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Abstract—Robotic devices and functional electrical stimula-
tion (FES) are utilized to provide rehabilitation therapy to
persons with incomplete spinal cord injury. The goal of the
therapy is to improve their weakened voluntary muscle strength.
A variety of control strategies used in these therapies need a
measure of participant’s volitional strength. This informs the
robotic or an FES device to modulate assistance proportional
to the user’s weakness. In this paper we propose an observer
design to estimate ankle kinematics that are elicited volitionally.
The observer uses a nonlinear continuous-time neuromuscular
system, which has multi-rate sampled output measurements
with non-uniform and unknown delays from various sensing
modalities including electromyography, ultrasound imaging,
and an inertial measurement unit. We assume an allowable
maximum value of unsynchronized sampling intervals and non-
uniform delays. By constructing a Lyapunov-Krasovskii func-
tion, sufficient conditions are derived to prove the exponential
stability of the estimation error. Numerical simulations are
provided to verify the effectiveness of the designed observer.

I. INTRODUCTION

Each year in the United States 17,000 people experience a
spinal cord injury (SCI) [1], and the majority of the cases
are incomplete spinal cord injury (iSCI). Unlike persons
with complete SCI, persons with iSCI may have voluntary
control of limbs but the strength is weakened compared to
able-bodied persons. However, they can potentially recover
their limb function because their nervous system circuitry
is largely intact and is susceptible to reorganization through
neurorehabilitation. FES and robot-based neurorehabilitation
aim to induce reorganization through therapeutic exercises
that are repeatable, flexible, and quantifiable. Because robotic
devices are programmable, a variety of control strategies
such as assist-as-needed control strategy and challenge-
based training strategy (e.g., resistive training and error-
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augmentative control) are feasible with repetition [2]. Em-
phasis on a variety of control strategies is motivated from
motor learning principles to improve the impact and outcome
of robotic therapy [2].

However, ability of these control strategies to strongly
induce neuroplasticity and motor learning is dependent on
the measure of weakened voluntary effort. The measurement
of true human voluntary effort evokes correct modulation
of robotic or FES response as per the prescribed control
strategy. Due to the limitations of the existing non-invasive
sensing modalities, it is often difficult to reliably predict the
weakened voluntary effort of persons with iSCI. Noninvasive
electromyography (EMG) signal is commonly used as a
prediction of the voluntary muscle force or corresponding
joint torque [3]–[5]. However, it cannot reliably detect human
intent due to its susceptibility to interference from signals
of neighboring muscles and artifacts from FES. We propose
that ultrasound (US) imaging can be used to predict the
voluntary effort due to its primary advantage of providing
direct visualization and measurement of muscles that govern
gait function. The US-based sensing method can greatly
overcome the drawbacks of using EMG method [5], but the
information extraction from US imaging at a high sampling
frequency is challenging. For example in [5], the video output
of B-mode US scanner was digitized with a rate of 8 frames
per second.

In this paper, we focus on designing a state observer
to estimate volitional ankle joint movements. The EMG
signal is assumed as the volitional signal from the central
nervous system. A signal measured from US imaging is
regarded as the level of muscle activation. Besides, an inertial
measurement unit (IMU) is utilized to measure the angular
velocity of the ankle joint. These signals are given as inputs
to a nonlinear continuous time neuromuscular model that is
used in the dynamics-based observer to predict ankle state.
Since IMU signals can be sampled and processed at a higher
sampling frequency than the US imaging-derived signals, it is
harder to synchronize the two signals. The US-derived signals
are sampled at a lower rate due to imaging processing and
information extraction from the US raw signals. However, for
each measurement, there is an allowable maximum value of
sampling period (AMSP) and an allowable maximum value
of output delay (AMOD).

Clearly, a state observer for the aforementioned volition



prediction problem must process information from several
sensors that work at different sampling rates. Moreover, syn-
chronization among multi-sampling rates is hard to maintain
due to possible delays in processing. These type of problems
have led to the design of multi-rate observer designs, which
has received great attention for linear systems. In [6], a
controller synthesis technique for linear multi-rate sampled-
data systems by pole placement was studied. A novel suffi-
cient Krasovskii-based stability criteria for linear multi-rate
sampled-data systems with uncertain sampling interval was
proposed. The stability criteria were cast as linear matrix
inequalities (LMI) [7]. In [8], the authors proposed a multi-
rate estimator for linear systems, which is based on the
continuous-time Luenberger observer method plus an inter-
sample predictor for each sampled output measurement.
Authors in [9] investigated a Kalman filter adaptation for
a linear continuous-discrete system with multi-rate sampling
time output. They considered the update step that occurred
only when the sampled measurements were available. In [10],
an estimator based on a multi-rate moving horizon estimation
(MHE) strategy was proposed, and the missing sample of the
slow measurement was compensated by a prediction value.

For a more complex situation, the observer design for
nonlinear dynamic systems with multi-rate sampled output
measurements cannot be solved by the aforementioned meth-
ods. Recently new contributions have been made in the area
of multi-rate observers for nonlinear systems. In [11], for
a class of triangular nonlinear systems, the authors used a
Lyapunov approach to guarantee an exponential convergence
of the observation error and improved the bounds of a max-
imum allowable transfer interval compared to the small gain
approach. In [12], the authors designed a multi-rate observer
that is based on a continuous-time design coupled with the
inter-sample predictors for each sampled measurements. The
error dynamics of the hybrid system was input-to-output
stable by applying Krafyllis-Jiang vector small gain theorem.
In [13], the authors built an observer for a multi input-multi
output nonlinear system with multi-rate sampled and delayed
measurements.

The main contributions of this work are summarized as
follows. 1) Under several assumptions, a continuous time
state observer is designed for a general nonlinear neuromus-
cular system with multi-rate sampled and uncertain delayed
output measurements. The update law is designed to combine
two sensory measurements instead of using only one sensor
measurement. 2) Based on Lyapunov-Krasovskii function, the
maximum allowable transfer interval is derived to guarantee
exponential convergence of the observation error.

II. MODELING

The continuous-time dynamics of the ankle model, as
shown in Fig. 1, can be expressed as

Jϕ̈(t) +mgLsin(ϕ(t)) + τp(t) = τan(t), (1)

where J ∈ R and m ∈ R are the moment of inertia
and the mass of human foot, respectively, g ∈ R is the

Figure 1. Ankle dynamic model for voluntary TA contraction

gravitational acceleration, L ∈ R is the length from ankle
to the center of the mass. ϕ(t), ϕ̇(t), ϕ̈(t) ∈ R are the
anatomical ankle angular position, velocity, and acceleration.
τp(t) ∈ R denotes the passive musculoskeletal torque of the
ankle joint, and τan(t) ∈ R denotes the torque generated by
the voluntary contraction of the TA muscle.

The passive and active TA muscle torques of the human
ankle are modeled as [14]

τp(t) = d1(ϕ(t)− ϕ0(t)) + d2ϕ̇(t) (2)

+d3e
d4ϕ(t) − d5ed6ϕ(t),

τan(t) = (c2ϕ
2(t) + c1ϕ(t) + c0)(1 + c3ϕ̇(t))aan(t). (3)

The coefficients di ∈ R (i = 1, 2, ..., 6), cj ∈ R (j = 1, 2, 3),
and ϕ0 ∈ R are specific parameters for individual subject.
aan(t) ∈[0,1] denotes the normalized TA muscle activation
represented by the normalized parameter from US images.
The normalized muscle activation dynamics are given as [15]
[16]

ȧan(t) =
uan(t)− aan(t)

Ta
, (4)

where uan(t) ∈ [0, 1] denotes the normalized excitation, and
Ta ∈ R is the TA muscle contraction time constant. In (3),
aan and uan are measured from the processed US images and
processed EMG signal, respectively, and satisfy the following
assumptions:

Assumption 1: The normalized excitation term is a linear
function of the processed EMG signal, and the normalized
muscle activation term is a linear function of the processed
US images

uan(t) =
Q(t)−Qmin

Qmax −Qmin
, aan(t) =

β(t)− βmin

βmax − βmin
, (5)

where Q(t) is also called moving root mean square (MRMS)
[17] and is given as

Q(t) = rms{l(t)} =

(
1

T

∫ t+T

t

l2(t)dt

)1/2

, (6)

where t ∈ R, T ∈ R and l(t) ∈ R represent the starting
sampling time point, moving time window, and amplitude
of EMG signal, respectively, Qmin and Qmax denote the
minimum and maximum value of the MRMS, respectively.



β(t) ∈ R+ donates the information from US images. βmin

and βmax denote the minimum and maximum value of β(t),
respectively.

By defining x = [x1, x2, x3]T = [ϕ, ϕ̇, aan]T, the ankle
joint nonlinear dynamic model in a state space form is

ẋ(t) = A(uan(t), z(t))x(t) +Buan(t), (7)

where

A(uan(t), z(t))x(t) =

 x2(t)
1
J (τan − τp −mgLsin(x1(t)))

−x3(t)
Ta

 ,
B =

[
0 0 1

Ta

]T
,

τan(t) = (c2x
2
1(t) + c1x1(t) + c0)(1 + c3x2(t))x3(t),

τp(t) = d1(x1(t)− ϕ0) + d2x2(t) + d3e
d4x1(t) − d5ed6x1(t).

In continuous time, the measurements are angular velocity
x2(t) and normalized muscle activation x3(t). The measure-
ment model is

z(t) = Cx(t), y(t) = z(t− d) = Cx(t− d), (8)

where C =

[
0 1 0
0 0 1

]
is a constant output matrix, z(t) ∈

R2 and y(t) ∈ R2 are the undelayed and delayed continuous
time output measurements, respectively. d ∈ R2 is the output
measurements delay for the sensor channels.

III. OBSERVER DESIGN

The objective is to design an observer, x̂(t), for the non-
linear system with multi-rate sampled and unknown delayed
measurements, such that the estimator error e(t) = x(t)−x̂(t)
converges exponentially to the origin. We assume that the
output measurements are sampled at time instants tik ∈ R,
where i = 1, 2 represents there are 2 sensor channels, and
tik < tik+1(k = 0, 1, 2, ...,∞) means that {tik} are monotoni-
cally increasing sequences and satisfy limk→∞ tik =∞. The
ratio between sampling periods of the two channels is not
necessarily an integer. In addition, due to the measurements
delays, the sampled measurements are available at instants
tik + τ ik ∈ R, where τ ik ∈ R+ denotes the unknown
transmission delay on ith sensor. It is noted that there is
a upper bound τ̄i = sup

0≤k<∞
(tik+1 − tik) for all i and k. The

sampled and delayed output measurements are given by

yd(t
i
k) = zd(t

i
k − τ ik) =

[
yd1(t1k)
yd2(t2k)

]
=

[
ϕ̇(t1k − τ1k )
aan(t2k − τ2k )

]
.

(9)
The state space form in (7) can be considered as a more

general lower triangular form

ẋ1(t) = x2(t) + f1(x1(t))
ẋ2(t) = x3(t) + f2(x1(t), x2(t))
ẋ3(t) = f3(x1(t), x2(t), x3(t)) + u(t)

z(t) =
[
x2(t) x3(t)

]T
t ∈
[
tk tk+1

)
, k ≥ 0

yd(t
i
k) =

[
x2(t1k − τ1k ) x3(t2k − τ2k )

]T
, (10)

where u(t) is the input, fj(·)(j = 1, 2, 3) is the remainder
term after extraction of the corresponding state variable, and

it satisfies the globally Lipschitz condition, which can be
given as

|fj(x1, . . . , xj)− fj(x̂1, . . . , x̂j)|
≤ r(|x1 − x̂1|+ . . .+ |xj − x̂j |)

, (11)

where r is a positive constant.
Lemma 1. For any given positive definite matrix M ∈

Rn×n, a scalar α > 0, and a vector function v, the following
inequality is defined as [18][∫ α

0

v(s)ds

]T
M

[∫ α

0

v(s)ds

]
≤ α

[∫ α

0

v(s)TMv(s)ds

]
.

(12)
For the system (10), the following observer is designed

˙̂x1(t) = x̂2(t) + f1(x̂1(t))

+γ1
(
e2(t1k) +

e3(t
2
k)

E

)
˙̂x2(t) = x̂3(t) + f2(x̂1(t), x̂2(t))

+γ2
(
Ee2(t1k) + e3(t2k)

)
˙̂x3(t) = f3(x̂1(t), x̂2(t), x̂3(t))

+γ3
(
E2e2(t1k) + Ee3(t2k)

)
+ u(t)

x̂j(t
i
k+1 + τ ik+1) = lim

t→ti
k+1

+τi
k+1

−
x̂j(t),

∀i = 1, 2, ∀j = 1, 2, 3
t ∈

[
tik + τ ik, t

i
k+1 + τ ik+1

)
, k ≥ 0

,

(13)
where x̂j(t) = x̂j0 for t ∈

[
t0, t0 + τ i0

]
(t0 = ti0)(i = 1, 2)

ei+1(tik) = ydi(t
i
k) − ci,i+1x̂i+1(tik) (∀i = 1, 2), ci,i+1 is

the ith row and (i + 1)th column element of C. E ≥ 1
and γj(j = 1, 2, 3) are positive constant values that are
subsequently defined. The estimation errors of the state
variables are defined as

ej(t) = xj(t)− x̂j(t), j = 1, 2, 3. (14)

At the same time, the definition of global exponential con-
vergence for the system (13) is equivalent to the exponential
stability of estimation error dynamics, which is given as
follows [13].

Definition 1. The observer (13) is said to be exponentially
stable, if there exits a non-decreasing function S and a
positive constant ξ such that ‖x(t)− x̂(t)‖ ≤ exp(−ξ(t −
t0))S(‖x0‖ , ‖x̂0‖) for any given x0 ∈ Rn and x̂0 ∈ Rn.

The outputs yd(tik) can be measured by two sensor chan-
nels. Although the time delay τ ik for each channel is not
known, the data from the sensors is sampled at instants tik,
and the evolution process ei+1(tik) = ydi(t

i
k)−ci,i+1x̂i+1(tik)

(∀i = 1, 2) is updated at instants tik + τ ik, which means
e2(t1k) and e3(t2k) are updated automatically once the out-
put yd(tik) is available. Otherwise, during the time period
t ∈

[
tik + τ ik, t

i
k+1 + τ ik+1

)
, e2(t) and e3(t) will stay as two

continuous functions.
Definition 2. Based on the above modeling, the estimation

error dynamics is presented as follows

ė1(t) = e2(t)− γ1
(
e2(t1k) +

e3(t
2
k)

E

)
+ f̃1

ė2(t) = e3(t)− γ2
(
Ee2(t1k) + e3(t2k)

)
+ f̃2

ė3(t) = −γ3
(
E2e2(t1k) + Ee3(t2k)

)
+ f̃3

ej(t
i
k+1 + τ ik+1) = lim

t→tik+1+τ
i
k+1

−
êj(t), i = 1, 2

j = 1, 2, 3, t ∈
[
tik + τ ik, t

i
k+1 + τ ik+1

)
, k ≥ 0

, (15)



where f̃j = fj(x1(t), . . . , xj(t)) − fj(x̂1(t), . . . , x̂j(t))
(∀j = 1, 2, 3) are the corresponding errors of nonlinear terms.
γj(j = 1, 2, 3) are the parameters that satisfy the following
inequality

ΓTP + PΓ ≤ −I, (16)

where Γ =

 −γ1 1 0
−γ2 0 1
−γ3 0 0

, and P = PT ∈ R3×3 is

positive definite matrix.

IV. CONVERGENCE AND SIMULATION RESULTS

A. Convergence Analysis

To find the sufficient conditions for the observer (13) to
converge exponentially, several assumptions are given [19]:

Assumption 2: All system signals (x, y, z, uan) are bounded
and there is a known upper bound yM for the output
amplitude ‖y(t)‖.

Assumption 3: The pair (A(uan(t), z(t)), C) is uniformly
observable.

Assumption 4: The output delay value AMOD should be
less than the sampling time AMSP, which means that the
measurements sampled at instants tik can be used for the
current observer design before the next measurements come
at instants tik+1.

Define a varying delay variable δi(t) = t − tik, t ∈[
tik + τ ik, t

i
k+1 + τ ik+1

)
. Then, the term tik can be expressed

as tik = t − δi(t). It is obvious that 0 < δi(t) = t − tik <
tik+1 + τ ik+1 − tik < ε, where ε > 0. The goal of the proof is
to find the upper bounds of ε such that the error dynamics
system (15) is globally exponentially stable. In addition,

the following coordinates


ε1(t) = e1(t)

E

ε2(t) = e2(t)
E2

ε3(t) = e3(t)
E3

are used for

substitution in error dynamics (15) , which turns out to be

ε̇1(t) = Eγ1
(∫ t

t−δ1(t)
ε̇2(s)ds+

∫ t
t−δ2(t)

ε̇3(s)ds
)

+Eε2(t) −Eγ1 (ε2(t) + ε3(t)) + f̃1
E

ε̇2(t) = Eγ2
(∫ t

t−δ1(t)
ε̇2(s)ds+

∫ t
t−δ2(t)

ε̇3(s)ds
)

+Eε3(t) −Eγ2 (ε2(t) + ε3(t)) + f̃2
E2

ε̇3(t) = Eγ3
(∫ t

t−δ1(t)
ε̇2(s)ds+

∫ t
t−δ2(t)

ε̇3(s)ds
)

−Eγ3 (ε2(t) + ε3(t)) + f̃3
E3

.

(17)
Theorem 1. In the system (10) with the globally Lipschitz

condition in (11), based on the inequality (16), γj > 0(j =
1, 2, 3), if E and ε satisfy the following conditions

E > max {1, r, 64rp̄} , (18)

ε < min

{
1

36E (1 + γ̄2)
,
−λ̄2 +

√
λ̄4 + 3

6Eγ̄

}
, (19)

then, the system (13) is said to be a globally exponen-
tially stable observer for the system (10), where p̄ =
max {|Pmn|} (m,n = 1, 2, 3), Pmn is the mth row and
nth column element of matrix P . λ̄ = λmax(P ) and γ̄ =
max {γj} (j = 1, 2, 3).

Proof: Consider a positive definite function as follows

V1(t) = ε(t)TPε(t), (20)

where ε(t) = [ε1(t), ε2(t), ε3(t)]T, and the time interval is
set as t ∈

[
tik + τ ik, t

i
k+1 + τ ik+1

)
. According to [13], the

derivative of V1(t) along the system (17) is presented as

dV1(t)

dt
= ε̇(t)TPε(t) + ε(t)TP ε̇(t)

≤ −Eε(t)Tε(t)

+2r

3∑
m=1

3∑
n=1

|εm(t)Pmn|
(
|ε1(t)|

+...+ |εn(t)|
)

+

2

(
3∑

m=1

3∑
n=1

Eεm(t) (Pmnγn)

(∫ t

t−δ1(t)
ε̇2(s)ds

+

∫ t

t−δ2(t)
ε̇3(s)ds

))

≤ −Eε(t)Tε(t) +
1

4
Eε(t)Tε(t)

+2rp̄8ε(t)Tε(t) + 4E
(
λ̄
)2
γ̄

((∫ t

t−δ1(t)
ε̇2(s)ds

)2

+

(∫ t

t−δ2(t)
ε̇3(s)ds

)2)

≤ −
3

4
Eε(t)Tε(t) + 16rp̄ε(t)Tε(t) +

4E
(
λ̄
)2
γ̄

((∫ t

t−δ1(t)
ε̇2(s)ds

)2

+

(∫ t

t−δ2(t)
ε̇3(s)ds

)2)
. (21)

From (18), the above equation can be expressed as

dV1(t)

dt
≤ −1

2
Eε(t)Tε(t) +

4E
(
λ̄
)2
γ̄

((∫ t

t−δ1(t)
ε̇2(s)ds

)2

+

(∫ t

t−δ2(t)
ε̇3(s)ds

)2)
. (22)

As mentioned in Lemma 1, let δ(t) = max{δ1(t), δ2(t)}, the
inequality (22) can be given as

dV1(t)

dt
≤ −1

2
Eε(t)Tε(t)

+4δ(t)E
(
λ̄
)2
γ̄

(∫ t

t−δ1(t)
(ε̇2(s))2 ds

+

∫ t

t−δ2(t)
(ε̇3(s))2 ds

)
≤ −1

2
Eε(t)Tε(t)

+4εE
(
λ̄
)2
γ̄

(∫ t

t−ε

(
(ε̇2(s))2

+ (ε̇3(s))2
)
ds

)
. (23)



Here, another positive definite function called auxiliary
integral function is constructed as follows

V2(t) =

∫ t

t−ε

∫ t

%

(
(ε̇2(s))2 + (ε̇3(s))2

)
dsd%, t ≥ t0 + ε. (24)

Based on Lemma 1, it is clear that V2(t) ≤
ε
∫ t
t−ε

(
(ε̇2(s))

2
+ (ε̇3(s))

2
)
ds. Then based on Leibniz

integral rule, take the derivative of V2(t) we can get

dV2(t)

dt
= ε

(
(ε̇2(t))2 + (ε̇3(t))2

)
−
∫ t

t−ε

(
(ε̇2(s))2 + (ε̇3(s))2

)
ds.

(25)
From (19), we can get

dV2(t)

dt
≤ ε

3∑
j=1

(ε̇j(t))
2 +

∫ t

t−ε

(
(ε̇2(s))2 + (ε̇3(s))2

)
ds

= ε

(
Eε2(t) + Eγ1

(∫ t

t−δ1(t)
ε̇2(s)ds

+

∫ t

t−δ2(t)
ε̇3(s)ds

)
−Eγ1 (ε2(t) + ε3(t)) +

f̃1

E

)2

+ε

(
Eε3(t) + Eγ2

(∫ t

t−δ1(t)
ε̇2(s)ds

+

∫ t

t−δ2(t)
ε̇3(s)ds

)
−Eγ2 (ε2(t) + ε3(t)) +

f̃2

E2

)2

+ε

(
Eγ3

(∫ t

t−δ1(t)
ε̇2(s)ds+

∫ t

t−δ2(t)
ε̇3(s)ds

)
−Eγ3 (ε2(t) + ε3(t)) +

f̃3

E3

)2

−
∫ t

t−ε

(
(ε̇2(s))2 + (ε̇3(s))2

)
ds

≤ 3εE2

(
|ε1(t)|+ |ε2(t)|+ |ε3(t)|+ γ̄ |ε1(t)|

+γ̄ |ε2(t)|+ γ̄ |ε3(t)|+ γ̄

∫ t

t−ε

∣∣∣ε̇2(s)
∣∣∣ds

+γ̄

∫ t

t−ε

∣∣∣ε̇3(s)
∣∣∣ds)2

−
∫ t

t−ε

(
(ε̇2(s))2 + (ε̇3(s))2

)
ds

≤
(
12ε2E2(γ̄)2 − 1

) ∫ t

t−ε

(
(ε̇2(s))2 + (ε̇3(s))2

)
ds

+18εE2(1 + γ̄)2ε(t)Tε(t). (26)

Given the above analysis, now we can construct the
Lyapunov-Krasovskii candidate

V (t) = V1(t) + V2(t), t ≥ t0 + ε̄. (27)

Then, from inequalities (23) and (25), it can be obtained

dV (t)

dt
≤

(
−1

2
E + 18εE2(1 + γ̄)2

)
ε(t)Tε(t)

+
(
4εEλ̄2γ̄ + 12ε2E2γ̄2 − 1

)(∫ t

t−εi

(
ε̇ii+1(s)

)2
ds

)
. (28)

Substitute the sufficient conditions in Theorem 1 and the
above inequality will turn out to dV (t)

dt < 0. Furthermore,
the form in (28) can also be expressed as

dV (t)

dt
≤ ς1V1(t) + ς2V2(t) (29)

where ς1 = − 1
2E+ 18εE2(1 + γ̄)2 < 0, and ς2 = 4εEλ̄2γ̄+

12ε2E2γ̄2 − 1 < 0. Assume ς = max{ς1, ς2} < 0, then we
can get

dV (t)

dt
≤ ς (V1(t) + V2(t)) ≤ ςV (t), t ≥ t0 + ε. (30)

Thereafter, V (t) ≤ exp (ς(t− t0 − ε))V (t0 + ε). Up to now,
the nonlinear neuromuscular system (10) and its observer (13)
both have the global Lipschitz features, and then the sufficient
conditions are built to guarantee the observer error exponen-
tially stable, which means that there exits a non-decreasing
function S and a positive constant ξ such that‖x(t)− x̂(t)‖ ≤
exp(−ξ(t − t0))S(‖x0‖ , ‖x̂0‖) for any given x0 ∈ Rn and
x̂0 ∈ Rn. Therefore, the designed observer based on multi-
rate sampled and delayed measurements is an exponentially
stable observation method.

B. Simulation Results

The simulation for the nonlinear neuromuscular system (7)
and (10) was performed in Matlab (R2017a, MathWorks).
The parameters of the ankle dorsiflexion musculoskeletal
model in the simulation are given in Table 1, and the
parameters of the proposed observer are listed in Table 2.

As mentioned in section III, the sampling interval for
each channel is not necessarily uniform, so let t1k = kT1 −
(0.2rand)T1 (rand denotes random function in Matlab) and
t2k = kT2 − (0.3rand)T2 are the sampling sequences of two
different channels, where T1 and T2 are positive constants
as shown in Table 2. Also, the transmission delays of the
two channels τ1k and τ2k are given by random numbers
between interval (0, 0.5T1] and (0, 0.7T2]. Known all the
parameters and by simple calculation, we can get P = 3.526 −0.5 −2.654
−0.5 2.654 −0.5
−2.654 −0.5 3.208

, which is positive definite.

Then, γ̄ = 1.8, p̄ = 3.526, and λ̄ = 6.026. Based on
these parameters and Theorem 1, the other parameters can
be derived E = 2.26, ε = 1.6×10−3s. Fig.2 and Fig.3 show
the simulation results of the estimation error convergence
by the above set of parameters with the initial condition
x(0) = [−0.2rad, 0, 0]T and x̂(0) = [0, 0, 0]T. Obviously,
the state x2 has the fastest convergence speed while state x1
has the slowest one.

Table I
PARAMETERS OF THE ANKLE DORSIFLEXION MUSCULOSKELETAL

MODEL

Parameter m g L ϕ0 ϕeq
Value 0.96 9.81 0.1 0.18 1.22

Parameter c0 c1 c2 c3 d1
Value 56.85 39.83 -28.88 1.20 8.28

Parameter d2 d3 d4 d5 d6
Value 2.46 1.37× 10−13 18.07 10.56 -15.37

Parameter Ta J
Value 0.14 0.0128



Table II
PARAMETERS OF THE DESIGNED OBSERVER

Parameters r γ1 γ2 γ3 T1 T2
Value 0.01 1.3 1.8 1.2 1× 10−4s 7× 10−4s

Figure 2. Ankle trajectories of the estimated states and continuous states

Figure 3. Ankle trajectories of estimated states error

V. CONCLUSION

In this paper, a continuous time observer was proposed for
a nonlinear neuromuscular system with multi-rate sampled
and non-uniform delayed measurements. The output mea-
surements from an IMU sensor and processed ultrasound
images have asynchronous sampling frequencies and un-
certain delays. Under the assumptions that the both sam-
pling intervals and delays have their respective allowable
maximum values, sufficient conditions were derived based
on a Lyapunov-Krasovskii function that can guarantee the
exponential convergence of the observation error. Through
simulations, the effectiveness of the proposed observer was
verified. The proposed observer can help detect muscle
activity, which can be used as the voluntary muscle effort pre-
diction of people with iSCI. In the future work, experiments
will be performed to verify the effectiveness of the proposed
observer. Also, the proposed observer will be optimized to

deal with a more general and complex situations, such as
multi-rate sampled and delayed measurements with noise.
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