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Abstract—Ankle dorsiflexion produced by Tibialis Anterior
(TA) muscle contraction plays a significant role during human
walking and standing balance. The weakened function or dys-
function of the TA muscle often impedes activities of daily living
(ADL). Powered ankle exoskeleton is a prevalent technique to
treat this pathology, and its intelligent and effective behaviors
depend on human intention detection. A TA muscle contrac-
tion strength monitor is proposed to evaluate the weakness
of the ankle dorsiflexion. The new method combines surface
electromyography (sEMG) signals and sonomyography signals
to estimate ankle torque during a voluntary isometric ankle
dorsiflexion. Changes in the pennation angle (PA) are derived
from the sonomyography signals. The results demonstrate
strong correlations among the sonomyography-derived PA, the
sEMG signal, and the measured TA muscle contraction force.
Especially, the TA muscle strength monitor approximates the
TA muscle strength measurement via a weighted summation
of the sEMG signal and the PA signal. The new method
shows an improved linear correlation with the muscle strength,
compared to the correlations between the muscle strength and
sole sEMG signal or sole PA signal, where the R-squared values
are improved by 4.21 % and 1.99 %, respectively.

I. INTRODUCTION

Ankle dorsiflexion has an essential role in both human
balance control and walking [1]–[3]. The weakened function
and dysfunction of foot dorsiflexion may create barriers to
activities of daily living (ADL). A weakened dorsiflexion
such as a drop foot may result from spinal cord injury
(SCI), cerebral vascular accidents and multiple sclerosis.
Powered robotic devices and functional electrical stimulation
(FES) neurorehabilitation aim to induce neural reorganization
through therapeutic exercises that are repeatable, flexible, and
quantifiable [4]. These innovations have been used to im-
prove weakened ankle dorsiflexion [5]–[7]. Also, to achieve
better human-machine-interaction (HMI), several types of
compliant actuators have been proposed to measure the HMI
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force [8], [9], thus to estimate human movement intention
during rehabilitation. However, the ability of these therapies
to strongly induce neuroplasticity and motor learning [10]
depends on the measurement of weakened voluntary effort.

Voluntary effort is generated by the contraction of skeletal
muscles. This muscle contraction generates architectural pa-
rameters alterations, such as pennation angle (PA) [11]–[13],
fascicle length [11], [14], and muscle thickness [15], [16],
in addition to active voltages at the skin surface, known as
electromyography (EMG) [17]. EMG signal can be classified
into surface EMG (sEMG) and intramuscular EMG (iEMG),
and the difference between them is described in [18], [19].
Given the safety and convenience, currently the usage of
sEMG is much more prevalent than iEMG in both clinical
and research areas. A simultaneous and proportional force
estimator in 2 degree-of-freedoms from iEMG was proposed
in [20]. In [21], the authors found that there was a trend
of better task performance with sEMG than iEMG for both
able-bodied and amputee subjects. Milner-Brown et. al [22]
observed that the mean rectified sEMG varied linearly with
the force generated by a skeleton muscle. In [23], it was
determined that an EMG-driven model could predict joint
moments for a wide range of tasks and contractile conditions.

Although sEMG is easy to implement, it cannot reliably
detect human intention (voluntary effort) due to its suscepti-
bility to interference from signals coming from neighboring
muscles, neither can it be used to detect deep muscle ac-
tivities [21]. The authors in [24] used mechanomyography
(MMG) to estimate the elbow flexion force at the waist by
using an artificial neural network in comparison with sEMG.
Apart from sEMG and MMG, sonomyography or ultrasound
(US) imaging is another non-invasive methodology that ad-
dresses these short comings, and can be potentially used
for muscle effort prediction. The architectural parameters of
muscle’s US images can reliably provide changes in muscle
contractility of a deeply located muscle without cross-talk or
interference from the adjacent muscles. As shown in [15], by
comparing the architectural parameters from ultrasonographic
measures (including PA, fascicle length, and muscle thick-
ness) and EMG measures during isometric contractions over
the full range of contraction intensities, the authors described
the relationship between architectural parameters and EMG
signal. In [12], the exponential functions between root mean
square (RMS) of normalized sEMG and torque, the muscle
deformation and the RMS, and the PA and the RMS were
observed. In addition, the linear relationships between the



normalized muscle deformation and torque, as well as the
normalized PA and torque were observed.

As aforementioned, there are many research contributions
on determining correlations among sEMG signal, architec-
tural parameters obtained from US images of muscles, and
strength or force generated by muscles. However, these
studies correlate signals that are derived solely from sEMG
or US images with the force generated by targeted muscles
without combining sEMG and US images together. An as-
sessment method that estimates muscle contraction strength
by combining US images and sEMG signal may provide an
improved performance compared to sole sEMG signal or sole
US imaging signal.

The aim of this work is to investigate the feasibility of
a continuous muscle strength monitor based on the model-
free principle that incorporates sEMG signal and PA, detected
from US images, to assess tibialis anterior (TA) muscle
strength during voluntary isometric ankle dorsiflexion. The
load cell signal, sEMG signal and US images are collected
continuously and simultaneously from different experimental
trials on an able-bodied adult participant. The correlations
between sEMG signal and load cell signal, PA from US
images and load cell signal, and proposed monitor and load
cell signal are studied, respectively.

II. METHODS

A. Ankle Experiments

A 27 year-old male able-bodied participant with no neuro-
muscular disorders was recruited for this study. The human
participant experimental protocol was approved by the Insti-
tutional Review Board (IRB) at the University of Pittsburgh.
The participant was briefed on the experimental procedures
and volitionally signed a consent form.

The experimental setup is illustrated in Fig. 1 (a), where
the participant was seated comfortably in an adjustable chair
with his upper leg kept horizontal. During the experimental
procedures, the participant’s lower leg was restrained per-
pendicular to the upper leg. The load cell platform is shown
in Fig. 1 (d), which includes base frame, adjustable angular
positions, pedal and load cell. The angular positions of the
pedal could be set as -15°, -10°, -5°, 0°, 5°, 10° and 15°
corresponding to the ground. In this study, the pedal of the
platform was set to be parallel to the ground by setting
the initial angle to 0°. After that, both the heel and toe
of the participant’s foot were tied to the pedal tightly by
velcro straps to guarantee the isometric ankle dorsiflexion.
The load cell (MLP-300, Transducer Techniques, CA, USA)
in Fig. 1 (d) was located beneath the pedal to measure the
equivalent voluntary contraction force (VC) of the dorsiflexor
muscle group during ankle dorsiflexion. For isometric case,
the moment arm of VC was kept as a constant, and the
ankle torque equaled to the multiplication of VC and moment
arm. The sEMG sensor in Fig. 1 (b) (BagnoliTM Desktop,
DELSYS, MA, USA) was attached to the lower leg skin
through a piece of adhesive interface after shaving and
cleaning with alcohol in the targeted area. A clinical linear

Figure 1: (a) Experimental setup employed to simultaneously
record the signals from sEMG, US imaging and load cell dur-
ing ankle dorsiflexion. (b) Single differential sEMG sensor.
The sEMG signal is the results of the potential difference
between two electrodes on the skin surface. (c) 3-D printed
customized US probe holder with 1 DOF. The US probe is
attached on its vertical bar and the holder is attached on
the skin surface by velcro. (d) Load cell platform with 7
adjustable angular positions. The participant’s foot is attached
on the pedal surface

US transducer (L7.5SC Prodigy Probe, S-Sharp, Taiwan)
was pressed onto the targeted muscle of the lower leg with
a special customized holder as shown in Fig. 1 (c). This
holder with 1 degree of freedom (DOF) was 3-D printed,
and it could adjust the orientation of the US probe from
cross-sectional direction to longitudinal direction to obtain
the most visualized muscle image. Conductive US gel was
applied between the transducer and the skin. The transducer
was placed to measure a longitudinal direction instead of a
cross-sectional area. In this way inaccurate measurements due
to muscle fibers moving during contraction can be avoided,
because cross-sectional placement of the probe would miss
the targeted area when the muscle contraction altered the
location of muscle fibers.

Once the setup was initialized, the position of lower leg,
the orientation of probe, and the position of the load cell
platform would stay stationary until the end of experiments.
Three trials were conducted, and for each trial, the duration
was set to 6 seconds. The 1st second was left intentionally
to get US machine ready for receiving trigger signal. From
the beginning of the 2nd second, the US machine started to
receive the trigger signal, and the participant performed ankle
dorsiflexion twice within 5 seconds following a sequence
including relax, maximum voluntary contraction (MVC) and
relax according to oral instructions. Thus, totally there were
six dorsiflexion cycles for three trials. To avoid fatiguing the
muscle, a rest period of 2 minutes to 4 minutes between two
trials was provided.

B. Signal Measurements and Analysis

The signal from the load cell was processed though an
input signal conditioner (DRC-4710, OMEGA Engineering,



CT, USA), which amplified the original signal and filtered

the noise. The signal from the sEMG sensor was processed

though an input module (BagnoliTM Desktop, DELSYS,

MA, USA) and a main amplifier (BagnoliTM Desktop,

DELSYS, MA, USA) with a gain of 10k. In addition, the

main amplifier filtered the signal to a bandwidth between

20 Hz and 450 Hz and checked for excessive amounts of

line interference as well as channel clipping due to over-

amplified signals. Finally, the processed load cell signal and

the sEMG signal were collected by a data acquisition (DAQ)

board (QPIDe Board, Quanser, Canada) through analog input

channels. The signals from the US transducer were processed

in an US imaging machine (Prodigy, S-Sharp, Taiwan) to

image the TA muscle contraction.

Signals of sEMG, US image and load cell were syn-

chronously recorded in a real-time system implemented in

Matlab/Simulink (R2012b, MathWorks, MA, USA) con-

trolled by trigger signals. The load cell and sEMG signals

were sampled at 1000 Hz. Ultrasound imaging of 6.4 MHz

center frequency with 20 frames per second in the brightness

mode (B-mode) was used to scan a targeted TA muscle

region. For the sEMG signal from one full contraction, the

moving root mean square (MRMS) [25] [4] is given as

x2(t) = rms{l(t)} =

(
1

T

ˆ t+T

t

l2(t)dt

)1/2

(1)

where t ∈ R, T ∈ R and l(t) ∈ R represent the window

beginning time instant, the length of the moving window,

and the amplitude of sEMG signal, respectively.

Then the normalization of VC and sEMG MRMS are given

ni(t) =
xi(t)− ximin

ximax − ximin
· 100%, i = 1, 2 (2)

where xi(t)(i = 1, 2) represent VC and sEMG MRMS,

respectively. ni(t)(i = 1, 2) denote the normalized values

of corresponding signals. One point every 0.05 second from

ni(t)(i = 1, 2) was selected to match the 20 Hz of US

images, which is donated as Ni(t)(i = 1, 2).
For the US images during the same contraction period

collected by the commercial Prodigy software (Prodigy, S-

Sharp, Taiwan) and replotted in Matlab, as shown in Fig. 2,

the PA was defined as the angle between the most clearly

visualized fascicle and its insertion to the deep aponeurosis

surface or baseline. By subjectively drawing two lines for

the fascicle and baseline in Matlab, respectively, the PA

was computed through slopes of these two lines. Here, three

fascicles were chosen, then the angle between each fascicle

and the baseline was calculated, respectively. The average

angle value was regarded as the PA for each US image.

The normalization of PA is also given as

N3(t) =
x3(t)− x3min

x3max − x3min
· 100% (3)

where x3(t) represents PA at frame rate of 20 Hz and N3(t)
denotes the normalized value of PA.

The monitoring method incorporates the normalized sEMG

MRMS and PA, in the meanwhile the allocation coefficients

Figure 2: Pennation angle of TA muscle in US images. The

angle between two dash lines is the pennation angle, and the

image was taken at the moment before contraction

are set as 1 − α and α, respectively. Then the weighted

summation is given as the incorporation rule

N4(t) = αN3(t) + (1− α)N2(t) (4)

where α is a coefficient between 0 and 1. When α = 1
(or 0), the monitor only takes normalized PA (or sEMG

MRMS) signal, otherwise, the monitor takes the weighted

summation of normalized PA and normalized sEMG MRMS

signals. To verify the performance of the proposed monitor,

the correlations between N1 and N2, N1 and N3, as well

as N1 and N4 were investigated by using linear regression

method in Matlab. The estimated normalized VC is given as

f̂i = β0i + β1iNi, i = 2, 3, 4 (5)

where f̂i(i = 2, 3, 4) denote the estimation of normalized

VC by sole normalized sEMG MRMS N2, sole normalized

PA N3 or proposed monitor N4. β0i and β1i denote the y-

intercepts and slopes of each linear regression, respectively.

It is clear that f̂4 equals to f̂2 when α equals to 0 and f̂4
equals to f̂3 when α equals to 1.

III. RESULTS AND DISCUSSIONS

A. Pre-processed Results of VC, sEMG MRMS and PA

Fig. 3 (a) shows the original measurements of the first

dorsiflexion cycle in trial 1, which includes VC signal,

sEMG signal and the PA signal. At the starting of the

contraction, sEMG signal was the fastest one that had an

obvious response, which is about 40 ms ahead of VC and PA.

But there was no distinguishable time delay between VC and

PA. From observing different trials, a common characteristic

is found that when VC approaches to MVC very closely after

2.2 s, although VC does not have much change, the PA is

still increasing, which means at the end of the contraction

cycle an increasing PA will not generate more VC. This

phenomenon is similar to the results as shown in [15].

The preliminary normalization results Ni(t)(i = 1, 2, 3) are

shown in Fig. 3 (b). In an isometric case, ankle torque equals

to the multiplication of VC and the constant moment arm,

so its normalization is equal to normalized VC. The sEMG

MRMS can smooth the original sEMG measurement, which

appears the similar functionality as a low pass filter. However,



(a)

(b)

Figure 3: (a) Original measurements of VC, sEMG and PA of
first dorsiflexion cycle in trial 1. During the full contraction
cycle, VC in (A) and PA in (C) are increasing monotonically,
and the magnitude and density of sEMG in (B) are both
increasing with the increasing VC. (b) Normalized values of
VC, sEMG MRMS and PA, which are denoted as N1, N2 and
N3, respectively, in the corresponding dorsiflexion cycle, and
the feature scaling of every signal is between 0 to 100%

the smoothness and information integrity of sEMG signal are
contradictory to each other, and the length of moving window
in (1) affects both the smoothness and information integrity.
To make a trade-off, the length of moving window was set
as 0.2 second.

In Fig. 3 (a), ideally the VC was supposed to be a ramp, but
since the participant performed dorsiflexion according to oral
instructions, it was too difficult to maintain a strictly ramp
line. The overall relationships between N1 and N2, N1 and
N3 from six dorsiflexion cycles are represented as shown in
Fig. 4 (a) and (b), respectively. It is obvious in Fig. 4 (b) that
at the end of contraction process in each cycle, the increasing
PA does not produce higher TA muscle VC. Fig 4. (a) shows

Table I: The results of linear regression between normalized
VC (N1) and normalized sEMG MRMS (N2), normalized
VC (N1) and normalized PA (N3)

Regression Slopes Y-intercepts R2 value
mean std mean std mean std

N1 and N2 1.094 0.049 -11.418 2.657 0.917 0.048
N1 and N3 1.065 0.055 -6.807 6.773 0.954 0.041

the likely piecewise linear correlation between N1 and N2,
whose critical point is 50% N2, while Fig. 4 (b) shows the
likely global linearity. The results of linear regression in Fig.
4 (a) and (b) are given in Table I, which includes the means
and standard deviations (std) of slopes, y-intercepts and R-
squared values (R2), respectively. R2 value is a generalized
criteria to evaluate the performance of correlation. Based on
R2 values, normalized PA presents better linear correlation
with normalized VC than normalized sEMG MRMS. In addi-
tion, the student’s t-test shows significant difference between
the two groups R2 values (p<0.01).

B. Results of Combined sEMG MRMS and PA

From the results in Fig. 4 (a) and (b), we can infer that
the combination of N2 and N3 is very likely to gener-
ate improved linear regression results. From the visualized
US images, ideally the PA changes smoothly during the
contraction, which is more reliable for indicating muscle
activities than sEMG signal with embedded noise. The goal
of this monitor is to reduce the error between f̂4 and N1

by adjusting the allocation coefficient α compared with the
error between f̂2 and N1, or between f̂3 and N1. Here, α is
adjusted from 0 to 1 with the interval of 0.1 to get different
monitoring results. To the best of our knowledge, there is
no gold standard to define which linear regression should
be deemed as acceptable and which one as not acceptable
just based on the slopes and y-intercepts. However, in order
to have a tool to draw conclusions about the significance
of this work, we adopt the criterion that was used in [26]
for the acceptable linear regression quality based on the R2

values. In that study, R2 values higher than 0.8 were a sign
of acceptable estimations (the maximum value is 1). The
effect of increasing α on the R2 values between N1 and
N4 was investigated, as shown in Fig. 5. Accordingly, all
R2 values in Fig. 5 are higher than 0.8, which indicates
all linear regression operations are acceptable. Furthermore,
higher R2 means better linear regression between N1 and N4.
The results in Fig. 5 show that in cycle 2 and 4, increasing α
can generate higher R2 and α = 1 corresponds to maximum
R2, while in cycle 1, 3, 5 and 6 there exists an optimal α
between 0.5 and 1 to maximize R2, respectively.

To find the optimal α, the loss function, also known as
error quadratic value between N1 and f̂4, is defined and
least mean square (LMS) algorithm is applied. The optimal α
in each cycle is calculated through normal equation, which
is shown in Table 2, as well as corresponded R2 values.
The optimal α in cycle 1 is smaller than any other cycles,
which may result from the nonlinear and time-varying muscle



(a) (b) (c)

Figure 4: Typical linear regression results during one cycle of TA muscle contraction process. (a) Relationship between the
normalized VC (N1) and normalized sEMG MRMS (N2). (b) Relationship between the normalized VC (N1) and normalized
PA (N3). (c) Relationship between the normalized VC (N1) and proposed monitor (N4) with optimal α

Figure 5: R2 values in linear regression between N1 and N4

with increasing α, all R2 values are higher than 0.8

Table II: Optimal allocation α and corresponding R2 for the
monitoring method in each dorsiflexion cycle

Cycle 1 2 3 4 5 6
Optimal α 0.653 1 0.895 1 0.983 0.915
R2 value 0.981 0.968 0.989 0.944 0.979 0.876

dynamics. The linear regression results between N1 and N4

with corresponding optimal α are given in Fig. 4 (c) for six
dorsiflexion cycles, where the slope is 1.075±0.054 and the
y-intercept is -7.339±5.324. Compared with Fig. 4 (a) and
(b), the points distribution is more concentrated, which means
the monitor with optimal α has better linear correlation with
VC than sole sEMG or sole PA.

Fig. 6 presents the comparison of R2 values for the linear
regression between N1 and N2, N1 and N3, and N1 and
N4 with optimal α. Obviously, by aforementioned LMS
algorithm, each α in Table II will minimize the loss function
and maximize R2 value in that cycle. The estimation f̂4 with
optimal α improves the mean R2 value by 4.21 % and 1.99
% than sole sEMG MRMS and sole PA, respectively. To
test if there is significant improvement of R2 value, one
way ANOVA approach is used. The statistical results show

Figure 6: Mean and standard deviation of R2 values in linear
regression between N1 and N2, N1 and N3, and N1 and N4

with optimal α. * represents the significant difference level is
at p<0.05, and ** represents the significant difference level
is at p<0.01

significant difference for R2 values between by sole N2 and
by N4 (p<0.01), as well as significant difference for R2

between by sole N3 and by N4 (p<0.05). These results indi-
cate the promising functionality of the proposed monitoring
method to improve the linear correlation with VC than using
sole sEMG or sole PA, and better linear correlation provides
the chance for guaranteeing faster muscle contraction force
calculation and higher estimation accuracy.

C. Discussions

To quantitatively analyze the contraction activities of
skeleton muscles, both active voltage at skin surface and
architectural parameters were processed to correlate with
the voluntary contraction strength in this work. The linear
regression results between VC and sEMG MRMS, VC and
PA, as well as VC and proposed monitor validated the
effectiveness of the monitor to predict ankle dorsiflexion
strength. Although sEMG signal and load cell signal could



be collected at very high frequency, the quality of US
images would be deteriorated, which impedes the efficiency
and accuracy of pennation angle calculation. Therefore, all
results were based on the data collected at 20 Hz sampling
frequency. After synthesizing six dorsiflexion cycles on this
participant, in terms of linearly estimating N1, PA has a
much better performance than sEMG MRMS, as shown in
Fig. 4 (a) and (b). The most possible reason arises from the
piecewise linearity between N1 and N2 while global linearity
between N1 and N3. On the other hand, the manually
measured PA from US images in the offline manner depends
on three visualized fascicles, which is subjective and may
cause measurement error due to the alternative selection of
fascicles. Two main challenges should be overcome before
the real-time application for the proposed monitor, including
before knowing the US images, it is impossible to define the
fascicles, and the manual calculation of PA frame by frame
is time-consuming. Future studies involving automatic fiber
orientation detection algorithm are required to investigate the
online VC monitoring method for real-time application. The
time delay between sEMG and VC (or PA) is about 40 ms
at the beginning of muscle contraction, however, due to the
US images are sampled at 20 Hz, the time delay is neglected
when performing linear regressions.

IV. CONCLUSION

This study investigated a monitoring method that combines
normalized sEMG MRMS and normalized PA from US
images with an allocation coefficient α to estimate voluntary
TA muscle contraction strength. The strength monitor was
shown to be promisingly superior to the conditions when sole
sEMG signal or PA was used on an isometric dorsiflexion
experiments of an able-bodied participant. The adjustment
of allocation coefficient α affected the linear regression
performance, and an optimal α was determined by LMS to
obtain the best regression performance. The muscle strength
estimation obtained from the monitor is essential for powered
ankle exoskeleton or FES to achieve assist-as-needed based
control strategies in rehabilitation application. In the future,
more participants and more initial angular positions of the
ankle will be included to verify if the proposed monitoring
method can be generalized. Besides, the strategy may be
implemented in a powered ankle exoskeleton.
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