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Abstract

We report the discovery of a 1° (∼50 kpc) long stellar tidal stream emanating from the dwarf galaxy DDO44, a
likely satellite of Local Volume galaxy NGC2403 located ∼70kpc in projection from its companion. NGC2403
is a roughly Large Magellanic Cloud (LMC) stellar-mass galaxy 3Mpc away, residing at the outer limits of the
M81 group. We are mapping a large region around NGC2403 as part of our Magellanic Analogs’ Dwarf
Companions and Stellar Halos survey, reaching point-source depths (90% completeness) of (g, i)=(26.5, 26.2).
Density maps of old, metal-poor RGB stars reveal tidal streams extending on two sides of DDO44, with the
streams directed toward NGC2403. We estimate total luminosities of the original DDO44 system (dwarf and
streams combined) to be Mi,tot=−13.4 and Mg,tot=−12.6, with ∼25%–30% of the luminosity in the streams.
Analogs of ∼LMC-mass hosts with massive tidally disrupting satellites are rare in the Illustris simulations,
especially at large separations such as that of DDO44. The few analogs that are present in the models suggest that
even low-mass hosts can efficiently quench their massive satellites.

Unified Astronomy Thesaurus concepts: Dwarf spheroidal galaxies (420); Galaxy photometry (611); Galaxy
interactions (600); Dwarf galaxies (416); Galaxy stellar halos (598); Tidal tails (1701)

1. Introduction

Deep surveys covering large sky areas have in recent years
greatly expanded the number of dwarf galaxy satellites known
around the Milky Way (MW; e.g., Drlica-Wagner et al.
2015, 2016; Kim & Jerjen 2015; Laevens et al. 2015; Torrealba
et al. 2016, 2018; Homma et al. 2018) and M31 (e.g., Martin
et al. 2016; McConnachie et al. 2018). The newly discovered
diminutive galaxies include extremely low-luminosity “ultra-
faint dwarfs” (UFDs; e.g., Willman et al. 2005; Belokurov et al.
2007—see the recent review by Simon 2019), as well as many
relic streams from tidally disrupted satellites criss-crossing the
Galactic halo (e.g., Belokurov et al. 2006; Grillmair &
Carlin 2016; Shipp et al. 2018). In parallel to these discoveries,
models of structure formation and evolution within the Λ-Cold
Dark Matter (ΛCDM) framework have generated predictions of
the number of satellites expected, as well as properties such as
their luminosity functions and metallicities (Benson et al. 2002;
Zolotov et al. 2012; Wetzel et al. 2016; Bose et al. 2018;
Jethwa et al. 2018; Kim et al. 2018; Nadler et al. 2019).
Although the match with the MW and M31—the only systems
with robust samples of satellites—is remarkably good, it is

unclear whether our Galaxy and its nearest massive neighbor
are representative of massive galaxies more generally, or if
theoretical models are over-tuned to the Local Group. Resolved
stellar maps of nearby massive galaxies are now being
painstakingly assembled, revealing the satellite systems (down
to the scale of UFD galaxies) of Cen A (Crnojević et al. 2019),
NGC253 (Sand et al. 2014; Romanowsky et al. 2016; Toloba
et al. 2016), M81 (Chiboucas et al. 2013), M101 (Merritt et al.
2014; Bennet et al. 2017, 2019; Danieli et al. 2017; Müller
et al. 2017), and M94 (Smercina et al. 2018), among others. We
are thus entering an era in which we may explore the
stochasticity of satellite populations around a variety of hosts,
as well as their dependence on environment and host properties
(e.g., Bennet et al. 2019). These can be used to make more
precise tests of galaxy formation and the ΛCDM cosmological
model.
Of particular interest are satellites in less dense environments

than the ones highlighted above. Satellites of the MW in
particular show signs of experiencing many types of environ-
mental quenching and disruption simultaneously (Barkana &
Loeb 1999; Mayer et al. 2006; Grcevich & Putman 2009;
Nichols & Bland-Hawthorn 2011; Brown et al. 2014; Slater &
Bell 2014; Fillingham et al. 2015; Wetzel et al. 2015). Because
so many processes are likely to affect the satellites, it is often
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difficult to assess their relative importance, and how that
importance scales with properties of the host (not necessarily
limited to halo mass). One way to disentangle these processes,
and to highlight the scales at which each mechanism kicks in, is
to consider low-mass hosts. Hosts inhabiting halos smaller than
the MW’s ought not to have hot-gas halos (Birnboim &
Dekel 2003), so ram pressure stripping and possibly starvation
may be significantly reduced compared to the MW (although
they are likely to have cool circumgalactic media; Bordoloi
et al. 2014). Moreover, they should have gentler tidal fields,
reducing the effects of tidal heating and stripping. Thus, we
expect satellite galaxies of low-mass hosts to be more like field
galaxies, and less influenced by their environment. The
environmental processes that are important for less massive
hosts are likely to be different from those most relevant to MW-
sized galaxies. These hypotheses remain to be tested.

We have an additional motivation to study satellites of low-
mass galaxies, in that many of the recently discovered dwarf
galaxies within the MW halo are thought to have originated as
satellites of the Large and Small Magellanic Clouds (LMC,
SMC), and only recently fell into the MW (e.g., Jethwa et al.
2016; Dooley et al. 2017; Sales et al. 2017; Kallivayalil et al.
2018). The luminosity function of the new discoveries is
unexpected, though—there are no massive (M*>104Me)
MC satellite candidates (though Pardy et al. 2019 suggest that
the Carina and Fornax dSphs may be associated with the MCs),
but many that are much smaller, at odds with typical stellar-
mass–halo-mass relations (Dooley et al. 2017).14 It is unknown
whether the LMC and SMC had a more typical luminosity
function at infall and many satellites have been stripped from
them by the MW, or if this luminosity function is typical and is
telling us something new about galaxy formation in small
halos.

To extend the mass range of hosts for which satellite
searches have been carried out to lower mass (Magellanic
Cloud-mass) systems, without the difficulty of interpreting the
interplay of the LMC and its satellites with the Galactic halo,
we are conducting a census of nearby LMC stellar-mass
analogs. With this survey—Magellanic Analogs’ Dwarf
Companions and Stellar Halos (MADCASH)—we are search-
ing for the satellite populations of MC-mass galaxies within
∼4Mpc of the MW. Some early results from this ongoing
survey include the discovery of the MV∼−9.7 dwarf galaxy
AntliaB near NGC3109 (Sand et al. 2015; Hargis et al. 2019),
the detection of extended stellar populations around nearby
galaxy IC1613 (Pucha et al. 2019), and our discovery of a faint
(MV∼−7.7) satellite of NGC2403 (Carlin et al. 2016). In this
work, we highlight the discovery of a dwarf satellite being
tidally disrupted around nearby (D∼3.2 Mpc; Karachentsev
et al. 2013) low-mass (stellar massM*∼7×109Me; roughly
2×LMC stellar mass) spiral galaxy NGC2403, a relatively
isolated system at the outskirts of the M81 group.

The dwarf spheroidal DDO44 is a relatively massive dwarf
(MR∼−13.1, similar to the Fornax satellite of the MW;
Karachentsev et al. 1999) that is at a distance and velocity
consistent with orbiting as a satellite of NGC2403. Here we
report evidence that the dwarf spheroidal DDO44 has stellar
tidal tails extending at least ∼0°.5 (∼25 kpc) from its center.
This discovery is based on data from our deep, wide-area

imaging survey to a projected radius of ∼100kpc around
NGC2403.
In Section 2, we introduce our discovery data set and

analysis procedure. We show the key characteristics of the
stream in Section 3. In Section 4, we discuss what the stream
implies for the relationship between the orbital and star
formation histories of DDO 44, and the frequency of small
galaxy disruption by low-mass hosts. We highlight our key
results in Section 5.

2. Data and Analysis

Deep imaging data were obtained with Hyper Suprime-Cam
(HSC; Furusawa et al. 2018; Kawanomoto et al. 2018;
Komiyama et al. 2018; Miyazaki et al. 2018) on the Subaru
8.2 m telescope. The 1°.5 diameter field of view of HSC
corresponds to ∼80kpc at the D∼3.0 Mpc distance of
NGC2403, enabling a relatively efficient survey to beyond a
projected radius of d>100 kpc around NGC2403 (a large
fraction of the ∼120–180 kpc virial radius of an isolated LMC-
mass analog; see, e.g., estimates of Rvir in Dooley et al. 2017).
Our data consist of seven HSC pointings (see map in Figure 3):
the CENTER, EAST, and WEST fields were observed on 2016
February 9–10, while the four additional HSC fields (NW, NE,
SW, and SE) were observed 2017 December 23–24. All
observations consist of 10×300 s exposures in the g band
(known as “HSC-G” at Subaru) and 10×120 s in i (“HSC-
I2”). We also observed short, 5×30 s sequences of exposures
to improve photometry at the bright end. All observations from
both runs were obtained in seeing between ∼0 5 and 0 9,
under clear skies.
The data were processed with the LSST pipeline, a version

of which was forked to create the reduction pipeline for the
HSC-SSP survey (Aihara et al. 2018a, 2018b). Details of the
reduction steps can be found in Bosch et al. (2018). In short, we
performed forced point-spread function (PSF) photometry on
coadded frames in each filter, and calibrated both astrome-
trically and photometrically to PanSTARRS-1 (PS1; Schlafly
et al. 2012; Tonry et al. 2012; Magnier et al. 2013). We applied
extinction corrections based on the Schlafly & Finkbeiner
(2011) coefficients derived from the Schlegel et al. (1998) dust
maps. All results presented in this work are based on
extinction-corrected PSF magnitudes.
For separation of point sources from unresolved background

galaxies, we compare the ratio of PSF to cmodel fluxes for all
sources, where the cmodel is a composite bulge/exponential
plus de Vaucouleurs profile fit to each source. Point sources
should have flux ratios fPSF/fcmodel∼1, while extended
sources will contain additional flux in the model measurement
that is not captured by the PSF. Figure 1 shows the i-band flux
ratio as a function of i-band PSF magnitude. A large number of
sources (especially at the bright end) are concentrated around
unity in this figure. We allow for an intrinsic width of ±0.03 in
the flux ratio, and select sources whose 1σ uncertainties in flux
ratio place them within this ±0.03 window. The point-source
candidates selected in this way are shown as red points in
Figure 1, with extended sources (i.e., “not point sources”) as
gray points. Note that some background galaxies will
contaminate the point-source sample below i∼23, where
background galaxies far outnumber stars. For the remainder of
this work we will analyze only this point-source sample
calibrated to the PS1 photometric system.14 A similar result is found for the MW as a whole (Kim et al. 2018).

2
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To characterize the completeness of our photometric catalog,
we injected artificial stars into the images using Synpipe
(Huang et al. 2018), which was written for HSC-SSP, and has
been incorporated into the LSST pipeline. The resulting
completeness (i.e., the fraction of artificial stars recovered by
the photometric pipeline) in a 20′ region centered on DDO44
(excluding the central 2′ where crowding is too extreme to
resolve stars; a total of 18975 artificial stars were injected in
this region, or ∼15 arcmin−2) is given in Figure 2. We fit a
function of the form given in Martin et al. (2016) to these
curves, and estimate 50% (90%) completeness limits of
i=26.7 (26.2) and g=27.5 (26.5). In the lower panels of
the figure, we compare the input and recovered magnitudes for
the artificial stars in both bands. These are centered on zero, so
we are confident that no systematic offsets are present in our
photometry.

3. A Stream Around DDO44

One of the primary goals of our large-area imaging campaign
around NGC2403 is to search for its dwarf galaxy companions
and/or the remnants of destroyed satellites. Thus one of the
first things we did upon finishing the data reduction was to
select stars with color–magnitude diagram (CMD) positions
consistent with metal-poor RGB stars at the distance of
NGC2403, and plot their density on the sky. This RGB density
map centered on NGC2403 is shown in Figure 3. For the most
part, the map shows a fairly uniform distribution over the entire
region surveyed. This is most likely predominantly fore-/
background contamination, with little or no “halo” population
in the outer regions around NGC2403. We note that the 0 75
bins in this map are about the size of a typical faint dwarf
galaxy at the distance of NGC2403—1′≈0.9 kpc at
D=3.0Mpc. Thus the faint dwarf galaxy MADCASH
J074238+652501-dw found by Carlin et al. (2016) is almost
completely contained in a single pixel of this map (approxi-
mately at (α−α0)∼0.5 and (δ−δ0)∼−0.2), and thus not
visible as an obvious overdensity. The most striking feature in

Figure 1. Star/galaxy separation based on the ratio of PSF to cmodel fluxes.
The measured flux ratios of sources, f fi i,PSF ,cmodel, are shown as a function of
i-band PSF magnitude; flux ratios of ∼1 correspond to point-like sources. We
classify all objects whose flux ratios are consistent (within their measured 1σ
errors) with ~ f f 1 0.03i i,PSF ,cmodel as point sources (i.e., “stars”). These are
shown as red points above, with all other excluded sources shaded gray. For
reference, our measured magnitude of the DDO44 tip of the red giant branch
(TRGB) is plotted as a dashed vertical line.

Figure 2. Photometric completeness (top panel) as a function of magnitude in
the 20′ region around DDO44. The dashed and dotted lines show fits to the
completeness curves of the form used in Martin et al. (2016); the data are 50%
(90%) complete for point sources at i=26.7 (26.2) and g=27.5 (26.5). The
lower panels compare recovered and input artificial star magnitudes,
demonstrating that no systematic error is present in our photometric
measurements.

Figure 3. Density map of candidate RGB stars at the distance and metallicity of
DDO44/NGC2403 (selected using the RGB box in Figure 4). Bins are 0 75,
and the image has been smoothed with a Gaussian kernel of 0 75 FWHM. The
field is centered on NGC2403 (the hole in the center is due to extreme
crowding), and DDO44 is to the north (and slightly west). NGC2366 is ∼2°. 4
north of DDO44. Stellar number densities have been corrected for
completeness as a function of position; the color bar encodes the number of
stars per 0 75 bin. North is up and east is to the left.

3

The Astrophysical Journal, 886:109 (11pp), 2019 December 1 Carlin et al.



Figure 3 is the prominent blob corresponding to the known
dwarf spheroidal galaxy DDO44 to the north (and slightly
west) of NGC2403. Our deep Subaru+HSC data enable us to
see for the first time that DDO44 has streams of stars
emanating from it, oriented along the direction toward (and
away from) NGC2403; i.e., DDO44 is tidally disrupting
beyond doubt.

3.1. TRGB Distance, Isochrone Fit

In Figure 4 (left panel) we show a CMD of all stars between
2′ and 4′ of the center of DDO44. There is a prominent metal-
poor RGB (highlighted by the solid black box) as well as a
significant number of AGB stars (dashed gray box) signaling
the presence of intermediate-age (∼2–8 Gyr old) stellar
populations (as was found in Hubble Space Telescope (HST)
imaging by Karachentsev et al. 1999 and Alonso-García et al.
2006). The dotted blue box in each panel denotes the location
where young main-sequence stars would appear, if present. By
comparing the DDO44 field with an equal-area background
region (right panel), the number of objects in this box is
consistent with being background (likely unresolved galaxies/
QSOs, given their blue colors). In our later analysis, we show
(e.g., the lower panel of Figure 5) that there is no concentration
of blue sources at the position of DDO44, confirming that
these are background objects rather than young stars in
DDO44.

To refine the distance of DDO44, we first selected stars with
colors consistent with metal-poor RGB stars
(0.8<(g−i)0<2.1), and within 6′ of the center of
DDO44. We binned these stars as a function of magnitude,

then convolved the luminosity function with a zero-sum Sobel
edge-detection filter (in particular, one with values
[−1.0,−2.0,−1.0, 0.0, 1.0, 2.0, 1.0], as in Jang &
Lee 2017). We identify a narrow peak in the convolved
luminosity function, corresponding to the tip of the RGB
(TRGB), at iTRGB=23.95±0.05. From 10 Gyr Dartmouth
isochrones (Dotter et al. 2008) at [Fe/H]=−1.6±0.3, we
estimate an i-band TRGB absolute magnitude15 (in the PS1
system) of- -

+3.41 0.01
0.02. We thus derive a distance to DDO44 of

2.96±0.10Mpc (i.e., distance modulus
(m−M)0=27.36±0.07). We note that the same TRGB
code applied to the main body of NGC2403 yields an identical
distance modulus of (m−M)N2403=27.36. Our derived
distance modulus is in agreement with other recent determina-
tions for DDO44 ((m−M)0=27.39±0.13, 27.45, and
27.36 ± 0.09; Alonso-García et al. 2006; Dalcanton et al. 2009;
Jacobs et al. 2009), though somewhat at odds with the value of
(m−M)0=27.50 given in the COSMICFLOWS-3 database
(Tully et al. 2016).
At a distance of 2.96Mpc, the on-sky separation between

DDO44 and NGC2403 of 78 3 corresponds to a projected
separation of ∼67kpc.
After determining the TRGB magnitude (and thus distance)

of DDO44, we wish to estimate the system’s metallicity. To do
so, we create a set of old (10 Gyr) Dartmouth isochrones in
0.1 dex metallicity intervals, and use a least-squares

Figure 4. Left panel: color–magnitude diagram of stars between 2′ and 4′ of the center of DDO44, showing a clearly defined old, metal-poor RGB of DDO44, with
few (if any) young stars. We exclude the region inside r<2′ because the photometry in this inner region is affected by crowding; blending and elevated background
due to unresolved stars is also the source of the large scatter (especially redward of the RGB) in the DDO44 CMD. We overlay MIST isochrones (Choi et al. 2016;
Dotter 2016) for old (10 Gyr) populations with [Fe/H]=−1.6 (our estimate for the metallicity of DDO 44; see Section 3.1) flanked by isochrones with metallicities
±0.5 dex, and shifted to our measured distance modulus of 27.36. The black box shows the selection used to isolate candidate RGB stars for all analysis in this paper.
The other polygons outline regions used to select candidate AGB (dashed gray box) and blue sources (dotted blue outline) for Figure 5. Median photometric
uncertainties as a function of magnitude are shown near the left edge of the plot. Right panel: CMD of sources in a region shifted southwest by 0°. 2 in both R.A. and
decl., but of the same size as the DDO44 field. This highlights (a) the lack of stars within the RGB box relative to the left panel, and (b) a similar population of sources
within the blue box as seen in the DDO44 CMD, suggesting that these are unresolved background galaxies rather than blue stars associated with DDO44.

15 Note that the i-band TRGB magnitude is virtually independent of metallicity
for metal-poor populations (as we confirmed with isochrones of various
metallicities), so our choice of metallicity has no bearing on the derived
distance modulus.
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minimization based on differences between the DDO44 stellar
sample and the isochrones to find a best-fitting metallicity of
[Fe/H]=−1.6±0.3. This mean metallicity is consistent with
those measured by (Karachentsev et al. 1999, −1.7± 0.4),
(Alonso-García et al. 2006, −1.54± 0.14), and (Lianou et al.
2010, −1.67± 0.19) via HST imaging. Figure 4 shows a CMD
of the central 2–4′ field around DDO44, with the best-fit
isochrone at [Fe/H]=−1.6 overlaid, along with isochrones at
±0.5dex in metallicity.

The RGB of DDO44 is wider than expected solely based on
photometric errors. This could be due in part to photometric
scatter induced by the significant unresolved emission in the
body of DDO44. However, Alonso-García et al. (2006)
estimated that as much as 20% of the total stellar content of
DDO44 is contributed by the intermediate-age population
(likewise, Lianou et al. 2010 found the fraction of AGB stars
relative to RGB number to be fAGB=0.11). Thus, a single
10 Gyr population should not be expected to reproduce the
width of the RGB. Estimating the relative contributions of the
different age populations (i.e., a star formation history (SFH))
is beyond the scope of the current study (and is typically best
achieved with data reaching the oldest MSTO). Finally, we
note that we calculated a metallicity distribution under the
assumption that only 10 Gyr populations were present (assign-
ing stellar metallicities based on isochrones), and found a
metallicity spread of ∼0.49dex (determined by fitting a
Gaussian to the distribution). The mean metallicity and
metallicity spread (with the caveat that we have assumed a
single age) is similar to those of MW dSphs with similar
luminosities (e.g., the Sculptor dSph; Simon 2019), suggesting
that some of the RGB width is contributed by a metallicity
spread in DDO44, while the presence of intermediate-age
populations may account for some additional broadening of
the RGB.

Based on the lack of blue stars in HST images of DDO44,
Karachentsev et al. (1999) estimated that the most recent star

formation in DDO44 was at least 300Myr ago. We do not see
evidence of this young population beyond 2′. However, a
significant population of bright AGB stars above the TRGB
(also seen in HST data by Karachentsev et al. 1999 and Alonso-
García et al. 2006) suggests that intermediate-age populations
are present in the outer regions of DDO44. Indeed, as noted
previously, Alonso-García et al. (2006) found that ∼20% of the
stellar population of DDO44 consists of intermediate-age
(between ∼5–8 Gyr, and at least older than 2 Gyr) populations.

3.2. Stellar Populations in the Stream

To facilitate analysis of the stream, we first derived the
transformation to a coordinate system aligned with the stream.
We determined the central position at points along the stream
by fitting Gaussians to the stellar density in slices of 0°.1 in
decl. Using the two points immediately adjacent to DDO44,
but on the north and south sides, we derived the transformation
to a great circle coordinate frame using the gala16 software.
This transformation places DDO44 at the origin, with angle f1
along the stream, and f2 perpendicular to the stream. A map of
RGB stars in the transformed coordinates is shown in the left
panel of Figure 5.
We then selected narrow strips of ∣ ∣f < 0 .052 , and extracted

an RGB star density profile as a function of f1 (i.e., along the
stream). This profile is shown in the right panel of Figure 5,
where we have subtracted the mean density in background
regions that do not contain bright star holes (seen as white
voids in Figure 5). The three background regions are at
−0°.7<f1<−0°.1, f < < 0 .15 0 .4;2 f-  < < 0 .2 0 .351 ,

f-  < < - 0 .4 0 .15;2 and f < < 0 .2 0 .71 ,
f < < 0 .15 0 .42 . This density profile shows RGB over-

densities extending to at least 0°.3 from DDO44 on either side,
or ∼15kpc at the distance of DDO44.

Figure 5. Left panel: scatter plot showing positions (in coordinates aligned with the DDO 44 stream) of RGB candidate stars, showing the clear detection of the stream
as an overdensity. The upper and right axes show the projected separation in kpc assuming a distance of 2.96Mpc (Section 3.1). Empty circular regions are “halos”
around bright stars where the detection algorithm flags sources as unreliable. Right panel: number density of sources along the stream in a strip within f2= ±0°. 05.
From top to bottom, the panels show sources selected using the polygons in Figure 4 to highlight RGB stars (top panel), AGB stars (middle panel), and blue sources
(bottom panel). In each panel, we have subtracted off the mean background in surrounding regions that are free from “holes” due to bright stars. There is a peak in the
AGB profile at f1∼0° corresponding to the RGB peak. In the lower panel, no corresponding peak is seen among the blue sources, suggesting that these are
unresolved background galaxies rather than young stars associated with DDO44.

16 http://gala.adrian.pw/en/latest/
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Figure 6 highlights CMDs of stars extracted in bins along the
stream. The central panel contains the core of DDO44 (within
0°.1), with panels to the left (south) and right (north) showing
similar stellar populations extending into the stream. On both
sides of DDO44, the stream is barely noticeable (if at all) at
∣ ∣f  0 .41 . The best-fit isochrone with [Fe/H]=−1.6 is a
good match to the RGB stellar populations in both the core and
stream. The bright AGB stars visible in the central regions of
DDO44 are seen in small numbers at all radii (and indeed, the
density profile seen in Figure 5 suggests that the AGB stars
extend as far as the RGB stars in the stream). The fact that the
oldest RGB stars and the intermediate-age AGB populations
are both extended suggests that DDO44 had little to no
population gradient in its core before being tidally disrupted
(however, Lianou et al. 2010 found that metal-rich populations
are more centrally concentrated in DDO 44 than metal-poor
stars).

3.3. Total Luminosity

To estimate the total luminosity of DDO44, including stars
in its streams, we summed the flux of all RGB stars brighter
than i0<26.5, applying a completeness correction to each
star’s flux based on the fits in Figure 2. We then corrected for
the unmeasured luminosity below the cutoff magnitude using a
Dartmouth isochrone (Dotter et al. 2008) with [Fe/H]=−1.6,
10 Gyr age, and power-law luminosity function slope of
−1.5.17 From this luminosity function, we determine that
∼22% of the flux is in stars brighter than i=26.5; we thus
apply a correction to the total flux to account for the remaining
78% of the light. Finally, we account for the “missing” data due
to stellar crowding near the center of DDO44 by excluding the
inner 2′ from our calculations. Adopting μR,0=24.1
magarcsec−2 and a scale length of 39″ (Karachentsev et al.
1999), we estimate that ∼60% of the light is contained within
our excluded 2′ region.

We find Mi,tot=−13.4 and Mg, tot=−12.6 for the total
luminosity of DDO44 and the stars in its streams, where we
take the region between ∣ ∣f < 0 .11 to be the main body of

DDO44. Of the total, ∼17% and ∼11% of the flux are
contained in the northern ( f < < 0 .1 0 .71 ) and southern
( f-  < < - 0 .7 0 .11 ) portions of the stream, respectively.
Given the many large corrections detailed in the previous
paragraph, it is difficult to place uncertainties on these
estimates. To facilitate comparison to the measurement by
Karachentsev et al. (1999) of MR=−13.1, we transform these
absolute magnitudes in the PanSTARRS system to the
Johnson-Cousins R-band using the relations from Table 6 of
Tonry et al. (2012). This yields a total MR∼−13.3 based on
our HSC measurements. Removing the ∼20%–30% of the
resolved stars’ flux that we find beyond 6′ of the DDO44
center would reduce our derived luminosity of DDO44 by
∼0.2–0.3 mag, placing our estimate for the central body of the
galaxy in excellent agreement with that of Karachentsev et al.
(1999).
To make connections with theory, it is useful to translate

from the object’s absolute magnitude to stellar mass. Our
measured luminosity transforms to MV=−12.9 (it is Local
Group convention to report V-band absolute magnitudes),
which corresponds toM*=2.0×107Me (assuming a V-band
stellar mass (M/L)V of 1.6; Woo et al. 2008). Note that an
estimate based on the K-band luminosity from Karachentsev
et al. (2013), assuming (M/L)K=1, gives
M*=6.0×107Me for DDO44.
By fitting Gaussians to the resolved stellar surface density

along the major and minor axes, we find an ellipticity
º - » b a1 0.6. It is unsurprising that DDO44 is rather

extended, and that its ellipticity is similar to that of the tidally
disrupting Sagittarius dSph (ò=0.64; McConnachie 2012).
Also, like the Sagittarius dSph, DDO44’s surface brightness
(as measured by Jerjen et al. 2001) lies below that of typical
dwarfs at its luminosity (see, e.g., Figure 7 from McConna-
chie 2012), as expected for a system undergoing tidal
disruption. DDO44’s closest analogs in luminosity and stellar
mass are, according to McConnachie (2012), Sagittarius
(MV=−13.5), Fornax (MV=−13.4), and AndVII
(MV=−12.6). Of these three, only Sagittarius is clearly
disrupting—deep imaging data show no hints of tidal features
for Fornax (Wang et al. 2019), and the ellipticities of Fornax
and AndVII are far lower. Our derived metallicity for DDO44

Figure 6. CMDs selected in angular bins along the stream, within ∣ ∣f < 0 .052 of the stream center. The isochrone is the same [Fe/H]=−1.6 isochrone used in
Figure 4. Stellar populations consistent with DDO44 are seen to at least ∣ ∣f = 0 .31 (∼16 kpc at the distance of DDO 44), and perhaps as far as ∣ ∣f = 0 .51 (∼26 kpc
at the distance of DDO 44) from DDO44.

17 Note that if instead we use a Salpeter IMF, our derived total luminosity of
DDO44 changes by <0.03 mag
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of [Fe/H]=−1.6 is near, but slightly on the low metallicity
side of the luminosity–metallicity relation for Local Group
dwarf galaxies (e.g., McConnachie 2012; Kirby et al. 2013).
The metallicities of Sagittarius, Fornax, and AndVII are all
significantly higher (Kalirai et al. 2010; Kirby et al. 2011;
Carlin et al. 2012; McConnachie 2012; Hasselquist et al. 2019).

We summarize the properties of DDO44 and its stream in
Table 1, including some relevant data from the literature.

4. DDO 44 and Its Streams in Context

DDO44 is clearly a disrupting dwarf, but questions remain
about its history and association with a larger host. In this
section, we argue that NGC2403 is the most likely host for
DDO44. This conclusion allows us to use simulations to
estimate how rare (or not) it is for a large dwarf to be disrupting
around a low-mass host, and consider how the orbit of DDO44
explains various features of its SFH. We may also place
DDO44 in the context of the NGC2403 satellite system, and
consider whether NGC2403’s satellite luminosity function is
in line with expectations from the ΛCDM paradigm.

4.1. DDO44 Is a Satellite of NGC2403

We consider whether DDO44 is in fact a satellite of
NGC2403 or of the neighboring galaxy NGC2366.

DDO44 has a heliocentric radial velocity of 213 km s−1

(Karachentsev et al. 2011; Tully et al. 2016),18 while the
Tullyetal. “COSMICFLOWS-3” catalog gives
vhel=141 km s−1 for NGC2403. This small difference in
their relative velocities (for context, this velocity difference of
∼70 km s−1 is much less than the escape velocity from
NGC 2403 of 200 kms−1; see Figure 7), in addition to the
nearly identical distance moduli of DDO44 and NGC2403
(Section 3.1) is suggestive of an association between the two
galaxies.

We also note that the extension of the DDO44 stream points
in the general direction of nearby, roughly SMC stellar mass,

galaxy NGC2366 (D∼3.3 Mpc; Karachentsev et al. 2013),
which is ∼2°.4 north (position angle 348° east of north) of
DDO44. In spite of the fact DDO44’s projected distance from
NGC2366 of ∼130kpc is likely beyond the virial radius of
NGC2366 (Rvir∼110 kpc for a slightly sub-SMC stellar-mass
galaxy; e.g., Dooley et al. 2017), it is interesting to note that its
radial velocity of 103kms−1 is similar to the 213kms−1

velocity of DDO44 (i.e., the difference of ∼110 km s−1 is
likely less than the escape velocity of NGC 2366). NGC2366
is actively star-forming, with distortions in its H I contours
(Lelli et al. 2014), indicating a recent interaction (which Lelli
et al. attributed to an ongoing minor merger with NGC 2363).
We believe it is unlikely that NGC2366 caused the visible
damage to DDO44. NGC2366 is a gas-rich dwarf galaxy,
with ordered rotation and a rotation velocity of only
∼60kms−1 (Oh et al. 2008). Only a small fraction of its H I
layer is discrepant from the otherwise well-behaved rotation. In
order to feel significant tidal effects, DDO44 would have
needed to pass very near NGC2366, in which case NGC2366
would have felt strong tidal forces in this ∼25:1 stellar mass-
ratio interaction (examples of similar mass-ratio interactions in
the Local Volume can be seen in Pearson et al. 2016). It thus
seems implausible that a galaxy as small as NGC2366 has
stripped away all the gas, ∼90% of the dark matter, and ∼25%
of the stars in DDO44.
In summary, many pieces of evidence make it more likely

that DDO44 interacted with the more massive NGC2403 than
its less massive neighbor NGC2366: (1) DDO44 is closer to
NGC2403 in projected and line-of-sight separation than it is to
NGC2366, (2) DDO44 is likely beyond the virial radius of
NGC2366 (and within that of NGC 2403), (3) DDO44’s
velocity is closer to that of NGC2403 than to NGC2366, (4)
this relative velocity is less than the expected escape velocity of
NGC2403, and (5) NGC2403 is more massive than
NGC2366, and thus more likely to host (and retain) a large
dSph such as DDO44.

4.2. DDO44 Has an Unusual Orbit about Its Host

In order to investigate how common disrupted satellites like
DDO 44 are around galaxies like NGC 2403, we search for
analog systems in cosmological simulations. If analog systems
are common, we can use the present-day kinematics of the
DDO 44 analogs to estimate pericenter and apocenter
distributions and use merger trees to track their orbital histories,
giving us insight into the interaction history of the system. If
very few analog systems are identified, then we can infer that
the DDO 44–NGC 2403 system is, in some way, an extreme
interaction. We may also use the infall time distribution
function and the orbital history to constrain models for the
physical origin of the truncation of DDO44’s SFH. This
analysis is based in part on work by Rocha et al. (2012), and is
similar to the approach taken by Besla et al. (2018). A full
description is found in Garling et al. (2019), but a brief
description is given below.
We use the Illustris simulations (Vogelsberger et al.

2013, 2014a, 2014b; Genel et al. 2014; Nelson et al. 2015;
Rodriguez-Gomez et al. 2015) for this analysis. Illustris is
simulated with WMAP9 ΛCDM cosmological parameters
(Hinshaw et al. 2013). We use the flagship Illustris-1 run,
which simulates a comoving box of volume 106.5 Mpc3 with
18203 particles each of dark matter, gas, and tracers that are
used to track the Lagrangian evolution of the gas (Genel et al.

Table 1
Properties of DDO44 and Its Stream

Parameter Value Reference

R.A. 07:34:11.50 NED
Decl. +66:52:47.0 NED
m−M 27.36±0.07 this work
D (Mpc) 2.96±0.10 this work
MV −12.9 this work
M* (Me) 2×107 this work
[ ]Fe H −1.6±0.3 this work
Ellipticity 0.6 this work
Re (kpc) 0.74±0.02 Jerjen et al. (2001)
< μe > (B) 26.00 Jerjen et al. (2001)
H I mass (Me) <106 KK07a

stream extent (°) ∼1° this work
stream extent (kpc) ∼50 this work
Lstream/Ltot

b ∼20%–30% this work

Notes.
a Karachentsev & Kaisin (2007).
b Fraction of luminosity in the stream.

18 Note that this velocity is apparently based solely on a HII region offset from
the center of DDO44, but likely associated with it. We could not locate any
extant velocity measurements based on the stellar body of DDO44.
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2013). We replicate our analysis on the Illustris-1-Dark run,
which simulates the same volume as Illustris-1 with the same
number of dark matter particles but without hydrodynamics,
and find no significant differences from the analysis presented
below for Illustris-1. We utilize the friends-of-friends group
catalogs, SUBFIND subhalo catalogs, and the SUBLINK merger
trees (Rodriguez-Gomez et al. 2015) to identify halos and
subhalos and track their evolution through time.

Because the hydrodynamic mass resolution is too low for us
to identify analog systems using the simulated stellar masses,
we instead find analog systems based on dark-matter halo
masses and abundance matching. We identify analog systems
in Illustris by matching SUBFIND subhalo masses to halo
masses for DDO 44 and NGC 2403, calculated by converting
their stellar masses to halo masses using the abundance
matching scheme of Moster et al. (2013), which returns halo
masses of 2.8×1010Me and 2.5×1011Me for DDO44 and
NGC2403, respectively.

In searching for analog systems, we require that NGC 2403
analogs be the most massive subhalo in their group (i.e., the
host) and DDO 44 analogs be the second-most massive subhalo
in the group (i.e., most massive satellite). To take into account
scatter in the stellar-to-halo-mass relation and the uncertainty in
stellar mass, we accept systems that have masses within a factor
of two of the above halo masses. For the DDO 44 analogs, we
place this mass constraint on first infall mass rather than
present-day mass, as the majority of a satellite’s stellar mass is
typically formed prior to accretion by its present-day host (i.e.,
when it was a central galaxy of its own), and we expect mass
loss to be significant for true DDO 44 analogs. We define first
infall as the time when DDO 44 analogs first enter the virial
radius of their present-day NGC 2403 analog hosts.

Given that DDO 44’s stellar population is disrupted, we can
infer that its dark matter halo is as well. Because dwarf stellar
populations are deeply embedded within their dark matter
halos, the degree of disruption to the dark matter halo must be
severe—Peñarrubia et al. (2008) showed that King profiles
embedded in Navarro–Frenk–White halos must have ∼90% of
their dark matter halo stripped before stars begin to be
disrupted. This criterion is valid regardless of whether the

subhalo is cored or cusped, as differences in tidal stripping
between the two density profiles only become important when
the tidal radius approaches the size of the core, which typically
has an enclosed mass less than 10% of the infall halo mass
(Dooley et al. 2016; Garrison-Kimmel et al. 2017). As such, we
place an additional disruption criterion on our DDO 44 analogs
and only accept systems with Mz=0/Minfall�0.1. This proves
to be a very strong condition, as shown in Figure 7. There are
1628 undisrupted analog systems, but only 157 systems remain
when the disruption criterion is imposed.19 These remaining
systems have predominantly early infall times (mean∼7 Gyr),
have made several complete orbits with present-day mean
eccentricity ∼0.5, and have small apocenters of 30–70 kpc; we
interpret the majority of this population to represent satellites
that were accreted early and lost mass gradually. Given DDO
44’s projected distance of 67 kpc (and thus likely a much larger
apocenter), we do not believe this population is representative
of DDO 44.
Next we discuss the three systems with radii greater than

67 kpc, shown to the right of the line in Figure 7. Two of these
systems have relatively early infall times (7–9 Gyr). These
systems have much larger apocenters than is typical for other
satellites in the population with similar infall times (>150 kpc
compared to 30–70 kpc). We attribute this to their more
eccentric orbits (e>0.7 at present day) which allow them to
maintain low binding energies over many orbits due to the
lessened effects of dynamical friction compared to the bulk of
the population. For reasons associated with the SFH and the
morphology of NGC2403’s gas (described in Section 4.3), we
consider these orbits unlikely.
Most interesting is the subhalo identified with an infall time

∼3.5 Gyr and an apocenter of ∼150 kpc, much larger than
DDO 44’s projected distance of 67 kpc. This subhalo has an
orbital eccentricity greater than 0.8 at present day, and has lost
more than 90% of its mass over only a handful of orbits. Such a

Figure 7. Left panel: distribution of DDO 44 analogs from Illustris-1 in radial velocity and radius (relative to their host), without the tidal disruption criterion applied.
Typical escape velocity curves are overplotted, and the projected distance of DDO 44 from NGC 2403 (67 kpc) is shown with a solid line. Illustris-1 analogs are color-
coded according to infall time, with the most recent infalls labeled in red and the earliest infalls labeled purple. The relative host-subhalo radial velocity (left) and
separation (top) probability distribution functions are given as a function of infall time. Right panel: same as left, but with the tidal disruption criterion of Mz=0/
Minfall�0.1 applied. This population consists of primarily early accretions that have made several orbits, and only three systems have 3D radii that are greater than
DDO 44’s projected radius.

19 Note that systems for which the halo finder does not identify a subhalo
remnant are not included in this count. Systems that may be missed by the halo
finder include satellites that are fully disrupted or where the remaining mass lies
below the resolution limit of the simulation, or where a stripped subhalo lies
close to the host halo center even if the subhalo is not fully disrupted.
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configuration, with a highly radial orbit, would be highly
effective at stripping the dark matter halo sufficiently to disrupt
the stellar population.

In summary, we find that DDO44’s existence is rare for a
host galaxy like NGC2403. Limiting our simulated sample to
NGC2403-mass analogs with DDO44-mass analog satellites,
we find that only ∼0.1% of these analogs have a disrupting
DDO44 with a large separation between host and satellite.
About 10% of analogs are disrupting but are located much
closer to the host. We argue that DDO44 is likely a recently
accreted satellite with a highly eccentric orbit.

4.3. Insights from DDO44’s Orbit on Its SFH

We now combine the orbital information from the previous
section with DDO44’s current gas content and measured SFH
to estimate a timescale and identify the physical process likely
to be responsible for the end of star formation in this galaxy.

The SFH of DDO44 (Girardi et al. 2010; Weisz et al. 2011)
suggests that it formed ∼15%–20% of its stars between 1 and
3Gyr ago. However, Karachentsev & Kaisin (2007) found an
upper limit on the neutral hydrogen content of DDO44 of only
M H I<106Me, and no Hα emission associated with
DDO44.20 Given that it has no hint of gas, this star formation
event (and/or the interaction leading to the tidal features) must
have exhausted whatever neutral hydrogen DDO44 still had.

In this regard, it is interesting to note that de Blok et al.
(2014) suggested that a flyby encounter between NGC2403
and DDO44 could be responsible for the anomalous cloud of
H I detected at the northwest edge of the NGC2403 disk. In
their Figure 8, de Blok et al. (2014) overlay the contours of this
H I cloud on a map of RGB stars from Barker et al. (2012),
showing a disturbance in the outer stellar disk (also visible in
our RGB density map in Figure 3) at the location of the H I
cloud, roughly in the direction of the DDO44 stream’s
projected intersection with the NGC2403 disk. The H I cloud
has a mass of ∼6×106Me. This is within roughly an order of
magnitude of the stellar mass of DDO44, so it is plausible that
the H I cloud is material stripped from DDO44 (though we
note that the gas could also have been pulled from NGC 2403
during the interaction). Interestingly, Lianou et al. (2010) found
that DDO 44 lies in the “transition region” in luminosity–
metallicity space between the locations occupied by dSphs (i.e.,
typically quenched systems) and dIrrs (typically gas-rich, star-
forming systems). Unlike the three other M81-group dSphs
found by Lianou et al. to reside in this transition region,
DDO44 does not have H I or Hα, suggesting that its gas may
have been removed recently.

A recent infall is potentially also supported by the SFH of
NGC2403. We note that there was also a slight upturn in the
SFH of NGC2403 within the past ∼2Gyr (Williams et al.
2013), which possibly could have arisen due to an interaction
with a satellite such as DDO44. We do note, however, that in
the same study based on deep HST+ACS observations
(Williams et al. 2013), it is claimed that the disk of
NGC2403 appears “remarkably undisturbed.” Refined spectro-
scopic measurements of the velocity of DDO44 (based on the

stellar light rather than the lone H II region) may enable
modeling of its orbit that can reconcile the apparently
conflicting information given by the H I and the stellar disk
of NGC2403.
These lines of evidence suggest a recent (1–2 Gyr ago) close

interaction between DDO44 and NGC2403 that tidally
stripped DDO44’s H I reservoir. The travel time between the
small pericenter and DDO44’s current position with respect to
NGC2403 is approximately 1 Gyr. Because the gas scale
length generically exceeds the optical size of galaxies, stellar
stripping is a sign that gas ought to have been heavily tidally
stripped as well (Leisman et al. 2017). While it is possible that
gas may have additionally been ram-pressure-stripped from
DDO44, the small pericenter implied by the H I distribution
and SFH of NGC2403 suggests tides play the dominant role in
removing gas and quenching star formation in DDO44.
In short, the SFH suggests a relatively recent infall for

DDO44, on a highly unusual orbit, for which much of the cold
gas fuel for star formation was tidally stripped during the last
pericenter passage.

4.4. NGC2403’s Satellite Luminosity Function

We place DDO44 in the context of its role as the most
massive satellite of NGC2403. DDO44 is one of two known
satellites of NGC2403, and is by far the most massive. The
stellar mass ratio between NGC2403 (M*∼7×109Me) and
DDO44 is ∼350 (i.e., a stellar mass gap of

( )D = ~M M Mlog 2.5N2403 max,sat* ). Because of the steepness
of the halo mass function and the stellar-mass–halo-mass
relation, this mass ratio is not unusual. According to the
analysis of satellite galaxies in the Sloan Digital Sky Survey
(York et al. 2000) by Sales et al. (2013), we expect there to be
approximately one satellite with a stellar mass exceeding 0.1%
of the host’s stellar mass in the virial volume of NGC2403.
However, the mass gap between NGC2403’s first- and second-
most-massive satellite is unusual. The gap between the stellar
masses of DDO44 and second-most-massive NGC2403
satellite (MADCASH J074238+652501-dw; Carlin et al. 2016;
M*∼1×105Me) is a factor of ∼200. Based on predictions
from models (Dooley et al. 2017; see also Jahn et al. 2019 for
predictions from the FIRE simulations), we expect that
NGC2403 should host between 2 and 8 satellites with stellar
masses >105Me (the uncertainty arises both from halo-to-halo
variation and the as-yet poorly constrained stellar-mass–halo-
mass relation on these scales), so the observation of only one
satellite below DDO44’s stellar mass down to M*∼105Me
is unusual in both the size of the gap and the total number of
satellites.
While a systematic search and characterization of our

completeness will be the subject of a future contribution, the
fact that we only find two companions to NGC2403 in our
preliminary search implies that this LMC analog may be
lacking bright satellites (relative to predictions).

5. Discussion and Conclusions

We report the discovery of a stellar tidal stream around the
Local Volume dwarf spheroidal galaxy DDO44, based on
deep, resolved-star observations with Subaru+HSC. The tidal
stream stretches ∼25kpc on either side of the main body of
DDO44, and is oriented toward NGC2403, of which DDO44
is likely a satellite. We reconstruct the total luminosity of the

20 Note that Karachentsev et al. (2011) found evidence of a small (∼4″ in
size), off-center H II region possibly associated with DDO44, with Hα
emission and possibly some late B-type stars associated with it. Karachentsev
et al. (2011) suggest that this small bit of star formation is in a clump of
accreted intergalactic gas. It is also possible that it was picked up during
DDO44’s recent interaction with NGC2403.
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DDO44 progenitor, and find that it had a luminosity of at least
Mi,tot=−13.4 (Mg,tot=−12.6; or MV,tot=−12.9).

Using the Illustris simulation suite, we show that DDO44 is
an unusual object. While disruptions by LMC-mass hosts are
not uncommon (10% of our mass-matched analog systems
show a massive disrupting dwarf), and observed in other LMC
analog systems (notably NGC 4449; Karachentsev et al. 2007;
Martínez-Delgado et al. 2012; Rich et al. 2012; Toloba et al.
2016), the typical separation with respect to the host in Illustris
is much smaller than what is observed for the NGC2403-
DDO44 system. We find only ∼0.1% of our mass-matched
analog systems are disrupting with the type of large observed
separation between NGC2403 and DDO44. Combined with
observations of the H I distribution of both galaxies, the recent
upturn of star formation in NGC2403, and the recent
quenching of DDO44, we argue that DDO44 only recently
entered the halo of NGC2403 on a high-eccentricity orbit with
a pericenter small enough to tidally strip both its stars and its
gas reservoir.

This work strengthens the case for significant interaction in
dwarf pairs, even for dwarf systems with high mass ratios
(∼100) like the NGC2403-DDO44 system. NGC2403’s
recent upturn in star formation rate is consistent with our
estimated infall and pericenter passage of DDO44. The TiNy
Titans survey found that starbursts are more frequent for dwarf
pairs than for field dwarfs, although they included systems with
much lower mass ratios than we consider in this study
(Stierwalt et al. 2015). Furthermore, the quenching and obvious
tidal stripping of DDO44 shows that even low-mass hosts may
exert considerable environmental influence over their satellites.
Although a systematic analysis of the strength and prevalence
of environmental quenching of satellite galaxies by LMC-like
hosts is beyond the scope of this work, we a have presented
evidence that even low-mass hosts can quickly quench and
destroy massive satellites.
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