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Abstract Convective organization has a large impact on precipitation and feeds back on larger-scale
circulations in the tropics. The degree of this convective organization changes with modes of climate
variability like the El Niño–Southern Oscillation (ENSO), but because organization is not represented in
current climate models, a quantitative assessment of these shifts has not been possible. Here, we construct
multidecade satellite climatologies of occurrence of tropical convective organization and its properties and
assess changes with ENSO phase. The occurrence of organized deep convection becomes more
concentrated, increasing threefold in the eastern and central Pacific during El Niño and decreasing twofold
outside of these regions. Both horizontal extent of the cold cloud shield and convective depth increase in
regions of positive sea surface temperature anomaly (SSTa); however, the regions of greatest convective
deepening are those of large-scale ascent, rather than those of warmest SSTa. Extent decreases with SSTa at
a rate of about 20 km/K, while the SSTa dependence of depth is only about 0.2 K/K. We introduce two
values to describe convective changes with ENSO more succinctly: (1) an information entropy metric to
quantify the clustering of convective system occurrences and (2) a growth metric to quantify deepening
relative to spreading over the system lifetime. Finally, with collocated precipitation data, we see that
rainfall attributable to convective organization jumps up to 5% with warming. Rain intensity and amount
increase for a given system size during El Niño, but a given rain amount may actually fall with higher
intensity during La Niña.

Plain Language Summary Tropical storms at an intermediate scale between individual
thunderstorms and cyclones or hurricanes are not represented by climate models. As the satellite data
record now spans several decades, we can use these observations to understand how large storms change
during El Niño periods. Here, we find that warmer waters in the central and eastern Pacific during El Niño
cause a dramatic increase in storm occurrence. Storms are more likely to occur near to other storms and
to become larger in both the vertical and horizontal. Changes to large-scale winds are more influential on
these structural factors than locally warmer ocean water. The hydrological impact of these storms is also
important because they bring the majority of precipitation in some regions. We see that a storm of a certain
extent brings larger volume and intensity of rain during El Niño. But a certain rain volume may actually fall
with greater intensity during La Niño.

1. Introduction
Under the right conditions, individual deep convective cells can develop into larger-scale systems with
long lifetimes and self-sustaining circulations. These systems include mesoscale convective systems (MCS),
mesoscale convective complexes, and superclusters and are generally characterized by strong vertical
motions and intense precipitation in a localized area (Houze, 2004). We define organized convection here
as meso-𝛼 systems with a cold cloud shield of infrared (IR) brightness temperature 245 K or less over an
area of at least 90-km equivalent radius and with at least one convective core of IR brightness temperature
220 K or less, following Machado et al. (1998) and Rossow and Schiffer (1999). This organization can have
important radiative and dynamical impacts on climate via outflow cirrus and adjustments to the vertical
latent heating profile (Bouniol et al., 2016; Roca et al., 2014; Schumacher et al., 2004), while associated pre-
cipitation contributes disproportionately to the tropics-wide accumulation (Nesbitt & Zipser, 2003; Tao &
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Chern, 2017). Given their association with flooding, strong winds, and hail, it is important to understand
how these systems will adjust to tropical sea surface temperature (SST) gradients during different phases of
the El Niño–Southern Oscillation (ENSO), a dominant mode of climate variability.

Many studies have looked at changes in storm occurrence or strength with ENSO or greenhouse warming.
Although trends of storm occurrence are less clear, intensification of tropical cyclones and hurricanes is
fairly well established (e.g., Emanuel, 2005; Held & Zhao, 2011; Knutson & Tuleya, 2004; Lau & Zhou, 2012;
Stephens et al., 2018). Trends in extreme rainfall are less subject to energetic constraints (Allen & Ingram,
2002) and often explained in terms of a Clausius-Clapeyron (CC) scaling of 7% increase in the moisture
holding capacity of air per degree of surface warming. Sub-CC and super-CC scalings are found in different
regions (e.g., Bao et al., 2017; Chou et al., 2013; Singleton & Toumi, 2013), but precipitation increases in the
absence of moisture limitations are generally agreed upon (e.g., Fischer & Knutti, 2016; Prein et al., 2016).
If these increases are decomposed into those from isolated versus organized convection, the latter is 4 times
more likely to produce rainfall intensities of greater than 2 mm/hr (Rossow et al., 2013).

While patterns of cyclone intensification and associated precipitation have been well studied, long-term
effects of warming on mesoscale convection are not fully understood. This gap is an important link in a
hierarchy of convective scales from individual thunderstorms up to hurricanes. Along with precipitation,
convective properties like system depth, width, core-to-core proximity, and speed also adjust to warming
(Romps, 2011). Changes to the large-scale circulation have a strong influence on these properties. As the
zonal SST gradient drops across the Pacific during El Niño, the overlying pressure gradient and trade winds
weaken, and an anomalous easterly flow forms in the West Pacific. Internal dynamics of convective organiza-
tion also feed back on this large-scale circulation. For example, the upper-level latent heating by convective
updrafts enhances atmospheric stability, and the proximity of many updrafts in an organized convective
system tends to generate more turbulence and shear (Becker et al., 2018; Romps, 2014). As convection
aggregates, the quiescent environment also becomes drier and the quantity of outgoing longwave radiation
decreases (Holloway et al., 2017).

Much current understanding of how convection organized on the mesoscale should adjust to surface warm-
ing comes from idealized simulations or regionally limited data (e.g., Anderson & Arritt, 2001; Feng et al.,
2018; Laurent et al., 2002; Morel & Senesi, 2002; Muller, 2013; Prein et al., 2017). Models are natural tools
to predict changes in weather system properties, but the combination of large overall extent and smaller
embedded elements makes convective organization particularly challenging to parameterize and forecast.
While coupling of precipitation and circulation at the meso-𝛾 and meso-𝛽 scale from 2 to 200 km appears
to be tightest, it is also the scale least well represented by convective parameterization (Klocke et al., 2017).
Even cloud-resolving simulations of mesoscale storms are hampered by their turbulence and microphysics
parameterizations, domain-size sensitivity, and imposed large-scale forcing (Hasino et al., 2013). Particu-
larly in the tropics, the majority of simulations with limited domain and prescribed boundary conditions
do not include the important interaction of convection with the large-scale circulation (Anber et al., 2015;
Kuang, 2007).

As the diversity and resolution of our observations improve, measurement-based studies have also begun to
appear. Feng et al. (2016) recently employed a combination of satellite, radar, and rain gauge observations
to show that recent changes in the extreme and total rainfall in the central United States are due in large
part to MCS that form over the Rockies. Roca et al. (2014) have shown that MCS of 12-hr duration or longer
bring 75% of tropical precipitation, and the subset of these systems traveling 250 km or more bring 60%.
Several studies have compiled climatologies of tropical rainfall (Elsaesser & Kummerow, 2010; Houze et al.,
2007; Zipser et al., 2006), and Henderson et al. (2017) have shown that organized precipitation causes much
of the discrepancy between Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and
precipitation radar (PR) retrievals during El Niño periods. They have also used TRMM data to show an
increase in upper tropospheric (UT) moisture and stratiform rainfall during El Niño periods (Henderson
et al., 2018). To build upon these efforts, we present tropics-wide, long-term climatologies of the properties of
organized convection and its associated rainfall, based upon remote sensing observations and differentiating
for El Niño phase.
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Figure 1. Schematic of the organized convective system (1) detection, (2) cluster identification, and (3) tracking within
the International Satellite Cloud Climatology Project DX database.

2. Data and Methods
2.1. Detection and Tracking of Organized Convection
Data on occurrence and properties of deep convection come from the International Satellite Cloud Clima-
tology Project (ISCCP) pixel-level cloud product called the DX data set between July 1983 and July 2008
(Rossow & Schiffer, 1999; Rossow et al., 1996). The ISCCP DX data set is based upon the satellite-measured
radiances in the atmospheric window IR band at ≈11 μm and visible band at ≈0.6 μm to distinguish cloudy
and clear pixels. Brightness temperature, TIR, is calculated from these radiances, and high-level clouds are
identified as those with TIR ≤ 245 K (Figure 1). Equating TIR with cloud top temperature implies that the
cloud acts as a blackbody to absorb all incident IR radiation, approximately true for very opaque clouds in
the IR band where absorption efficiency is close to 1 (Kidder & Haar, 1995). Even for these optically deep
clouds, this radiative temperature lies 1 to 2 km below the cloud top (Sherwood et al., 2004).

Thereafter, cloudy pixels are grouped into horizontal clusters (Figure 1(2)). Pixels with one or more edges
adjacent to a clear-sky pixel are classified as cloud edge pixels, and a unique cluster has a periphery of cloud
edge pixels that do not touch another cluster (Machado & Rossow, 1993; Wielicki & Welch, 1986). This clus-
tering is done both with a TIR threshold of 245 K or less noted above and also with a more stringent value
of 220 K or less. This approach was first documented in Machado et al. (1998) and has been widely used
and developed since (e.g., Laurent et al., 2002; Masunaga et al., 2005; Morel & Senesi, 2002). The first set of
clusters can be understood as mesoscale anvil cloud, and the latter as the cumulonimbus clouds embedded
within the larger system. In general, regions of colder TIR are optically thicker. We refer to these classifi-
cations as the convective system and core, respectively. The maximum zonal and meridional extent of the
cloudy clusters is recorded for each detection in the database.

A variety of TIR thresholds has been used in the past to define cold cloud shields, for example, from 207
up to 253 K in Machado et al. (1992). These showed relative insensitivity of the cluster populations to the
threshold, as did tests by Fiolleau and Roca (2013) during their development of the Tracking Of Organized
Convection Algorithm through a 3-D segmentatioN (TOOCAN). TIR depends both on cloud top tempera-
ture and cloud emissivity/optical depth, so at warmer TIR, midlevel clouds may be spuriously assigned to the
anvil. TOOCAN employs a 235-K threshold (Bouniol et al., 2016), as does the recent study of Wall et al. (2018)
on anvil lifecycle using Himawari-8 data. Our 245-K threshold may include anvil regions with emissivity
down to 0.65, while a value of 235 K allows for clouds with emissivity down to 0.75 (Protopapadaki et al.,
2017). Several methods also combine TIR and the extent of a precipitating region (Feng et al., 2016; Yuan
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& Houze, 2010). Although we have not used this combined detection, distributions of precipitation accu-
mulation and intensity collocated with the convective systems have modes around 200 m3/s and 2 mm/hr,
respectively, and we have retained only systems with at least one core meeting the 220-K threshold.

From this detection, the location, cloud top temperature, and extent of both systems and cores can be
recorded. The extent is calculated as an equivalent radius of the area covered by the pixels; that is, r = [(n
x a)/𝜋]1/2, where n is the number of pixels and a is 900 km2 for pixels with an area of 30 km by 30 km
(Machado & Rossow, 1993). An extent criterion of 90 km in equivalent radius, that is, 3 pixels, is enforced.
At this spatial resolution, cores must have an equivalent radius of at least 16 km (≈ [900 km2∕𝜋]1/2), so that
we do not capture smaller thunderstorm convection; however, we are interested in convective organization
on the larger meso-𝛼 scales in any case. If the meso-𝛽 and meso-𝛼 scales are divided at the 200-km length
scale, 75% of our features are meso-𝛼 at any given time and 95% reach meso-𝛼 at some point in their lifetime.
A total of 1,647,238 such features with embedded cores is detected with an average system equivalent radius
of 133 km. They have on average 2.9 embedded convective cores with an average equivalent radius of 25 km.

The 3-hourly temporal resolution of the satellite measurements should capture all occurrences of
longer-lived convective organization. The threshold to qualify as a convective system is generally set at 4 hr
or longer (Bouniol et al., 2016; Hagos et al., 2013; Tsakraklides & Evans, 2003). Three-hourly resolution has
also been used in other studies to identify the influence of vertical wind shear, convective available potential
energy (CAPE), and aerosol concentrations on convective lifetimes (Chakraborty et al., 2016); to evaluate
expected duration and diurnal variation in deep convective events (Ricciardulli & Sardeshmukh, 2002);
and to develop life cycle statistics for both continental and oceanic systems (Mapes et al., 2009; Vant-Hull
et al., 2016). The life cycle of these systems is generally understood in three phases—deep convective initia-
tion, surrounding stratiform development, and system dissipation (Bouniol et al., 2016; Houze, 2004)—and
system duration can range from 9 or 10 hr up to 30, dependent on both the dynamic and microphysical con-
ditions (Feng et al., 2018; Punkka & Bister, 2015). More recent regional convective databases are moving
toward hourly or even half-hourly temporal resolution to better illustrate this evolution (Feng et al., 2016;
Roca et al., 2017). Although higher resolution is desirable, the advantage of our data is its long duration and
consistent coverage, which allow us to build robust ENSO-related signals.

The tracking aspect of the database constructs a 5◦ × 5◦ box (assuming here that the system velocity is less
than 60 m/s) around each system center and queries this box in the subsequent +3-hr satellite image for the
continued presence of systems (Figure 1(3); Machado et al., 1998). A 15% areal overlap requirement is also
imposed. This area-overlapping technique has historically been the most commonly used with threshold
values from 5% to 50% (Arnaud et al., 1992; Fiolleau & Roca, 2013; Goyens et al., 2011). Some studies have
also used fractional overlap as a function of system size (Williams & Houze, 1987). Machado et al. (1998),
with the same methodology as this study, found limited sensitivity of convective properties to their tracking
parameters. If a proceeding system is found, a weighted average between all of its properties and all of those
of the preceding system is calculated. If there are other candidate preceding systems, an average is calculated
for each, and the system is assigned to the preceding system with the most similar properties. If no match
is made, the track ends. A subtlety of this process is the possibility for system splitting and merging. For
splitting, the database will record the more similar of the two systems to the preceding one and initiate the
second as a new system. Merges far outnumber splits (Vant-Hull et al., 2016), and the database terminates
the track of a smaller system that has merged with a larger one. Alternative methods could continue to
classify both split elements of a system as the initiating system or to classify a merged system as a new one,
rather than a continuation of the initiating one (Machado et al., 1998; Williams & Houze, 1987). Relative to
the techniques employed here, the first of these should identify less frequent, longer-lived systems, while
the latter should identify more frequent, shorter-lived systems.

2.2. Collocated Meteorology and Precipitation
With this convective tracking database, we collocate SSTs and CAPE from the European Centre for
Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) at 1◦ and 6-hourly resolution (Dee
et al., 2011). If there is no exact temporal collocation, we take the value preceding system passage by
3 hr. Spatial collocation is done to the nearest full degree latitude and longitude from the system center
or the system core. Local SST anomalies are calculated below as the difference in the local SST and the
December–February climaotological mean between July 1983 and July 2008.
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Precipitation data come from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) project version
2.2 at 0.5◦ spatial and 3-hourly temporal resolution over the same time period (Beck et al., 2017). MSWEP
synthesizes rain gauge (Climate Prediction Center Gauge-Based Analysis of Global Daily Precipitation and
the Global Precipitation Climatology Centre) and satellite measurements (CPC morphing, Global Satellite
Mapping of Precipitation, and Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis)
with reanalysis data (ERA-Interim and the Japanese 55-year Reanalysis). These products were selected based
on the accuracy of their temporal variability relative to a bias-corrected long-term mean from the Climate
Hazards Group Precipitation Climatology (Funk et al., 2015).

The chosen satellite and reanalysis products are merged with rain gauge measurements, where the latter
are weighted according to gauge density at a given location and the former according to their agreement
with the nearest rain gauges. The advantage of this methodology is that a synthesis of products overcomes
the biases in each individually. For example, elevation biases and wind-induced undercatch exist for purely
gauge-based data sets, and given the highly localized nature of precipitation, their utility is in proportion
to their density (Kidd et al., 2017). Satellites obviate the issue of coverage for gauges, but at the expense of
seasonal biases related to snow and ice cover and insensitivity to light rainfall (Kidd et al., 2012). Reanalysis
captures the precipitation associated with synoptic systems well but may fail for more sporadic convection
(Beck et al., 2017). Given that annual precipitation may vary by up to 300 mm from one data set to the next
(Sun et al., 2017), a combination of data types is a promising approach, similar to the utility of climate model
ensembles relative to a single model run. Indeed, in an intercomparison of long-duration gauge-corrected
precipitation products, MSWEP data produced the highest temporal correlation coefficients with pure gauge
measurements (Beck et al., 2017).

From the MSWEP V2.2 values, we calculate precipitation accumulation by summing precipitation rate from
the minimum latitude and longitude up to the maximum latitude and longitude covered by the convective
system and assuming that each 0.5◦ × 0.5◦ grid cell has an approximate area of 3,025 km2. The maxi-
mum precipitation intensity is the single highest value within the subdomain over which the precipitation
accumulation is calculated.

2.3. Collocated High-Cloud Properties
As the deep convective cloud systems determined by ISCCP only include the thicker part of the anvils with
a TIR threshold of 245-K and IR emissivity threshold of about 0.6 (Figure 2 of Protopapadaki et al., 2017),
we also collocate these convective systems with UT cloud systems, identified from IR sounder retrievals of
cloud top pressure pcld and emissivity 𝜖cld (Stubenrauch et al., 2013). The high spectral resolution of these
instruments allows reliable cirrus identification, down to an IR optical depth of 0.1, both during daytime
and nighttime (Stubenrauch et al., 2013). Since 2002, aboard the Aqua satellite, the Atmospheric Infrared
Sounder passes the tropics at 01:30 and 13:30 LT, providing bidaily data with a spatial resolution of 13.5 km
at nadir (Chahine et al., 2006). High-level clouds are defined by pcld ≤ 440 hPa, and UT cloud systems are
constructed by merging adjacent grid cells of 0.5◦ latitude by 0.5◦ longitude with similar pcld (Δpcld < 50 hPa).
Convective cores, cirrus anvil, and thin cirrus within these systems are then identified by 𝜖cld > 0.98, 0.98
> 𝜖cld > 0.5, and 0.5 > 𝜖cld > 0.1, respectively (Protopapadaki et al., 2017). These data are referred to as the
upper tropospheric cloud system (UTCS) database hereafter.

2.4. El Niño Indices
A variety of indices exist to differentiate the warm and cold phases of ENSO. The Oceanic Niño Index (ONI),
which we use here, is the most commonly used. ONI is defined as the SST anomaly (SSTa) in the Niño 3.4
region from 5◦N to 5◦S and from 120◦W to 170◦W using the National Oceanic and Atmospheric Adminis-
tration/National Climatic Data Center Extended Reconstructed Sea Surface Temperature data set version
5. Given recent warming trends, anomalies are now calculated from a 30-year base period. So, for exam-
ple, ONI values for 1990 will be calculated from the mean of a 1975-to-2005 base period. To classify as an
El Niño month, the ONI must be greater than +0.5 in a 3-month running mean. Likewise, to be classified
as a La Niña month, the mean ONI must be less than −0.5 for a 3-month span. “El Niño climatologies” or
“El Niño means/statistics” then refer to the convective data and/or its collocated meteorology and precipita-
tion during all months classified as El Niño. ONI values are available online (www.esrl.noaa.gov/psd/data/
correlation/oni.data).

The Multivariate ENSO Index (MEI) will also be used below and is calculated as the first empirical orthogo-
nal function of a combination of sea level pressure, zonal and meridional surface winds, SST, and outgoing
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Figure 2. Oceanic Niño Index (a) and the Multivariate ENSO Index (b) over the period of interest from July 1983 to
July 2008. El Niño and La Niña periods are highlighted in red and blue respectively, and values of 0 and ±0.5 are
shown in dashed lines. ENSO = El Niño–Southern Oscillation.

longwave radiation over the Pacific from 30◦S to 30◦N and from 100◦E to 70◦W. These empirical orthogo-
nal functions are calculated with a 2-month running mean, and their values are available online (www.esrl.
noaa.gov/psd/enso/mei/). Time series of both the ONI and MEI for the duration of the ISCCP convective
tracking data are shown in Figure 2. The two metrics allow us to see the impact of El Niño in different ways.
With its incorporation of data on the atmospheric state, the MEI yields convective trends of larger magni-
tude. By requiring the synchronization of more environmental variables, MEI is also less likely to pick up
on transient El Niños than is the ONI. Transient El Niños refer to periods in which the atmosphere-ocean
feedbacks have not yet stabilized. For example, westerly wind bursts generally precede eastern Pacific warm-
ing, but this warming does not necessarily feedback on wind or convective anomalies (Hameed et al., 2018).
MEI will tend to exclude periods like these, while ONI on the basis of SST alone will tend to include them,
generating smoother classifications with longer autocorrelation time scales.

Other indices may use a longer running average (Niño 3.4 Index), temperature gradients over a wider equa-
torial span (Trans-Niño Index), air pressure anomalies rather than SSTa (Southern Oscillation Index), or a
Niño-3.4 region anomaly relative to the global mean SST (Cold Tongue Index). In general, correlation coef-
ficients between any of these indices are at least 0.75 or higher (Wolter & Timlin, 2011, their Table 1). In
all analyses, the tropics are defined as longitudes and latitudes between 33◦S and 33◦N, a domain about 10◦

outside of the Tropics of Cancer and Capricorn that allows us to see both tropical and subtropical effects.

3. Changes in the Occurrence and Structure of Organized Convection
We begin by examinining differences in the occurrence and horizontal and vertical extent of organized
convective systems, differentiated by season and ENSO phase. These difference climatologies reflect the
atmospheric impact of oceanic warming on the zonal overturning (Figures 3a–3d). The relative differences
are shown, meaning that a value of +10% can be interpreted as a 10% gain in a value during El Niño peri-
ods relative to La Niña ones. To test the robustness of these results, we use the two different ENSO metrics
described above.

3.1. Occurrence
The occurrence of organized convection over the central and East Pacific increases during El Niño
(Figure 3a) based upon ONI, reflecting the eastward migration of the ascending branch of the Walker cir-
culation during the warm phase. Occurrence of organized convection increases by as much as a factor of 3
in regions of highest positive SSTa (Figure S1 in the supporting information). Outside of the warmer Niño 3
and 4 regions, convective systems are up to 2 times less frequent during El Niño. Over the Maritime Conti-
nent and Amazon, where regions of ascent intensify during La Niña, system occurrence increases by about
50% locally in the cold phase.
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Figure 3. Climatologies of the relative differences between El Niño and La Niña (for which Oceanic Niño Index ≷ ± 0.5, respectively, between July 1983 and
July 2008) in occurrence, horizontal extent, cloud top temperature gradient (maximum minus minimum cloud top temperature divided by their separation
distance), and minimum cloud top temperature of convective organization (panels a to d). All fields are coarse grained to a 5◦ grid, shown for boreal winter
(December–February), and normalized by the La Niña value. A relative difference of +10% represents a 10% increase in the value during El Niño relative to La
Niña at that particular grid cell. Relative increases during El Niño are shown in red, but note that an increased cloud top temperature implies a shallower
system. Binning of local temporal sea surface temperature (SST) anomaly versus instantaneous cloud top temperature Ttop (e), minimum Ttop (f), instantaneous
equivalent radius req (g), and maximum req (h). The mean is shown in a solid line with a 95% confidence interval for its value filled between the two dashed
lines for both El Niño and La Niña.

Redistribution of convective activity can be understood in terms of the dominant tropical balance of heating
and vertical advection. Because the tropical atmosphere does not sustain large horizontal tropospheric tem-
perature gradients, as the surface warms, convective activity shifts to these warmest SST regions and shuts
down over the cooler ones (Sobel, 2010). The saturation water vapor mixing ratio, qv,sat, also increases with
warming temperatures according to the CC relationship, allowing larger saturation deficits (qv − qv,sat) to
build up. In regions where saturation deficit increases, so does the CAPE, meaning that there is more energy
available to air parcels to ascend convectively. A recent modeling study illustrates how CAPE extremes
increase in a warming climate (Singh et al., 2017), and we see similar shifts in the 99th percentile of the
distributions of CAPE extremes during El Niño relative to La Niña (Figures S4c and S4d).

Using the MEI rather than the ONI, the climatology of occurrence differences is the same qualitatively, but
with quantitatively larger trends, particularly in the occurrence decreases outside of the equatorial Pacific.
The atmospheric signal is stronger with MEI because it incorporates sea level pressure and outgoing long-
wave radiation values, along with SST. A greater duration of time is classified as El Niño with MEI relative
to ONI (Figure 2), and MEI is less likely to record transient periods in which ocean-atmosphere feedbacks
are not well established. Both of these distinctions amplify its warm phase signal.
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Figure 4. Climatologies of relative differences in convective properties between El Niño and La Niña (for which multivariate El Niño–Southern Oscillation
index is greater than its 80th percentile or less than its 20th percentile, respectively between July 1983 and July 2008) (panels a to d), as in Figure 3. Binning of
local temporal sea surface temperature (SST) anomaly and convective properties (panels e to h), also as in Figure 3.

Finally, we can consider the tropics-wide SSTa dependence of the organized convective occurrence over
time, given the long duration of our data set. In regressions of tropics-wide monthly averaged SSTa and
tropics-wide monthly averaged convective occurrence during El Niño periods in the 1980s, 1990s, and 2000s
(Figure S2), the SSTa dependence of occurrence weakens during the most recent and warmest decade. We
can summarize by saying that El Niño sea surface warming coincides with a localized increase in convective
system frequency by as much as a factor of 3, a trend whose magnitude amplified when classifying by MEI
and whose SSTa dependence weakens in recent decades. These shifts in occurrence of organized convection
can be understood in terms of tropical weak temperature gradients and increases to CAPE extremes during
El Niño.

3.2. Horizontal Extent
We next investigate horizontal extent and its lifecycle maximum, corresponding to the mature stage of con-
vection. Along with greater occurrence, organized convection tends to have a greater maximum coverage
during El Niño (Figure 3b). The largest increases occur in the Niño 4 region and off the western coasts of
North and South America, where systems can be up to 50% greater in El Niño relative to La Niña, meaning
for example a 150-km gain in equivalent radius during El Niño for a 300-km system. Off the coast of Cali-
fornia and Mexico in the Northern Hemisphere, atmospheric rivers could play a role, as these jets of water
vapor transport have been observed to intensify during El Niño periods (Kim et al., 2017). Off the coast of
Peru and Chile, a small increase in the typically cool SSTs may be enough to allow the extensive stratocumu-
lus decks there to deepen and then spread. The relative increases amplify when using MEI to differentiate
El Niño and La Niña (Figure 4b). As above, trend amplification may be due both to the addition of atmo-
spheric information and omission of transient periods in which ocean-atmosphere feedbacks are weaker.
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Figure 5. Probability distributions of the thin cirrus (a), thin cirrus fraction of the anvil (b), and cumulonimbus (c) coverage from the upper tropospheric cloud
system database in percentage collocated with systems from the International Satellite Cloud Climatology Project CT database between 2003 and 2008. Those
from El Niño are shown in red, and those from La Niña are shown in blue. The mean of the distributions is shown in a solid line with a 95% confidence interval
given in dashed lines.

The use of the full Pacific basin SST in MEI, rather than only that of the Niño 3.4 region, should also make
this metric more sensitive to the central Pacific El Niños that have been recently increasing in frequency.

If we consider average horizontal extent of these systems, rather than the maximum over their lifetime,
the increase over the central Pacific drops from 50% to about 12%. In decomposing these trends by lifetime
(t ≤ 3 hr, 6 hr ≥ t > 3 hr, and t > 9 hr), the climatological change in maximum coverage is driven by
the longest-lived systems and that in average coverage by the short-lived ones (Figure S5). This is expected
as the primary means of system expansion is through growth of the stratiform region with the decay of
convective cores (Houze, 2004).

What is the relationship between local SSTa and this expansion of convective systems during El Niño? In
panels (g) and (h) of Figures 3 and 4, we show mean horizontal extent and its lifetime maximum as a func-
tion of SSTa, binned to 10 values between −5 and +5 K, separately for El Niño and La Niña months. These
local values are taken from the 1◦ grid prior to coarse graining, and the 95% confidence interval for the
mean convective property is also shown in dashed lines. SSTa are calculated as the temporal difference of
the ERA-Interim SST (at 3-hourly resolution) collocated to the ISCCP systems from the December–February
SST climatology between 1983 and 2008. For both ENSO metrics, extent and its lifetime maximum decrease
as the SSTa increases, but with larger slope or sensitivity during La Niña. The largest discrepancy in
dependencies between the two ENSO phases occurs at warm SSTa up to +2 K and when classifying by MEI.

The radiative impacts of this expansion outside of the warm SST regions will differ, depending on the part
of the system from which these changes come from: Thin upper-level cirrus tend to warm the upper atmo-
sphere, while the optically thick cores cool. To decompose these changes, we show probability distributions
of different system components from the UTCS database in Figure 5. The UTCS and ISCCP data overlap for
only 5 years between 2003 and 2008, during which ENSO activity is limited (i.e., |ONI| < ± 1), reducing
the statistics. The distribution of total size from the convective tracking contains more instances of small
systems, while that of UTCS is more skewed with a few more instances of very large systems (Figure S3).
For this reason, we enforce an asymmetric filter of [−50 km, +100 km] for the UTCS-ISCCP difference in
Figure 5. With this filtering, associated cumulonimbus clouds are more extensive during El Niño by 10 km in
req at 95% confidence. Thin cirrus coverage is slightly larger during El Niño as well, although the El Niño-La
Niña difference in means is only significant at the 65% level (Figure 5a). The thin cirrus portion of the anvil
does not show clear trends.

Different hypotheses to explain potential reductions in upper-level cloud with warming have been put
forward, as such a mechanism would constitute a negative feedback. Increased convective aggregation
(Mauritsen & Stevens, 2015), higher precipitation efficiency (Lindzen et al., 2001), or a microphysical shift
toward faster-sedimenting graupel from snow (Tompkins & Craig, 1999) may all lead to reductions in
upper-level cloud and apply both to the anvil outflow of convective systems and to isolated cirrus. More
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recently, Bony et al. (2017) proposed that increased upper atmospheric stability with surface warming weak-
ens cirrus detrainment. Their focus was on the anvil outflow component of upper-level cloud change (also
the only component addressed here) and employed uniform surface heating in idealized simulations. For,
instead, a changing Pacific SST gradient during El Niño in our ISCCP observations, we also see smaller sys-
tems forming over warmer local SSTa (Figures 3g and 3h). Quantitatively, req drops by about 15 km/K, or
1%/K for a 150-km radius system, similar to values from the Institut Pierre-Simon Laplace model between
1979 and 2005 (Bony et al., 2017). Along with this 15-km/K scaling, we have found relative increases
in the maximum horizontal extent of systems up to 50% in the central Pacific and off the coasts of the
Americas, with the largest contributions from the longest-lived systems and their cumulonimbus portion.
Classification by MEI amplifies these El Niño-La Niña extent differences by up to a factor of 2.

3.3. Vertical Depth
Lastly, we consider climatologies of the vertical depth of organized convection, quantified by cloud top tem-
peratures (Ttop) and Ttop vertical gradients (defined as the maximum minus minimum cloud top temperature
divided by their separation distance, Figures 3c and 3d). Both Ttop and its gradient tend to be colder during
El Niño, meaning that systems deepen both on average and relative to their horizontal extent. This result can
be separately reproduced using solely UTCS data (not shown). The deepening of convective organization is
most prominent in the central Pacific, the region to which the ascending branch of the Walker circulation
has shifted eastward. Convective divergence does not balance clear-sky convergence in the presence of this
large-scale ascent, and convection can deepen further here. This finding is in agreement with other studies
of colder cloud top temperatures associated with deep convection during the ENSO warm phase (Li et al.,
2012; Masunaga et al., 2005). Anomalies in convective depth are also more meridionally diffuse than those
in convective occurrence or extent, most likely because these deepest convective towers generate gravity
waves that propagate anomalies outward (Chiang & Sobel, 2002).

How does this deepening relate to the hypotheses of fixed-anvil temperature (FAT) and proportionately
higher anvil temperature? FAT refers to the idea that convective anvils form at the altitude where clear-sky
radiative cooling drop off and convective detrainment into these regions maximizes (Hartmann & Larson,
2002). Because the radiative cooling is determined by the vertical gradient of water vapor specific humidity,
the temperature at this altitude should be fixed and independent of surface warming. Proportionately higher
anvil temperature then refers to adjustments in this otherwise fixed altitude as static stability changes with
warming (Zelinka & Hartmann, 2010). More recently, Seeley et al. (2019) have examined these theories
and stated that the more accurate term is a fixed tropopause temperature: Anvil temperatures can vary by
up to 40% of the surface temperature range, while the radiatively defined tropopause varies by less than
4%. With ONI classification, instantaneous cloud top temperatures show limited dependence on local SSTa.
Looking at Figure 3e, the range of 2-K difference in average Ttop for a 10-K range in SSTa is of the same
order as the 23% change in anvil temperature reported for full-complexity radiative-convective equilibrium
simulations (Seeley et al., 2019). 𝜕Ttop∕𝜕SSTa is lower for El Niño than La Niña also in agreement with
radiative-convective equilibrium simulations for which ΔTtop gets smaller at warmer surface temperatures,
although the cause of this reduction is not yet understood (Seeley et al., 2019, their Figure 4).

Now, if we classify instead by MEI (Figures 4g and 4h), we see somewhat stronger SSTa dependence of Ttop.
This breakdown in the FAT can be attributed to the violation of clear-sky convergence balancing convec-
tive divergence. Periods of high-magnitude MEI imply that the zonal overturning has had time to stabilize
relative to surface warming. An established zonal overturning generates regions of large-scale ascent and
descent where clear-sky convergence no longer equates to convective divergence. Indeed, in the difference
climatologies, the regions where convection deepens most are those most strongly affected by the large-scale
Walker-cell ascent. We can better see this impact of circulation on 𝜕Ttop∕𝜕SSTa by stratifying the SSTa depen-
dence of Ttop into central and West Pacific and Atlantic subdomains (Figure S6). The strongest signals of
𝜕Ttop∕𝜕SSTa occur over the central Pacific. In this region, large-scale descent occurs during La Niña within
the Walker circulation, warming cloud top temperatures, while large-scale ascent occurs during El Niño,
deepening systems to colder cloud top temperatures.

Within this discussion, it is important to keep in mind the difference between satellite-measured Ttop and
the maximum detrainment level (Li et al., 2012). While detrainment may be maximized at the tops of iso-
lated shallow cumulus and cumulonimbus, the two are not necessarily the same within convective systems
(Johnson et al., 1999). In Figure S4e, divergence profiles from reanalysis collocated with organized convec-
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tion are shown during both El Niño and La Niña. The magnitude of mean divergence is less during El Niño
above about 7 km by a factor of 2. But the divergence peaks for both phases at the same altitude of 14 km,
approximately validating the idea that peak detrainment levels correspond between phases.

Finally, we consider the opposite responses of convection over the Maritime Continent and the Amazon.
Cold SSTa occur adjacent to the extensive coastlines of the Maritime Continent islands during El Niño
(Figure S1). Although these increase the low-level pressure gradient and moisture advection (Park & Chiang,
2010), warm phase convective organization is still less extensive and shallower there, given the initial mois-
ture limitation above land and colder waters. SSTa along the South American coasts are also negative, but
vegetation can generate surface heat and moisture fluxes that sustain convective systems. Atlantic SST cool-
ing also strengthens low-level baroclinicity and the southern low-level jet centered around 18◦S and 62◦W
(Stensrud, 1996; Vernekar et al., 2003) that initiates deep convective systems, particularly squall lines, that
propagate further (Alcantara et al., 2011). Overall, we have shown convective system deepening of up to 5% in
regions of large-scale ascent, anomalies that may be propagated meridionally by gravity waves or modulated
by land-sea differences. Observed relations are generally in line with the FAT hypothesis: SSTa dependency
of Ttop is weak with the exception of the central Pacific (where the zonal overturning shifts dramatically),
and changes to the altitude of peak divergence are small between El Niño and La Niña.

4. Organization Metrics
4.1. Information Entropy for Organization
We now reillustrate the findings from the climatologies above in different forms using two new metrics.
First, to more rigorously quantify organization, we calculate the information entropy of the monthly average
maps of convective occurrence. Information entropy can be understood as the degree of disorder based
on probability distributions: As organization increases, entropy decreases. Our algorithm to calculate the
information entropy, H, of a cloud field scans for a range of different “feature sizes” from a few grid cells
to the entire tropical domain. At each feature size, we calculate the probability that other values in the
subdomain agree with that in the upper left corner. The results that follow are not very sensitive to the grid
cell used as a reference; that is, the findings are qualitatively the same with probabilities calculated relative
to the value in the lower right corner of the subdomain. From these probabilities, information entropy is
calculated as follows:

H = −
i=2∑
i=0

pi log2(pi). (1)

H can be between 0 and 0.5, after normalizing by subdomain size. Zero indicates the limit of perfect homo-
geneity of the subdomain (or equivalently low information content), and 0.5 indicates the limit of perfect
heterogeneity (or equivalently high information content). The use of different scanning subdomains 2 also
provides an estimate of the length scale  for which the entropy is largest and smallest. In other words, is
there a certain spatial scale at which convection is most organized? We investigate this question in more
detail in future work, but for now, we present H distributions for convective occurrence during El Niño and
La Niña months between 1983 and 2008 in Figure 6. Distributions are shown for a variety of feature sizes
from two grid cells up to 50.

For all subdomain sizes, the distributions show lower information entropy of the cloud field, that is, more
aggregation across scales, during El Niño periods. The means of the cold phase distributions are larger than
those of the warm phase distributions with 95% confidence for all window sizes, indicating a general shift
toward more organized convective fields during El Niño: Clear regions are more likely to be surrounded
by more clear sky, and cloudy regions by more cloud in El Niño relative to La Niña. Stated in terms of
information theory, a given cloud field during the warm phase has lower information content because the
subdomains over which H is calculated are more homogeneous. The degree of aggregation in the cloud
fields increases with subdomain as well. For  of 2 grid cells (≈220 km), the cold-warm phase difference in
median H is 0.034, while for  of 30 grid cells (≈3,300 km), the difference has increased to 0.055. In between
these subdomain sizes, HLN − HEN increases monotonically; the more of the cloud field we consider at a
time, the larger the increase in its organization during El Niño relative to La Niña. This result corroborates
the climatological increases in occurrence, extent, and depth across the tropics and is conceptually similar
to El Niño increases in the “cloud correlation-scale length” that represent the probability of finding more
cloud adjacent to a cloudy region (Masunaga et al., 2005).
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Figure 6. Probability distributions of the entropy metric H of the mesoscale convective occurrence during El Niño and
La Niña classified by Oceanic Niño Index, in red and blue, respectively, and for various subdomain sizes from 2 =
2-by-2 grid cells up to 50-by-50. The means of each distribution are shown in solid red and blue, and the 95%
confidence interval shown in dashed red and blue. Lower values indicate a more organized field.

4.2. Growth Metric
The convective tracking data allow us to look at convective structure over time. In particular, a convective
growth metric can be defined to quantify system deepening relative to spreading (Table S1) or equivalently
vertical relative to horizontal growth:

𝛾 =
Ttop(t > 𝜏) − Ttop(t ≤ 𝜏)

Γ
[
req(t > 𝜏) − req(t ≤ 𝜏)

]
,

(2)

where Γ is an assumed lapse rate, Ttop is cloud top temperature, req is the horizontal extent, and t is the sys-
tem lifetime, differentiating for young (t ≤ 𝜏) versus mature (t > 𝜏) systems. These values are calculated
climatologically from the entire database, rather than for each system individually. In other words, we take
the average cloud top temperature and equivalent radius for all systems of greater than 𝜏 duration and com-
pare these values with those from systems of less than or equal to 𝜏 duration. The negative values of 𝛾 that
dominate the field in Figure 7 indicate that organized convection is deepening and spreading over its life-
time, while a magnitude on the order of 0.001 indicates that these systems vertically deepen by about 1 K
for every 150-km radial expansion, or equivalently that spreading is 1,000 times faster than deepening. The
difference in the metric from East to West Pacific indicates different “modes of growth”: Moving from a 𝛾 of
−0.014 in the east to a 𝛾 of −0.004 in the west reflects that systems deepen 100 times faster over the positive
SSTa off the coast of South America. During boreal winter, the tropics-wide mean 𝛾 decreases in magnitude
by 18% during El Niño relative to La Niña from a mean of −0.0112 down to −0.0094 for a 𝜏 of 3 hr. Figures 7d
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Figure 7. Maps of the organized convection growth metric 𝛾 during El Niño (a) and La Niña (b) boreal winter, as classified by multivariate El Niño–Southern
Oscillation index. White indicates regions where 𝛾 is undefined because of very small changes in req. The effect of changing 𝜏 is shown with probability
distributions of 𝛾 in panels (c) to (e). The El Niño and La Niña means are shown in solid red and blue, respectively, with 95% confidence intervals in dashed
lines. DJF = December–February.

and 7e show the adjustment of this mean and associated distribution with 𝜏. For a 𝜏 of 6 hr, the El Niño mean
remains 17.5% below that of La Niña, while for a 𝜏 of 9 hr, the discrepancy has disappeared. As 𝜏 increases
from 3 to 6 to 9 hr, the mean 𝛾 value decreases monotonically in magnitude for both phases, indicating the
shift from vertical deepening to stratiform broadening over system lifetime.

The growth metric 𝛾 provides a nice way to condense structural data over time from the convective tracking
information and indicates that while systems during La Niña deepen and decay rapidly, those during El
Niño deepen more gradually and accumulate a larger, surrounding stratiform region. We can see a similar
trend of more rapid deepening during La Niña, when we analyze life cycle on a per-system basis in Figure 8.
Convective tracks are compiled for January 1998 (El Niño: ONI = +2.2, MEI = +2.2) and January 2000 (La
Niña: ONI = −1.7, MEI = −1.3), and the duration, extent, and depth are all normalized to their maximum
so that values exist between 0% and 100%. El Niño (La Niña) systems have a horizontal growth rate of 52.8%
(58.0%) and a vertical growth rate of 33.6% (29.1%) in the first 25% of their lifetime. Thereafter, the extent
and depth of La Niña systems drop monotonically, while the growth of El Niño systems continues until 50%
of their total lifetime.

5. Precipitation Attribution
Finally, we investigate how changes in convective organization and evolution affect associated precipitation.
We attribute rainfall to organized convection by collocating convective system coverage and precipitation
data and taking the ratio of assigned to total rainfall for a given grid cell. We denote the resulting attribution
Porg below and findΔPorg between the warm and cold phases of±5% over±2-K SSTa, on the same order as the
often cited 2% to 3% increase in precipitation per degree of warming (Stephens & Ellis, 2008). These values
are also similar to those derived from the TRMM PR of 1.7% to 4.4% per kelvin (Wang et al., 2008). Henderson
et al. (2018) have shown with 5 years of TMI retrievals, relative to radar observations at the Kwajalein Atoll,
which convective rainfall tends to be underestimated (up to 30%) and stratiform overestimated (up to 33.4%)
for organized convection. Although these oceanic biases of passive microwave measurements should be kept
in mind, MSWEP v2.0 also incorporates reanalysis and rain gauge data. We are primarily interested in El
Niño-La Niña differences in organized precipitation, so our findings should not be strongly affected.
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Figure 8. Normalized lifecycles for an El Niño month (red, January 1998) and a La Niña one (blue, January 2000).
System equivalent radii, normalized to the maximum value, is shown in panel (a), and system cloud top temperature,
normalized to the minimum value, in panel (b). The mean is shown in a thin solid line, with its 3-point running mean
in a thick solid line. Plus and minus a standard deviation are shown in dashed lines.

As in the property difference climatologies, the spatial structure of warm-cold phase attribution differences
ΔPorg (Figures 9a and 9b) is largely determined by shifts in the zonal overturning. Intensified regions of
ascent over the Amazon and Maritime Continent increase Porg there during the cold phase. El Niño suppres-
sion of Indian monsoon rainfall during the boreal summer is also prominent. Conversely, intensified ascent
over the central Pacific and Africa increase warm phase Porg there. Although surface moisture advection
drops with weakened trade winds, the increased moisture holding capacity of overlying air during the warm
phase more than compensates. Increases in Porg, particularly over the central Pacific, correspond closely to

Figure 9. Changes in precipitation attributed to organized convection, Porg, are shown between the warm and cold phases during boreal winter and summer (a,
b). Warm-cold phase differences in the joint distributions of convective system coverage and precipitation accumulation from organized systems Porg, tot;
convective system coverage and maxima from organized systems Porg, max; and Porg, tot and Porg, max are also shown in panels (c) to (e). These are constructed
for boreal winter throughout the tropics. DJF = December–February; JJA = June–August.
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the increases in system occurrence (Figure 3a). The maximum increase in warm phase Porg also overlaps the
maximum increase in system deepening and margin of largest-magnitude 𝛾 (Figure 7a). Henderson et al.
(2018) have identified similar regions as being strongly affected by organized precipitation regimes during
El Niño, using a combination of the TRMM TMI and PR instruments. We can use an approximate scaling
of precipitation and evaporative flux area (or system coverage) to quantitatively link Porg back to convective
structure: if precipitation attribution increases by 5% from an initial value of 30%, then the system coverage
must increase by (0.3−1–0.35−1) ≈50%, equivalent to an 150-km increase in radius over an initial value of
250 km ((4002–2502)/2502 ≈ 1.5).

The joint distribution of system area and precipitation accumulation from organized systems Porg, tot indi-
cates that larger, warm phase systems tend to bring greater volumes of rain than smaller, cold phase ones.
The largest gains in Porg,tot come from systems with smaller coverage, that is, 150,000 km2 or less (req ≤

220 km). The large volume of air in more extensive systems can only generate higher Porg, tot up to a certain
point (Zipser et al., 2006). The smaller systems also correspond to the largest differences in the maximum
intensity of precipitation Pmax. Since Pmax is affected by moisture convergence at system margins, a lower
volume-to-perimeter ratio augments Porg, max as long as the system is not susceptible to moisture limitation.
If we instead construct joint distributions of Porg, tot and Porg, max (Figure 9e), the smaller systems during La
Niña also tend to generate more intense precipitation for a given accumulation. Even in regions where occur-
rence and Porg are reduced in the cold phase, the systems that do form can be quite intense. These trends
can be summarized with a dichotomy of more frequent convective organization of greater extent that brings
larger volumes of precipitation during the warm phase and less numerous, less extensive systems that bring
smaller volumes of precipitation during the cold phase.

6. Discussion and Conclusions
While existing research indicates that tropical cyclones intensify with El Niño or greenhouse gas (GHG)
warming, we lack a basic understanding of changes with warming to convective organization at the
mesoscale. Previous studies examining such changes have mostly used idealized models or regional data
and have tended to focus on one aspect of these systems, their morphology, their lifecycle, or their associated
precipitation. Here, we have addressed all of these elements using satellite climatologies. A recurrent theme
of previous findings is the importance of interaction with larger-scale circulations, whether they be Ama-
zonian wind shifts or mesoscale vortices (Morel & Senesi, 2002; Feng et al., 2018). In our El Niño-La Niña
difference climatologies, we see an imprint of shifts in zonal overturning. The regions of greatest convective
deepening are those of large-scale ascent, rather than those of warmest SSTa.

The eastward shift of zonal overturning corresponds to organized convection that is 3 times more likely
and 50% larger in the central Pacific during El Niño relative to La Niña. Relative differences in depth are
of smaller magnitude and more longitudinally spread, with the latter potentially reflecting the influence
of large-scale wave activity. These values agree with past cloud-resolving model results that indicate wider
and taller organized convection with occurrence as much as triple in a warmer future (Prein et al., 2017;
Romps, 2011). The concentration of convective activity to the region of warmest SSTa reflects previous work
in which the threshold temperature for convection increases with large-scale warming, suppressing convec-
tion in colder regions (Johnson & Xie, 2010; Sobel, 2010; Waliser & Gautier, 1993). The extremes of CAPE
also increase during El Niño, similar to global warming projections from coarse-resolution and superparam-
eterized global climate models (Singh & O'Gorman, 2013; Singh et al., 2017). With this increasing CAPE,
the environment becomes more favorable for convective occurrence.

We can summarize the structural changes by distributional shifts in information entropy: Convective cloud
fields have 20% lower entropy, or equivalently 20% more organization, during El Niño relative to La Niña.
The shift is robust across a range of feature sizes from 100 km up to the entire tropics. Although simulations
suggest that convective aggregation could be more likely with uniform surface warming (Coppin & Bony,
2018; Emanuel et al., 2014; Mauritsen & Stevens, 2015), this is the first study to illustrate such a shift from
observations and for El Niño periods. We have also presented information about convective structure over
time with a growth metric 𝛾 that quantifies the ratio of system deepening to spreading and could provide a
simple means of parameterizing mesoscale convective evolution in global climate models. Large-magnitude
values of 𝛾 indicate the importance of convective deepening to system growth over the warm East and central
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Table 1
Summary Statistics

WP CP EP Tropics
n 1,844, 3,874 2,437, 1,149 1,666, 435 59,861, 111,084
req (km) 376, 448 442, 259 209, 183 324, 301

𝜕req∕𝜕SSTa (km/K) −17.5, −23.1 20.1, −35.3 3.65, 1.0 −22, −18

Ttop (K) 189, 188 186, 196 199, 208 201, 202

𝜕Ttop∕𝜕SSTa 0.011, −0.093 −0.98, 1.83 0.5, 0.28 0.18, 0.12

H — — — 0.238, 0.293
𝛾 −0.0088, −0.0089 −0.0094, −0.0093 −0.0131, −0.0138 −0.0093, −0.0105
ΔPorg −2.0% +4.07% +0.34% −0.35%

Note. For each value and subdomain, the El Niño value is listed first followed by the La Niña one. Mean occur-
rence n, horizontal extent req, SSTa dependence of extent 𝜕req∕𝜕SSTa, vertical depth Ttop, SSTa dependence of depth
𝜕Ttop∕𝜕SSTa, entropy H, growth metric 𝛾 , and EN-LN precipitation attribution difference ΔPorg for West Pacific (WP:
5◦S to 5◦N, 125–155◦E), central Pacific (CP: 5◦S to 5◦N, 165◦E to 165◦W), East Pacific (EP: 5◦S to 5◦N, 115–145◦W),
and tropics-wide domains.

Pacific waters during El Niño, while small-magnitude values of 𝛾 reflect the importance of spreading to
growth in the cooler West Pacific.

In the regions where convective organization is more frequent and more extensive during El Niño,
attributable precipitation goes up by as much as 5%. Precipitation increases over recent decades have been
attributed to higher frequency of organized convection, also using ISCCP data (Tan et al., 2015). Despite dif-
ferences in modes of warming, these values quantitatively follow past modeling studies on larger domains
for which a degree kelvin warming translates to about a 2% increase in rainfall (Muller et al., 2011; Romps,
2011; Stephens & Ellis, 2008). Relative to regional studies, however, such as those of Anderson and Arritt
(2001) or Prein et al. (2017) over the continental United States, we tend to see smaller increases in attributable
precipitation with warming. We find that convective systems generate larger precipitation accumulations
Porg, tot during El Niño with the biggest gains from smaller systems, similar to joint distributions of system
size and precipitation volume in Prein et al. (2017). For a given system size, the precipitation also tends to be
more intense during El Niño (larger Porg, max), while for a given precipitation accumulation, the precipitation
is actually more intense during La Niña. These trends, along with larger tropics-wide values of 𝛾 , suggest
that systems deepen and decay more rapidly during La Niña. On the basis of TMI and PR data, Henderson
et al. (2018) also showed recently a shift from isolated deep convection in La Niña to greater organization in
El Niño. Using exclusively precipitation data, they found increased areal coverage, tropospheric deepening,
and largest effects in the Pacific during El Niño, similar to results that we have shown here. We summarize
these quantitatively in Table 1.

Our findings on precipitation accumulation and intensity will also be affected by the speed at which convec-
tive systems propagate, an effect that we have not explored here. ENSO variability seems to be increasing as
climate warms, mostly due to augmented land-ocean contrasts (Fasullo et al., 2018). These contrasts should
strengthen the climatological patterns we see already, particularly over the continents. The questions of how
El Niño flavor or the increasing propensity for central Pacific El Niño affects the results here should also be
considered going forward. More generally, global climate model simulations suggest that the future climate
under GHG forcing, especially that of the tropical Pacific, will shift toward a more El Niño-like state (Cai
et al., 2014; Timmermann et al., 1999; Wang et al., 2017). SST patterns from anthropogenic warming and
El Niño do not align exactly (Xie et al., 2010); in particular, the larger extent of positive SSTa under GHG
than ENSO warming may diminish the continental moisture limitations mentioned above. In this case,
the evolution of convective organization looks more like the central Pacific picture everywhere, with larger
systems that bring bigger volumes of rain. Our future work will focus on relating convective depth and pre-
cipitation intensity, as well as more rigorously attributing convective enlargement to thick versus thin cirrus
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anvil. These links of precipitation and radiation to convection are crucial to understand, as their coupling
determines the tropical climate sensitivity.
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