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Abstract17

Mesoscale convection generates the majority of extreme precipitation in tropical regions.18

Changes to these precipitation intensities, P, with long-term modes of climate variabil-19

ity have been hard to assess because they are not well-represented in current climate mod-20

els. Here we stratify a satellite climatology of convective systems by El Niño phase and21

cloud top temperature. We find that gains (losses) in high precipitation intensity (Ṗ >22

10 mm h−1) are largest for the deepest (least deep) systems during El Niño relative to23

La Niña. The surface temperature and wind changes that define El Niño manifest as sur-24

face flux changes but are not sufficient to explain these Ṗ trends. We explore also the25

dynamical component of precipitation generation with a vertical momentum budget. Mid-26

tropospheric drying in the vicinity of the deepest systems boosts instability and ascent27

rates during El Niño, while the strengthened large-scale ascent minimizes the drag force28

on their updrafts.29

Plain Language Summary30

In the tropics, the majority of high-intensity precipitation comes from the organ-31

ization of multiple thunderstorms into a convective system. These systems are not yet32

well-represented in global models, and studies of how their precipitation changes with33

long-term modes of climate variability like the El Niño Southern Oscillation have been34

limited. Using long-term satellite data, we find here that the most intense precipitation35

becomes two times more probable for the deepest systems and 20% less probable for the36

least deep systems during El Niño. With a budget for the ascent rate within these sys-37

tems, we illustrate how favorable moisture structure acts as a buoyancy source in the first38

case and unfavorable circulation acts as a buoyancy sink in the latter case.39

1 Introduction40

Much effort has been dedicated to understanding how tropical precipitation inten-41

sities will change with atmospheric warming. Radiative-convective equilibrium (RCE)42

must hold for the tropics as a whole with moist static energy (MSE) generated by sur-43

face heat fluxes and lost via atmospheric radiative cooling. This constraint can be used44

to explain the global mean increase of 2 to 3% K−1 in precipitation (Jeevanjee & Romps,45

2018). The RCE paradigm loses its validity at the scale of a single convective system,46

where local temperature, humidity, and pressure velocities become the dominant factors47

(e.g. Neelin & Held, 1987; Sobel, 2007; Jakob et al., 2019).48

These organized convective systems are not yet well-parameterized within large-49

scale models (Moncrieff et al., 2012). Existing observational studies indicate that such50

systems contribute up to 40% of extreme tropical precipitation and can explain the ma-51

jority of recent tropical precipitation changes (Rossow et al., 2013; Tan et al., 2015). Along52

with recent changes due to increasing surface temperature, we would like to understand53

changes in the associated precipitation with dominant modes of tropical climate vari-54

ability like the El Niño Southern Oscillation (ENSO). Not only do many models lack pa-55

rameterizations of organized convection, but they also do not consistently represent ENSO56

(Guilyardi et al., 2008). In light of these limitations, and with a satellite record that now57

extends over almost four decades, we turn to observations to investigate long-term vari-58

ability in precipitation from organized convection.59

We have recently shown that convective systems of a given extent bring greater pre-60

cipitation accumulation during El Niño relative to La Niña (Sullivan et al., 2019). In this61

study, we stratify not only by El Niño phase, but also by convective system depth, to62

understand the impact of both on precipitation intensity. Along with the RCE frame-63

work mentioned above, the Clausius-Clapeyron (CC) relation has often been used to ex-64

plain changes with warming via the moisture holding capacity of the atmospheric bound-65
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ary layer (e.g. Trenberth, 1999). While the CC rate of about 7% per degree of warm-66

ing holds globally at a statistically significant level (e.g. O’Gorman & Schneider, 2009;67

Yin et al., 2018), dynamical factors drive much of the regional-scale differences in the68

precipitation response to warming (Pfahl et al., 2017).69

Here, we explain how this dynamical factor manifests differently for precipitation70

intensities during El Niño versus La Niña, due both to changes in the strength of the merid-71

ional overturning and to changes in nearby free tropospheric humidity. These factors can72

be summarized within a vertical momentum budget, with the former acting as a sink and73

the latter as a source for vertical motion. Generally, the population of clouds determines74

the environmental relative humidity (RH) via detrainment and reevaporation, so that75

instability (hence, vertical motion) and RH are dependent and directly related (Romps,76

2016). But recent studies indicate that the environment in proximity of more organized77

convection becomes drier (Wing & Cronin, 2015; Holloway et al., 2017). If environmen-78

tal RH is prescribed, instability should increase as free tropospheric RH decreases (Seeley79

& Romps, 2015). We emphasize the importance of this interaction of moisture and in-80

stability for precipitation intensities from organized convection.81

2 Materials and Methods82

2.1 Data83

Our analyses center on the Deep Convection Tracking (CT) Database from the In-84

ternational Satellite Cloud Climatology Project (ISCCP) between 1983 and 2008 with85

3-hourly temporal and 30-kilometer spatial resolution (Rossow et al., 1996; Rossow &86

Schiffer, 1999). Geostationary satellites have identified convective systems using an ex-87

tent criterion of equivalent radius req of 90 km for cloud top temperature less than 24588

K (cold cloud shield) and a convective core being further distinguished by a 220-K thresh-89

old. req of the system is calculated from the surface area of the 30-km pixels covered by90

the cold cloud shield. Only systems between 30◦ N/S are retained. To define depths, we91

use the minimum cloud top temperature observed for a given system. Months with an92

Oceanic Niño Index (ONI) of ≷ ± 0.5 are classified as El Niño and La Niña respectively.93

To control for seasonality but retain statistics, analyses below include only boreal win-94

ter, when ONI-defined El Niño/La Niña conditions are most frequent.95

Precipitation intensities are taken from the Multi-Source Weighted-Ensemble Pre-96

cipitation (MSWEP) (Beck, van Dijk, et al., 2017; Beck, Vergopolan, et al., 2017) ver-97

sion 2.2 at 0.5◦ spatial and 3-hourly temporal resolution again from 1983 to 2008. We98

choose this product because of its long temporal overlap with ISCCP CT, its high spa-99

tial resolution for collocation with individual systems, and its optimized merging that100

lends robustness over the oceans. The precipitation intensities within the minimum-to-101

maximum latitude-longitude subdomain defined in the ISCCP database for each system102

(under the cold cloud shield) are retrieved, and the pointwise maximum of this min-max103

lat-lon grid is recorded as Ṗ . Thereafter, the 99th percentile of these values is referred104

to as Ṗ99. Ṗ is an instantaneous maximum precipitation intensity rather than one taken105

over the convective system life cycle, but this does not strongly affect our results as we106

perform analyses with the upper percentile of these values. Although recent studies show107

a large spread in observed precipitation extremes (e.g. Masunaga et al., 2019), both prod-108

uct merging within MSWEP and collocation with the independent ISCCP CT should109

make the trends here relatively robust to the precipitation values used.110

ECMWF ERA-Interim reanalysis Version 2.0 data are used to collocate vertical111

profiles of pressure velocity, specific humidity, temperature, and pressure from 1983 to112

2008 to the nearest degree latitude-longitude with the convective system cores (Dee et113

al., 2011). Values are downloaded for L60 model levels 26 to 57 from the ECMWF In-114

tegrated Forecasting System (IFS), corresponding to 1002 to 122 hPa for a surface pres-115
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Figure 1. Probability distributions of relative differences in precipitation intensity Ṗ (panel

a) between El Niño and La Niña for three cloud top temperature Ttop classifications. The upper

bound is set to 20 mm h−1. Deepest systems have Ttop colder than 215 K, intermediate with Ttop

between 215 and 240 K, and least deep systems with Ttop warmer than 240 K. Counts in each

bin are given in SI Appendix: Tab. S1, and mean Ttop for each phase and depth are given in SI

Appendix: Tab. S2. Heat maps of system occurrence for each depth are shown in panels b to d.

sure of 1013 hPa (ECMWF, 2018). Although the IFS and observations may not always116

produce convection at the same spatiotemporal location, we are primarily interested in117

sampling the large-scale convective environment rather than the immediate one.118

2.2 Comparing Distributions119

Histograms below are frequency-normalized and those that show relative differences
are normalized by the La Niña value. For the probability distributions of surface flux
and gross moist stability, the Kullback-Leibler divergence (DKL) is used to quantify the
El Niño-La Niña (EN-LN) difference. We calculate the KL divergence with the base-2
logarithm so that it can be interpreted as the bits lost when approximating the first dis-
tribution P by the second distribution Q:

DKL(P ||Q) =

xn∑
xi

P (xi)log2

(
P (xi)

Q(xi)

)
(1)

The KL divergence is not symmetric, so we use both DKL(pEN ||pLN ) and DKL(pELN ||pEN ).120

The maximum number of bins with non-zero counts is used to compare each set of dis-121

tributions, corresponding to n = 45, 45, 40, 32 in Fig. 2a, b, d, and e respectively.122

3 Three Precipitation Responses to Surface Warming123

Three clear changes appear in distributions of maximum precipitation intensity Ṗ124

between El Niño and La Niña (Fig. 1a, Ṗ defined in Methods: Data). First, high Ṗ (above125

1 mm h−1) is more probable, by as much as 20%, during La Niña relative to El Niño for126

the least deep convective systems. The opposite is true for systems of intermediate depth:127

high Ṗ is more probable during El Niño relative to La Niña. The deepest systems also128

show a relative gain in high Ṗ during El Niño but of much larger magnitude (up to 110%).129

These three responses are differentiated based on the system cloud top temperature Ttop130
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(see Fig. 1 caption). The least deep systems generally form outside of the deep tropics,131

along the west coast of North America or in the western Atlantic (Fig. 1b). The inter-132

mediate systems form throughout the equatorial band (Fig. 1b-d), whereas the deepest133

ones are more longitudinally localized, clustering in the easternmost Pacific. During El134

Niño, occurrence of the intermediate systems concentrates dramatically within the warm135

tongue, while that of the deepest systems increases at its western margin and decreases136

over the warm pool (Fig. S1).137

Distributional shifts are also clear from the absolute Ṗ distributions (Fig. S2), and138

the cloud top temperature thresholds correspond to only slightly different altitudes be-139

tween El Niño and La Niña (Fig. S3). The observed behaviors in Ṗ with El Niño warm-140

ing are also robust to the threshold cloud top temperatures within ±2 K, changing bin141

numbers, and the histogram upper bounds (Figs. S4-S6). The mean horizontal extent142

quantified by an equivalent radius req (Methods: Data) increases slightly as cloud top143

gets colder from 240 K down to 180 K (Fig. S7). This convective expansion occurs at144

approximately the same rate during both El Niño and La Niña and so cannot explain145

the EN-LN relative changes in Ṗ . Given their robustness, the EN-LN distributional shifts146

in Ṗ raise two questions: first, why does large Ṗ become less frequent from the least deep147

systems during El Niño?; and second, why do the deepest systems exhibit the largest rel-148

ative gains in extreme Ṗ during El Niño?149

4 The Energy Budget for Precipitation150

We begin by investigating the direct impact of sea surface temperature (SST) warm-151

ing. As the east Pacific warms during El Niño, the east-west Pacific SST gradient weak-152

ens, in turn weakening the sea-level pressure gradient in the lower atmosphere. This atmosphere-153

ocean interaction has been well-established in the Bjerknes feedback. Indeed, collocated154

wind profiles show the slowing of the tradewinds during El Niño by up to 10% for all sys-155

tems (Fig. 2c).156

This deceleration extends down to the surface and reduces the probability of sur-157

face fluxes greater than about 600 W m−2 by 10 to 20% during El Niño (Fig. 2a-b). This158

reduction is of somewhat smaller magnitude for the deepest convective systems that form159

in the regions of warmest SST (Tab. S2). These warmer SSTs increase the saturation160

vapor mixing ratio and the rate of moisture transfer to the boundary layer. The decrease161

in surface flux can help us understand the Ṗ trends from the least deep systems but not162

the deepest ones.163

While surface fluxes and radiative cooling act as energetic sources for precipitation164

at steady state, the efficiency with which these sources are converted may also change165

(Wang & Sobel, 2011; Anber et al., 2015). This surface flux efficiency, ∂P/∂SF is the in-166

verse of the normalized gross moist stability (NGMS), which we define here as the ra-167

tio of moist to dry static energy divergence: < ω∂ph >/< ω∂ps >, where ω is pres-168

sure velocity, h is moist static energy, and s is dry static energy. The probability of NGMS169

less than 0.4 (high efficiency) is on average 20% more likely during La Niña for the least170

deep systems (Fig. 2d). The opposite is true for the deepest systems: their probability171

of low NGMS (< 0.4, high efficiency) decreases by 20% during La Niña, while their prob-172

ability of high NGMS (> 0.7, low efficiency) increases by 20% during La Niña (Fig. 2e).173

We quantitatively compare the EN-LN shifts in the distributions above using the174

Kullback-Leibler (KL) divergence (Methods: Scalings and histograms, values in Fig. 2a-175

b, d-e). For the least deep systems, the KL divergence between surface flux distributions176

is about 10% larger than that between the NGMS distributions. For the deepest systems,177

the KL divergence of the NGMS distributions is two times larger than that of the sur-178

face flux distributions. These values, along with the magnitude of the relative differences,179

show that EN-LN differences in both precipitation sources and their efficiencies cause180
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Figure 2. Probability distributions of the EN-LN relative differences in surface latent and

sensible heat fluxes and normalized gross moist stability (NGMS) associated with Ṗ99 for the

least deep systems (panels a and d) and for the deepest systems (panels b and e). Values of the

Kullback-Leibler divergence are also given, first for the LN distribution from the EN one and

then for EN from LN. The EN-LN relative difference in mean wind speeds collocated with the

systems for all systems (panel c).

the distributional shifts in Ṗ . We have used convective mass flux as the measure of con-181

vective strength within our NGMS calculation and proceed to investigate how and why182

it changes with El Niño phase.183

5 The Momentum Budget for Ascent Rates184

5.1 Large-scale Circulation as a Buoyancy Sink185

From the mean pressure velocity profiles (Fig. 3a), and in agreement with the heat186

maps of occurrence (Fig. 1), the least deep systems tend to exist in an environment of187

large-scale descent, whereas the intermediate and deepest systems exist in regions of large-188

scale ascent. Profiles of the 1st percentile in pressure velocities also show that extreme189

ascent is stronger during El Niño than La Niña for the deepest systems (Fig. 3b), while190

the converse is true for the least deep systems.191

To understand which factors set the convective updrafts associated with high pre-
cipitation intensity, we employ a vertical momentum budget. For cloudy updrafts wc,
the dominant force balance has been shown to be between buoyancy and pressure drag
(de Roode et al., 2012; Romps & Charn, 2015) (derivation given in SI Appendix):

∂wc

∂t
= B − 1

ρ

∂p′

∂z
(2)

Calculating the terms of this balance, the least deep systems maintain positive buoy-192

ancy until 500 hPa with 2% increases during La Niña up to the 800 hPa level and 2 to193

3% decreases above that. The pressure gradient force, analogous to drag, also decreases194
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Figure 3. Mean collocated pressure velocity and extreme pressure velocities defined by the

1st percentile (negative values indicate ascent, panels a and b respectively). The deepest, in-

termediate, and least deep systems are shown in red, green, and blue for El Niño in solid lines

and La Niña in dashed lines. Probability distributions of the integrated pressure gradient force,

associated with Ṗ99, are also shown for the least deep and deepest systems (panels c and d re-

spectively) with a solid line indicating the mean and dashed lines for the 99% confidence interval.

Red indicates El Niño and blue La Niña.
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at all levels during La Niña by 5 to 6%, twice as much as any buoyancy loss. Integrat-195

ing these profiles, we see a relative gain of 5% in total drag during El Niño (Fig. 3c). This196

shift in the force balance weakens wc for the least deep systems during El Niño. We see197

opposite trends from the same calculation for the deepest systems: a 5% relative decrease198

in total drag during El Niño corresponds to stronger ascent (Fig. 3d).199

These shifts in pressure drag are consistent with the small, positive correlation of200

Hadley circulation strength with El Niño conditions, as reported in other studies (e.g.201

Oort & Yienger, 1996; Quan et al., 2004; Schwendike et al., 2014). Indeed, the merid-202

ional separation of the least deep and deepest systems (Fig. 1b-d) suggests that a change203

in the meridional overturning drives their opposing changes in drag force. For the least204

deep systems during El Niño, if the descending branch of this overturning strengthens,205

the force balance shifts to weaken their convective updrafts (Eq. 2). Weaker updrafts206

in turn diminish the integrated condensation rate and Ṗ99, as shown in scaling studies207

(Muller et al., 2011). On the other hand, as the ascending branch also strengthens, the208

force balance shifts to enhance convective updrafts and Ṗ99 for the deepest systems. But209

the relative loss and gain in Ṗ99 still exceed the respective gain and loss in pressure gra-210

dient force (Fig. 1a), indicating that another factor must be at play.211

5.2 Free Tropospheric Drying as a Buoyancy Source212

We next explore the buoyancy term in Equation 2 in more detail. Given that the
deepest systems are relatively infrequent in comparison to the intermediate ones (Fig.
1c-d), we hypothesize that these may be understood with a zero-buoyancy plume (ZBP)
model (Singh & O’Gorman, 2013; Singh et al., 2017). The ZBP model conceptualizes
convection as a plume in which entrainment mixing shifts the lapse rate from a moist
adiabat toward a dry adiabat, such that tropical in-cloud buoyancies tend to be small.
If this entrainment (εu) is negligible for a given air parcel (the undilute parcel), its buoy-
ancy increases in proportion to the deviation of specific humidity from the saturation
value, or saturation deficit:

B = εuLv(1−RH)q∗ve (3)

where εu is the entrainment rate, Lv is the latent heat of vaporization, RH is the rela-213

tive humidity, and q∗ve is the environmental saturation vapor mixing ratio.214

In collocated RH profiles, El Niño shows a strong drying, or increasing saturation215

deficit, relative to La Niña for the deepest systems, especially in the mid-troposphere (Fig.216

4a). This larger saturation deficit corresponds to larger instability and higher ascent rates217

during El Niño. Here, the deep convective population, dominated by systems of inter-218

mediate depth, sets the lapse rate through the weak temperature gradient (Sobel et al.,219

2001). Then, the infrequent deepest systems can capitalize on the free tropospheric sat-220

uration deficit to produce extreme Ṗ . We make this argument first based on the order-221

of-magnitude larger frequency of the intermediate systems relative to the deepest ones222

(Tab. S1) and secondly based on the higher temperatures and lower lapse rates in their223

vicinity (Fig. S8).224

We calculate the integrated ZBP buoyancy from RH and temperature profiles col-225

located with the deepest systems when they produce Ṗ99 and find that it increases by226

a factor of 2 to 4 during El Niño relative to La Niña (Fig. 4b). This EN-LN difference227

in mean ZBP buoyancy is statistically significant at the 99% level. If we instead use the228

3- or 6-hour preceding RH and temperature profiles, we see the same EN-LN buoyancy229

increase but of weaker magnitude, as the preceding profiles are less affected by subsidence230

drying (not shown).231

We can decompose these integrated buoyancy changes into latent and sensible heat-232

ing components by fixing the profile of the other variable (Fig. 4c). For the deepest sys-233

tems, the integrated buoyancy gain is driven almost exclusively by RH until 600 hPa,234
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Figure 4. El Niño-La Niña relative difference in collocated RH profiles with the deepest, in-

termediate, and least deep systems in red, green, and blue respectively (panel a). ZBP model

buoyancy profiles associated with Ṗ99 for the deepest systems with El Niño in blue and La Niña

in red (panel b). The entrainment rate ε takes the form 1/z, and 99% confidence intervals for

both phases are shaded. Decomposition of the EN-LN buoyancy differences in panel b into tem-

perature and RH effects, shown in dashed pink and dotted-dashed maroon lines respectively

(panel c).

above which a temperature contribution on the order of 10% appears. This upper-level235

temperature contribution reflects that these systems extend deep enough into the tro-236

posphere that the sensible heat component becomes important to their buoyancy (see237

also ZBP model section in the SI Appendix) (Seeley & Romps, 2015). In summary then,238

mid-level drying combine with warm SST and favorable circulation to produce the large239

gains in the high Ṗ from the deepest systems during El Niño.240

6 Discussion241

With multi-decade satellite data, we have shown how the distribution of precip-242

itation intensities (Ṗ ) from organized convective systems changes with El Niño warm-243

ing. Our study illustrates the utility of the satellite record, as we seek to develop large-244

scale parameterizations for these systems. The radiative-convective idealization does not245

hold at the scale of a single convective system (Jakob et al., 2019), and the computational246

cost of cloud-resolving models means that we cannot generally run them over tropics-247

wide domains for multiple years.248

In an energetic budget, we find shifts not only in surface flux but also in the effi-249

ciency with which these sources translate to precipitation. The latter motivates a ver-250

tical momentum budget to investigate the shifts in the dynamics of precipitation gen-251

eration. In this sense, our work corroborates a growing number of studies to emphasize252

the dynamical component, especially for convective precipitation (e.g. Pfahl et al., 2017;253

Nie et al., 2018). The vertical momentum budget gives insight into the complex relation254

of environmental moisture and convective precipitation that we do not have from a Clausius-255

Clapeyron scaling analysis. While increasing SST enhances the moisture holding capac-256

ity of overlying air, it also increases the saturation threshold. Sufficient low-level mois-257

ture is crucial to generate precipitation at all, but excess column-integrated moisture also258

reduces saturation deficit. Relative humidity determines the MSE surplus of undilute259
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parcels (via the latent heating component) throughout much of the troposphere, but at260

the uppermost levels, SST can have an impact via the sensible heating component. The261

vertical momentum budget encapsulates these subtleties.262

For the deepest systems during El Niño, we find that reduced drag from large-scale263

ascent, mid-level saturation deficit, and upper-level sensible heating components com-264

bine to generate a two-fold increase in the probability of Ṗ > 10 mm h−1. While such265

effect of large-scale circulation may be generalizable to isolated convection, the effects266

of anomalous drying here are likely limited to more organized convection. Long-channel267

RCE simulations indicate that free tropospheric drying increases as convection aggre-268

gates (Wing & Cronin, 2015; Holloway et al., 2017), and indeed we expect moist detrain-269

ment to decrease with the convective perimeter. Both the role of convective aggregation270

and microphysical precipitation efficiency are worth further investigation in this context.271

Finally, recent work indicates that El Niño and its impacts, including localized heat272

extremes and wildfires, intensify as the surface warms (Fasullo et al., 2018). With the273

exception of the GFDL-ESM2M model (Kohyama et al., 2017), output of the Climate274

Model Intercomparison Projects indicates that El Niño occurrence increases under green-275

house gas forcing (Cai et al., 2014). It is becoming even more important then to under-276

stand how ENSO affects the tropics-wide distribution of precipitation intensities. How277

these distributional shifts depend on the flavor of El Niño as well as the propagation speed278

of convective systems also remain interesting open questions.279
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