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Abstract

Mesoscale convection generates the majority of extreme precipitation in tropical regions.
Changes to these precipitation intensities, P, with long-term modes of climate variabil-

ity have been hard to assess because they are not well-represented in current climate mod-
els. Here we stratify a satellite climatology of convective systems by El Nino phase and
cloud top temperature. We find that gains (losses) in high precipitation intensity (P >

10 mm h~1) are largest for the deepest (least deep) systems during El Nifio relative to

La Nina. The surface temperature and wind changes that define El Nino manifest as sur-
face flux changes but are not sufficient to explain these P trends. We explore also the
dynamical component of precipitation generation with a vertical momentum budget. Mid-
tropospheric drying in the vicinity of the deepest systems boosts instability and ascent
rates during El Nino, while the strengthened large-scale ascent minimizes the drag force
on their updrafts.

Plain Language Summary

In the tropics, the majority of high-intensity precipitation comes from the organ-
ization of multiple thunderstorms into a convective system. These systems are not yet
well-represented in global models, and studies of how their precipitation changes with
long-term modes of climate variability like the El Nino Southern Oscillation have been
limited. Using long-term satellite data, we find here that the most intense precipitation
becomes two times more probable for the deepest systems and 20% less probable for the
least deep systems during El Nino. With a budget for the ascent rate within these sys-
tems, we illustrate how favorable moisture structure acts as a buoyancy source in the first
case and unfavorable circulation acts as a buoyancy sink in the latter case.

1 Introduction

Much effort has been dedicated to understanding how tropical precipitation inten-
sities will change with atmospheric warming. Radiative-convective equilibrium (RCE)
must hold for the tropics as a whole with moist static energy (MSE) generated by sur-
face heat fluxes and lost via atmospheric radiative cooling. This constraint can be used
to explain the global mean increase of 2 to 3% K~! in precipitation (Jeevanjee & Romps,
2018). The RCE paradigm loses its validity at the scale of a single convective system,
where local temperature, humidity, and pressure velocities become the dominant factors
(e.g: Neelin & Held, 1987; Sobel, 2007; Jakob et al., 2019).

These organized convective systems are not yet well-parameterized within large-
scale models (Moncrieff et al., 2012). Existing observational studies indicate that such
systems contribute up to 40% of extreme tropical precipitation and can explain the ma-
jority of recent tropical precipitation changes (Rossow et al., 2013; Tan et al., 2015). Along
with recent changes due to increasing surface temperature, we would like to understand
changes in the associated precipitation with dominant modes of tropical climate vari-
ability like the El Nino Southern Oscillation (ENSO). Not only do many models lack pa-
rameterizations of organized convection, but they also do not consistently represent ENSO
(Guilyardi et al., 2008). In light of these limitations, and with a satellite record that now
extends over almost four decades, we turn to observations to investigate long-term vari-
ability in precipitation from organized convection.

We have recently shown that convective systems of a given extent bring greater pre-
cipitation accumulation during El Nifo relative to La Nina (Sullivan et al., 2019). In this
study, we stratify not only by El Nifio phase, but also by convective system depth, to
understand the impact of both on precipitation intensity. Along with the RCE frame-
work mentioned above, the Clausius-Clapeyron (CC) relation has often been used to ex-
plain changes with warming via the moisture holding capacity of the atmospheric bound-
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ary layer (e.g. Trenberth, 1999). While the CC rate of about 7% per degree of warm-
ing holds globally at a statistically significant level (e.g. O’Gorman & Schneider, 2009;
Yin et al., 2018), dynamical factors drive much of the regional-scale differences in the
precipitation response to warming (Pfahl et al., 2017).

Here, we explain how this dynamical factor manifests differently for precipitation
intensities during El Nino versus La Nina, due both to changes in the strength of the merid-
ional overturning and to changes in nearby free tropospheric humidity. These factors can
be summarized within a vertical momentum budget, with the former acting as a sink and
the latter as a source for vertical motion. Generally, the population of clouds determines
the environmental relative humidity (RH) via detrainment and reevaporation, so that
instability (hence, vertical motion) and RH are dependent and directly related (Romps,
2016). But recent studies indicate that the environment in proximity of more organized
convection becomes drier (Wing & Cronin, 2015; Holloway et al., 2017). If environmen-
tal RH is prescribed, instability should increase as free tropospheric RH decreases (Seeley
& Romps, 2015). We emphasize the importance of this interaction of moisture and in-
stability for precipitation intensities from organized convection.

2 Materials and Methods
2.1 Data

Our analyses center on the Deep Convection Tracking (CT) Database from the In-
ternational Satellite Cloud Climatology Project (ISCCP) between 1983 and 2008 with
3-hourly temporal and 30-kilometer spatial resolution (Rossow et al., 1996; Rossow &
Schiffer, 1999). Geostationary satellites have identified convective systems using an ex-
tent criterion of equivalent radius 7.4 of 90 km for cloud top temperature less than 245
K (cold cloud shield) and a convective core being further distinguished by a 220-K thresh-
old. req of the system is calculated from the surface area of the 30-km pixels covered by
the cold cloud shield. Only systems between 30° N/S are retained. To define depths, we
use the minimum cloud top temperature observed for a given system. Months with an
Oceanic Nifo Index (ONI) of Z £ 0.5 are classified as El Nino and La Nifa respectively.
To control for seasonality but retain statistics, analyses below include only boreal win-
ter, when ONI-defined El Nino/La Nina conditions are most frequent.

Precipitation intensities are taken from the Multi-Source Weighted-Ensemble Pre-
cipitation (MSWEP) (Beck, van Dijk, et al., 2017; Beck, Vergopolan, et al., 2017) ver-
sion 2.2 at 0.5° spatial and 3-hourly temporal resolution again from 1983 to 2008. We
choose this product because of its long temporal overlap with ISCCP CT, its high spa-
tial resolution for collocation with individual systems, and its optimized merging that
lends robustness over the oceans. The precipitation intensities within the minimum-to-
maximum latitude-longitude subdomain defined in the ISCCP database for each system
(under the cold cloud shield) are retrieved, and the pointwise maximum of this min-max
lat-lon grid is recorded as P. Thereafter, the 99th percentile of these values is referred
to as ng. P is an instantaneous maximum precipitation intensity rather than one taken
over the convective system life cycle, but this does not strongly affect our results as we
perform analyses with the upper percentile of these values. Although recent studies show
a large spread in observed precipitation extremes (e.g. Masunaga et al., 2019), both prod-
uct merging within MSWEP and collocation with the independent ISCCP CT should
make the trends here relatively robust to the precipitation values used.

ECMWEF ERA-Interim reanalysis Version 2.0 data are used to collocate vertical
profiles of pressure velocity, specific humidity, temperature, and pressure from 1983 to
2008 to the nearest degree latitude-longitude with the convective system cores (Dee et
al., 2011). Values are downloaded for L60 model levels 26 to 57 from the ECMWTF In-
tegrated Forecasting System (IFS), corresponding to 1002 to 122 hPa for a surface pres-
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Figure 1. Probability distributions of relative differences in precipitation intensity P (panel
a) between El Nifio and La Nifa for three cloud top temperature T;op classifications. The upper
bound is set to 20 mm h™!. Deepest systems have Tiop colder than 215 K, intermediate with T3op
between 215 and 240 K, and least deep systems with T3,, warmer than 240 K. Counts in each
bin are given in SI Appendix: Tab. S1, and mean T}, for each phase and depth are given in SI

Appendix: Tab. S2. Heat maps of system occurrence for each depth are shown in panels b to d.

sure of 1013 hPa (ECMWF, 2018). Although the IFS and observations may not always
produce convection at the same spatiotemporal location, we are primarily interested in
sampling the large-scale convective environment rather than the immediate one.

2.2 Comparing Distributions

Histograms below are frequency-normalized and those that show relative differences
are normalized by the La Nina value. For the probability distributions of surface flux
and gross moist stability, the Kullback-Leibler divergence (Dg,) is used to quantify the
El Nino-La Nifia (EN-LN) difference. We calculate the KL divergence with the base-2
logarithm so that it can be interpreted as the bits lost when approximating the first dis-
tribution P by the second distribution @Q:

Dir(P||Q) = ZP (xs) 1og2(QE“‘”§> (1)

The KL divergence is not symmetric, so we use both Dy, (pen||pry) and Dk (peLn||peEN)-
The maximum number of bins with non-zero counts is used to compare each set of dis-
tributions, corresponding to n = 45, 45, 40, 32 in Fig. 2a, b, d, and e respectively.

3 Three Precipitation Responses to Surface Warming

Three clear changes appear in distributions of maximum precipitation intensity P
between El Nifio and La Nifia (Fig. 1a, P defined in Methods: Data). First, high P (above
1 mm h~1!) is more probable, by as much as 20%, during La Nifia relative to El Nifio for
the least deep convective systems. The opposite is true for systems of intermediate depth:
high P is more probable during El Nino relative to La Nifia. The deepest systems also
show a relative gain in high P during El Nifio but of much larger magnitude (up to 110%).
These three responses are differentiated based on the system cloud top temperature 7},

©2020 American Geophysical Union. All rights reserved.
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(see Fig. 1 caption). The least deep systems generally form outside of the deep tropics,
along the west coast of North America or in the western Atlantic (Fig. 1b). The inter-
mediate systems form throughout the equatorial band (Fig. 1b-d), whereas the deepest
ones are more longitudinally localized, clustering in the easternmost Pacific. During El
Nino, occurrence of the intermediate systems concentrates dramatically within the warm
tongue, while that of the deepest systems increases at its western margin and decreases
over the warm pool (Fig. S1).

Distributional shifts are also clear from the absolute P distributions (Fig. S2), and
the cloud top temperature thresholds correspond to only slightly different altitudes be-
tween El Nifio and La Nina (Fig. S3). The observed behaviors in P with El Nifio warm-
ing are also robust to the threshold cloud top temperatures within +2 K, changing bin
numbers, and the histogram upper bounds (Figs. S4-S6). The mean horizontal extent
quantified by an equivalent radius 7., (Methods: Data) increases slightly as cloud top
gets colder from 240 K down to 180 K (Fig. S7). This convective expansion occurs at
approximately the same rate during both El Nino and La Nina and so cannot explain
the EN-LN relative changes in P. Given their robustness, the EN-LN distributional shifts
in P raise two questions: first, why does large P become less frequent from the least deep
systems during El Nino?; and second, why do the deepest systems exhibit the largest rel-
ative gains in extreme P during El Nino?

4 The Energy Budget for Precipitation

We begin by investigating the direct impact of sea surface temperature (SST) warm-
ing. As the east Pacific warms during El Nifio, the east-west Pacific SST gradient weak-
ens, in turn weakening the sea-level pressure gradient in the lower atmosphere. This atmosphere-
ocean interaction has been well-established in the Bjerknes feedback. Indeed, collocated
wind profiles show the slowing of the tradewinds during El Nifio by up to 10% for all sys-
tems (Fig. 2c).

This deceleration extends down to the surface and reduces the probability of sur-
face fluxes greater than about 600 W m~2 by 10 to 20% during El Nifio (Fig. 2a-b). This
reduction is of somewhat smaller magnitude for the deepest convective systems that form
in the regions of warmest SST (Tab. S2). These warmer SSTs increase the saturation
vapor mixing ratio and the rate of moisture transfer to the boundary layer. The decrease
in surface flux can help us understand the P trends from the least deep systems but not
the deepest ones.

While surface fluxes and radiative cooling act as energetic sources for precipitation
at steady state, the efficiency with which these sources are converted may also change
(Wang & Sobel, 2011; Anber et al., 2015). This surface flux efficiency, P /JSF is the in-
verse of the normalized gross moist stability (NGMS), which we define here as the ra-
tio of moist to dry static energy divergence: < wdph >/< wd,s >, where w is pres-
sure velocity, h is moist static energy, and s is dry static energy. The probability of NGMS
less than 0.4 (high efficiency) is on average 20% more likely during La Nina for the least
deep systems (Fig. 2d). The opposite is true for the deepest systems: their probability
of low NGMS (< 0.4, high efficiency) decreases by 20% during La Nifia, while their prob-
ability of high NGMS (> 0.7, low efficiency) increases by 20% during La Nina (Fig. 2e).

We quantitatively compare the EN-LN shifts in the distributions above using the
Kullback-Leibler (KL) divergence (Methods: Scalings and histograms, values in Fig. 2a-
b, d-e). For the least deep systems, the KL divergence between surface flux distributions
is about 10% larger than that between the NGMS distributions. For the deepest systems,
the KL divergence of the NGMS distributions is two times larger than that of the sur-
face flux distributions. These values, along with the magnitude of the relative differences,
show that EN-LN differences in both precipitation sources and their efficiencies cause

©2020 American Geophysical Union. All rights reserved.



181

182

183

184

185

186

187

188

189

190

191

192

193

194

(a) Least deep 300 (d) Least deep
g 201 KL = 0.0524 / 0.0593 (c) g 204 KL=0.0453/0.0471
= 400 A p=
= |_| Deepest =
=z 01 =z 01
= =
E 5001 Intermediate E
= 20 = 20
<D1“ ‘© Least deep <D1“
E 6001
—40 T T = —-40 T T
0 500 1000 v 0.5 1.0
]
(b) Deepest ﬁ 700
X 204 KL=0.0278/0.0271 & < 204
z =z
2 800 1 S
z 9 =z 9
UZ.J 000 5 (e) Deepest
= -20 — =201
o o KL = 0.0537/0.0538
5| |
—40 - - 1000 T T -40 - -
0 500 1000 -10 0 0.5 1.0
Surface flux (Pog) [W m~2] (EN-LN)/LN relative difference in NGMS (Pog)

mean wind speed [m s71]

Figure 2. Probability distributions of the EN-LN relative differences in surface latent and
sensible heat fluxes and normalized gross moist stability (NGMS) associated with Pyg for the
least deep systems (panels a and d) and for the deepest systems (panels b and e). Values of the
Kullback-Leibler divergence are also given, first for the LN distribution from the EN one and
then for EN from LN. The EN-LN relative difference in mean wind speeds collocated with the

systems for all systems (panel c).

the distributional shifts in P. We have used convective mass flux as the measure of con-
vective strength within our NGMS calculation and proceed to investigate how and why
it changes with El Nino phase.

5 The Momentum Budget for Ascent Rates
5.1 Large-scale Circulation as a Buoyancy Sink

From the mean pressure velocity profiles (Fig. 3a), and in agreement with the heat
maps of occurrence (Fig. 1), the least deep systems tend to exist in an environment of
large-scale descent, whereas the intermediate and deepest systems exist in regions of large-
scale ascent. Profiles of the 1st percentile in pressure velocities also show that extreme
ascent is stronger during El Nifo than La Nifia for the deepest systems (Fig. 3b), while
the converse is true for the least deep systems.

To understand which factors set the convective updrafts associated with high pre-
cipitation intensity, we employ a vertical momentum budget. For cloudy updrafts w,,
the dominant force balance has been shown to be between buoyancy and pressure drag
(de Roode et al., 2012; Romps & Charn, 2015) (derivation given in SI Appendix):

ow, 10p

o B o0 (2)

Calculating the terms of this balance, the least deep systems maintain positive buoy-
ancy until 500 hPa with 2% increases during La Nifia up to the 800 hPa level and 2 to
3% decreases above that. The pressure gradient force, analogous to drag, also decreases

©2020 American Geophysical Union. All rights reserved.
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Figure 3. Mean collocated pressure velocity and extreme pressure velocities defined by the
1st percentile (negative values indicate ascent, panels a and b respectively). The deepest, in-
termediate, and least deep systems are shown in red, green, and blue for El Nifio in solid lines
and La Nina in dashed lines. Probability distributions of the integrated pressure gradient force,
associated with ng, are also shown for the least deep and deepest systems (panels ¢ and d re-
spectively) with a solid line indicating the mean and dashed lines for the 99% confidence interval.
Red indicates El Nino and blue La Nina.
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at all levels during La Nifna by 5 to 6%, twice as much as any buoyancy loss. Integrat-

ing these profiles, we see a relative gain of 5% in total drag during El Nino (Fig. 3c¢). This
shift in the force balance weakens w, for the least deep systems during El Nino. We see
opposite trends from the same calculation for the deepest systems: a 5% relative decrease
in total drag during El Nino corresponds to stronger ascent (Fig. 3d).

These shifts in pressure drag are consistent with the small, positive correlation of
Hadley circulation strength with El Nifio conditions, as reported in other studies (e.g.
Oort & Yienger, 1996; Quan et al., 2004; Schwendike et al., 2014). Indeed, the merid-
ional separation of the least deep and deepest systems (Fig. 1b-d) suggests that a change
in the meridional overturning drives their opposing changes in drag force. For the least
deep systems during El Nino, if the descending branch of this overturning strengthens,
the force balance shifts to weaken their convective updrafts (Eq. 2). Weaker updrafts
in turn diminish the integrated condensation rate and Py, as shown in scaling studies
(Muller et al., 2011). On the other hand, as the ascending branch also strengthens, the
force balance shifts to enhance convective updrafts and Pgg for the deepest systems. But
the relative loss and gain in Py still exceed the respective gain and loss in pressure gra-
dient force (Fig. la), indicating that another factor must be at play.

5.2 Free Tropospheric Drying as a Buoyancy Source

We next explore the buoyancy term in Equation 2 in more detail. Given that the
deepest systems are relatively infrequent in comparison to the intermediate ones (Fig.
lc-d), we hypothesize that these may be understood with a zero-buoyancy plume (ZBP)
model (Singh & O’Gorman, 2013; Singh et al., 2017). The ZBP model conceptualizes
convection as a plume in which entrainment mixing shifts the lapse rate from a moist
adiabat toward a dry adiabat, such that tropical in-cloud buoyancies tend to be small.
If this entrainment (e,,) is negligible for a given air parcel (the undilute parcel), its buoy-
ancy increases in proportion to the deviation of specific humidity from the saturation
value, or saturation deficit:

B=¢,L,(1—RH)q, (3)

where ¢, is the entrainment rate, L, is the latent heat of vaporization, RH is the rela-
tive humidity, and ¢, is the environmental saturation vapor mixing ratio.

In collocated RH profiles, El Nino shows a strong drying, or increasing saturation
deficit, relative to La Nina for the deepest systems, especially in the mid-troposphere (Fig.
4a). This larger saturation deficit corresponds to larger instability and higher ascent rates
during El Nino. Here, the deep convective population, dominated by systems of inter-
mediate depth, sets the lapse rate through the weak temperature gradient (Sobel et al.,
2001). Then, the infrequent deepest systems can capitalize on the free tropospheric sat-
uration deficit to produce extreme P. We make this argument first based on the order-
of-magnitude larger frequency of the intermediate systems relative to the deepest ones
(Tab. S1) and secondly based on the higher temperatures and lower lapse rates in their
vicinity (Fig. S8).

We calculate the integrated ZBP buoyancy from RH and temperature profiles col-
located with the deepest systems when they produce Pyg and find that it increases by
a factor of 2 to 4 during El Nifo relative to La Nifia (Fig. 4b). This EN-LN difference
in mean ZBP buoyancy is statistically significant at the 99% level. If we instead use the
3- or 6-hour preceding RH and temperature profiles, we see the same EN-LN buoyancy
increase but of weaker magnitude, as the preceding profiles are less affected by subsidence
drying (not shown).

We can decompose these integrated buoyancy changes into latent and sensible heat-
ing components by fixing the profile of the other variable (Fig. 4c¢). For the deepest sys-
tems, the integrated buoyancy gain is driven almost exclusively by RH until 600 hPa,
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Figure 4. El Nifio-La Nina relative difference in collocated RH profiles with the deepest, in-
termediate, and least deep systems in red, green, and blue respectively (panel a). ZBP model
buoyancy profiles associated with Pog for the deepest systems with El Nifio in blue and La Nifia
in red (panel b). The entrainment rate e takes the form 1/z, and 99% confidence intervals for
both phases are shaded. Decomposition of the EN-LN buoyancy differences in panel b into tem-
perature and RH effects, shown in dashed pink and dotted-dashed maroon lines respectively

(panel c).

above which a temperature contribution on the order of 10% appears. This upper-level
temperature contribution reflects that these systems extend deep enough into the tro-
posphere that the sensible heat component becomes important to their buoyancy (see
also ZBP model section in the SI Appendix) (Seeley & Romps, 2015). In summary then,
mid-level drying combine with warm SST and favorable circulation to produce the large
gains in the high P from the deepest systems during El Nino.

6 Discussion

With multi-decade satellite data, we have shown how the distribution of precip-
itation intensities (P) from organized convective systems changes with El Nino warm-
ing. Our study illustrates the utility of the satellite record, as we seek to develop large-
scale parameterizations for these systems. The radiative-convective idealization does not
hold at the scale of a single convective system (Jakob et al., 2019), and the computational
cost of cloud-resolving models means that we cannot generally run them over tropics-

wide domains for multiple years.

In an energetic budget, we find shifts not only in surface flux but also in the effi-
ciency with which these sources translate to precipitation. The latter motivates a ver-
tical momentum budget to investigate the shifts in the dynamics of precipitation gen-
eration. In this sense, our work corroborates a growing number of studies to emphasize
the dynamical component, especially for convective precipitation (e.g. Pfahl et al., 2017;
Nie et al., 2018). The vertical momentum budget gives insight into the complex relation

of environmental moisture and convective precipitation that we do not have from a Clausius-

Clapeyron scaling analysis. While increasing SST enhances the moisture holding capac-
ity of overlying air, it also increases the saturation threshold. Sufficient low-level mois-
ture is crucial to generate precipitation at all, but excess column-integrated moisture also
reduces saturation deficit. Relative humidity determines the MSE surplus of undilute
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parcels (via the latent heating component) throughout much of the troposphere, but at
the uppermost levels, SST can have an impact via the sensible heating component. The
vertical momentum budget encapsulates these subtleties.

For the deepest systems during El Nino, we find that reduced drag from large-scale
ascent, mid-level saturation deficit, and upper-level sensible heating components com-
bine to generate a two-fold increase in the probability of P > 10 mm h~'. While such
effect of large-scale circulation may be generalizable to isolated convection, the effects
of anomalous drying here are likely limited to more organized convection. Long-channel
RCE simulations indicate that free tropospheric drying increases as convection aggre-
gates (Wing & Cronin, 2015; Holloway et al., 2017), and indeed we expect moist detrain-
ment to decrease with the convective perimeter. Both the role of convective aggregation
and microphysical precipitation efficiency are worth further investigation in this context.

Finally, recent work indicates that El Nino and its impacts, including localized heat
extremes and wildfires, intensify as the surface warms (Fasullo et al., 2018). With the
exception of the GFDL-ESM2M model (Kohyama et al., 2017), output of the Climate
Model Intercomparison Projects indicates that El Nino occurrence increases under green-
house gas forcing (Cai et al., 2014). It is becoming even more important then to under-
stand how ENSO affects the tropics-wide distribution of precipitation intensities. How
these distributional shifts depend on the flavor of El Nino as well as the propagation speed
of convective systems also remain interesting open questions.
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