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ABSTRACT

Rooftop solar deployments are an excellent source for generating

clean energy. As a result, their popularity among homeowners

has grown significantly over the years. Unfortunately, estimating

the solar potential of a roof requires homeowners to consult solar

consultants, who manually evaluate the site. Recently there have

been efforts to automatically estimate the solar potential for any

roof within a city. However, current methods work only for places

where LIDAR data is available, thereby limiting their reach to just

a few places in the world. In this paper, we propose DeepRoof, a

data-driven approach that uses widely available satellite images to

assess the solar potential of a roof. Using satellite images, DeepRoof

determines the roof’s geometry and leverages publicly available

real-estate and solar irradiance data to provide a pixel-level estimate

of the solar potential for each planar roof segment. Such estimates

can be used to identify ideal locations on the roof for installing

solar panels. Further, we evaluate our approach on an annotated

roof dataset, validate the results with solar experts and compare

it to a LIDAR-based approach. Our results show that DeepRoof

can accurately extract the roof geometry such as the planar roof

segments and their orientation, achieving a true positive rate of

91.1% in identifying roofs and a low mean orientation error of 9.3°.

We also show that DeepRoof’s median estimate of the available

solar installation area is within ±11% of a LIDAR-based approach.
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1 INTRODUCTION

Advances in photovoltaic (PV) efficiencies and falling manufactur-

ing costs continue to stimulate solar adoption around the world. The

average cost of energy from solar photovoltaics has fallen to less

than 12¢ per kilowatt-hour (kWh), making it comparable to gener-

ation costs from other sources. As a result, more than 70 gigawatts

of solar capacity was deployed globally in 2016 alone [1]. Many

countries have set ambitious goals for the percentage of renew-

able penetration in their overall energy mix and solar installations

continue to play a dominant role in ongoing deployments.

Solar deployments vary in size, ranging from large solar farms

that are deployed by utilities to small-scale installations by individ-

uals [14]. More than half of the installed solar capacity continue to

come from small-scale solar deployments, i.e., arrays with 10kW of

capacity of less [18]. Most of these installations are residential in

nature with deployments on rooftops of homes.

However not all roofs are suitable for solar array deployments. A

clear view of the sky with no surrounding obstructions and proper

orientation (e.g., south or southwest facing roofs in the northern

hemisphere) are key to maximizing solar energy generation of

rooftop deployments. In contrast, residential buildings surrounded

by trees or other buildings that cast shadows or roofs that do not

face south are considered unsuitable for rooftop deployments. The

task of determining whether a particular building is well suited

for rooftop solar deployment has largely been a manual process—a

professional solar energy installer measures the roof area, their

orientation, and uses a pyranometer and shade measurement tools1

to assess the amount of sunlight received on the roof for different

times of the day. These measurements are then used tofi nd the

ideal locations for installing solar arrays on the roof, if any, and to

compute the solar generation potential of the roof. Such a process

is laborious and time-consuming and certainly does not scale to

large number of buildings in a city.

There have been a few recent efforts that have attempted to

automate this laborious process using data-driven algorithm. For

instance, Mapdwell [15] and Google’s Project Sunroof [26] have

both used LIDAR data to assess the solar potential of building

rooftops in a city. LIDAR is a laser-based aerial mapping technol-

ogy that uses airborne LIDAR sensors to extract the 3D surface

structure to create a Digital Elevation Model (DEM), which can

then be used to determine the geometry of the roof as well as shade

from nearby objects [31]. Unfortunately LIDAR data is expensive

to collect and involvefl ying airplanes or drones with aerial LIDAR

mapping sensor, and thus, such data is not widely available for

many regions in the US and the world. Consequently, current state-

of-the-art techniques only offer solar potential data for select cities

where LIDAR data is available, leaving large parts of the world

without any coverage.

1Solar Path Finder, SunEye 210 http://www.solmetric.com/
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features using a convolutional neural network (CNN) architecture

(e.g. ResNet [11]) augmented with a pyramid-like structure. As

shown in thefi gure, the bottom-up pathway is augmented with a

top-down pathway and lateral connections to build a multi-scale

feature pyramid of the input image. Since FPN uses a standard CNN

architecture for feature extraction, the network can be initialized

with pre-trained weights on ImageNet [16] dataset, which allows

our technique to work on relatively small datasets.

In a CNN architecture (e.g., ResNet), the bottom layers learn the

low-level features such as edges, and as we move higher up, the

top layers learn higher-level semantics of a real-world object such

as trees, cars etc. In DeepRoof, the CNN architecture learns the

planar roof segments, which are the building blocks to construct

the geometry of a roof. In FPN, the ResNet layers are grouped into

different network stages {C1,C2,C3,C4,C5}, and the output map

from the last layer of each stage is selected as a reference set to

create the feature pyramid.

As shown, the lateral connections in the top-down pathway

combines the low-resolution and the high-resolution from the con-

volutional network to create a multi-scale feature {M2,M3,M4,M5}

by applying a 1x1 convolutionfi lter. A 3x3 convolutionfi lter is ap-

plied to the output to obtain thefi nal feature maps {P2, P3, P4, P5}.

Note that the image resolution of each Pi is one-fourth the input

image and has 128 channels each. Finally, {P2, P3, P4, P5} feature

maps are concatenated to create a layer with 512 channel. We then

use two successive 3x3 convolutionfi lters and batch normalization

to create a feature map with channels equivalent to the number

of output classes for prediction. The output is then up sampled to

its original image size using bilinear interpolation and a softmax

activation layer is applied to predict thefi nal output.

We now discuss how our approach creates the roof orientation

matrix TA. Our approach views each planar roof segment as an

object with azimuth as its label. For instance, a planar roof segment

facing north-west is labeled as NW . Similarly, horizontal roof sur-

faces are labeled as flat and we also label tree crowns. The model is

trained using this labeled set of images. After our model is trained,

thefi nal output contains a per-pixel prediction such that each pixel

is labeled with the class of the object. We then use thefi nal output

to create the roof orientation matrix TA, where each pixel label

corresponds to roof orientation, trees or background.

3.2 Topology Estimation

In this step, we determine the outline matrix TO that contains all

the planar roof segments of the candidate building. We also describe

how we estimate the height and the pitch of the candidate roof. We

assume that the outline of the candidate building is available. This

is used to determine the roof segments of a candidate building from

neighboring rooftops. We note that outline of a building property

for a location can be easily obtained from public maps [3]. For

example, in a given geographical area, OpenStreetMap provides

the outline of all the buildings within a specified area, as well as

their addresses [3]. Further, an outline of the candidate building

can also be easily obtained as an input through an user interface. In

our approach, we use the OpenStreetMap API to obtain the outline

of the candidate building in our input image.

In order to recognize the planar roof segments in the orientation

matrix TA, we run the marching squares algorithm [22] that identi-

fies all the contours in an image. The marching squares algorithm

approximates the line along the edges where the orientation value

changes. The contours correspond to a planar roof segment as we

expect the orientation to be similar for a given roof segment. Next,

for all the contours predicted by our algorithm, we associate a con-

tour with the candidate building if it intersects with the building’s

outline. This creates an outline matrix TO , which contains all the

planar roof segments of the candidate building.

We then approximate the height and the pitch of the contours

identified in the candidate building as well as height of nearby struc-

tures. Currently, we rely on third-party sources to create the roof

pitch matrix TP and the height matrix TH . We observe that number

offl oors available in real-estate dataset and Federal Emergency

Management Agency (FEMA) guidelines [12] provide reasonable

estimate about the height and pitch of the roof, respectively. As part

of our future work, this step can be further improved by obtaining

these inputs through an interactive interface from users, which can

be used tofi ne-tune the solar potential estimation.

3.3 Solar Potential Analysis

We now discuss how we compute the solar potential of a roof and

the available area for installing solar panels using the terrain matrix.

3.3.1 Solar irradiation on a roof. We note that the solar potential

of a roof is the combined potential of all its planar roof segments.

We determine the amount of solar irradiance for each planar roof

surface in a candidate building for different time of the day in a

year, accounting for shade from nearby objects. We now describe

how the solar irradiance is computed for a tilted roof surface. The

power output of a solar panel depends on the angle sunlight is inci-

dent on the PV module, which is maximum when the PV surface is

perpendicular to the sun. Thus, the solar irradiance of a roof plane

having an orientation ψ ∈ TA and roof pitch β ∈ TP are depen-

dent on two components — beam and diffused irradiance. While

the beam irradiance SB is the direct radiation received from the

sun, the diffused radiation SD is received from radiations scattered

by particles in the atmosphere. Assuming an isotropic model for

diffused irradiance[20], the total solar irradiance of a tilted roof

surface is given by:

S (β ,ψ ) = SB · RB (β ,ψ )
︸!!!!!!!!!!︷︷!!!!!!!!!!︸

beam irradiance

+ SD · RD (β ,ψ )
︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸

diffused irradiance

RB (β ,ψ ) = cosα sin β cos(ψ − θ ) + sinα cos β

RD (β ) =
1 + cos(β )

2

where, α is the solar elevation angle and varies with the time of the

day and θ is the solar azimuth angle and dependent on the latitude

of the location. Past values of SB and SD are publicly available

from various sources [8], and can then be used to compute the total

irradiance S for different time of the day in a year.

We consider objects that are roughly within 100 meters from

the building for analyzing shadows. We compute the periods when

shadows are cast from nearby objects, and subtract the direct ra-

diation SB from our calculation, i.e., direct sunlight. Note that the
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that most households can become completely energy self-sufficient

using rooftop solar. We alsofi nd that on an average, except for

homes that have significant foliage or obstruction, the total annual

solar production of all the buildings to be 31248.3 MWh, which is

at least 1.44 times the annual energy needs of a typical home.

7 RELATED WORK

There has been significant work on estimating the global irradiance

at ground level [5, 9]. Previous studies have used satellite data on

the earth-atmosphere system and ground pyranometer to measure

the variability in solar irradiance for a location [5]. These provide

reasonable estimates on how much sunlight is available for a loca-

tion over a given period [8]. Prior work has also studied the sunlight

available on tilted surface [9]. We use these estimation models in

our work to study the solar potential of a roof.

Automatically estimating a roof’s solar potential requires identi-

fying buildings and trees. Various methods have been proposed to

automatically identify buildings in satellite and aerial images [30,

31]. Most techniques rely on LIDAR based approaches for detecting

and modeling buildings [31]. Separately, there have been studies

that combine street and aerial images to detect street trees and

identify its species [30]. However, most of the existing approaches

use LIDAR data for modeling roofs and extracting its geometry.

In contrast, our approach provides an alternative to LIDAR-based

approaches and uses satellite images for solar potential estimation.

Recently there has been significant interest in estimating the

potential of roofs for installing solar panels [17, 25, 26]. While some

studies have proposed manual methods [17], others have proposed

automated methods for estimating potentials [6, 26]. Manual esti-

mation requires expensive instruments [29] and professionals to

reasonably assess a roof’s suitability. On the other hand, automated

approaches require LIDAR data, which are not readily available for

all cities or remote locations [23]. Unlike prior work, we use satellite

images that are readily available from mapping services. Recent ad-

vances in deep vision techniques make detection of objects in aerial

images feasible [24]. Our work leverages the state-of-the-art vi-

sion techniques to approximate both the orientation and the roof’s

geometry using only rooftop images and publicly available irradi-

ance datasets. Thus, our approach provides a scalable approach for

estimating solar potential in locations where LIDAR is not available.

8 CONCLUSION

Solar potential estimation of a roof can substantially benefit home-

owners deciding to adopt solar. In this paper, we proposed Deep-

Roof, a data-driven approach to estimate the solar potential of a roof

using satellite images. We extensively evaluated our approach using

available ground truth roof dataset having diverse roof shapes and

sizes. We also validated our results with solar experts and compared

DeepRoof’s output to a LIDAR-based approach. Our results showed

that DeepRoof can accurately extract the roof geometry such as

the planar roof segments and their orientation, and achieved a true

positive rate of 91.1% in identifying roofs and a low mean orienta-

tion error of 9.3°. Further, we also analyzed the solar potential of a

city-scale dataset and showed that installing solar panels can lead

to energy self-sufficiency in these homes.
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