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ABSTRACT

Reducing our reliance on carbon-intensive energy sources is vital
for reducing the carbon footprint of the electric grid. Although the
grid is seeing increasing deployments of clean, renewable sources
of energy, a significant portion of the grid demand is still met using
traditional carbon-intensive energy sources. In this paper, we study
the problem of using energy storage deployed in the grid to reduce
the grid’s carbon emissions. While energy storage has previously
been used for grid optimizations such as peak shaving and smooth-
ing intermittent sources, our insight is to use distributed storage
to enable utilities to reduce their reliance on their less efficient
and most carbon-intensive power plants and thereby reduce their
overall emission footprint. We formulate the problem of emission-
aware scheduling of distributed energy storage as an optimization
problem, and use a robust optimization approach that is well-suited
for handling the uncertainty in load predictions, especially in the
presence of intermittent renewables such as solar and wind. We
evaluate our approach using a state of the art neural network load
forecasting technique and real load traces from a distribution grid
with 1,341 homes. Our results show a reduction of >0.5 million kg
in annual carbon emissions — equivalent to a drop of 23.3% in our
electric grid emissions.

CCS CONCEPTS
« Hardware — Smart grid; Batteries.
KEYWORDS

robust optimization, smart grid, carbon emissions

ACM Reference Format:

Rishikesh Jha, Stephen Lee, Srinivasan Iyengar, Mohammad H. Hajiesmaili,
David Irwin, and Prashant Shenoy. 2020. Emission-aware Energy Storage
Scheduling for a Greener Grid . In The Eleventh ACM International Conference
on Future Energy Systems (e-Energy’20), June 22-26, 2020, Virtual Event,
Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3396851.3397755

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

e-Energy’20, June 22-26, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8009-6/20/06...$15.00
https://doi.org/10.1145/3396851.3397755

David Irwin
University of Massachusetts Amherst
irwin@ecs.umass.edu

363

Prashant Shenoy
University of Massachusetts Amherst
shenoy@cs.umass.edu

1 INTRODUCTION

A key sustainability goal of the United Nations is to attain a zero car-
bon economy in order to prevent climate change, while maintaining
society’s current standard of living. Doing so, involves addressing
immense challenges, since it requires changing our energy con-
sumption behavior, while also transitioning the electric grid to
carbon-neutral or zero-carbon energy sources. Over the last decade,
there has been an increasing deployment of clean, renewable en-
ergy sources such as solar and wind that are already contributing
positively to reducing the grid’s overall carbon footprint. The lev-
elized cost of energy from these renewable technologies is now on
par or below traditional carbon-intensive generation sources, and
their carbon footprint is near zero.

However, due to their intermittent nature, the increasing pen-
etration of these energy sources has increased the stochasticity
and uncertainty in the grid’s energy supply. Consequently, energy
storage has emerged as a related grid technology to counter this
stochasticity [5]. Energy storage batteries can act as “energy buffers"
that smooth out the intermittent supply from renewable sources.
The cost of energy storage has continued to fall, much like that of
renewables, and their deployments have begun to increase. For in-
stance, Green Mountain Power, a small utility in Vermont, USA, now
leases Tesla Powerwall batteries to residential customers for just
$15/month, while allowing the utility to control the battery during
peak periods [2]. Such a distributed deployment of energy storage
with utility control forms a type of Virtual Power Plant (VPP) that
the utility can leverage for various grid optimizations [23].

Much of the recent work on energy storage-driven grid opti-
mization has focused on demand-side optimizations such as cost
arbitrage [30], peak load shaving, demand response [25], and an-
cillary services [18]. Peak load shaving is a grid optimization of
particular interest to utilities and involves operating batteries dur-
ing peak demand periods in order to reduce grid stress and the
reliance on peaking power plants that are operated solely to meet
peak load. Peak shaving brings economic and cost benefits, since
peaking power plants tend to be less efficient and hence the cost of
supplying electricity during peak periods is much higher than at
other times.

Although energy storage-based peak shaving has been studied
from a cost reduction perspective, it also brings implicit greening
benefits—peaking power plants are not only less efficient and costly
to operate, they come with a high pollution and carbon cost. Despite
the implicit greening benefit from reducing the use of peaking
power plants, the problem of peak load reduction using energy
storage does not directly translate to the problem of reducing the
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grid’s carbon footprint. This is because not all peak demand is met
using “dirty” peaking power plants. In some cases, for instance,
peak demand can be met using pumped hydro storage, which is a
clean energy source, and operating energy storage batteries during
such periods will not yield any emission reductions.

Thus, reducing the grid’s carbon footprint cannot be achieved
by naively using prior methods on energy storage-based peak load
reduction. This problem of emission reductions, a supply-side opti-
mization, is not only different, but also more challenging than peak
load reduction. Since grid demand is directly observable, energy
storage can be activated when peak demand occurs. Unlike ob-
servable grid demand, the grid’s carbon emissions are not directly
observable and must be inferred through other means, which is a
pre-requisite for scheduling energy storage whenever the grid’s
emission footprint peaks. Second, the grid is beginning to incorpo-
rate increasing amounts of clean renewable energy sources such as
solar and wind, but these sources are intermittent and uncontrol-
lable from a grid’s perspective and need to be handled differently
from traditional energy sources for supply-side optimizations such
as emission reductions.

The use of energy storage for explicitly optimizing the emission
footprint of the grid has not been considered by prior work, with
the sole exception of [26], where it was considered as part of a
broader multi-objective optimization to reduce cost, emissions, etc.,
and by only considering small residential scale storage. Our work is
more general since it addresses grid-scale storage at various levels
of the grid network, and also more specific since it focuses on
reducing emissions as a primary objective. Our work is motivated
by the observation that a utility typically uses a mix of generation
sources to fulfill its daily demands. Different generation sources
have different cost and emission footprints—for example, while
coal, oil and natural gas have high emission footprints, sources
such as nuclear, hydro and solar have zero emissions. The cost of
generation also varies across these generation sources.

Utilities typically create a dispatch schedule that determines the
order in which different generation sources are utilized to meet
rising demand—more efficient energy sources are used more often
or as base sources, while less efficient ones are often used only
during high demand or peak demand periods. Our insight is that
these dispatch schedules and marginal analysis of energy prices can
be used to infer the carbon cost to produce the next unit of electricity
at various times. Since demand is observable, we can combine this
information with time-varying demand to compute the overall
emission footprint at different points in the demand curve and
then intelligently activate energy storage whenever the emissions
footprint is high; as noted, the emissions footprint depends on the
energy fuel sources used and not on the demand, yielding a different
schedule for operating energy storage than that from peak shaving.
Such emission-aware scheduling of energy storage can provide
significant benefits in greening the grid.

However, there are many challenges in designing algorithms
for emission-aware scheduling of energy storage. First, the daily
electricity demand is stochastic and time-varying and also depends
on weather conditions. Second, as the penetration of “clean" re-
newables such as solar and wind increases, it naturally lowers the
emission footprint of the grid but also increases uncertainty and
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stochasticity in demand due to the net-metering of these intermit-
tent sources. Third, the emission footprint of various sources, repre-
sented by the marginal cost of generation, is itself time-varying due
to changes in prices of inputs and other factors. Finally the energy
storage deployment will be distributed and heterogeneous with
batteries of various sizes and technologies deployed in different
parts of the grid.

In this paper, we leverage robust optimization [3, 4] (RO) to
tackle the uncertainty of the daily electricity demand. Classic sto-
chastic optimization approaches require stochastic modeling of
uncertain parameters, and deviations from the models may degrade
the performance of the proposed solutions substantially. In contrast,
RO does not rely on an underlying probability distribution of the
uncertain input, and only requires limited information of the uncer-
tain data, including mean, and interval predictions, i.e., upper and
lower bounds of the uncertain data. When compared to probability
distributions, mean and interval prediction values are much sim-
pler to estimate. In addition, RO always calculates a solution that
is guaranteed to be feasible within all possible realizations of the
uncertainty sets. Note that RO and competitive algorithm design [6]
are two approaches in the literature that do not rely on any stochas-
tic modeling of the uncertain data. While a competitive approach
is too conservative since it guarantees worst-case performance, the
additional interval prediction data can result in better performance
in RO. In designing and evaluating our emission-aware storage
scheduling approach, our paper makes the following contributions.
Problem formulation. We present a detailed formulation of the
problem of emission-aware storage scheduling as an optimization
problem. Our formulation is sufficiently general to incorporate
a range of possibilities, including heterogeneous storage deploy-
ments, distributed renewable generation, and time-varying mar-
ginal costs.

Emission-aware energy storage scheduling using robust op-
timization. We use robust optimization, a stochastic optimization
approach, to solve the energy-aware storage scheduling problem.
As noted above, the use of robust optimization allows us to find
a solution that is guaranteed to be feasible within all the possible
realizations of the input in a predetermined uncertainty set.

Load forecasting under uncertainty. Since our optimization ap-
proach requires load predictions, we also use a state of the art
autoregressive neural network algorithm for transformer load fore-
casting, which is then utilized by our optimization approach. Our
forecasting method can handle uncertainty in demand from stochas-
tic time of day effects as well as that from net-metered renewables.
Grid-scale evaluation. We present a grid-scale evaluation of our
approach using real traces from a distribution grid comprising 100
transformers and 1,341 homes. Our results show carbon emissions
savings of >0.5 million kg over a period of a year. This reduction
is equivalent to 23.3% of overall emissions from the electric grid.
We also show that even at 50% storage penetration level we can
achieve up to 13.9% reduction in carbon emissions.

2 BACKGROUND

In this section, we provide background on electric grids, generation
sources, and energy storage.
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2.1 Electric grids

As is well known, today’s electric grids comprise three components:
generation, transmission, and distribution (see Figure 1). A key
goal of the grid operator is to ensure that demand and supply are
matched at all times for proper functioning of the grid. Since elec-
tricity demand changes continuously over the course of a day (see
Figure 2(a)), the generation must be matched to changing demand
via a dispatch schedule [33]. The dispatch schedule determines the
order and schedule for activating and deactivating various genera-
tors that are at the disposal of the grid operator and specifies how
the supply should be ramped up or down to match time-varying
demand.

Typically, power plants and generators used for the dispatch
schedule fall into three categories: (i) Base load generators: These
are generators at power plants that operate at all times to support
the base demand; generators at large-scale power plants such as
nuclear, natural gas, coal, and biomass fall into these categories; (ii)
Load following generators: These are generators that are activated
during the high demand periods within each day (such as morning
and evening) to support demand beyond the base load; (iii) Peaking
generators: These are standby generators that are activated when
the overall demand hits seasonal peaks. They may operate for only
a few days of the year when the hot or cold weather causes the
demand to peak for the season. In general, peaking generators tend
to be older, less-efficient generators within the overall mix that
are kept on standby for infrequent use; old coal and oil generators
that are nearing the end of their lifetime are examples of peaking
generators. Note that high or peak demands can also be met through
other means, such as pumped hydro storage, and hence, the emission
footprint may not always rise with demand.

In contrast to traditional sources of electricity generation, re-
newable sources such as solar, wind and hydro are non-polluting
in nature and have zero carbon emissions. Distributed renewable
energy sources such as solar tend to be part of the distribution
network and often net-meter their power output directly into the
distribution grid. Further, renewable sources such solar and wind
are assumed to be uncontrollable due to their intermittent nature
and thus not dispatchable.

2.2 Emission from Generation Sources

As discussed below, the carbon intensity, and the resulting emis-
sion footprint, of the grid varies continuously over the course of
the day. If the emission footprint from generation were directly
observable, we could simply schedule energy storage whenever
emissions peak during each day. Since the emission footprint is not
directly observable, we need to infer it through other means for
our emission-aware scheduling approach. Two factors need to be
considered for doing so: the average carbon intensity and marginal
carbon intensity.

The average carbon intensity of an electric grid is defined as the
weighted average of emission factors of the available fuel types,
in which emission factor of each fuel type is defined as its carbon
emission by generating one unit of electricity. Table 1 lists the
values of emission factor for the available generation types in ISO
New England [14]. The average carbon intensity is the weighted
average of emission factors for the energy mix used by the grid. For
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Table 1: Carbon emission by different generation types, data
publicly available from [14]

l Generation Type [ Emission Factor (CO2 kg/MWh) [

Coal 962.97

Natural Gas 395.53

Oil 933.94
Nuclear 0
Hydro 0
Solar and Wind 0

example, if an electric grid produces electricity from coal, natural
gas, nuclear, and hydro in equal proportions, then the average
carbon intensity would be 339.49 kg/MWh (962.97 x 0.25 +395.53 x
0.25+ 0 % 0.25 + 0 X 0.25), in the above example.

In general, however, the reduction or increase in generation, and
consequently, carbon emissions, due to changes in electric demand
(dictated by the dispatch schedule) is not the same across all power
plants. Most of the changes occur in the load following power plants,
and occasionally in the peaker power plans, which we collectively
refer to as marginal power plants. These are generators that can be
ramped up or down at short notice to respond to changes in de-
mand as determined by the dispatch schedule. Consequently, when
attempting to reduce the emissions from the generation mix, we
must consider the marginal carbon intensity, which is the emissions
from generating the next unit of electricity; in our case, it is related
to the operation of marginal power plants. In the above example,
if the marginal power plant uses natural gas as fuel, the marginal
carbon intensity is 395.5 kg/MWh, which is higher than the average
carbon intensity in our example. Since there are notable differences
in the emissions factors associated with the different fuel types,
there is significant potential for reducing the carbon footprint of
the overall electricity generation by optimizing the marginal carbon
intensity through the use of energy storage.

It should also be noted that the marginal carbon intensity will
vary over time due to several factors. For example, if the generation
from hydro plants has to be decreased during periods of little rain,
generation from other (less green) sources will have to make up the
shortfall, potentially increasing the marginal carbon intensity. Fuel
prices of raw materials such as natural gas and oil may fluctuate
over time, and dispatch schedules may be optimized to use cheaper
sources. The dispatch schedule itself varies over the course of a
season based on seasonal demand. All of these factors cause the
marginal carbon intensity to vary, and any approach that seeks
to optimize marginal emissions must account for such temporal
variations. Figure 2(b) illustrates the variations of the marginal
carbon intensities of different fuel types.

2.3 Renewable Energy Sources

The penetration of renewable sources such as solar and wind in the
grid has grown substantially in recent years. These clean sources
have zero carbon emissions and directly contribute to a reduction
in the grid’s overall carbon footprint. However, the generation from
renewable sources is known to be intermittent and dependent on
the weather. As a result, the grid treats these generation sources
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Figure 1: Electric grid architecture comprising generation, transmission and distribution. Our work assumes a heterogenous
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Figure 2: (a) Daily transformer load (b) Marginal factor of different fuels for a day.

differently from traditional sources such as natural gas and coal.
In particular, today’s grid operators assume that these sources are
uncontrollable, and hence not dispatchable. That is, their generation
potential at any instant in the future is not entirely predictable, and
they are typically not included into dispatch schedules unlike other
sources of energy generation. Instead, their output is assumed to be
net-metered into the distribution grid, which means that renewable
sources are treated as part of the fluctuating demand, rather than
as an explicit dispatchable supply source. In line with the grid’s
assumptions, our paper also assumes that renewables such as solar
and wind are handled as a portion of stochastic demand, and in-
creasing penetration results in higher stochasticity and uncertainty
in demand.

2.4 Energy Storage

Grid energy storage technologies in the form of batteries have been
gaining traction in recent years. Companies such as Tesla have
deployed both small- and large-scale energy storage within the
grid in many different countries and demonstrated the feasibility
and benefits of using such storage for grid optimizations. This
work assumes a distributed deployment of energy storage batteries
within the distribution grid. The deployment is assumed to be
heterogeneous — the sizes of batteries and the level within the grid
where they are deployed are assumed to be different for different
batteries. Some batteries may be small batteries, akin to the Tesla
Powerwall, deployed adjacent to small neighborhood distribution
transformers. Other batteries may be larger in size and deployed
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near larger transformers (potentially at the feeder or substation
levels) that supply electricity to a larger number of homes. The
penetration of energy storage within the distribution grid can differ
from one scenario to another, and our work is designed to handle
different penetration levels.

The distributed network of batteries is assumed to be under
the control of the grid operator. However, rather than using them
for grid optimizations, our work seeks to operate this distributed
set of batteries to minimize the aggregate carbon emissions of the
grid, given the time-varying marginal carbon intensity values—by
operating them to reduce reliance on the dispatchable sources with
high marginal carbon intensities. We formulate this problem of
emission-aware scheduling of energy storage more formally in the
next section.

3 PROBLEM FORMULATION

Consider a distribution grid comprising a network of substations,
feeders and neighborhood transformers. Assume that energy stor-
age is deployed at various points within this grid, i.e., at a subset
of the transformers. In a typical grid, there is significant variation
in the capacity of transformers and the number of customers it
serves. Thus, the energy storage must be sized according to the
transformer capacity to enable grid optimizations at that location.
Further, our work assumes that this heterogeneous collection of
batteries is under the control of the grid operator and the operator
can control the charging and discharging of a distributed network
of batteries.
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As discussed in the previous section, there are several fuel types
in a typical electric grid, each with a different level of emission factor
and different time-varying marginal carbon intensity. The emission
footprint of the grid at any instant depends on the mix of generation
fuels used to satisfy the current demand. Grid operators must match
supply and demand at all times by constructing a dispatch schedule
in advance. The dispatch schedule is typically computed a day in
advance by first estimating the demand curve for the following
day and then determining an order in which different generation
sources are activated (or deactivated) to meet the predicted rise
and fall in demand.! This problem becomes a cost minimization
problem since the next unit of rise in demand should be satisfied
using the generation source with the cheapest marginal price [33].
This problem is also referred to as the unit commitment problem
in power system literature [27]; in solving this dispatch schedule
(i.e., unit commitment), time-varying marginal prices are computed
at each step to select the least cost source for each unit change in
demand. Since this problem is solved one day in advance (usually
through day-ahead energy markets), we assume that time-varying
marginal factors can be obtained when the dispatch schedule is
finalized at the start of each day.

The key insight behind our approach is to take the demand
seen within the distribution grid (which is directly observable) and
these computed marginal prices at different times of the day to
infer the emission footprint of the grid over time; the scheduling
problem is then to intelligently schedule the batteries during peak
emissions periods, subject to various demand constraints within
the distribution grid. This leads us to the following problem: Given
the dynamics in the marginal factor of available fuel types and in the
distribution-level demand, what is the optimal scheduling of energy
storage that minimizes grid-wide carbon emissions and respects the
operational constraints of the grid and energy storage systems?

3.1 System Model

In this section, we formulate the offline version of the emission-
aware storage scheduling problem (EASS) assuming that the entire
load data is available in advance, and in the next section, we present
the online formulation that takes into account the uncertainty of
load.

We assume that the time horizon is divided into T real-time
settlement intervals, indexed by t, each with fixed length. Time
slots are set according to the real-time settlement intervals in the
U.S.-based electricity markets, e.g., 5 minutes in CAISO and NYISO,
and 15 minutes in ERCOT [1]. The main notations are summarized
in Table 2. In what follows, we explain the details of the system
model.

Assume there are n transformers in the system, each indexed
by i. Further assume that there is an energy storage battery at
each transformer. In practice, the operator may only deploy energy
storage at a subset of transformers, which can be easily modeled by
setting the sizes of batteries at all other transformers to zero. The
scheduling decisions are assumed to be made at the transformer
level. Let C; be the capacity of transformer i, and B; be the storage
capacity deployed at transformer i. Let p; be the maximum charging

! As noted earlier, renewable sources such as solar and wind are assumed to net-metered
into the distribution grid and not considered as dispatchable energy resources.
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Table 2: Summary of notations

l Inputs
T The number of time slots, T > 1
T | SetT ={1,2,...,T}
n The number of transformers
m The number of fuel types
Ci The capacity of transformer i
B; The capacity of storage system at transformer i
pi Charge and discharge rate limit of storage system i
wy | Emission factor of fuel type f
Ag(t) | marginal factor of fuel type f at ¢
L(¢) Mean value of day-ahead forecast load at transformer
! iatt
l Optimization variables
xi(t) | The charge/discharge amount of storage i at ¢
(1) The aggregate charge/discharge at t, i.e.,
x(t) = XiLy xi(t)
The storage level (state of charge) of storage i at the
bi(t)
end of t

and discharging rate of storage i. Our formulation could be extended
to the case with different charge and discharge rate constraints.

We assume there are m different fuel types in the grid, each
indexed by f. Let wy be the emission factor in kg/MWh of fuel type
f Further, let A¢(¢) be the marginal factor, as the contribution of
fuel type f at time ¢ to the marginal increase or decrease in energy
demand. The values of wy are fixed and given in advance. The
values of A¢(t) change over time based on solving grid dispatch
and unit commitment problems.

Finally, let [; (¢) be the day-ahead load forecast of transformer i at
time t. In addition, let [; (t) be the actual values of load in real-time.
Note that /;(t) and ii(t) might be different since there is always
some error between the forecast day-ahead and actual values. The
problem formulation in this section is an offline version that takes
into account the day-ahead load values. In Section 4, we extend the
formulation to include the uncertainty of actual load in real time.
Incorporating renewables: Since renewables such as solar and
wind are assumed to net-metered into the distribution grid, we
assume that the transformer-level demand J;(¢) is a net-metered
value that represents the difference between the actual demand at
that transformer and the generation from any renewable sources,
such as rooftop solar, that are present at that location. This has two
implications. First, it allows our approach to naturally incorporate
the contribution of renewables for emission reduction (since it
contributes to a direct reduction in demand). Second, it increases the
stochasticity in the demand, making demand more unpredictable,
an issue we must address as part of our optimization.

3.2 Problem Formulation

The Optimization Variables. The charging/discharging amount
of storage i at t is represented as x; (). Positive values, i.e., x; (t) > 0
indicate the charging of the storage, whereas negative values, i.e.,
xi(t) < 0indicate discharging. The aggregate change in load due to
charge/discharge of different storages observed at the grid level at
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time t is represented by x(t), i.e., x(t) = X1, x;(t). Finally, let s;(¢)
be the state of charge of storage i at time ¢, and we will obtain its
evolution over time in the following by formalizing the constraints.

Constraints. The change in load observed at the grid level is
the sum of all the charging/discharging decisions made at each
transformer, i.e.,

x(t) = Zn:xi(t), Vt, (1)
i=1

The evolution of storage is represented as the following constraint

si(t+1) =s;(t) +x;(t), VtandVi, (2)
The other constraints regarding the physical limits of storage are
presented as follows. The scheduling decisions should be taken
within the operating constraints of the battery. For example, the
maximum charge of the storage unit should not exceed the storage
capacity while it is in operation. For simplicity, we assume the max-
imum charging and discharging rate to be equal. We represent the

constraints regarding the state of the charge of storage as follows

si(t) < Bj, VtandVi, 3)
si(t) >0, VtandVi, (4)
—pi < xi(t) < p;, VtandVi. (5)

In order to maintain the demand and supply relationship, the
discharge from the storage unit should not be greater than the load
observed at the transformer at any time ¢. Thus, we have

—xi(t) < i(t), VtandVi. (6)

Note that in reality, it is possible to have peak load beyond the
capacity of transformers. In case of the load at the transformer at
time ¢ is greater than the capacity of the transformer, we do not
want to worsen the situation by charging the storage at that time
leading to transformer overload. Hence, by defining parameter 7 as
the threshold violation level of transformer capacity, we express
the this constraint as

Ci—x(t) = 1i(t) =5, ViandVt. (7)

The value of 7 is set by the operator of the grid, and in experiments
we set it to 1% of the transformer capacity.

Objective Function. The eventual goal is to minimize the carbon
emission of the grid by managing the charging and discharging
of the energy storage. More specifically, we aim to minimize the
following objective function:

D wedp()x(e), (8)

=

M=

t

1l
-

where x(t) represents the aggregate change in load by scheduling
the storage observed at grid level as described in (1). Recall that
Ag(t) represents the marginal factor of fuel type f at time ¢, and
wy is the emission factor of fuel type f.
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Optimization Problem Formulation. Putting together, we formu-
late the emission-aware energy storage scheduling (EASS) problem
as

T m
Z Z wrAp(D)x(t)

EASS : min
=1 f=1
subject to:  Equations (1) — (7),
variable:  x;(t) e R,i € {1,...,n},t €{1,...,T}.

The EASS problem is linear in nature that could be solved opti-
mally if the entire input to the problem, i.e., load values and emission
parameters, are given in advance. In practice, however, these values
are uncertain, and as we will show in Section 6.1, future predictions
of load are never 100% accurate. Consequently, in the next section,
we introduce the robust optimization formulation to tackle the un-
certainty that arises when solving this problem online in real-world
settings.

4 ROBUST OPTIMIZATION APPROACH

In this section, we present the robust optimization version of EASS
(called EASS-RO) by taking into account the uncertainty due to the
imbalance between the forecast and actual real-time load values.
Robust Optimization (RO) [4] is a well-established framework for
general scenarios of decision making under uncertainty. In this
paper, we leverage the RO framework for emission-aware storage
scheduling under the uncertainty of electricity load. As compared to
the traditional stochastic optimization approaches, problems formu-
lated in an RO framework are typically computationally tractable
and do not require the knowledge of a probability distribution over
the uncertain input.

The first challenge in formulating an RO counterpart of EASS
is to define an uncertainty set which bounds the upper and lower
bounds that the uncertain input, i.e., load, can take. The classic
approach in RO is to optimize for the worst case value in the uncer-
tainty set, but that might be too conservative leading to a suboptimal
solution. In this paper, we follow another variant of RO framework,
called the price of robustness, proposed in [4]. More specifically,
Bertsimas, et. al. [4] develop a generic uncertainty set that can be
used to formulate a robust linear counterpart of an uncertain linear
program. In this approach, the level of robustness can be controlled
by parameter I known as the budget of uncertainty. Then they
proved that T can be chosen based on the level of robustness de-
sired by the operators such that the probability that the constraint is
satisfied is 1 — €. In what follows, we present the robust counterpart
of the EASS problem using the robust framework in [4],

Robust Counterparts of Uncertain Linear Constraints. In this sec-
tion, we present the robust counterparts of the constraints that
include load values.

First, we state the robust counterpart of constraint (6). Recall
that constraint (6) is enforced to ensure that discharge from the
battery should be less than the load observed at the transformer. The
detailed steps toward stating constraint (6) in a robust framework
is the following. First, we construct the uncertainty set associated
with the transformer level loads. The uncertainty set for actual load
of transformer i at time t can be represented as

Li(t) = [Li(t) — 0i(t), i () + o3 (1)], )
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where o (t) is the deviation from the expected value. The values
0i(t) and accordingly £;(t) should be obtained by using a forecast
model of the transformer level load. In Section 4.1, we present our
forecasting approach based on state-of-the-art neural networks for
predicting the load. The values of o;(#) will be used to construct
the robust constraint.

By defining T as the budget of uncertainty [4], we re-express
constraint (6) as

—xi(t) = Li(t) + Bi(li(+),T) <0 Viand V¢, (10)

where f;(l;(t),T) represents deviation of [;(t) from its expected
value, given T as the budget of uncertainty. Note that I' could be
readily extended to be defined for each transformer separately. In
the following, we explain how to calculate the value of §;(l;(t),T).

In the original robust optimization framework under the para-
digm of price of robustness [4], the budget of uncertainty is defined
for each uncertain constraint separately, and its goal is to provide a
trade-off between the robustness against the performance of the
solution. More specifically, the value of T' determines that for each
constraint how many elements should be robust against violation;
the higher the value of T, the higher the robustness, the lower the
performance. In other words, the solutions with the higher values
of I might be suboptimal since it is too conservative for the sake
of ensuring robustness.

Since constraint (7) is independent for each transformer load
at each time slot, following the original approach in [4] requires
us to have n X T separate values robust constraints each for one
instance of (6). This approach does not provide any flexibility to
determine the level of robustness and limits us to the case with the
maximum robustness in solution. To provide flexibility for trade-
off between robustness and performance, we slightly change the
original framework by considering a common budget of uncertainty
for the entire time horizon of each transformer, i.e., grouping all
the constraints of each transformer over time.

More specifically, let z* [Z;'k(t)]te{l,z,...,T} be the optimal
value of the following optimization problem [4, Section 3, Proposi-
tion 1]:

T

s.t. Zzi(t) <T.

t=1

T

* = i()zi(t), 11
z a%mg%”;mﬂaﬁ (11)
Note that the above problem should be solved for each transformer
i separately. Then, we calculate the values of each f;(1;(t),T) as

follows:
Bi(li(t),T) = ai()z} (1)

Using this formulation one can see that f;(l;(t), ') ranges be-
tween [0, 0;(t)], thus I;(¢) ranges between [0, ;(¢) + 0;(t)]. We
can safely ignore the set [1;(¢) — 0i(¢), i ()] as we want to make
our solution robust to the worst case scenario. Using the budget
of uncertainty parameter I' we can control the level of robustness
across time in terms of the following optimization problem.

Intuitively, we can see how the value of T' controls the deviation
from [;(¢). In case we set I' = 0 the EASS-RO problem reduces to
EASS as all the deviations from [;(¢) will be 0. On the other hand,
increasing I' increases the deviation of [;(¢) thereby we have more
robustness in the solution. When T’ = |T| each z;(t) will be set to 1,
thus EASS-RO is the most conservative formulation. Last, in EASS,
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constraint (7) is involved with the uncertainty of the load. Hence,
the same procedure as for constraint (6) should be done to have its
robust counterpart.

4.1 Load Forecasting Under Uncertainty

Our approach requires load forecast as input and internally deals
with its uncertainty. While there are have been several research
on forecasting demand [22], most approaches focus on predicting
the aggregate grid demand, which is often smooth and predictable.
However, transformer load sees higher variations depending on the
number of homes the transformers feed electricity [17]. Further,
any net-metered renewable sources such as rooftop solar or wind
will increase the stochasticity in the observed demand. As such, it
is more challenging to provide accurate forecasts and has higher
uncertainty in prediction, which justifies the need for the use of
robust optimization methods that can handle such uncertainty.
Formally, forecasting transformer loads requires learning a function
F; that predicts future loads based on input parameters stated as
follows

Li(t+1,t+2,...,t+k)=F(;(1,2,...,t),7) Vi

where F; predicts future load for the next k time steps, and 7 is a
vector that represents exogenous feature inputs such as temperature
and day of the week.

Load at the transformer level shows both diurnal and weekly
patterns [17]. For example, load during mid-day will differ from
load seen at night. Similarly, weekday load differs from weekend
load patterns. Although transformer level load data is noisy in na-
ture, historical load data contains daily and weekly seasonality. It is
important to extract the seasonality in the historical data for accu-
rate forecasting. We use this insights to model our load. Specifically,
our approach is based on an Autoregressive Neural Network [9].

In order to forecast load for time ¢ + 1 we use the past p; time slot
as the input along with loads on past py days at time ¢ + 1 as well as
loads at past p3 weeks at time ¢t + 1. Along with the historical load,
we include one-shot encoded day of the week exogenous variable
as part of feature vector of the neural network. We also use the
temperature ;41 at time ¢ + 1 as an external regressor. Putting
together all above inputs, the forecast load at time ¢ + 1 is as follows

Li(t+1) = B4l

(840, i = 1), Lt = po),
Li(t+1—-Tgt+1-TyX2,...,t +1—Ty X p2),
li(t+1—Td><7,t+1—Td><7><2,...,t+1—Td><7><p3)),

where Ty is the number of time slots in one day. In our experiments,
the length of each slot is 5 minutes, hence, Ty = 12 X 24 = 288.

5 EVALUATION SETUP

In this section, we discuss our experimental setup and methodology.

5.1 Experimental Datasets

Load Dataset. For evaluating the efficacy of our load forecast-
ing techniques along with the distributed storage schedule, we
use a grid-scale dataset obtained from an utility company in the
Northeastern US containing energy data from 1,341 smart meters
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Table 3: Dataset used for our evaluation

Characteristics Value
Number of homes 1,341
Transformers 100
Transformer size 25 to 750 kVA
Trace Duration 2 years

Table 4: Parameter settings of our approach.

Value

Parameters

Charge/Discharge Rate Limit 60 mins

Marginal Fuel Sources Coal, Oil, Gas

Emission Factor (kg/MWh) Refer to Table 1

n in Equation (7) 1% of C;

T in EASS-RO [10,20]

connected to 100 transformer. This data is available at a 5-minute
granularity over a period of 2 years. On an average, each trans-
former is connected to 13.4 smart meters (ranging from 5 to 85).
Likewise, the transformer capacity varies between 25 and 750 kVA.
Table 3 summarizes our dataset.

Marginal Carbon Intensity. Additionally, our scheduling scheme
requires marginal carbon intensity as the input to the problem. This
data is not directly available for the New England region. Hence,
we use the method specified in [28] that estimates the marginal
power plants in operation using the hourly locational marginal
price (LMP) of electricity generation and the monthly fuel prices
available through [10] and [16]. The approach uses a symmetric
Gaussian membership function in (12) that maps the LMP values
to fuel types.

—(p(t)=pf)?
2

Mp(t)=e 7 (12)

where pr and v}zv is the average cost and variance of fuel type f,

and p(t) is LMP of the market at time . Subsequently, we compute
the marginal factor A7(t) of fuel type f as follows.

Mg (t)

A =5

(13)

5.2 Experimental Settings and Baseline

Parameter Settings. We set the time horizon to one day, and the
length of each slot is 5 minutes, hence T = 12 x 24 = 288. We
initialize the storage level at half its total capacity to allow both
charging and discharging starting with time ¢ = 0. We also constrain
the storage capacity at the end of the day to half its capacity so as
to have the same state of charge for the next day, i.e.,

B

si(t) = 7’ ift=1andt=T = 288,Vi.
While evaluating our robust approach, we use load values and
fuel type parameters directly read from the dataset described above.

The additional parameters are described in Table 4.
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5.2.1 Baseline Algorithms. We compare the performance of EASS-
RO with the following approaches.

(1) Optimal Offline Solution: The optimal offline approach as-
sumes complete knowledge of future load and provides the
best achievable schedule to minimize carbon emissions. Al-
though not practical, it serves as a best theoretical upper
bound to compare with.

Online Linear Programming: In this approach, we use the
day-ahead forecast load as input to solve the linear program
EASS and determine the schedule. However, the day-ahead
charge/discharge schedule may violate real-time grid con-
straints as the actual load at time ¢ may differ from predicted
load at time ¢. To ensure that all grid constraints are satisfied,
the day-ahead schedule is adjusted as follows. Let J;(f) be
the actual load observed at time ¢, and %;(¢) be the modified
storage charge/discharge value at ¢ to ensure feasibility.
Transformer Constraints

@

~

(D) =0, ifCi—xi(t) = Li(t) <n (14)

£i(0) = Ci = li(0),  ifxi(8) = G =li(1) (15)
Storage Constraints

%i(t) = Bi —si(t),  if x;(t) +si(t) 2 B; (16)

%i(1) = —=si(t), ifxi(t) +si(t) <0 (17)

As indicated earlier, we would like to avoid excessive stor-
age discharging during low energy demand periods. This

constraints is represented as:
2i(1) = =1i(0), i li(1) < —xi(2). (18)

(3

=~

The PreDay Algorithm: This approach uses the previous day’s
load and emissions factor as input to the linear program to
determine the emission-aware schedule. We use a similar
approach and modify the schedule as above to ensure that
constraints are not violated.

6 EXPERIMENTAL RESULTS

In this section, we evaluate our approach and compare it to the
optimal approach and other heuristic approaches.

6.1 Load Forecasting Uncertainty

First, we evaluate the efficacy and accuracy of our proposed load
forecasting method in Section 4.1. We compare our forecasting
method based on state-of-the-art neural network approach with
two popular statistical time series techniques — ARIMA [7] and
TBATS [8]. Figure 3 compares the performance of the proposed
regression technique with the two baseline approaches. The results
show the distribution of mean absolute percentage error (MAPE)
values for load forecast at all transformers evaluated over a period
of one year. Based on our analysis, TBATS has the highest aver-
age MAPE of 34.17%, while the MAPE of ARIMA was 21.5%. The
performance of the autoregressive neural network with exogenous
variables outperformed all other techniques and has the lowest
average MAPE value of 20.14%. In our experiments, we observed
that including exogenous variables improves the accuracy of our
forecast significantly. Despite its higher accuracy, we observe that
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Figure 3: Efficacy of load forecasting methods. The figure
shows there can be significant uncertainty in forecasts.

100 [— Local Demand WM Charging [ Discharging

MCI (Ibs/MWh)

13 17 21

Hour of the day

Figure 4: Battery charge and discharge based on our
emission-aware energy schedule. Our emission-aware algo-
rithm discharges battery when marginal carbon intensity
(MCI) is high.

the forecast still contains error — indicating uncertainty in predic-
tion. The presence of such error is a motivation for leveraging robust
optimization for emission-aware storage scheduling.

6.2 Emission-aware Storage Schedule

Figure 4 depicts our emission-aware storage scheduling approach
in action. The figure shows the impact of the storage schedule on
the load observed at a transformer for a sample day overlayed with
the local demand. As shown, discharging action occurs when the
marginal emissions are high, e.g., between 6 am to 9 am, which
represents the high polluting hours of the day. Conversely, charging
occurs when the marginal emissions are low, usually between 1 to 4
pm. Based on the overall energy usage and the mix of fuels used at
different times of the day, the alternating charging and discharging
actions at this transformer mitigates 17.5 kg of carbon emissions.

Result: Emissions-aware distributed energy storage has significant
potential to reduce carbon emissions at the grid-scale.

6.3 Benefits of Emission-aware Scheduling

We analyze the change in carbon savings? by varying the size of
the energy storage. We size the battery as the number of hours it
can support the annual maximum load of the transformer. Thus,
one hour of battery capacity indicates that it can support the max-
imum load of the transformer for an hour. Figure 5 shows the
reduction in carbon emissions with increasing battery size for dif-
ferent algorithms. We observe that the carbon emissions reduces

2We use marginal carbon intensity and change in battery state compared to the
previous day to calculate the daily carbon savings.
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Figure 5: Carbon emissions reduction for different battery
sizes. The battery size is computed as the number of hours
it can sustain the maximum load of the transformer.
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Figure 6: Carbon emissions reduction for different
charge/discharge rate and a battery size of one hour.

with increasing battery size. This is because a larger battery has
more flexibility in shifting transformer load, where batteries can
charge during lower emissions and discharge during high carbon
emissions period. Even with a battery size of 0.5 hours, we observe
that our emissions-aware algorithm achieves 10.16% reduction in
carbon emissions. Further, a battery size of 1.5 hours can annually
save >0.5 million kg of carbon emissions — equivalent to 23.3%
reduction in electric grid emissions.

We also compare our robust optimization with baseline approaches
described in Section 5.2.1. The optimal approach provides the max-
imum carbon savings that can be achieved. However, the optimal
needs the full information in advance that is not practical. We ob-
serve the gap between the optimal and our robust optimization
approach is less than 1.2% having battery size less than or equal to
one hour.

Result: Robust optimization consistently performs better than the
other baseline approaches; with a 1.5hr battery, it can save >0.5 mil-
lion kg of carbon emissions annually, a 23.3% reduction in emissions.

6.4 Impact of Storage Parameters

Next, we study the effects of different storage parameters—charge
and discharge rates—on carbon emission reduction. We fix the en-
ergy storage size such that it can sustain the maximum load at the
transformer for one hour and vary the charge/discharge rate. The
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Figure 7: Carbon emissions reduction for different levels of
storage penetration across transformers. A 50% penetration
indicate half the transformers have storage units installed.

charge/discharge rate is set such that the fraction indicates the per-
centage of the maximum load at the transformer the energy storage
can charge or discharge. Thus, a 0.25 hour charge/discharge rate can
discharge at one-fourth the maximum load at the transformer. As
seen in the Figure 6, with a charge/discharge rate of 0.25 hour, our
robust optimization approach achieves a carbon emission reduction
of 13.9%. However, an increase in charge/discharge rate further
reduces carbon emissions. This is because a higher discharge rate
is able to reduce demands thereby minimizing the need to utilize
generation sources with high emission footprints. In particular, we
observe that the reduction in carbon emissions increases by 37.2%
(from 13.93% to 19.12%) when the rate is increased from 0.25 to 1
hour.

Result: Our RO approach yields 13.9% emission reductions even at
modest battery discharge rates.

6.5 Impact of Storage Penetration

We study the benefit that comes from installing energy storage at
only a fraction of the transformers in the grid. Like before, in this
experiment, we fix the energy storage size such that it can sustain
the transformer load at its maximum for one hour and select trans-
formers at random, where batteries are installed. Figure 7 shows
the reduction in carbon emissions for different storage penetration
levels. An energy storage penetration of 25% can achieve 8.5% car-
bon emission reduction. However, if 50% of the transformers install
energy storage, the carbon emission reductions improves to 13.9%,
a63.5% improvement in emissions reduction. This is because higher
energy storage penetration can offset more loads that have high
emissions footprint. Further, if all the transformers have energy
storage, the reduction in carbon emission is 19.12%.

Result: Even a modest 1-hr battery can yield up to 19% reduction in
carbon emissions. Larger batteries and higher penetration levels will
provide much higher reductions.

7 RELATED WORK

Energy Storage Systems in the Electric Grid. There has been signif-
icant work on using energy storage in the electric grid [13, 15].
However, the majority of work has focused on improving grid sta-
bility or cost arbitrage. Our work focuses on using energy storage
to reduce grid carbon emissions.
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Additionally, shifting the energy demand has been suggested in
the literature by introducing flexibility in loads through a mech-
anism called demand response [11, 29]. Monetary incentives are
set aside to compensate for the customers participating in demand
response. However, demand response involves customer buy-in and
often include installing specialized hardware on the electric loads,
which may not always be feasible. On the contrary, grid operators
around the world can readily employ our approach by utilizing
carbon intensity values from the set of power plants they control.

Load Forecasting. In smart grids research, load forecasting is a
widely studied problem. The regression techniques used to solve
this problem range from traditional time series approaches such as
ARIMA [24] to neural network [20]. Traditionally, grid-level load
forecasting was used to assess power systems security, schedule
maintenance services, etc. Our regression model produces forecasts
at the transformer-level and improves over the state-of-the-art
technique [20].

Robust Optimization for Scheduling in Smart Grid. Robust opti-
mization has been extensively used to solve different problems in
different application domains that deal with uncertainty, including
smart grid. Some examples are generator placement [31, 32], EV
charging scheduling [21], storage sizing [19]. As compared to the
other stochastic approaches it has several advantages: (1) it does
not require stochastic modeling of uncertain parameters in terms
of probability distribution functions; (2) by defining the notion of
budget of uncertainty [4], its provides a design space to trade-off
between the robustness and performance of the decision making.
Note that the notion of uncertainty set has been used in other the-
oretical approaches such as competitive analysis [12], however, the
algorithm approach used in [12] is problem-specific and cannot be
applied to our emission-aware scheduling scenario.

8 CONCLUSION

The benefits of distributed energy storage have been previously
studied for grid optimizations such as peak shaving, price arbi-
trage, and demand-response. However, in this work, we focus on
using distributed energy storage to reduce the emission footprint
of electricity generation. Our main insight is that energy storage
can help utility companies reduce the reliance on less efficient and
most carbon-intensive power plants, shifting electric demand from
high polluting periods to low polluting periods. We formulated the
problem of emission-aware scheduling as an optimization prob-
lem with the objective of minimizing the carbon emission, subject
to transformer and storage operational constraints. Given the dy-
namics in transformer-level load, we leveraged robust optimization
to handle the uncertainty in load predictions. We evaluated our
emission-aware energy storage scheduling approach on a dataset
containing 100 transformers connected to over 1,340 electric meters
in a city in the Northeastern part of the US. Our analysis showed
that our approach can offset >0.5 million kg in annual carbon emis-
sions, which is equivalent to a 23.3% reduction in the electric grid
emissions.
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