model-based approach, aim to
bridge the relationships between the neuromuscular signals
and mechanical functions of human limbs. In the model-free
approach [11]–[13], given the experimental observations of
the variables, a machine learning approximation is utilized to
establish a numerical function that maps different variables,
such as from sEMG to joint moment or joint angle. These
mapping functions can be approximated by the combination
of basis functions, e.g., linear or nonlinear polynomials [14],
exponential and Gaussian functions [12], [15], as well as
linear and nonlinear regression [13] between neural signals
and skeletal mechanical functions. Artificial neural network
(ANN) is another model-free approach that can also be used
to map the relationship between the above variables. For
example, in [16], [17] ANN-based relationship was estab-
lished between sEMG signals to tendon force in the cat
soleus and gastrocnemius muscles and in [18] a relationship
between sEMG signals to joint moments and joint angles
during human locomotion was determined. Although sEMG
sensors are readily available and can be implemented with fair
ease, they cannot reliably detect human intention due to their
susceptibility to signal interference coming from neighboring
muscles. Moreover, it cannot be used to detect contractions
of deeply-located muscles [19]. Ultrasound (US) imaging
is another non-invasive methodology that addresses sEMG’s
drawbacks, and can be potentially used for muscle effort



and joint moment prediction. The architectural parameters of
muscle’s US images can reliably provide changes in muscle
contractility of a deeply located muscle without cross-talk
or interference from the adjacent muscles. The relationship
between architectural parameters (including pennation angle
(PA), fascicle length, and muscle thickness) and joint me-
chanical function has been also addressed by aforementioned
model-free approaches. For example, in [12], the exponential
functions between the normalized muscle deformation and the
normalized sEMG’s root mean square (RMS), and the nor-
malized PA and the normalized sEMG’s RMS were observed.
In addition, the linear relationships between the normalized
muscle deformation and torque, as well as the normalized PA
and torque were observed.

However, the model-free approach is essentially a black
box approach, where all intermediate functional relationships
between experimental variables are not explicitly identified.
Thus, its main limitation is that the knowledge that con-
tributes to the understanding of mechanisms underlying the
experimental variables may remain unknown. To establish a
direct cause-effect mapping across those variables, a model-
based approach, e.g., a Hill-type neuromusculoskeletal model
(HNM), has been exploited to analytically define the functional
relationship between the measured neuromuscular signals and
skeletal mechanical functions [20]–[22]. An HNM usually
contains the following modules: neural activation, muscle
activation, musculoskeletal geometry, and skeletal dynamics
[23]. sEMG along with advanced processing techniques can
experimentally access the neural information from muscles
contractions [24]. Thus, sEMG-based estimation of neuromus-
cular excitation has been utilized to drive the HNM during
a variety of human dynamic motor functionalities, like in
[25], [26]. In addition, it can predict muscle forces [27],
joint moments [26], [28], joint compressive forces [29], [30],
joint stiffness [31], [32] and joint angles [33]. Although the
model-based approach can indicate the intermediate mecha-
nisms between neuromuscular variables and skeletal functions,
it is directly limited by the uncertainties arising from the
unmeasured physiological parameters, such as fiber length,
tendon length, PA, and so on. The simulation approximation
of those parameters was studied in [20], [21], [34], where
given the weight, height, and limb length of the participants,
the non-subjective physiological parameters were roughly ap-
proximated offline by using the OpenSim software.

As aforementioned, although the feasibility of HNM in
musculoskeletal mechanical functions has been verified and
popularly applied, most studies only considered the EMG-
induced muscle activation. Few studies have incorporated the
architectural parameters of the targeted muscle to the muscle
contraction in an HNM. In addition, the approximated offline
physiological parameters from the OpenSim software can
hardly reflect the real-time neuromuscular conditions of an
individual participant. In our recent work [13], PA information
derived from US images was supplemented with sEMG signals
by determining the optimal allocation coefficient to improve
accuracy in human intention detection. Based on that work,
the idea is extended to the model-based approach, where an
optimal combination of sEMG signal and US imaging-derived

(a) (b)

Figure 1: (a) A US image of the TA muscle. (b) Schematic of
the Hill-type muscle-tendon model.

PA information is used as an input to the HNM. Then, like
mentioned in [22], during the muscle contraction dynamic
procedure, muscle physiological parameters including fascicle
length, fascicle velocity, and PA are extracted from US images
by using a commercial muscle fascicle tracking algorithm [35],
[36], that enables a potential real-time implementation. The
objective of this work is to investigate the feasibility of the
proposed HNM, considering both sEMG and PA information
in muscle activation dynamics, and to evaluate the ankle
moment prediction performance compared to the HNM that
takes only sEMG-induced or PA-induced factor in the muscle
activation dynamics.

II. HNM FOR ANKLE MOMENT PREDICTION

Given the human physiological and anatomical parameters,
HNM is an efficient computational method to simulate the
muscle contraction force and corresponding joint torque [37].
Three main parts in the modified HNM are proposed : (1) mus-
culoskeletal geometry model, (2) sEMG and PA-to-activation
model, and (3) muscle contraction dynamics model.

A. Musculoskeletal Geometry Model

The musculoskeletal geometry model depicted in Fig. 1 (b)
can be measured from US images, shown in Fig. 1 (a). lmt ∈
R+ is a muscle-tendon unit’s length, lt ∈ R+ is a length of a
tendon, lm ∈ R+ is a length of a muscle fascicle, and ϕ ∈ R+

is the PA defined in Fig. 1 (a). The PA was the summation of
two parts [13], one is the angle between the visualized fascicle
and horizontal line, and the other one is the angle between the
deep aponeurosis and horizontal line.

B. sEMG and PA-to-Activation Model

The sEMG and PA-to-activation model represents the level
of muscle activation by synthesizing an sEMG signal and
PA information. To use the sEMG signal and the PA signal,
as inputs to the model, the MRMS of a band-pass filtered
sEMG signal and PA are normalized with respect to the peak
MRMS value and the peak PA value, which are recorded
corresponding to the maximum voluntary isometric contraction
(MVIC), respectively. As mentioned in [13], there exists a
delay between the onsets of an sEMG signal and a muscle
contraction, which is known as an electromechanical delay
(EMD) and is determined by experimental results. Taking this



into consideration, a second-order recursive filter was proposed
to calculate the neural activation u(t) from the processed
sEMG signal N1(t) in [37]

u(t) = αN1(t− τ)− β1u(t− 1)− β2u(t− 2) (1)

where α = 0.9486, β1 = -0.056, and β2 = 0.000627 [37]. N1

and τ ∈ R+ are the pre-processed sEMG signal and the EMD,
respectively. According to [38], when the muscle activation is
at a low level, there is a nonlinear relationship between the
neural activation and the muscle activation, so a one-parameter
segmented transfer model from the neural activation u(t) to
the sEMG-induced muscle activation a1(t) is given as{

a1(t) = d ln(cu(t) + 1), 0 ≤ u(t) < u0

a1(t) = mu(t) + b, u0 ≤ u(t) < 1
. (2)

The point (u0, a10) of the nonlinear model is defined as{
u0 = 0.3085−A cos(45°)
a10 = 0.3085 +A sin(45°)

. (3)

Knowing that the linear portion of the curve in (2) must pass
through two points (u0, a10) and (1,1), then the coefficients
m and b in (2) can be determined as m = 1−a10

1−u0
and b =

a10−u0

1−u0
. The coefficients d and c in (2) can be determined

by making the nonlinear portion pass through point (u0, a10),
then c = e

a10
d −1
u0

, and d is calculated iteratively by using
the Newton-Raphson method. Therefore, the four parameters
d, c, m and b are all strongly related to the point (u0, a10),
which is determined by shape coefficient A in (3). In addition,
A was reported within the range from 0 to 0.12 [38], which
is to be determined by system identification.

Similarly, neglecting the time delay between PA and muscle
activation, the PA-induced muscle activation a2(t) is assumed
to be equivalent to the pre-processed PA N2(t), which is
represented by a2(t) = N2(t). Thus, in this work, the linearly
synthesized muscle activation a(t) is defined as

a(t) = δa1(t) + (1− δ)a2(t) (4)

where δ is an allocation coefficient that needs to be optimized.
The pre-processed sEMG signal N1(t) and PA information
N2(t) are discussed in the experiments section.

C. Muscle Contraction Dynamics

The moment produced by the isometric ankle dorsiflexion
is the product of the TA tendon force and the moment arm:

Mpredict(t) = Fmt(t)rmt(q) (5)

where rmt ∈ R+ denotes the moment arm of muscle tendon
force [39] and is defined as rmt = c1e

−2q2 sin(q) + c2,
where positive constants c1 and c2 for individual participant
are identified from experimental data. q is the ankle angular
position corresponding to neutral position (neither dorsiflexion
nor plantar flexion). Fmt denotes the force generated by the
muscle-tendon unit:

Fmt(t) = Fm(t) cos(ϕ(t)) = (Fce(t)+Fpe(t)) cos(ϕ(t)) (6)

where Fce and Fpe denote the force generated by the contrac-
tile element and the passive elastic element. The calculation
of Fce and Fpe are given by{

Fce(t) = f(lm(t))f(vm(t))a(t)Fmx
Fpe(t) = fp(lm(t))Fmx

(7)

where Fmx represents the muscle-tendon force at MVIC,
f(lm) represents the generic force-fiber length relationship for
the contractile element (CE), f(vm) represents the generic
force-fiber velocity relationship for CE [40], and fp(lm)
represents the generic force-fiber length relationship for the
passive elastic element (PE). These functions are defined as

f(lm) = e
−
(

1
b1

(σl−1)
)2

(8)

f(vm) =

{
0.3(σv+1)
−σv+0.3 , (σv < 0)

2.34σv+0.039
1.3σv+0.039 , (σv ≥ 0)

(9)

fp(lm) = 0.129
(
e4.525(σl−1) − 1

)
(10)

where b1 is an unknown subjective constant to be identified.
σl = lm

lmo
is the ratio between fascicle length and optimal

fascicle length associated with muscle activation a, and the
optimal fascicle length is given as lmo = lo(λ(1 − a) + 1),
where λ is the rate of change in the optimal fascicle length,
and it has been reported as 0.15 in [37]. σv = vm

lmo
is muscle

fascicle contraction velocity (known as time derivative of lm)
normalized to lmo.

During ankle isometric dorsiflexion, the angular position of
the ankle joint is kept constant. The measurement from a load
cell is the pull force Fl that is perpendicular to the pedal, so
the measured ankle joint moment does not rely on q, which
is given as

Ml(t) = Fl(t)rl (11)

where rl is the constant distance from the attachment point of
the load cell to the rotation center of the ankle joint.

Remaining unknown modeling parameters identification,
including A, δ, c1, c2, and b1 are found by using the Least
Squares Method. The Matlab function lqscurvefit was used
to minimize the squared error equation:

Error =
1

N

N∑
i=1

(Mpredict(i)−Ml(i))
2 (12)

where N represents the length of the collected data, Mpredict

is the dorsiflexion moment established based on HNM, and
Ml is the real moment is measured by load cell. All other
parameters in the above formulations N1, N2, lo, lm, ϕ0, ϕ,
and Fmx are obtained from the sEMG signals, US images,
and load cell signals. It is assumed that the TA muscle is an
autonomous system during a short time voluntary contraction,
and its mechanical characteristics remain time-invariant.

III. EXPERIMENTS

A. Participants

This study was approved by the Institutional Review Board
(IRB) at the University of Pittsburgh (IRB approval number:
PRO18020072). All participants signed an informed consent



form. Inclusion criteria were persons of age of 18-40 years
old, without any neuromuscular disorders, and able to perform
ankle movements such as planar flexion, dorsiflexion, eversion
and inversion, and able to sit patiently. Exclusion criteria were:
1. any difficulty or an orthopedic condition that would impede
ankle movements such as planar flexion, dorsiflexion, eversion
and inversion, 2. absent sensation in lower extremities, and
3. allergy to adhesive skin tapes and/or ultrasound gels. Four
participants were involved in this study. Participant 1: Age 24,
male. Participant 2: Age 25, male. Participant 3: Age 27, male.
Participant 4: Age 22, male.

B. Ankle Experimental Scenarios

The experimental setup of this study is illustrated in Fig.
2 (a), where the participant was seated comfortably in an
adjustable chair with his upper leg kept horizontal. During
the entire experiment time, the participant’s lower leg was
restrained perpendicular to the upper leg. A region that is
around 10 cm away from the rotation center of the knee joint
was chosen as a targeted area. The sEMG sensor in Fig. 2
(b) (BagnoliTM Desktop, DELSYS, MA, USA) was attached
to the lower leg skin through a piece of adhesive interface
after shaving and cleaning with alcohol in the targeted area.
A clinical linear US transducer (L7.5SC Prodigy Probe, S-
Sharp, Taiwan) was pressed onto the targeted muscle of the
lower leg with a special customized holder as shown in Fig.
2 (c). This holder with 1 degree of freedom was 3-D printed,
and can orient the US probe in cross-sectional direction or
in longitudinal direction to maximize a visualization of the
targeted muscle area. Conductive US gel was applied between
the transducer and the skin. The transducer was placed to
image a longitudinal direction instead of a cross-sectional
direction. In this direction, inaccurate measurements caused
by muscle fibers moving out of the imaging window can
be avoided. The load cell platform is shown in Fig. 2 (d),
which includes base frame, adjustable angular positions, pedal,
and load cell (MLP-300, Transducer Techniques, CA, USA).
The angular positions of the pedal could be set as -15°, -
10°, -5°, 0°, 5°, 10°, and 15° corresponding to the ground,
which means that there are 7 experimental scenarios for each
participant. For the initial angular position 0°, known as the
neutral position, the pedal of the platform was set to be parallel
to the ground. As shown in Fig. 2 (a), both the heel and
toe of the participant’s foot were tied to the pedal tightly
by velcro straps to guarantee the isometric ankle dorsiflexion.
The load cell in Fig. 2 (d) was located beneath the pedal to
measure the equivalent voluntary contraction force (VC) of
the dorsiflexor muscle group during ankle dorsiflexion. For
the isometric case, the moment arm during VC was kept as a
constant, and the ankle torque was computed by multiplying
VC and the moment arm.

The 7 scenarios were conducted in the following order as
0°, -5°, -10°, -15°, 5°, 10° and 15°. In each scenario, there
were two sets experiments. In the first set, three repeated trials
of MVIC maintaining 2 seconds were separately performed
by the participants to determine the ankle joint moment,
sEMG signal and US image at MVIC. Then in the second

Figure 2: (a) The experimental setup used to simultaneously
record sEMG, US imaging, and load cell signals during the
ankle dorsiflexion. (b) Single differential sEMG sensor. (c) 3-D
printed customized US probe holder with 1 degree of freedom.
(d) Load cell platform with 7 adjustable angular positions.

set, there were also three trials in each scenario, and the
duration for each trial lasted 7 seconds with the 1st second
left intentionally blank to get every signal channel ready for
receiving data. After 1st second, the participants performed
dorsiflexion. The movement was repeated twice within 6
seconds, and the movement sequence included a relaxation
period, gradual contraction to MVIC, and relaxation period
again. The instructions to perform the sequence was given
orally. Totally there were six dorsiflexion cycles for three trials
in the second set experiments in each scenario per participant.
To avoid fatiguing the muscle, a rest period of 2 minutes to 4
minutes between two successive trials was provided.

C. Data Acquisition and Pre-processing

The signal from the load cell was processed through an
input signal conditioner (DRC-4710, OMEGA Engineering,
CT, USA), which amplified the original signal and filtered
the noise. The signal from the sEMG sensor was processed
through an input module (BagnoliTM Desktop, DELSYS, MA,
USA) and a main amplifier (BagnoliTM Desktop, DELSYS,
MA, USA) with a gain of 10k. In addition, the main amplifier
filtered the signal to a bandwidth between 20 Hz and 450 Hz
and checked for excessive amounts of line interference as well
as channel clipping due to over-amplified signals. Finally, the
processed load cell signal and the sEMG signal were collected
by a data acquisition board (QPIDe Board, Quanser, Canada)
through analog input channels. TA muscle contraction was
imaged using a commercial linear array transducer (L7.5SC,
6.4 MHz center frequency) that is connected to a US imaging
scanner (Prodigy, S-Sharp, Taiwan).

Signals from sEMG, US imaging, and load cell were
synchronously recorded in a real-time system implemented in
Matlab/Simulink (R2012b, MathWorks, MA, USA) controlled
by trigger signals. The load cell and sEMG signals were
sampled at 1000 Hz. US B-mode images on a targeted TA
muscle region were acquired at a frame rate of 20 Hz.
Supposed the time instants for collecting load cell and sEMG



signals are set as tk, and for collecting US images are set as tk̄,
then 4tk = tk+1− tk = 0.001 s and 4tk̄ = tk̄+1− tk̄ = 0.05
s. For the sEMG signal, moving root mean square (MRMS)
[41] [42] is given as

x1(tk) = rms{l(tk)} =

(
1

T

tk+T4tk∑
tk

l2(tk)

)1/2

(13)

where T4tk ∈ R+ represents the length of the moving
window, l(tk) and x1(tk) represent the amplitude of sEMG
signal and the sEMG MRMS at 1000 Hz, respectively.

Then the normalization of sEMG MRMS is represented by

n1(tk) =
x1(tk)− x1 min

x1 max − x1 min
(14)

where x1 min and x1 max denote the minimum value of MRMS
in the corresponding trial and maximum value of MRMS at
MVIC, respectively. As mentioned before, 4tk̄ = 504tk,
to match the low sampling rate of US images, the sEMG-
induced muscle activation a1(tk) in (2) is downsampled to
get a1(tk̄) = a1(50tk).

For the US images during the same contraction period,
as shown in Fig. 1 (a), the PA ϕ was defined as the angle
between the most clearly visualized fascicle and its insertion
to the deep aponeurosis surface or baseline. To derive the
musculoskeletal parameters including ϕ, lm, and lo of each US
imaging frame, the commercial Matlab GUI software (R2017a,
MathWorks, MA, USA) called Muscle Fascicle Tracking was
utilized, whose algorithm is detailed in [35], [36].

Once the PA is derived from US images by using the GUI,
the normalization of PA is given as

N2(tk̄) =
x2(tk̄)− x2 min

x2 max − x2 min
(15)

where x2(tk̄) denotes PA at frame rate of 20 Hz, and
x2 min and x2 max denote the minimum value of PA in the
corresponding trial and maximum value of PA at MVIC,
respectively. Therefore, the discrete form of the synthesized
muscle activation in (4) is given as

a(4tk̄) = δa1(504tk) + (1− δ)a2(4tk̄).

IV. RESULTS AND DISCUSSIONS

A. Results of Pre-processing

To simplify the notation of different scenarios on these 4
participants, the abbreviations such as A1S0, A1S10, and A1S-
10 are used throughout the paper, which means the scenario
0°, 10°, and -10° on the first participant, respectively. Fig. 3
(a) shows the measurements synchronously collected by the
data acquisition board and US machine in one typical trial
for A1S0, including the force on the load cell (at 1000 Hz),
sEMG of the TA muscle (at 1000 Hz), and PA calculated
from US images (at 20 Hz). There are two dorsiflexion cycles
in this trial with different elapsed times, which is likely due
to the difficulty for participants to generate exactly repeated
motion. The normalization of sEMG MRMS and PA from this
typical trial are also shown in Fig. 3 (b). Correlation analysis
is performed to reveal the preliminary relationships between
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Figure 3: (a) Original measurements of load cell, sEMG and
PA of trial 1 during A1S0. During one contraction cycle, the
force on load cell and PA are increasing monotonically, as well
as the magnitude and density of sEMG are both increasing. (b)
Computed ankle joint moment, as well as the normalization
of sEMG MRMS and PA.

Table I: Correlation analysis results under 7 scenarios on A1
between ankle joint moment and normalized sEMG MRMS,
between ankle joint moment and normalized PA

Variables Moment and sEMG MRMS Moment and PA
Correlation analysis CC P CC P

S0 0.8145 <0.0001 0.8708 <0.0001
S5 0.9724 <0.0001 0.8106 <0.0001

S10 0.7939 <0.0001 0.8575 <0.0001
S15 0.9665 <0.0001 0.8281 <0.0001
S-5 0.9793 <0.0001 0.8823 <0.0001

S-10 0.9747 <0.0001 0.8347 <0.0001
S-15 0.9831 <0.0001 0.8186 <0.0001

moment and sEMG MRMS, as well as between moment and
PA. The results under 7 scenarios on the first participant are
listed in Table I, where CC means the averaged correlation
coefficient for the three trials under each scenario, and P means
the averaged p-value for testing the null hypothesis. The results
reveal that the corresponding correlation between the ankle
moment and sEMG is significant, and the corresponding cor-
relation between the ankle moment and PA is also significant.

The time delay between sEMG and load cell is defined
as EMD, which is varying across different participants. It is
assumed that the EMD value remains same per participant
across scenarios. The averaged EMD value from all trials
during all scenarios on each participant are listed in Table II,
which are used in the neural activation in (1). The MRMS can
smooth the original sEMG singles, which appears the similar
functionality as a low-pass filter. However, the length of the
moving window T4tk in (13) affects both the smoothness
and information integrity of sEMG signal. To make a trade-
off, T4tk is set as 0.2 second throughout all experiments.



Table II: Averaged EMD for all scenarios on each participant

Participant A1 A2 A3 A4
Averaged EMD (ms) 40 45 42 48

B. Results of System Identification

The focus in this work is to predict ankle dorsiflexion
moment during the VC rising period, which ranges from no
contraction to MVIC, such as between 1.40 s and 2.78 s in
Fig. 3. During A1S0, there are two more repeated trials and
the pre-processed results are similar to Fig. 3. In total, there
are 84 trials in different scenarios on 4 participants. There
are three different categories that calculate muscle activation,
which was defined in (4). If δ = 1, it is treated as sEMG-
induced muscle activation, if δ = 0, it is treated as PA-induced
muscle activation, and if 0 < δ < 1, it is treated as synthesis-
induced muscle activation. The three categories of muscle
activation correspond to three kinds of HNM with unknown
parameters. To derive these parameters and perform HNM-
based dorsiflexion moment prediction, system identification
(SI) is performed. The schematic of the proposed HNM-
based SI is presented in Fig. 4, where the synthesized muscle
activation depends on both sEMG signal and US images.
Five unknown parameters (δ, A, c1, c2 and b1) need to be
identified in the SI with synthesized muscle activation, while
four unknown parameters (A, c1, c2 and b1) in the other two
situations. In each trial, the Matlab function lqscurvefit is
utilized to determine the unknown parameters for three HNMs
with same initial values, which is also defined as the training.

Data collected during the first VC rising period in each trial
as shown in Fig. 3 (b) between 1.40 s and 2.78 s are used for
training step, and the data in the remaining second VC rising
period are used for prediction. Corresponding to the trial in
Fig. 3, the training results based on three kinds of HNMs are
presented in Fig. 5, where red solid line, deep blue dashed
line, green center line, and blue dotted line represent the
moments from measurement (Ml), synthesis-induced training
(Mboth), sole sEMG-induced training (MsEMG), and sole PA-
induced training (MPA), respectively. Among three training
methods, the tracking performance of Mboth is the best. To
quantitatively evaluate the performance of three training meth-
ods for repeated trials during A1S0, root mean square values
(RMS) of errors (errors between Mboth and Ml, MsEMG

and Ml, MPA and Ml are represented as e1, e2 and e3)
and R-squared values (R2) between trained moment and
measured moment are calculated. RMS of e1, e2 and e3 values
are 1.21±0.19 N·m (mean±standard deviation), 1.61±0.40
N·m, and 3.05±0.43 N·m, respectively, and R2 values are
0.978±0.007, 0.963±0.018, and 0.902±0.026, respectively.
These preliminary training results indicate that, potentially,
the synthesis-induced HNM can provide better ankle moment
predictions.

Without loss of generality, the main purpose of these three
categories of SI is to retrieve the unknown parameters based
on least mean square (LMS) criterion. During each scenario
for each participant, there are three VC rising periods utilized
to get three groups of unknown parameters for HNMs with
different muscle activation categories. The averaged value of

Figure 4: Schematic of the HNM-based system identification
methodology. The synthesized muscle activation combines
both sEMG signal and US images. Neural activation are
derived from sEMG MRMS, which composes one part of
muscle activation, and the other part of muscle activation
comes from the normalized PA from US images.
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Figure 5: Training results based on HNM-based approach with
synthesized muscle activation, sole sEMG-induced muscle
activation, and sole PA-induced muscle activation of trial 1
during A1S0.

each parameter in those three groups is computed and regarded
as the unique identified parameters during that scenario. Table
III (see Appendix) contains the unique parameters for HNM
based on synthesized muscle activation during each scenario
on 4 participants, while Table IV (see Appendix) and Table V
(see Appendix) contain the unique parameters for HNM based
on sEMG-induced muscle activation and PA-induced muscle
activation, respectively.

In Table V, all the shape coefficients A are all equal to 0.080
in every scenario on every participant, however, the rest of the
results from the parameter identification show a variance in a
same parameter across scenarios on the same participant. For
example, there is no constant allocation coefficient between
the sEMG-induced and PA-induced muscle activation across 7
isometric dorsiflexion scenarios for each participant as listed in
Table III. In addition, the identified values of c2 are fluctuating
around 1 for all scenarios, and apart from A1S5, A1S10,
A1S15 and A1S-5, the identified values of c1 are all less
than 1. All these HNM parameters are used for the moment
prediction as described in the next section.



4.8 5 5.2 5.4 5.6
Time [s]

0

5

10

15

20

25
An

kl
e 

do
rs

ifl
ex

io
n 

m
om

en
t [

N
·m

]

Measurement
Prediction by both
Prediction by sEMG
Prediction by PA

Figure 6: Prediction results by using the HNM-based approach
with the synthesis-induced, only sEMG-induced, and only PA-
induced muscle activation in trial 2 of A4S5.

C. Results of Model-based Prediction

All the parameters identification are off-line and it is as-
sumed that the unknown parameters remain constant in each
corresponding scenario for prediction due to the autonomous
HNM system. Three repeated dorsiflexion cycles in each
scenario on each participant (the second VC rising period
as shown in Fig. 3) are utilized to validate the effectiveness
of the proposed HNM-based moment prediction method. For
example, the prediction results of one typical trial during
A4S5 are shown in Fig. 6, where red solid line, deep blue
dashed line, green center line and blue dotted line represent
the moment from measurement (Ml), synthesis-induced pre-
diction (Mboth), sole sEMG-induced prediction (MsEMG) and
sole PA-induced prediction (MPA), respectively. Obviously,
synthesis-induced prediction is the best approach to track the
measured joint moment. During A4S5, the RMS of e1, e2 and
e3 are 1.21±0.21 N·m, 2.29±0.38 N·m and 2.89±1.04 N·m,
respectively, as well as the R2 between the predicted moment
and measured moment are 0.979±0.016, 0.933±0.031 and
0.964±0.027, respectively.

For every scenario on 4 participants from A1S0 to A4S-
15, the same quantitative evaluation is performed as men-
tioned above. Furthermore, to investigate the generalization
of the proposed prediction method, validations across sce-
narios (VAS) and validations across participants (VAP) are
performed. VAS analysis potentially shows that prediction can
also be applied in non-isometric ankle dorsiflexion and VAP
analysis potentially shows the prediction’s generalizability or
applicability on different human participants.

The RMS values of e1, e2, and e3 in VAS are shown in
Fig. 7 (a), and R2 between predicted and measured ankle
moment in VAS are shown in Fig. 7 (b). Similarly, the RMS
values and R2 values in VAP are shown in Fig. 8 (a) and
Fig. 8 (b), respectively. The Kolmogorov-Smirnov test is used
to determine if the RMS data and R2 data are normally
distributed data sets in these two validation types. The test
shows that the RMS data and R2 data sets are normally
distributed. In VAS, Fig. 7 (a) shows that the averaged RMS of
e1 is smaller than that of e2 or e3. Furthermore, to determine

whether there exists a significant difference between RMS
of e1 and RMS of e2 or e3, one-way analysis of variance
(ANOVA) and Tukey’s honestly significant difference test
(Tukey’s HSD) are used. As shown in Fig. 7 (a), apart from the
comparison between RMS of e1 and RMS of e2 on participant
A4, all other comparisons show significant difference between
RMS of e1 and RMS of e2, as well as between RMS of e1 and
RMS of e3, which implies the HNM with synthesized muscle
activation can significantly reduce the RMS of errors between
the predicted and measured moment than sole sEMG-induced
muscle activation or sole PA-induced muscle activation. Fig.
7 (b) shows that the averaged R2 of Mboth-Ml is higher than
that of MsEMG-Ml or MPA-Ml. Furthermore, apart from
the comparison between R2 of Mboth-Ml and R2 of MPA-
Ml on participant A3, all other comparisons show significant
difference between R2 of Mboth-Ml and R2 of MsEMG-Ml,
as well as between R2 of Mboth-Ml and R2 of MPA-Ml,
which implies the HNM with synthesized muscle activation
can also significantly improve the R2 between the predicted
and measured moment than sole sEMG-induced muscle acti-
vation or sole PA-induced muscle activation.

In VAP, without loss of generality, Fig. 8 (a) shows that the
averaged RMS of e1 is smaller than that of e2 or e3 except for
S-15, and Fig. 8 (b) shows that the averaged R2 of Mboth-Ml

is higher than that of MsEMG-Ml or MPA-Ml. Furthermore,
the results in Fig. 8 (a) show there is no significant difference
between RMS of e1 and RMS of e3 during S0, between RMS
of e1 and RMS of e2 during S-10 and S-15. The results in
Fig. 8 (b) show there is no significant difference between R2

of Mboth-Ml and R2 of MsEMG-Ml during S-10 and S-15,
between R2 of Mboth-Ml and R2 of MPA-Ml during S0 and
S-5. By comparing RMS of e1 and RMS of e2 or e3, the
rates of significant RMS reduction by employing synthesis-
induced muscle activation for prediction are 71.43 % (5 out
of 7 scenarios) and 85.71 % (6 out of 7 scenarios). Similarly
by comparing R2 of Mboth-Ml and R2 of MsEMG-Ml or
MPA-Ml, both rates of the significant R2 improvement are
71.43 % (5 out of 7 scenarios).

The analysis of prediction results through VAS and VAP
reveals a strong potential that the proposed HNM-based ankle
dorsiflexion moment prediction method, by combining sEMG
and PA, would reduce the RMS of prediction error and
improve the R2 between the prediction and measurement.

D. Discussion

In the current study, an sEMG and PA synthesis-induced
HNM was developed to predict the joint moment during volun-
tary isometric ankle dorsiflexion. The architectural parameters
from US images were utilized to formulate the participant-
specific musculoskeletal geometry model. The sEMG was
utilized to build the neural activation model contributing to
part of the muscle activation model and PA was utilized
to build the other part of the muscle activation model. By
adjusting eachcomponents’ allocation coefficients, three kinds
of SI were used to identify unknown parameters in dif-
ferent HNMs individually. By implementing the identified
parameters in each HNM (i.e., different muscle activation
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Figure 7: Prediction performance based on HNM with three
kinds of muscle activation through VAS. (a) RMS of e1, e2

and e3 on each participant. (b) R2 between the predicted and
measured ankle joint moment on each participant. * represents
the significant difference level is at p<0.05, ** represents the
significant difference level is at p<0.01, and *** represents the
significant difference level is at p<0.001.

types), the dorsiflexion moment prediction performance for
each HNM was compared . The feasibility and reliability of the
sEMG and PA synthesis-induced HNM were evaluated through
VAS and VAP analysis. The experimental results showed that
the synthesis-induced HNM can provide higher dorsiflexion
moment prediction accuracy than using sole sEMG or sole
PA extracted from US images in the HNM.

The idea that establishes an HNM that uses structural vari-
ables from US images to predict muscle force or joint moment
has also been studied in recent research work. Dick et. al [22]
compared the human gastrocnemius forces predicted by Hill-
type models with forces estimated from US-based measures of
tendon length change and stiffness during a cycling scenario.
However, only sEMG was used to derive muscle activation for
both slow and fast muscle fibers. In [43], a geometrical model
and a Hill-type musculotendon model were combined to pre-
dict an individual muscle force. A linear envelope method was
used to obtain muscle activation level from EMG. Recently,
traditional HNM-based force or torque prediction based on
sEMG signals have been studied in [27], [28]. However, those

(a)

(b)

Figure 8: Performance comparison based on HNM with three
kinds of muscle activation through VAP. (a) RMS between
the predicted and measured ankle joint moment corresponding
to different muscle activation sources. (b) R2 between the
predicted and measured ankle joint moment corresponding to
different muscle activation sources.

studies only considered the EMG-induced activation factor in
the muscle activation dynamics. Few studies have incorporated
the architectural parameters of the targeted muscle to the
muscle contraction in an HNM. In addition, the approximated
offline physiological parameters from OpenSim software can
hardly reflect the real-time neuromuscular conditions of an
individual participant. Furthermore, the subjective real-time
implementation of the HNM is significantly limited due to
the virtual and asynchronous physiological parameters of the
targeted muscle.

The merits in this work include two aspects. The first merit
is that we introduce variables from US images to establish
the HNM, where the muscle activation is designed as the
weighted summation of sEMG-induced activation and PA-
induced activation. The second merit is that the calculation
of fascicle length, fascicle velocity, and PA are based on the
optical flow tracking algorithm, which provides the potentials
for real-time implementation. The proposed HNM-based dorsi-
flexion moment prediction approach provides higher reliability
and accuracy for human movement intent detection. Based
on the human movement intent, advanced control strategies



like “assist-as-need” control scheme [1]–[3] can be developed
successfully for state-of-the-art neurorehabilitation techniques,
including powered exoskeletons [44]–[46] and functional elec-
trical stimulation (FES) [47], [48]. These two technologies aim
to induce neural reorganization through therapeutic exercises
[42] are essential to improve weakened function or dysfunction
of ankle dorsiflexion, like drop foot that may result from spinal
cord injury (SCI) [49] or cerebral vascular accidents [50].

“Why the HNM-based approach that combines an sEMG
signal and a US imaging signal predicts ankle dorsiflexion
moment with a higher accuracy? We propose that both signals
provide complementary information. An sEMG signal and a
US imaging signal are both indirect measures of descending
neural signals from the spinal cord. sEMG signals measure
electric potentials generated by muscle cells when they are
neurally activated. The amplitude of a filtered and rectified
sEMG signal linearly correlates with the number of firing
neurons, which offers a physical measurement of the micro-
physiological response [51]. While, US imaging signals show
visualized information of the macro-physiological response
[52] of a targeted muscle caused by a neural firing. Thus,
sEMG signals and US-imaging derived signals provide the
information from an electrical aspect and a mechanical aspect,
respectively, in response to the same physiological stimu-
lus. Secondly, considering the individual shortcomings of the
sEMG signal and the US imaging signal, which are mentioned
in the introduction section, their combination can 1) mitigate
any cross-talking effect from neighboring sEMG signals, 2)
lower the PA calculation drift caused by the accumulated
fascicle orientation using an optimal flow tracking algorithm.
Therefore, the combination of the micro-related and macro-
related information results in a better ankle moment prediction
performance.

However, there exist some limitations in the current work.
The accuracy of geometry parameters extraction from US
images depends on the effectiveness of Muscle Fascicle
Tracking software and the US imaging frame rate. If the
frame rate is too high, the low signal-to-noise ratio (SNR)
between consecutive frames can deteriorate the fascicle track-
ing performance. However, if the frame rate is too low, even
though SNR is high, the large deformation between successive
US images result in a low correlation. Therefore some obvious
features of the fascicle in current frame might not fully
remain in next frame, which also negatively affects the fascicle
tracking performance. As shown in Fig. 5, theoretically, with
the increasing of VC, the moment in PA-induced training
should increase monotonically. However, it decreases from 2.4
s to 2.6 s. This inaccuracy affects severely on both synthesis-
induced and PA-induced HNM-based moment prediction than
sEMG-induced moment prediction. The unknown parameters
in HNM on the same participant may be time varying for
different trials in each scenario, but the recognition of this
change is still an open research area, which is not included
here. Furthermore, the current study is limited to unipennate
muscles or to a bipennate TA, provided region of interest
(ROI) is focused to a smaller region where muscle fascicles
have same orientation. The study does not provide methods to
compute PA from multipennate and circumpennate muscles.

V. CONCLUSION

To non-invasively predict ankle dorsiflexion moment, a
modified version of HNM was proposed by combing sEMG
signal and PA extracted from US images. This model was com-
pared with HNMs with sole sEMG-induced muscle activation
or sole PA-induced muscle activation. The unknown parame-
ters from the three HNMs were identified based on nonlinear
least squares method through synchronously recorded load
cell, sEMG, and PA signals. The HNM-based ankle dorsiflex-
ion moment prediction was performed by using the identified
parameters and new recorded data sets. Both VAS and VAP
verified the effectiveness and reliability of this model-based
moment prediction method. The statistical analysis of VAP
showed that RMS of prediction errors in sole sEMG-induced
model and sole PA-induced model were significantly reduced
by 71.43 % (5 out of 7 scenarios) and 85.71 % (6 out
of 7 scenarios) compared to synthesized model, respectively,
and R2 between predicted and measured ankle joint moment
in sole sEMG-induced model and sole PA-induced model
were both significantly improved by 71.43 % (5 out of 7
scenarios). These findings provide a more accurate approach
for detecting human movement intention of lower limbs, which
is beneficial for developing robot-assisted or FES-assisted
lower limb motor function recovery based on the assist-as-
needed principle.

APPENDIX

The parameters from system identification based on three
kinds of HNMs are given in the supplementary document.
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