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ABSTRACT

Rooftop solar deployments are an excellent source for generating
clean energy. As a result, their popularity among homeowners
has grown significantly over the years. Unfortunately, estimating
the solar potential of a roof requires homeowners to consult solar
consultants, who manually evaluate the site. Recently there have
been efforts to automatically estimate the solar potential for any
roof within a city. However, current methods work only for places
where LIDAR data is available, thereby limiting their reach to just
a few places in the world. In this paper, we propose DeepRoof, a
data-driven approach that uses widely available satellite images to
assess the solar potential of a roof. Using satellite images, DeepRoof
determines the roof’s geometry and leverages publicly available
real-estate and solar irradiance data to provide a pixel-level estimate
of the solar potential for each planar roof segment. Such estimates
can be used to identify ideal locations on the roof for installing
solar panels. Further, we evaluate our approach on an annotated
roof dataset, validate the results with solar experts and compare
it to a LIDAR-based approach. Our results show that DeepRoof
can accurately extract the roof geometry such as the planar roof
segments and their orientation, achieving a true positive rate of
91.1% in identifying roofs and a low mean orientation error of 9.3°.
We also show that DeepRoof’s median estimate of the available
solar installation area is within +11% of a LIDAR-based approach.
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1 INTRODUCTION

Advances in photovoltaic (PV) efficiencies and falling manufactur-
ing costs continue to stimulate solar adoption around the world. The
average cost of energy from solar photovoltaics has fallen to less
than 12¢ per kilowatt-hour (kWh), making it comparable to gener-
ation costs from other sources. As a result, more than 70 gigawatts
of solar capacity was deployed globally in 2016 alone [1]. Many
countries have set ambitious goals for the percentage of renew-
able penetration in their overall energy mix and solar installations
continue to play a dominant role in ongoing deployments.

Solar deployments vary in size, ranging from large solar farms
that are deployed by utilities to small-scale installations by individ-
uals [14]. More than half of the installed solar capacity continue to
come from small-scale solar deployments, i.e., arrays with 10kW of
capacity of less [18]. Most of these installations are residential in
nature with deployments on rooftops of homes.

However not all roofs are suitable for solar array deployments. A
clear view of the sky with no surrounding obstructions and proper
orientation (e.g., south or southwest facing roofs in the northern
hemisphere) are key to maximizing solar energy generation of
rooftop deployments. In contrast, residential buildings surrounded
by trees or other buildings that cast shadows or roofs that do not
face south are considered unsuitable for rooftop deployments. The
task of determining whether a particular building is well suited
for rooftop solar deployment has largely been a manual process—a
professional solar energy installer measures the roof area, their
orientation, and uses a pyranometer and shade measurement tools!
to assess the amount of sunlight received on the roof for different
times of the day. These measurements are then used tofi nd the
ideal locations for installing solar arrays on the roof, if any, and to
compute the solar generation potential of the roof. Such a process
is laborious and time-consuming and certainly does not scale to
large number of buildings in a city.

There have been a few recent efforts that have attempted to
automate this laborious process using data-driven algorithm. For
instance, Mapdwell [15] and Google’s Project Sunroof [26] have
both used LIDAR data to assess the solar potential of building
rooftops in a city. LIDAR is a laser-based aerial mapping technol-
ogy that uses airborne LIDAR sensors to extract the 3D surface
structure to create a Digital Elevation Model (DEM), which can
then be used to determine the geometry of the roof as well as shade
from nearby objects [31]. Unfortunately LIDAR data is expensive
to collect and involvefl ying airplanes or drones with aerial LIDAR
mapping sensor, and thus, such data is not widely available for
many regions in the US and the world. Consequently, current state-
of-the-art techniques only offer solar potential data for select cities
where LIDAR data is available, leaving large parts of the world
without any coverage.

!Solar Path Finder, SunEye 210 http://www.solmetric.com/
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At the same time, satellite images showing rooftops of buildings
are widely available for most countries through mapping services
such as Google, Bing Maps or commercial ones such as Digital-
Globe. Our key hypothesis is that advances in computer vision
techniques make it feasible to use 2D rooftop satellite imagery to
automate the estimation of solar generation potential for any build-
ing rooftop. In our case, key research questions include whether
it is feasible to (i) recognize a rooftop from its surroundings, and
(ii) infer the 3D shape of the roof, and specifically the plane of
each roof surface and their orientation, and (iii) estimate the solar
generation potential of the roof based on its location, weather, and
potential trees or other visible occlusions. In addition to widely
available satellite imagery, historical solar irradiance data for vari-
ous locations around the world is available from the US National
Renewable Energy Lab (NREL) and public tax records in many coun-
tries provide information about the number offl oors and height
of a building. Consequently, we hypothesize that it is feasible to
develop an automated data-driven algorithm that utilizes 2D satel-
lite images of building roofs for solar potential estimation and that
such an approach has broader applicability than LIDAR-based meth-
ods, including vast swaths of rural areas and smaller cities that are
unlikely to be mapped by LIDAR in the near future.

In this paper, we present DeepRoof, a data-driven approach that

uses satellite rooftop imagery for assessing the solar potential of
any roof within a city. In doing so, our contributions are as follows:
Data-driven learning approach: We design an end-to-end deep
learning based approach to estimate the solar potential of a roof and
determine the available area for installing solar panels. Our method
estimates the size and geometry of the roof in a satellite image as
well as identify nearby buildings and trees that can potentially cast
a shadow and impact the generation potential. Further, it provides
a per-pixel generation potential of each planar roof segment, which
can be used to identify ideal locations for deploying solar panels.
System Implementation: We implemented DeepRoof to auto-
mate the process of estimating solar potential from rooftop images.
Our approach can be operated in two modes: batch and interactive
mode. In the batch mode, it takes as input a list of addresses and
outputs the solar potential of the roof. In the interactive mode, we
implement a web interface that takes input from user and displays
the solar potential for a given address.
Dataset and Evaluation: Our dataset contains a diverse set of roof
types and provides a rich representation for learning different roof
shape and orientation. Overall, it contains 4312 labelled planar roof
segments from six different cities and 1982 unlabeled images from
a city in Framingham, Massachusetts. We evaluate our approach in
three distinct ways:

e We compare DeepRoof’s output with the ground truth la-
beled data and show that it can identify planar roof segments
and determine their orientation.

e We validate DeepRoof’s results with two independent solar
experts and in a scale of 1 to 10 (10 being the highest), solar
experts gave an average rating of >8 for estimating the solar
potential of the rooftops.

e We also validate DeepRoof’s output with Google Sunroof, a
LIDAR-based technology for solar potential estimation. Our
results show that the median percentage difference between

Solar Radiance

2106

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Area Under Curve = Solar Insolation

1 KWim? Peak Sun Hours Clerview of the sky  Shade from trees )
_______ Z3-mmmees e — - .

"/ \\ Equal| Area

r” \\ T~

’/ \
/ \
L N
Time of Day Time of Day
(@) (b) (©)

Figure 1: (a) Relationship between peak sun hours and cu-
mulative solar irradiation. (b) Roof with clear view of the
sky (c) Roof with shade from nearby structures.

Sunroof and DeepRoof for different groups of roof size is
within +11% of the LIDAR-based approach.

City-scale Solar Potential Analysis: We show that DeepRoof
can be used to estimate the roof at city-scale. We note that our
approach takes approximately 5 seconds to process a rooftop image
and can scale to millions of homes using a server cluster.

2 BACKGROUND

Solar potential of a location can be defined as the amount of avail-
able solar energy over a given period. A standard measure for
estimating the availability of solar is peak sun hours, which cap-
tures the amount of solar insolation a location receives on a typical
day (see Figure 1(a)). Specifically, a peak sun hour is an hour during
which the solar intensity is 1xW /m?. Thus, peak sun hours provide
arough estimate of the potential of an area, as it accounts for the
various factors that affect available sunlight.

The amount of available sunlight depends on various factors
such as the sun’s position in the sky, geography, and local climate
conditions such as clouds. Figure 1 illustrates the amount of solar
irradiation a surface receives varies over the day and usually peaks
at solar noon. Similarly, cloudy conditions can reduce the amount
of irradiance a surface gets. Geographical location also plays an
important role, especially in places where days are longer during
the summer season. For instance, in higher latitudes, cities have
more daylight hours in summer than winter.

Estimating the solar potential of a location involves pyranome-
ters that measure the solar irradiance falling on a surface. These
pyranometers are usually placed onfl at surfaces with clear view
of the sky and record the solar insolation a location receives un-
der “ideal” conditions. These solar insolation values are accessible
online for several locations around the world [8].

However, assessing the solar potential of a roof is challenging as
other local factors are involved. One such factor is a roof’s geometry.
A roof’s geometry is defined by its (i) orientation — the direction
the roof is facing and (ii) pitch — the slope of the roof. Intuitively,
the amount of energy generated is proportional to the sunlight
incident on the roof’s surface. In the northern hemisphere, a south-
facing roof has more direct sunlight exposure than roofs that face
in other directions. Thus, the orientation angle of the roof (i.e., the
horizontal angle measured from north) determines the actual solar
generation output. Similarly, the pitch of the roof also governs the
amount of sunlight it receives. A surface that is perpendicular to the
incident sunlight will receive more sunlight as more surface area
is exposed, whereas a surface parallel to the incident sunlight will
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Figure 2: An overview of our DeepRoof architecture.

receive no sunlight. Thus, solar installers position the PV panels to
the latitude of a location to maximize the area exposed to sunlight.

Another factor that affects the solar potential of a rooftop is their
local terrain (see Figure 1(b) and (c)). While roofs with clear view
of the sky receive maximum sunlight, buildings with shade from
nearby structures such as trees can significantly reduce the amount
of solar irradiance incident on its roof. Since available sunlight
will be minimal, such roofs may not merit an investment in a PV
installation. Thus, these local factors need to be considered to assess
a roof’s solar potential.

A naive approach to assess the solar potential of a roof is to use
the outline of a building that is available from online maps. Existing
mapping services such as OpenStreetMap or Google Maps provide a
rough outline of a building property. Assuming that the roof covers
the entire building’s outline and is available for solar installation,
the outline can be used to estimate the solar potential. However, the
building’s outline may also include other areas such as swimming
pools or lawns, and thus a naive approach may overestimate the
overall potential of the roof. More importantly, information such as
roof’s orientation still needs to be considered, which is necessary
for estimating the solar potential of a roof.

To address these challenges, our work assumes that the satellite
image of a roof is available. We also assume that real-estate property
data containing information such as the availablefl oors or height of
the building and that of its surrounding buildings are known. Note
that existing services already provide all the buildings for a given
area [3, 13]. These building locations can be mapped to real-estate
data to determine the number offl oors. We further assume that the
solar irradiance of the location is available.

Problem Statement: Given the location and the satellite image of
a candidate building, wefi rst seek to create a model that can extract
the roof geometry of the building. We further seek to identify nearby
objects such as trees and buildings in the image. Moreover, for each
of the planar roof segments that are identified in the candidate
building, we need to determine the available sunlight and the roof
area for installing solar panels. Formally, given an image of size
wxh, we need to compute a set of terrain matrices (79, 7, T41.Tp),
each of size wxh, where 7¢ denotes the outline of all the planar roof
segments of a building in the image, 7# denotes the orientation of
each roof planar segment of the candidate building, 74, denotes the
height of all the buildings in the image, andfinally 7p denotes the
pitch of the roof planar segments of the candidate building. Further,
using these terrain matrices and the geographical location of the
building, we need to estimate its solar potential and identify the
ideal locations on a roof for solar installation.
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Figure 3: Overview of the FPN framework.

3 DEEPROOF DESIGN

In this section, we describe our data-driven approach to assess
the solar potential of a roof. Our approach, DeepRoof, relies on
the key observation that size and structure of roofs are observable
in a satellite image, essential for estimating the solar system a
building can support. Satellite images also indicate if there are
nearby structures such as trees or buildings that can obstruct a roof
segment partially or completely. These structures can be identified
and used to estimate its overall impact on available solar irradiance
incident on the roof. DeepRoof, illustrated in Figure 2, uses this
insight to compute the solar potential of planar roof segments in a
building, and identify suitable locations for installing solar panels.
DeepRoof’s approach, shown in Figure 2, has three key steps:
Terrain Segmentation uses deep vision techniques to create a
terrain outline of the input image by identifying all the planar roof
segments and trees in the image.

Topology Estimation creates a representation of the topology
using the terrain outline from the previous step. We approximate
the height of the building and nearby structures using publicly
available datasets that may cast shadows on the roof.

Solar Potential Analysis estimates the per-pixel solar potential of
the roof using the output from the previous steps and historical solar
irradiance data. Moreover, our algorithm identifies roof locations
where panels will receive maximum sunlight, accounting for shade
from nearby structures. Below, we describe each step in detail.

3.1 Terrain Segmentation

Thefi rst step in our pipeline is to determine all the planar roof seg-
ments, the orientation of each planar roofs and nearby structures
in a satellite image. Extracting the roof segments is useful for de-
termining the rooftop locations where solar panels can be installed.
Further, trees and nearby buildings provide locations where these
objects may cast shadows on the rooftop, thereby rendering them
unsuitable for solar panels. Let 7 be the input satellite image of
size w X h, in this step, DeepRoof constructs the terrain matrix 74
of size w X h, where the pixels correspond either to the orientation
of the planar roof segments or trees in the image.

Identifying objects in an image at a pixel-level, referred to as
semantic segmentation, is a well-researched computer vision prob-
lem [4, 19, 21]. Since recent deep learning approaches have outper-
formed previous vision techniques on segmentation tasks [10, 24],
we leverage these methods in our work. In our approach, we use the
Feature Pyramid Network (FPN) to identify planar roof segments
and nearby structures. Below we describe the key aspects of FPN,
and refer the readers to the original paper [19] for more details.

Figure 3 illustrates the architecture of a feature pyramid network
for the segmentation task. FPN takes as input an image and extracts
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features using a convolutional neural network (CNN) architecture
(e.g. ResNet [11]) augmented with a pyramid-like structure. As
shown in thefi gure, the bottom-up pathway is augmented with a
top-down pathway and lateral connections to build a multi-scale
feature pyramid of the input image. Since FPN uses a standard CNN
architecture for feature extraction, the network can be initialized
with pre-trained weights on ImageNet [16] dataset, which allows
our technique to work on relatively small datasets.

In a CNN architecture (e.g., ResNet), the bottom layers learn the
low-level features such as edges, and as we move higher up, the
top layers learn higher-level semantics of a real-world object such
as trees, cars etc. In DeepRoof, the CNN architecture learns the
planar roof segments, which are the building blocks to construct
the geometry of a roof. In FPN, the ResNet layers are grouped into
different network stages {C1,C2,C3,C4,C5}, and the output map
from the last layer of each stage is selected as a reference set to
create the feature pyramid.

As shown, the lateral connections in the top-down pathway
combines the low-resolution and the high-resolution from the con-
volutional network to create a multi-scale feature { My, M3, My, M5}
by applying a 1x1 convolutionfi lter. A 3x3 convolutionfi lter is ap-
plied to the output to obtain thefi nal feature maps {P,, P3, P4, Ps}.
Note that the image resolution of each P; is one-fourth the input
image and has 128 channels each. Finally, {P,, P3, Py, P5} feature
maps are concatenated to create a layer with 512 channel. We then
use two successive 3x3 convolutionfi lters and batch normalization
to create a feature map with channels equivalent to the number
of output classes for prediction. The output is then up sampled to
its original image size using bilinear interpolation and a softmax
activation layer is applied to predict thefi nal output.

We now discuss how our approach creates the roof orientation
matrix 74. Our approach views each planar roof segment as an
object with azimuth as its label. For instance, a planar roof segment
facing north-west is labeled as NW. Similarly, horizontal roof sur-
faces are labeled as flat and we also label tree crowns. The model is
trained using this labeled set of images. After our model is trained,
thefi nal output contains a per-pixel prediction such that each pixel
is labeled with the class of the object. We then use thefi nal output
to create the roof orientation matrix 74, where each pixel label
corresponds to roof orientation, trees or background.

3.2 Topology Estimation

In this step, we determine the outline matrix 7p that contains all
the planar roof segments of the candidate building. We also describe
how we estimate the height and the pitch of the candidate roof. We
assume that the outline of the candidate building is available. This
is used to determine the roof segments of a candidate building from
neighboring rooftops. We note that outline of a building property
for a location can be easily obtained from public maps [3]. For
example, in a given geographical area, OpenStreetMap provides
the outline of all the buildings within a specified area, as well as
their addresses [3]. Further, an outline of the candidate building
can also be easily obtained as an input through an user interface. In
our approach, we use the OpenStreetMap API to obtain the outline
of the candidate building in our input image.

2108

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

In order to recognize the planar roof segments in the orientation
matrix 74, we run the marching squares algorithm [22] that identi-
fies all the contours in an image. The marching squares algorithm
approximates the line along the edges where the orientation value
changes. The contours correspond to a planar roof segment as we
expect the orientation to be similar for a given roof segment. Next,
for all the contours predicted by our algorithm, we associate a con-
tour with the candidate building if it intersects with the building’s
outline. This creates an outline matrix 7o, which contains all the
planar roof segments of the candidate building.

We then approximate the height and the pitch of the contours
identified in the candidate building as well as height of nearby struc-
tures. Currently, we rely on third-party sources to create the roof
pitch matrix 7p and the height matrix 7. We observe that number
offl oors available in real-estate dataset and Federal Emergency
Management Agency (FEMA) guidelines [12] provide reasonable
estimate about the height and pitch of the roof, respectively. As part
of our future work, this step can be further improved by obtaining
these inputs through an interactive interface from users, which can
be used tofi ne-tune the solar potential estimation.

3.3 Solar Potential Analysis

We now discuss how we compute the solar potential of a roof and
the available area for installing solar panels using the terrain matrix.

3.3.1 Solar irradiation on a roof. We note that the solar potential
of a roof is the combined potential of all its planar roof segments.
We determine the amount of solar irradiance for each planar roof
surface in a candidate building for different time of the day in a
year, accounting for shade from nearby objects. We now describe
how the solar irradiance is computed for a tilted roof surface. The
power output of a solar panel depends on the angle sunlight is inci-
dent on the PV module, which is maximum when the PV surface is
perpendicular to the sun. Thus, the solar irradiance of a roof plane
having an orientation ¢/ € 74 and roof pitch f € 7p are depen-
dent on two components — beam and diffused irradiance. While
the beam irradiance Sg is the direct radiation received from the
sun, the diffused radiation Sp is received from radiations scattered
by particles in the atmosphere. Assuming an isotropic model for
diffused irradiance[20], the total solar irradiance of a tilted roof
surface is given by:

S(B.y) =5Sp-Rp(B,¥)+ Sp - Rp(B,¥)

beam irradiance

diffused irradiance

RpB(B, ) = cosasin f cos(yy — 0) + sina cos f§

Rp(f) = P

where, @ is the solar elevation angle and varies with the time of the
day and 0 is the solar azimuth angle and dependent on the latitude
of the location. Past values of Sp and Sp are publicly available
from various sources [8], and can then be used to compute the total
irradiance S for different time of the day in a year.

We consider objects that are roughly within 100 meters from
the building for analyzing shadows. We compute the periods when
shadows are cast from nearby objects, and subtract the direct ra-
diation Sp from our calculation, i.e., direct sunlight. Note that the
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diffused irradiance is still received through scattering, and hence it
is not ignored. We then compute the annual peak sun hours at a
pixel-level, i.e. number of hours with 1kW/m?.

3.3.2  Solar installation size. Finally, we estimate the number of
solar panels that can be installed on the roof. The planar roof seg-
ments are already available in the terrain matrices. The general
procedure is to pack as many solar panels on each of the planar
roof segments in a candidate roof. Our problem is similar to the
2D bin packing, where the objective is to maximize the number
of 2D shapes that canfi t into a rectangular bin. Here, the planar
roof segments represent an irregular shaped bin and the 2D object
is the solar panel. Since the computational complexity of 2D bin
packing is known to be NP-hard, we use a greedy algorithm to
determine the number of panels that canfi t on the roof. The greedy
algorithm outputs the overall number of panel thatfi ts the roof, and
we determine the install capacity by multiplying the total number
of panels with the rated power output per panel.

4 DEEPROOF IMPLEMENTATION

We have implemented DeepRoof as a system to automate the pro-
cess of solar potential estimation. DeepRoof can operate in two
modes: batch and interactive. In the batch mode, our system takes
a list of addresses, or GPS coordinates, as input and computes the
solar generation potential for each building in the specified list. The
batch mode is useful when computing the solar generation poten-
tial of all homes in a neighborhood or an entire city. Our system
takes the batch of addresses andfi rst computes the GPS coordinates
of each address. It then queries a mapping service, currently set
to Google Maps in our implementation, to download the satellite
rooftop imagery for each location in the list. The batch of roof
images is then provided as input to our DeepRoof model, which
outputs the planar roof segments. Our system then uses the ap-
proach outlined in Section 3 to output the per-pixel solar potential
as well as available roof area. These results can then be viewed by
clicking on each address in the list. Figure 4 (a) shows the process
for computing the solar potential for a batch of buildings.

Our system can also operate in interactive mode via a web in-
terface. In this case, the user specifies an address or the GPS co-
ordinates of a location. Our system then invokes the backend of
DeepRoof, which are the same for both the batch and interactive
modes. After computing the results, the per-pixel solar potential
is overlayed on the satellite imagery. The interactive interface dis-
plays the overall potential of the rooftop at a pixel-level. Figure 4 (b)
shows the overall energy potential as well as the available installa-
tion area as shown in interactive mode. The bright region indicates
the location which receives maximum sunlight.

Overall, our system implementation consists of three compo-
nents: (i) an interface that allows a user to input an address of
a building and visualize its overall solar potential (ii) our deep
learning model that identifies the planar roof segments and nearby
structures in a rooftop imagery and (iii) a set of APIs that imple-
ments our approach in Section 3 to query Google Maps for rooftop
imagery and compute the solar potential. DeepRoof’s user inter-
face is implemented using flask, a light-weight web framework
in python. Our DeepRoof’s CNN model is implemented using the
keras library, which invokes Google’s Tensorflow in the backend.
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Figure 4: (a) Key components in DeepRoof’s implementa-
tion. Our approach supports two modes: batch and interac-
tive mode (using a Web GUI) (b) Screenshot of the web inter-
face that help visualize the solar potential of a building,.

Table 1: Dataset 1. Summary of the labeled dataset.

City #images #buildings #roof segments
Framingham, MA 279 1161 1722
Pinellas Park, FL 122 944 2121
Fresno, CA 43 69 171
Seattle, FL 8 46 158
Denver, CO 7 44 90
Indianapolis, IN 5 10 50
Total 464 2274 4312

Table 2: Dataset 2. Key characteristics of the unlabelled
Framingham, MA dataset used in our city-scale case study.

roof types #buildings #floors land area(acres)
Gable, Flat
Hip, Complex hip 1982 1-6 0.031 - 2.92

Finally, our system has the ability to parallelize its TensorFlow
computations on a cluster of nodes when processing a batch of
buildings—in order to scale the computations to a larger number of
homes in a region or city.

5 EVALUATION METHODOLOGY

Below we describe our dataset, experimental setup and metrics
used to evaluate our approach.

5.1 Dataset

Dataset 1. We collected satellite images from six different cities using
Google Maps API (Table 1). We labeled the images using a modified
VIA annotator tool [7]. Each roof plane in the image was annotated
(including adjacent buildings) and assigned an orientation angle
from the north, or labeled as afl at roof. However, we did not label
some of the small roof segments, where solar panels cannot be
installed. We also labeled nearby trees with visible tree crowns.
Apart from the satellite images, we also downloaded the outline and
height of the building from OpenStreetMap API [3]. We augmented
the height of the building with third-party real-estate datasets in
cases where the height was not available.
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Dataset 2. For our city-scale case study, we selected a total of
1982 buildings from the city of Framingham, MA (see Table 2). The
dataset contains real-estate information such as number offl oors,
roof type (e.g., hip and gable). We downloaded the satellite im-
ages and building outline form Google Maps and OpenStreetMaps.
Further, we also collected the solar installation area and available
sun hours from Google’s Project Sunroof to compare our approach
with a LIDAR-based approach. For estimating the peak sun hour,
we used the solar irradiation data from National Solar Radiation
Database (NSRDB) [8]. The dataset contains the diffused and direct
solar irradiation as well as the azimuth and elevation of the sun for
a given location at a granularity of 1 hour. Our dataset is available
for download at UMass Trace Repository (https://bit.ly/2JES8LON).

5.2 Experimental Setup

We augmented our dataset by rotating the images at different angles.
Further, we categorized the orientation directions (0°to 360 °) to
one of the 16 orientation (i.e., N, NNE, NE, etc.), assigning each
roof segment to its closest orientation. In addition to using FPN in
DeepRoof, we used other baseline segmentation models — namely
UNet [27] and MaskRCNN [10]. Further, the segmentation models
were trained using two different CNN architectures namely ResNet
50 and ResNet101, resulting in a total of six models. Since FPN,
UNet, and MaskRCNN can use ResNet architecture for feature
extraction, pre-trained weights from ImageNet were used as per
the literature [10, 16].

5.2.1 Training and model selection. We split our dataset into three
disjoint sets: train (60%), validation (20%) and test (20%). The datasets
are split before augmenting the dataset to prevent the model from
seeing the hold-out set. To prevent overfitting, we trained our mod-
els until their performance doesn’t improve further on the valida-
tion dataset. Further, we used stochastic gradient descent optimizer,
with a learning rate of 0.001 and a momentum of 0.9. For training
the model, we ran our neural network model for 240k iterations
and reduced the learning rate by a factor of 10 at the 100k and 160k
iteration. We report our result on the unseen test dataset.

5.3 Metrics

We note that standard error metrics such as the mean absolute error
are not an ideal evaluation metric for capturing the performance of
the model in predicting orientation. For instance, if the predicted
orientation is NNW (337.5°) and the ground truth orientation is N
(0°), the error in prediction is 22.5°. However, mean absolute error
will report an error of 337.5°. Thus, we introduce mean orientation
error (MOE) as a metric to capture the per-pixel error between the
predicted and the actual azimuth angle.

mean_orientation_err =

1 2.j pij * degree_separation(o;, 0j)
M Z ti

where, M is the number of classes (i.e., azimuths), o; is the azimuth
angle, p;; denotes the number of pixels of azimuth j classified as
azimuth i, and ¢t; is the total number of pixels in class i. Finally,
the degree_separation is a function that returns the azimuth angle
difference between the two azimuths. The value of MOE is between
0°(perfect prediction) and 180°(opposite prediction).
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Figure 5: Normalized confusion matrix of roof classification.
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Figure 6: Normalized confusion matrix of slope type.

6 EXPERIMENTAL RESULTS

In this section, we validate our results with the ground truth in-
cluding a LIDAR-based approach. We also validate our output with
solar experts and show that our data-driven approach can be used
to analyze a city-scale dataset.

6.1 Roof classification

Wefi rst evaluate the performance of DeepRoof in identifying roofs
since these locations are potential sites where solar panels can be
installed. To do so, we classify a pixel as a roof if the segmentation
model predicts an orientation for the pixel or has labeled the roof as
flat. We present our results for all the segmentation models used in
our terrain segmentation step. Figure 5 shows the normalized confu-
sion matrix of roof classification across all models using ResNet101
architecture on Dataset 1. The values in the confusion matrix are
normalized by the number of pixels in each class. We observe that
the ResNet50 architecture yields a lower true positive rate? com-
pared to ResNet101 (not shown in thefi gure). This is because the
deeper network enables it to learn the feature subspaces better.
In particular, we observe that the true positive rate of ResNet101
reaches 91.1%, 91.9% and 86.3% for DeepRoof, UNet and MaskR-
CNN respectively. Further, the results of DeepRoof and UNet are
comparable with the difference in the true positive rate within +1%
of each other in classifying roofs and nearby structures.

Next, we evaluate the performance of DeepRoof in differentiat-
ing between afl at roof and a pitched roof. We classify the slope of
a pixel as tilted if the model predicts an orientation for the pixel
else we classify it as afl at roof segment. Figure 6 shows the normal-
ized confusion matrix of slope type prediction on Dataset 1. Both
ResNet50 and ResNet101 shows high accuracy in differentiating be-
tween the types of slope, i.e.fl at or tilted, with accuracy >98% and
>93% forfl at and pitched roofs respectively. As again, ResNet101
architecture yields better result compared to ResNet50 owing to
the deep architecture. Although MaskRCNN performs relatively
poor in classifying roofs, among the pixels classified as roofs, it
has a high true positive rate of >97.4% in differentiating between

2True positive rate is the ratio of true positives identified from all the positive cases.
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Figure 7: Segmentation output on different roof types.

Table 3: Mean orientation error of the predicted roofs for
different architectures on Dataset 1.

Backbone | DeepRoof UNet MaskRCNN
ResNet50 10.63 10.94 11.43
ResNet101 9.3 11.94 9.37

flat and pitched roof. We also note that DeepRoof has a higher
true positive rate compared to UNet and yields better results in
identifying slope types. In particular, DeepRoof has a true positive
rate of 96% compared to UNet’s 94.8%.

6.2 Roof orientation

Figure 7 shows several examples of the segmentation output of
different roof types for all models. Each color in thefi gure depicts
a roof plane and the orientation of the roof plane. Thefi gures
illustrate that the models can identify the planar roof segments and
also determine their orientation that are visually close to the ground
truth. ResNet101 shows better visual improvements in segmentation
output compared to ResNet50. Also, we observe that MaskRCNN
fails to identify some of the roof segments, which corroborates the
lower true positive rate discussed above. As seen in thefi gure, both
DeepRoof and UNet shows a close resemblance to the ground truth,
even when the buildings have different geometry.

Next, we evaluate the performance of predicting the orientation
of the rooftop. Table 3 summarizes the mean orientation error on
Dataset 1. A lower mean orientation error is better, where a zero
value indicates that the predicted pixel orientation matches the
ground truth. Similarly, a mean orientation error of 180° indicates
that the pixels were predicted opposite to the ground truth orienta-
tion. Overall, we observe that all the models yield an MOE of less
than 12°. Since the orientation labels are 22.5° apart, it indicates
that the models are able to predict a rooftop’s orientation correctly
in most cases. It is interesting to note that the models are able to
learn the spatial relationship between the planar roof segments and
predict their orientation. As shown, DeepRoof yields the lowest
MOE compared to other segmentation models with MOE of 10.6
and 9.3 using ResNet50 and ResNet101 respectively.
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Figure 8: (a) Sample image provided to experts for validation
(b) Average rating distribution of the response on a scale of
1 to 10 (10 being the highest).

6.3 Expert validation of our results

For this experiment, we asked two independent solar experts with
experience in installing PV panels to rate our solar estimation
output from DeepRoof. Our objective with this study was to address
the following questions (i) How well does DeepRoof estimate the
solar potential of each planar roof segments? (ii) Are there locations
on the roof that our approach fails to identify as possible locations
where experts would consider installing solar panels?

To answer the above questions, we selected only buildings with
pitched roofs from the test dataset and omittedfl at roofs that are
relatively easier to estimate solar potential. We highlighted all the
areas on the roof where solar panels can be installed. Further, we
discretized the sunlight received in each planar roof segment into
high, medium and low, and presented the image to the experts for
analysis. We asked them to rate DeepRoof’s result on a scale of 1
to 10 (10 being the highest rating). We also asked them to consider
nearby structures such as trees that may affect the solar potential
while rating DeepRoof’s output. In total, we randomly selected 30
images from the test Dataset 1 for our evaluation. Figure 8 (a) shows
a sample image from the study that was provided to the experts for
validation. The image on the top shows the ground truth, and the
image on the bottom shows the output estimated by our algorithm.

Figure 8 (b) shows the average rating distribution of the expert’s
response to DeepRoof’s output. The graph shows that DeepRoof
estimates the solar potential with high accuracy, as seen from the
high rating received for most homes. Overall, we observe that both
the experts gave a rating of 8 and above to 22 of the 30 homes. For
these homes, DeepRoof not only predicted the orientation correctly
but also considered shade from nearby trees to estimate the solar
potential. For homes that received a rating lower than 8, in most
cases, DeepRoof failed to identify the surrounding trees. We note
that these images had fall trees without leaves and, thus, was classi-
fied as background pixels. On an average, the experts gave a rating
of 8.8 for a typical home. We also received responses on whether
DeepRoof identified all the roof segments where solar panels can
be installed. Both the experts validated that DeepRoof didn’t miss
out any candidate roof segment suitable for solar installation.

6.4 Comparison with a LIDAR-based approach

Google’s Sunroof project, a LIDAR based approach, estimates the
solar potential of a roof as follows. For a given address, the Sunroof
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Figure 9: Difference in installation area estimated by Sun-
roof and DeepRoof for different roof sizes.

provides the total solar installation area and a pixel-level sunlight
available on the roof. These estimates are calculated using LIDAR
and NREL'’s solar irradiance data. To compute the available solar
installation area, Sunroof uses a greedy algorithm that maximizes
the number of solar panels that canfi t on a planar roof segment [26].
Since the pixel-level solar potential is not accessible via Sunroof,
we cannot meaningfully compare the results, and hence we only
compare the solar installation area of the roof.

In our approach, we select afi xed solar panel size of 250W3, and
align it based on the orientation and pitch of the roof segments.
Our greedy algorithm then uses the panel dimensions as input to
analyze the number of panels that canfi t on each of the predicted
planar roof segments. We ran our algorithm on the test dataset in
Dataset 1 and all the buildings in Dataset 2. We had a total of 2073
buildings after combining the datasets.

Figure 9 plots the distribution of percentage difference in solar in-
stallation area predicted by Sunroof and DeepRoof for different roof
sizes. A negative percentage difference indicates under-prediction
and a positive difference indicates over-prediction. As seen in the
figure, the median percentage difference between Sunroof and Deep-
Roof for different roof sizes varies from -7% to 11%. The median
percentage difference is 0.5% for roof size between 2000 to 3000 sq.ft.
This indicates that on an average DeepRoof’s estimation tends to
be close to Sunroof’s estimated area. We also note that the variance
decreases with an increase in roof sizes. This is because planar roof
segments in small rooftops are comparatively difficult to identify.
However, we note that for thefi rst and the third quartiles are within
25% of Google Sunroof’s estimate. Thus, DeepRoof estimates the
solar installation area using rooftop images that are close to LIDAR
based approaches.

6.5 City-scale solar estimation

Wefi rst provide a breakdown of the time it takes for DeepRoof to
estimate the potential of a rooftop image. The computation-heavy
tasks in DeepRoof involve semantic segmentation of the image,
estimating the solar potential and the solar installation area. We
note that the DeepRoof model achieves an inference time of 169 ms
on an NVIDIA M40 GPU per rooftop imagery. Separately, depending
on the number of planar segments identified and nearby structures,
calculating the solar potential and the installation area takes on an
average 3 to 5 seconds to complete on a single machine. Assuming
5 seconds of processing time per image, a single machine running

3The standard dimensions of a 250W PV panel is 1mx1.65m. Google Sunroof project
also uses a 250W panel to analyze the potential [26].
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Figure 11: (a) Spatial representation of the annual solar en-
ergy generation potential (b) Energy potential distribution.

DeepRoof can process 10,000 buildings in approximately 14 hours.
Since processing rooftop images is an embarrassingly parallel, a
server cluster can be deployed to speed up the process further. Thus,
DeepRoof can easily scale to millions of homes. We now analyze
the output of DeepRoof on the citywide buildings in Dataset 2 and
present our results below.

6.5.1 Peak Sun Hours. Figure 10(a) shows the rooftop image and
the peak sun hours received by each pixel in a sample building.
As seen in the image, our technique can identify south-facing and
south-west facing roofs with higher solar potential (depicted by
the brighter yellow color). Similarly, north and northeast facing
roofs have lower energy yield. Thus, DeepRoof’s output can provide
custom insights to homeowners on the optimal placement of panels.

Figure 10(b) shows the distribution of the average peak sun hours
of all the building in Dataset 2. We observe that the peak sun hours
range from 607 to 1471.7 hours. The variation in the average peak
sun hours is due to the different orientation and pitch of the roof
segments along with the shadows caused by nearby structures.
Further, the median peak sun hours available is 1077.95 hours. We
observe that all but 5 locations receive a minimum of 800 hours of
peak sunlight — indicating significant solar potential among these
buildings.

6.5.2  Energy Generation Potential. We compute the energy genera-
tion potential assuming the entire roof can generate electricity [28].
Figure 11 (a) shows the spatial representation of the overall solar
potential in MWh of the buildings and Figure 11 (b) shows the
solar energy distribution of all the buildings. As seen in thefig-
ure, the median energy potential of a home is approximately 14.03
MWh. Assuming the national US average energy consumption of
10.9MWh for a typical residential customer [2], our results indicate
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that most households can become completely energy self-sufficient
using rooftop solar. We alsofi nd that on an average, except for
homes that have significant foliage or obstruction, the total annual
solar production of all the buildings to be 31248.3 MWh, which is
at least 1.44 times the annual energy needs of a typical home.

7 RELATED WORK

There has been significant work on estimating the global irradiance
at ground level [5, 9]. Previous studies have used satellite data on
the earth-atmosphere system and ground pyranometer to measure
the variability in solar irradiance for a location [5]. These provide
reasonable estimates on how much sunlight is available for a loca-
tion over a given period [8]. Prior work has also studied the sunlight
available on tilted surface [9]. We use these estimation models in
our work to study the solar potential of a roof.

Automatically estimating a roof’s solar potential requires identi-
fying buildings and trees. Various methods have been proposed to
automatically identify buildings in satellite and aerial images [30,
31]. Most techniques rely on LIDAR based approaches for detecting
and modeling buildings [31]. Separately, there have been studies
that combine street and aerial images to detect street trees and
identify its species [30]. However, most of the existing approaches
use LIDAR data for modeling roofs and extracting its geometry.
In contrast, our approach provides an alternative to LIDAR-based
approaches and uses satellite images for solar potential estimation.

Recently there has been significant interest in estimating the
potential of roofs for installing solar panels [17, 25, 26]. While some
studies have proposed manual methods [17], others have proposed
automated methods for estimating potentials [6, 26]. Manual esti-
mation requires expensive instruments [29] and professionals to
reasonably assess a roof’s suitability. On the other hand, automated
approaches require LIDAR data, which are not readily available for
all cities or remote locations [23]. Unlike prior work, we use satellite
images that are readily available from mapping services. Recent ad-
vances in deep vision techniques make detection of objects in aerial
images feasible [24]. Our work leverages the state-of-the-art vi-
sion techniques to approximate both the orientation and the roof’s
geometry using only rooftop images and publicly available irradi-
ance datasets. Thus, our approach provides a scalable approach for
estimating solar potential in locations where LIDAR is not available.

8 CONCLUSION

Solar potential estimation of a roof can substantially benefit home-
owners deciding to adopt solar. In this paper, we proposed Deep-
Roof, a data-driven approach to estimate the solar potential of a roof
using satellite images. We extensively evaluated our approach using
available ground truth roof dataset having diverse roof shapes and
sizes. We also validated our results with solar experts and compared
DeepRoof’s output to a LIDAR-based approach. Our results showed
that DeepRoof can accurately extract the roof geometry such as
the planar roof segments and their orientation, and achieved a true
positive rate of 91.1% in identifying roofs and a low mean orienta-
tion error of 9.3°. Further, we also analyzed the solar potential of a
city-scale dataset and showed that installing solar panels can lead
to energy self-sufficiency in these homes.
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