
Journal of Parallel and Distributed Computing 144 (2020) 68–79

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Sequential and parallel algorithms for all-pair k-mismatchmaximal
common substrings
Sriram P. Chockalingam a,∗, Sharma V. Thankachan c, Srinivas Aluru a,b,∗∗

a Institute for Data Engineering and Science, Georgia Institute of Technology, 756 W Peachtree St NW, 12th Floor, Atlanta, GA, 30308, USA
b Department of Computational Science and Engineering, Georgia Institute of Technology, 756 W Peachtree St NW, 13th
Floor, Atlanta, GA, 30308, USA
c Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA

a r t i c l e i n f o

Article history:
Received 17 April 2018
Received in revised form 12 April 2020
Accepted 28 May 2020
Available online 4 June 2020

Keywords:
Approximate sequence matching
String algorithms
Suffix trees
Hamming distance
Parallel algorithms

a b s t r a c t

Identifying long pairwise maximal common substrings among a large set of sequences is a frequently
used construct in computational biology, with applications in DNA sequence clustering and assembly.
Due to errors made by sequencers, algorithms that can accommodate a small number of differences
are of particular interest. Formally, let D be a collection of n sequences of total length N , φ be a length
threshold, and k be a mismatch threshold. The goal is to identify and report all k-mismatch maximal
common substrings of length at least φ over all pairs of strings in D. Heuristics based on seed-and-
extend style filtering techniques are often employed in such applications. However, such methods
cannot provide any provably efficient run time guarantees. To this end, we present a sequential
algorithm with an expected run time of O(N logk N+occ), where occ is the output size. We then present
a distributed memory parallel algorithm with an expected run time of O

((
N
p logN + occ

)
logk N

)
using O

(
logk+1 N

)
expected rounds of global communications, under some realistic assumptions,

where p is the number of processors. Finally, we demonstrate the performance and scalability of our
algorithms using experiments on large high throughput sequencing data.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Sequence matching algorithms are at the core of many ap-
plications in computational biology. Next Generation Sequencing
(NGS) [15] instruments sequence hundreds of millions of short
reads, that are typically randomly sampled from one or multiple
genomes. Deciphering pairwise alignments between the reads is
often the first step in many applications. For example, one may be
interested in finding all pairs of reads that have a sufficiently long
overlap, such as suffix/prefix overlap (for genomic or metage-
nomic assembly [20]), or substring overlap (for read compres-
sion [8], finding RNA sequences containing common exons [9,17],
etc.). Much of modern-day high-throughput sequencing is carried
out using Illumina sequencers, which have a small error rate
(< 1%–2%) and predominantly (>99%) substitution errors [16].
Thus, algorithms that tolerate a small number of mismatch er-
rors can yield the same solution as the much more expensive

∗ Corresponding author at: Institute for Data Engineering and Science, Georgia
Institute of Technology, 756 W Peachtree St NW, 12th Floor, Atlanta, GA, 30308,
USA.
∗∗ Corresponding author.

E-mail addresses: srirampc@gatech.edu (S.P. Chockalingam),
sharma.thankachan@ucf.edu (S.V. Thankachan), aluru@cc.gatech.edu (S. Aluru).

alignment computations. Motivated by such applications, we for-
mulate the following all-pair k-mismatch maximal common
substrings problem:

Problem 1. Given a collection D = {S1, S2, . . . , Sn} of n se-
quences with

∑
i |Si| = N , a length threshold φ, and a mis-

match threshold k ≥ 0, report all k-mismatch maximal common
substrings of length ≥ φ between all pairs of sequences in D.

A pair of two equal length substrings Si[x..(x + t − 1)] and
Sj[y..(y+t−1)] is a k-mismatch common substring if the hamming
distance between them is ≤ k. Also, they are a k-mismatch
maximal common substring if neither Si[(x− 1)..(x+ t − 1)] and
Sj[(y − 1)..(y + t − 1)], nor Si[x..(x + t)] and Sj[y..(y + t)] are a
k-mismatch common substring pair.

In this paper, we present efficient solutions for this problem
in both sequential as well as parallel settings. Our sequential
algorithm runs in O(N logk N + occ) expected time, where occ is
the output size. Our distributed memory parallel algorithm runs
in O(((N/p) logN + occ) logk N) expected time using O(logk+1 N)
expected communication rounds, where p is the number of pro-
cessors. Here we make a reasonable assumption that the number
of occurrence of any τ -long substring across all sequences in
D is O(N/p). Under this assumption, our algorithm enforces an

https://doi.org/10.1016/j.jpdc.2020.05.018
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.05.018
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.05.018&domain=pdf
mailto:srirampc@gatech.edu
mailto:sharma.thankachan@ucf.edu
mailto:aluru@cc.gatech.edu
https://doi.org/10.1016/j.jpdc.2020.05.018

S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79 69

effective partitioning of a series of modified suffix trees to localize
processing within each processor. We demonstrate the scalability
and performance of our parallel algorithm using genomic datasets
ranging in size from 18 million to over 270 million reads, on up
to 1024 processor cores.

Related work. To solve such problems in practice, seed-and-
extend style filtering approaches are often employed. The under-
lying principle is: if two sequences have a k-mismatch common
substring of length ≥ φ, then they must have an exact common
substring of length at least τ =

⌈
φ−k
k+1

⌉
. Therefore, using a fast

hashing technique, all pairs of sequences that have a τ -length
common substring are identified. Then, by exhaustively checking
all such candidate pairs, the final output is generated. In the
sequential setting, the filtering heuristics can be broadly classified
under three categories: suffix filtering [12,23], spaced seeds fil-
tering [3], and substring filtering [21]. In case of parallel heuristic
methods, filtering based methods mainly focused on the corre-
sponding applications. For example, [11] and [19] proposed suffix
tree based parallel clustering of EST data. Clearly, a filtering-
based algorithm cannot provide any run time guarantees and
often times the candidate pairs generated can be overwhelmingly
larger than the final output size. Recently, [22] published the
first and only known sub-quadratic exact sequential algorithm
for this problem that includes insertions and deletions along with
mismatches. Work done on accelerating pairwise edit distance
estimations among n sequences using sequence alignment can
also be applied to this problem [18]. However, for a large number
of short sequences (with low error rate, mostly mismatches), all
pair sequence alignment is impractical because of its quadratic
time complexity.

This paper is organized as follows. In Section 2, we introduce
notations and data structures used in our algorithm. Due to the
absence of a provably efficient sequential algorithm for this prob-
lem, we first design such an algorithm and present it in Section 3.
In Section 4, we describe the parallel algorithm in detail and
prove the claimed bounds on expected time and communication
rounds. In Section 5, we discuss the implementation details of the
parallel algorithm. Finally in Section 6, we discuss the results of
our implementation on genomic and gene expression datasets.

2. Notation and preliminaries

Let Σ denote the alphabet of the sequences in D. Throughout
this paper, both |Σ | and k are assumed to be constants. Let
T = S1$1S2$2 . . . Sn$n be the concatenation of all sequences in D,
separated by special characters $1, $2, . . . , $n. Here each $i /∈ Σ

is a unique special symbol and is lexicographically larger than
all characters in Σ . Clearly, there exists a one to one mapping
between the positions in T (except the $i positions) and the
positions in the sequences in D. Let seq(x) denote the identifier
of the sequence corresponding to the position x in T. We use
lcp(α, β) to denote the longest common prefix of strings α and
β , and lcpk(α, β) to denote their longest common prefix while
permitting at most k mismatches. The reverse of a string α is
denoted by←−α . Therefore,

←−
Si [x] = Si[|Si|−x+1]. We now briefly

review some standard data structures that will be used in our
algorithms.

2.1. Suffix tree, suffix array and LCP data structures

Denote the suffix of T starting at position x by T[x..], the prefix
of T ending at x by T[..x], and the substring of T starting at
position x and ending at position y by T[x..y]. The generalized
suffix tree of D (equivalently, the suffix tree of T), denoted by
GST, is a lexicographic arrangement of all suffixes of T as a

compact trie [14,24]. The GST consists of exactly |T| leaves, and
at most (|T| − 1) internal nodes, all of which have at least two
child nodes each. The edges are labeled with substrings of T. Let
path(u) refer to the concatenation of edge labels on the path from
root to node u. If u is a leaf node, then path(u) is a unique suffix of
T (equivalently a unique suffix of a unique string in D) and vice
versa. For any node u in GST, node-depth(u) is the number of its
ancestors and string-depth(u) is the length of its path.

The suffix array [13], SA, is such that SA[i] is the starting
position of the suffix corresponding to the ith left most leaf in the
suffix tree of T, i.e., the starting position of the ith lexicographi-
cally smallest suffix of T. The inverse suffix array ISA is such that
ISA[j] = i, if SA[i] = j. The Longest Common Prefix array LCP is
such that, for 1 ≤ i < |T|

LCP[i] = |lcp(T[SA[i]..], T[SA[i+ 1]..])|

In other words, LCP[i] is the string-depth of the lowest common
ancestor of the ith and (i + 1)th leaves in the suffix tree. There
exist optimal sequential algorithms for constructing all these data
structures in O(|T|) space and time [10].

All operations on GST required for our purpose can be simu-
lated using SA, ISA, LCP, and a range minimum query (RMQ) data
structure [6] over the LCP array. A node u in GST can be uniquely
represented by an interval [sp(u), ep(u)], where sp(u) and ep(u)
are respectively the leftmost and rightmost indexes of u’s leaves
in SA. string-depth(u) is the minimum value in LCP[sp(u), ep(u)−
1] (can be computed in constant time using an RMQ). Simi-
larly, the longest common prefix of any two suffixes can also be
computed in O(1) time. Finally, the k-mismatch longest common
prefix of any two suffixes x and y can be computed in O(k) time
as follows: let l = |lcp(T[x..], T[y..])|, then for any k ≥ 1,

|lcpk(T[x..], T[y..])| =

⎧⎪⎪⎨⎪⎪⎩
l, If either of T[x+ l], T[y+ l]

is a special character (i.e., $i)
l+ 1+ |lcpk−1(T[(x+ l+ 1)..],

T[(y+ l+ 1)..])|, otherwise.

Based on these terminologies, we redefine Problem 1 as follows.

Problem 2. Given T, φ and k, report all tuples (x, y, t), such that

1. t = lcpk(T[x..], T[y..]) ≥ φ

2. T[x− 1] ̸= T[y− 1]
3. seq(x) ̸= seq(y)

The first and the second constraints ensure length thresh-
old and left maximality (thereby right maximality) conditions,
whereas the third constraint ensures that the suffixes belong to
two different sequences.

3. Our sequential algorithm

3.1. The exact match case

As a warm up, we first show how to solve the exact match case
(k = 0) in optimal O(N + occ) worst case time. First create the
GST, then identify all nodes u in GST such that string-depth(u) ≥
φ and string-depth(parent(u)) < φ. Such nodes are termed as
marked nodes. Clearly, a pair of suffixes satisfies condition (1)
specified in Problem 2 iff their corresponding leaves are under the
same marked node. This allows us to process the suffixes under
each marked node w independently as follows: let Suffw denote
the set of starting positions of the suffixes of T corresponding to
the leaves in the subtree of w. That is, Suffw = {SA[j] | sp(w) ≤
j ≤ ep(w)}. Then,

70 S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79

1. Partition Suffw into (at most) Σ + 1 buckets, such that
for each σ ∈ Σ , there is a unique bucket containing all
suffixes with previous character σ . All suffixes that have a
$ symbol as the previous character are put together in a
special bucket. Note that a pair (x, y) satisfies condition (2)
specified in Problem 2 and hence a valid output pair, only
if both x are y are not in the same bucket, or if both of them
are in the special bucket.

2. Sort all suffixes w.r.t. the identifier of the corresponding
sequence (i.e., seq(·)). Therefore, within each bucket, all
suffixes from the same sequence appear contiguously.

3. For each x, report all answers of the from (x, ·) as follows:
scan every bucket, except the bucket in which x belongs to,
unless x is in the special bucket. Then output (x, y) as an
answer, where y is not an entry in the contiguous chunk of
all suffixes from seq(x).

The construction of GST and Step (1) takes O(N) time. Step (2)
over all marked nodes can also be implemented in O(N) time via
integer sorting. By noting down the sizes of each chunk during
Step (2), we can implement Step (3) in time proportional to
the sizes of input and output. By combining all, the total time
complexity is O(N · |Σ | + occ), i.e., O(N + occ) for constant sized
alphabet.

3.2. The k-mismatch case

Standard string data structures such as suffix trees and suffix
arrays can directly support only exact matching. To enable finding
approximate matches, we present the following novel approach:
We transform the approximate matching problem over given
strings into an equivalent exact matching problem over a set
of carefully crafted inexact copies of the suffixes of the original
strings. Such inexact copies of the suffixes will be termed as
modified suffixes. Such a solution would be obvious if we could
generate modified suffixes corresponding to all possible ways of
accommodating k mismatches from the original suffixes. How-
ever, this strategy is combinatorially explosive. The key to our
algorithm is the specification of a bounded set of modified suf-
fixes that nevertheless are sufficient to compute all k-mismatch
maximal common substrings. Details follow.

Definition 1. Let # be a special symbol not in Σ . A k-modified
suffix is a suffix of T with k of its characters replaced by #.

Let ∆ be a set of positions. Then, T∆
[x..] denotes the |∆|-

modified suffix obtained by replacing |∆| positions in the suffix
T[x..] as specified by ∆. For example, let T = aaccgattcaa, ∆ =

{2, 4}, then T[5..] = gattcaa and T∆
[5..] = g#t#caa.

Our algorithm consists of two main phases. In the first phase,
we create a collection of sets of k-modified suffixes. In the sec-
ond phase, we independently process each set and extract the
answers. The first phase takes O(NHk) time, where as the second
phase takes O(NHk

+occ) time, where H is the height of GST. It is
known that the expected value of H is O(logN) [4]. Therefore, by
combining the time complexities of both phases with H replaced
by O(logN), we obtain the expected run time as claimed. We now
describe these phases in detail.

3.2.1. Details of phase-1
This phase is recursive (with levels of recursion starting from

0 up to k), such that at each level h > 0, we create a collection of
sets of h-modified suffixes (denoted by Ch

1 , C
h
2 , . . .) from the sets

in the previous level. At level 0, there is only a single set C1
0 , the

set of all suffixes of T. See Fig. 1 for an illustration. To generate
the sets at level h, we take each set Ch−1

g at level (h − 1) and do
the following:

Fig. 1. The sets . . . , Ch
f−1, C

h
f , Ch

f+1 . . . of h-modified suffixes are generated from
the set Ch−1

g .

• Create a compact trie of all strings in Ch−1
g

• For each internal node w in the trie, create a set consisting
of the strings corresponding to the leaves in the subtree of
w, but with their (l+ 1)th character replaced by #. Here l is
string-depth(w). Those strings with their (l+1)-th character
is a $i symbol are not included.

From our construction procedure, the following properties can be
easily verified.

Property 1. All modified suffixes within the same set (at any level)
have # symbols at the same positions and share a common prefix at
least until the last occurrence of #.

Property 2. For any pair (x, y) of positions, there will be exactly
one set at level h, 1 ≤ h ≤ k, such that it contains h-modified
suffixes of T[x..] and T[y..] with # symbols at the first h positions
in which they differ. Therefore, the lcp of those h-modified suffixes is
equal to the lcph of T[x..] and T[y..].

We have the following result about the sizes of these sets.

Lemma 1. No set is of size more than N and the sum of sizes of
all sets at a particular level h is ≤ N × Hk, where H is the height of
GST.

Proof. The first statement follows easily from our construction
procedure and the second statement can be proved via induction.
Let Sh be the sum of sizes of all sets at level h. Clearly, the base
case, S0 = |C0

1 | = N , is true. The sum of sizes of sets at level h
generated from Ch−1

g is at most |Ch−1
g |× the height of the compact

trie over the strings in Ch−1
g . The height of the compact trie is≤ H ,

because if we remove the common prefix of all strings in Ch−1
g ,

they are essentially suffixes of T. By putting these together, we
have Sh ≤ Sh−1 · H ≤ Sh−2 · H2

≤ · · · ≤ NHk. □

Space and Time Analysis: We now show that Phase-1 can be
implemented in O(N) space and O(N logk N) time in expectation.
Consider the step where we generate sets from Ch−1

g . The lexico-
graphic ordering between any two (h − 1)-modified suffixes in
Ch−1
g can be determined in constant time. i.e., by simply checking

the lexicographic ordering between those suffixes obtained by
deleting their common prefix up to the last occurrence of #.
Therefore, suffixes can be sorted using any comparison based
sorting algorithm. After sorting, the lcp between two successive

S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79 71

strings can be computed in constant time. Using the sorted order
and lcp values, we can construct the compact trie using standard
techniques in the construction of suffix tree [5]. Finally, the new
sets can be generated in time proportional to their size. In sum-
mary, the time complexity for a particular Ch−1

g is O(|Ch−1
g |(logN+

H)). Overall time complexity is∑
h≤k

∑
f

|Ck
f | + (H + log n)

∑
h<k

∑
f

|Ch
f | = O(N(logN + H)k−1H)

By replacing H by O(logN), we bound the expect run time of
Phase-1 by O(N logk N).

We generate the sets in pre-order of the corresponding node
in the recursion tree. As soon as a set (at level k) is generated, we
immediately pass it to Phase-2, extract the necessary information
and discard it from the working space. Also, any set at level h < k
is also deleted after all k-level sets in its subtree are processed.
This way, at any point of time in the execution of the algorithm,
we need to maintain only k sets, corresponding to the sets in a
root to leaf path in the recursion tree. Since the size of each set
is at most N (Lemma 1), we can bound the working space also by
O(N), assuming k = O(1).

3.2.2. Details of phase-2
In this phase, we seek to process each set Ck

f created by Phase-
1 independently and generate the answers in time linear to the
total size of all sets and output. i.e., O(NHk

+occ). We first present
a simple O((N + occ)Hk) time approach. Following are the key
steps.

1. Create a compact trie over all k-modified suffixes in Ck
f .

Then identify the marked nodes as before. Recall that
a marked node has a string-depth ≥ φ, where as the
string-depth of its parent is < φ.

2. Let ∆ be the set of k positions corresponding to modifica-
tions in the k-modified suffixes in Ck

f . Clearly, if the leaves
corresponding to two modified suffixes (say T∆

[x..] and
T∆
[y..]) are in the same subtree of a marked node, then

their lcpk is ≥ φ. If seq(x) ̸= seq(y) and T[x−1] ̸= T[y−1],
then report (x, y) as an answer.

The trie can be created in time linear to the size of Ck
f . Note

that the key step in the creation of a trie is the sorting of k-
modified suffixes. To do it efficiently, we map each k-modified
suffix to the lexicographic rank of the suffix obtained by removing
all characters (from left) until its last # symbol. Using this as
the key, the k-modified suffixes can be sorted via a linear time
integer sorting. The second step of extracting answers can also
be implemented using the exact same procedure described in
Section 3.1. However, the problem with this approach is that, a
pair (x, y) can get reported more than once, although only once
per set. In the worst case, an answer can get reported Hk times.
The resulting time complexity is therefore O((N + occ)Hk).

3.2.3. Improving the run time complexity via bucketing
To achieve the claimed O(NHk

+ occ) run time, we need to
ensure that each output (x, y) is reported exactly once. For this,
we exploit Property 2 as follows: while processing a pair of two
k-modified suffixes T∆

[x..] and T∆
[y..] under the subtree of some

marked node, report (x, y) as an answer iff

1. lcp(T∆
[x..], T∆

[y..]) = lcpk(T[x..], T[y..]).
2. seq(x) ̸= seq(y)
3. T[x− 1] ̸= T[y− 1]

From Property 2, for a pair (x, y), there will be only one pair of
k-modified suffixes satisfying this condition (1). The following is
unique to that pair: T[x + l − 1] ̸= T[y + l − 1] for all l ∈ ∆.

Therefore, the task can be executed efficiently by processing the
set of k-modified suffixes in the subtree of each marked node w
as follows:

1. Partition them into (at most) Σ + 1 buckets based on the
previous character as in Section 3.1.

2. Partition the k-modified suffixes in each bucket into (at
most) |Σ |k sub-buckets based on the sequence of k char-
acters that were originally at the positions in ∆. Each
sub-bucket is therefore associated with a unique string of
length (1+k): the (previous) character corresponding to the
bucket in which it belongs to, followed by the sequence of
k characters at the positions in ∆.

3. Within each sub-bucket, sort the k-modified suffixes based
on the identifier of the sequence to which it belongs.

4. Finally, for each T∆
[x..], we visit each sub-bucket and find

answers of the form (x, ·) as follows: let c0, c1, c2, . . . , ck
be the sequence of (1 + k) characters corresponding to a
sub-bucket. If c0 ̸= T[x − 1] or T[x − 1] is some $i symbol
and ct ̸= T[x + t − 1] for t = 1, 2, . . . k, then for all
entries T∆

[y..] in the sub-bucket with seq(x) ̸= seq(y),
report (x, y) as an answer. Notice that the entries within a
sub-bucket are sorted according to the sequence identifier.
Therefore, all entries with seq(x) = seq(y) comes together
as a contiguous chunk, which can be easily skipped.

Analysis. The overall time for implementing the first three steps
is O(NHk) and final step takes O(NHk

|Σ |k + occ) time. Therefore,
total time complexity is O(NHk

+ occ), assuming k and |Σ | are
constants.

Theorem 1. Problem 1 can be solved in O(N) space and O(N logk N
+ occ) expected time, assuming k and |Σ | are constants.

Note: If the hamming distance between two reads is < k, then
our algorithm will not output them as an answer. To capture such
answers, we run the algorithm for all numbers of mismatches
starting from 0 up to k. The run-time remains the same.

4. Our parallel algorithm

In this section, we show how to extend our ideas to obtain
a provably efficient parallel algorithm. We assume that the input
set of strings D, or equivalently their concatenated string T, is dis-
tributed across the p processors such that each processor has the
same number of total characters. Note that a maximal common
substring with k-mismatches is essentially a concatenation of
(k+1) maximal exact matches separated by k mismatch positions
in between. Among the various ways the k mismatches can be
positioned in a substring of length ≥ φ, the shortest maximal
exact match occurs when the k mismatch positions are uniformly
distributed. This leads us to the following observation.

Observation 1. If two sequences Si, Sj ∈ D have a k-mismatch
maximal common substring of length ≥ φ, then within that region,
there is a maximal exact match of length ≥ τ =

⌈
φ−k
k+1

⌉
.

In other words, a k-mismatch maximal substring of length
≥ φ contains at least one maximal exact match of length ≥ τ .
Depending upon the position of that match among the (k + 1)
matching segments, we categorize answers into different types:
An answer (x, y) is of type-h (0 ≤ h ≤ k) if the (h+1)th exact match
segment is of length ≥ τ . Fig. 2 illustrates the different types of
output for k = 2.

We present our algorithm in terms of the generalized suffix
tree (GST) of D (i.e., a suffix tree of T). However, in the actual
implementation, the required operations are equivalently carried

72 S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79

Fig. 2. Illustration of output types for k = 2.

out using SA, ISA, LCP and the RMQ data structures. While the
GST view adds greatly to presentation clarity, its implementation
using SA, ISA, and LCP leads to efficient implementation. Using
the recent result by Flick and Aluru [7], we construct these data
structures in O(pSort(N, p) logN) time, where pSort(N, p) is the
time for parallel sorting of N numbers using p processors. Flick
and Aluru’s [7] algorithm is based on a non trivial adaptation of
the classic prefix doubling algorithm by Manber and Mayers [13].
After this step, each processor gets a contiguous chunk of size
roughly N/p of each array, i.e., for i = 1, 2, . . . , p, the ith
processor (Pi) gets the chunk corresponding to the range [1 +
(i − 1)N/p, iN/p]. Additionally, we maintain all the above data
structures for the reverse of T, denoted by

←−
T . The respective data

structures for
←−
T are denoted by SA′, ISA′, LCP′ and RMQ′.

Using a distributed GST, our algorithm first identifies all the
set of suffixes having the initial exact match of ≥ τ characters.
It accomplishes this by selecting all the internal nodes u of GST
such that string-depth(u) ≥ τ and the string-depth of u’s parent
is < τ (Section 4.1). After re-distributing the chosen internal
nodes across p processors, we process the nodes independently
(Section 4.2) and generate the suffix pairs satisfying the three
constraints (Sections 4.3 and 4.4). Since GST is stored in a dis-
tributed fashion, independently processing these internal nodes
requires information about suffixes that are not stored locally.
To retrieve the requisite information, we use rounds of all-to-
all communication. The key reason for using this strategy is that
independent processing of the suffix tree nodes localizes the com-
putation and hence provides good performance by minimizing
the communication overheads.

4.1. Load balancing via re-distribution

After construction of the data structures as mentioned above,
the next step is re-distribution, where we partition the GST
and distribute subtrees of the GST to the p processors. We
term a GST node u as primary if string-depth(u) ≥ τ and
string-depth(parent(u)) < τ . Alternatively, the first node of a
root to leaf path that has a string-depth ≥ τ is a primary node.
See Fig. 3 for an illustration. We assign each primary node, along
with all suffixes corresponding to the leaves in its subtree, to a
single processor, in such a way that the total number of suffixes
associated is approximately the same across all processors. We
make the following reasonable assumption: τ is sufficiently long
in practice, such that the frequency of occurrence of any τ -long
substring across all sequences in D is ≤ N/p (infact ≤ c · N/p
for any constant c works). Under this assumption, we can easily
perform re-distribution in such a way that the total number of
suffixes associated with any processor is ≤ 2N/p. Note that
the redistribution amounts to merely adjusting the boundaries
according to which the sorted arrays are partitioned across the
processors.

Each primary node u is processed by the processor assigned to
it. We seek to achieve the following: Let T[x..] and T[y..] be two

Fig. 3. Re-distribution of the primary nodes of GST.

suffixes under a primary node u, which is assigned to processor
q, and l be the length of their lcp. Then, if T[x..(x + l − 1)] and
T[y..(y+ l−1)] correspond to a maximal exact matching segment
(which is clearly of length ≥ τ) of an answer (x′, y′), pair (x′, y′)
will be reported as an answer while processing the subtree rooted
at u by q. We now present the details.

4.2. Processing of a primary node

We present an overview of our strategy using a small example.
Let E be a set of three strings S1, S2 and S3. Let S1, S2 and S3 be
the strings TAATACAGGTACATAACT, CAGGTACAGAACTAACGC and
TAATTCAGGTACACTGAG respectively. Given the input set E, all
1-mismatch maximal common substring pairs of length at least
13 are desired. The expected output pairs for this example are
(S1[6..18], S2[1..13]) and (S1[1..13], S3[1..13]). Clearly, the first
pair is a type-0 output, while the second pair is a type-1 out-
put. Based on Observation 1, the 1-mismatch maximal common
substring pairs should have a maximal exact match of at least
⌈(13 − 1)/(1 + 1)⌉ = 6 characters. In the case of our example,
this exact match is CAGGTACA and it occurs in suffixes S1[6..],
S2[1..] and S3[6..]. Therefore, there exists a primary node u in the
generalized suffix tree of E, which includes the three suffixes and
its string-depth is 7.

After selecting the primary node u, the first output pair
(S1[6..18], S2[1..13]) can be generated from u by matching the
modified suffixes S∆a

1 [6..] and S∆a
2 [1..], where ∆a = {8}. In

case of the second output pair (S1[1..13], S2[1..13]), the modified
position should be to the left of the initial exact match. This case
can be handled by matching the modified suffixes

←−−−−
S1[13..]

∆b
and

←−−−−
S3[13..]

∆b
, where ∆b = {8}. This example shows the differences

in the way modified suffixes can be used to generate different
types of output pairs.

We now illustrate the procedure to process a primary node
u using Fig. 4. The procedure is recursive and is similar to that
in Section 3.2.1, except that the set C0

1 at the root denotes the
set of all suffixes corresponding to the leaves in the subtree of u.
Recall that any string within a set at level h is a suffix in C1

0 with h
of its characters replaced by #. All modified suffixes within a set
share a common prefix of length at least up to the last position
of modification. Also, by a straightforward generalization of Prop-
erty 2, for any two suffixes T[x..], T[y..] ∈ C0

1 and for any level
h ∈ [0, k], there will be a unique set containing two modified
suffixes T∆

[x..] and T∆
[y..] such that ∆ is the set of first h posi-

tions in which T[x..] and T[y..] differ, i.e., lcp(T∆
[x..], T∆

[y..]) =
lcph(T[x..], T[y..])

From now onwards, we use the following terminology. The
collection of sets at level h is termed an order-h universe of the
initial set C0

1 , and its total size is ≤ Hk
|C0

1 | (refer to Lemma 1).

S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79 73

Fig. 4. Recursive generation of partitions.

Also, each set at level h is termed a partition of the order-h
universe of C1

0 . In subsequent sections, we show how to process
the partitions and generate answers. Specifically, type-0 answers
are generated while processing the partitions at level k, whereas
answers of any other type, say h, are generated while processing
the partitions at level (k − h). We start with the simpler case of
type-0.

4.3. Generating type-0 answers

The partitions at level k are processed independently of each
other. To process any partition Ck

f , first create a compact trie of all
modified suffixes within Ck

f . Then, identify each node in the trie
whose string-depth is ≥ φ, whereas the string-depth of its parent
is < φ. We call such nodes as secondary nodes. Then, for any two
modified suffixes T∆

[x..] and T∆
[y..] corresponding to the leaves

in the subtree of a secondary node v, lcpk(T[x..], T[y..]) ≥ φ.
Therefore, to check if (x, y) is an answer, it is enough to check
if T[x− 1] ̸= T[y− 1] and seq(x) ̸= seq(y). To do this efficiently,
we apply the bucketing strategy described in Section 3.2.3 over
the set of suffixes corresponding to each secondary node v.

4.4. Generating type-h answers for h ≥ 1

We first present the key intuition behind our algorithm for
generating type-h answers. Recall that in a type-h answer (x′, y′)
with x and y as the starting positions of the (h+1)th exact match
common segment, the lcp of T[x..] and T[y..] should be at least τ .
In other-words, T[x..] and T[y..]must be suffixes corresponding to
the leaves in the subtree of some primary node. Therefore, while
processing a primary node u, we are looking for (x, y) pairs with
the following constraints:

• seq(x) ̸= seq(y)
• Let

t = lcpk−h(T[x..], T[y..]),
T[x− 1] ̸= T[y− 1] and

t ′ = lcph−1(
←−−−−−−−
T[..(x− 2)],

←−−−−−−−
T[..(y− 2)])

Then,

t + 1+ t ′ ≥ φ

The type-h answer corresponding to the above constraints is
(x′, y′) = (x−t−1, y−t−1). In order to efficiently generate these
pairs, we process each partition Ck−h

f as follows. We use ∆ to
denote the corresponding set of (k−h) positions of modifications.

1. Create a compact trie of all modified suffixes in Ck−h
f . For

each internal node w in the trie (we denote the
string-depth(w) by t), we apply steps 2 and 3 described
below.

2. Let Sw be the set of modified suffixes corresponding to the
leaves in the subtree rooted at w. Create another set S ′w of
reverse prefixes w.r.t. Sw as follows:

S ′w = {
←−−−−−−−
T[..(x− 2)] | T∆

[x..] ∈ Sw}

3. Process each such S ′w as follows:

(a) Create an order-(h − 1) universe of S ′w and process
each partition part in it as described in steps 3b to
3d.

(b) Create a compact trie of part and identify the sec-
ondary nodes within it. A node is secondary if its
string-depth is ≥ φ′, where as the string-depth of its
parent is < φ′, where φ′ = (φ− 1− t). Let ∆′ be the
positions of modifications of the modified suffixes in
part .

(c) Note that if
←−−−−−−−
T[..(x− 2)]∆

′

and
←−−−−−−−
T[..(y− 2)]∆

′

corre-
spond to the leaves in the subtree of a secondary
node, T[x − 1] ̸= T[y − 1] and seq(x) ̸= seq(y),
then clearly (x′, y′) = (x − 1 − t ′, y − 1 − t ′)
is an answer, where t ′ is the lcp of

←−−−−−−−
T[..(x− 2)]∆

′

and
←−−−−−−−
T[..(y− 2)]∆

′

. Using an exactly similar bucketing
technique described in Section 4.3, we can process
part in time proportional to |part| and the number
of answers generated from part .

(d) Finally, we note the following key point: an answer
(x′, y′) may get generated from multiple partitions.
However, in exactly one partition, the positions spec-
ified in ∆ and ∆′ correspond to mismatches (from
Property 2). Therefore, to avoid reporting the same
answer (x′, y′), we make sure that positions in ∆

and ∆′ are mismatch positions. We also check that
T[x+ t] ̸= T [y+ t] to ensure right maximality.

We now prove the correctness of the above procedure with
respect to a fixed type-h answer (x′, y′) with x and y being the
starting positions of the (h + 1)th maximal exact common sub-
string which is sufficiently long (i.e., length ≥ τ). As mentioned
in Section 4.2, there exists a partition Ck−h

f where the positions
of modifications (i.e., ∆) are the first (k− h) mismatch positions
between T[x..] and T[y..]. While creating the compact trie of this
particular partition Ck−h

f , there will be a node w from which the
modified suffixes T∆

[x..] and T∆
[y..] diverge, i.e., T[x + t] ̸=

T [y+ t], where t = lcpk−h(T[x..], T[y..]) and this ensures the right
maximality of the match. With the condition T[x−1] ̸= T [y−1],
we are imposing the hth mismatch at these positions. Now, while
creating the (h−1)th order universe out of S ′w , there will again be
a unique partition (say part) such that the modifications (denoted
by ∆′) are at the first (h− 1) positions in which

←−−−−−−−
T[..(x− 2)] and

←−−−−−−−
T[..(y− 2)] differ. Finally, we report the answer (x′, y′) uniquely
while processing this specific partition.

Note that an answer can belong to multiple types. Therefore
while processing and reporting a type h answer, we simply check
if it belongs to another type h′ < h. If so, we do not output it as
a type-h answer.

4.5. Bounding the run time

After the initial construction of the GST and its re-distribution,
the remainder of our algorithm localizes computations within
each processor. This is the key reason for devising the complex

74 S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79

strategy outlined, which should provide good performance by
minimizing the communication overhead. However, as a prepara-
tory step to execute the primary nodes assigned to a processor,
it needs to create the data structures SA, ISA, etc. for the suffixes
in the underlying subtree. While these can be locally computed,
the additional time for doing so can be saved by deducing them
from the corresponding globally distributed arrays (SA, ISA, etc.)
for the set of strings D. We rely on rounds of all-to-all com-
munication to achieve this. In this section, we prove that the
expected computation time is O((N/p + occ) logk N). In the next
section, we bound the expected number of all-to-all commu-
nication rounds to O(logk+1 N) and the expected communica-
tion cost to O((N/p) logk+1 N). Adding together the computation
and communication costs, we obtain the claimed run time of
O

((
N
p logN + occ

)
logk N

)
in expectation.

The key steps involved in our parallel algorithm are (i) recur-
sive construction of sets of modified suffixes (partitions), and (ii)
processing of some of these partitions to generate the outputs.
The first part involves the construction of compact tries, whereas
the second part involves bucketing, followed by sorting of mod-
ified suffixes w.r.t. seq(·) and scanning the buckets to generate
the outputs. The construction of compact tries consists of two
key steps: (i) arrange the modified suffixes in their lexicographic
order, and (ii) compute the lcp between every pair of consecutive
modified suffixes. The topology of the trie can be inferred in
additional linear time [5].

Note that in our case, the given set of modified suffixes have
a common prefix at least up to the last position (say l) of mod-
ification. Therefore, they can be sorted with respect to the rank
(inverse suffix array value) of the corresponding suffix obtained
after removing the first l characters. The pertinent inverse suffix
array values can be obtained by querying on ISA (the required
communication cost will be bounded in the next section). With
such a reduction, the task of (modified) suffix sorting can be
reduced to integer sorting, for which standard linear time al-
gorithms can be used. Computing the lcp values also requires a
linear number of queries on the distributed arrays. In summary,
the compact tries needed throughout the execution of the algo-
rithm can be constructed locally in time linear in the number of
modified suffixes involved.

We now bound the total time for construction of the compact
tries on any processor. Let u be a primary node of size m. Let H
and Hr be the heights of the suffix trees of T and

←−
T , respectively.

Then, the total of the number of modified suffixes and modified
reverse prefixes generated while processing u is at most (refer to
Lemma 1)

m(Hk
+ Hk−1Hr + Hk−2H2

r + ..+ Hk
r) ≤ mk ·max{Hk,Hk

r }

Therefore, using our linear time trie construction procedure,
the time for construction of all compact tries w.r.t. node u is
O(m ·max{Hk,Hk

r }). Since the sum of subtree sizes of all primary
nodes assigned to a processor is bounded by O(N/p), the worst
case run time on any processor is O(N/p ·max{Hk,Hk

r }).
The second part in processing a set involves bucketing fol-

lowed by sorting and scanning. Here also, we use linear time
integer sorting algorithms. The time for scanning and generating
output pairs takes time linear to the size of the sets and the num-
ber of outputs generated. However, we may encounter the same
answer while processing multiple sets (at most k ·max{Hk,Hk

r } in
number), although we report it only once. Therefore, we bound
the total time by O((N/p+occ) ·max{Hk,Hk

r }). By replacing H and
Hr by O(logN), the expected height of a suffix tree of a string of
length N [4], we obtain the claimed run time.

4.6. Bounding the communication costs

Since the GST is distributed, the construction of the compact
suffix tries required gathering relevant portions of the global data
structures in a collective operation involving all the p processors.
As mentioned in Section 4.5, the recursive construction of sets
of modified suffixes and their compact tries require queries on
the distributed array data structures. To answer such queries
efficiently, we rely on all-to-all communication. Here we make
the following standard assumptions on available memory and
bandwidth: The number of elements that can be communicated
in and out of a processor is at most O(N/p) in a single round of
collective communication. Given this assumption, we claim that
the total number such rounds required to satisfy all ISA queries
is O(logk+1 N) in the expected case.

First, we bound the communication costs w.r.t. the number of
outgoing elements from a processor. The number of ISA queries
required by a processor is equal to the number of modified suf-
fixes (or modified reverse prefixes) it handles, which is O((N/p)×
logk N) in expectation. As per our assumption, the number of
elements that can be accommodated in a round is only O(N/p).
Therefore, the number of rounds of collective communication re-
quired is O(logk N) in expectation. Bounding the communication
costs w.r.t. the number of incoming elements to a processor is
slightly tricky. We use the following key result [4]: The expected
length of the longest repeat within a string of length N is O(logN).
In other words, let M = maxx,y̸=x lcp(T[x..], T[y..]), then the ex-
pected value of M is O(logN). Also, the lcp of any two k-modified
suffixes is ≤ (k+1)M . In order to bound the communication costs
w.r.t. the number of incoming ISA queries, it is sufficient to prove
the following.

Lemma 2. For any fixed x, the number of ISA[x] queries is
O(logk+1 N) in expectation.

Proof. Recall our recursive algorithm for creating partitions.
While processing some node u (with string-depth(u) being t) in
a trie, an ISA[x] will be queried iff there exists a modified suffix
(with starting position y) in the subtree of u, such that y+ t+1 =
x. The number of distinct such y’s is bounded by the maximum
possible value of t , which is M(k + 1). Additionally, the number
of modified suffixes with a fixed starting position y is ≤ Hk. By
putting all together, the number of ISA[x] queries is≤ M(k+1)Hk.
By substituting O(logN) for H and M , we obtain the claimed
bound. □

Using similar arguments, the number of ISA′[x] queries for
any fixed x can also be bounded by O(logk+1 N) in expectation.
Therefore, the number of rounds of all-to-all communications
needed is O(logk+1 N) in expectation.

Note that O(N/p) elements are communicated between the p
processors during each round of communication. Assuming that
it takes a constant time to transfer an element from one processor
to another, the total time taken by the communication rounds is
bounded by O

(
N
p logk+1 N

)
in expectation.

4.7. Space complexity

GST is implemented as distributed SA, ISA, LCP, SA′, ISA′

and LCP′ arrays. All of these arrays require O(N/p) space in
each processor. Local RMQ and RMQ ′ data structures take O(N/p)
space, while PMN and PMN ′ arrays take O(p) space per processor.

If all the tries constructed, described in Section 4.4, are pro-
cessed simultaneously, then the space required to store all of the
tries is bounded by runtime complexity, as derived in Section 4.5
without the occ term i.e., O(N/p · logk N). The term for occ is

S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79 75

not included because the output pairs need not be retained in
main memory and can be written out to standard output or disk
storage.

However, if we process the tries in multiple batches, with total
size of O(N/p) per batch in a processor, then the space com-
plexity analysis follows the communication bounds discussed in
Section 4.6. In this case, the space required is bounded by O(N/p ·
logN) per processor per batch with a total of O(logk+1 N) batches.
This also helps us to derive a bound on the number of batches
required when the space available per processor is limited. If the
space available per processor is bounded by O(N/p), then the
algorithm requires O(logk+2 N) batches of size O(N/(logNp)) each.

5. Implementation details

We implemented our algorithm using C++ and MPI. We use
block-wise distribution for the distributed SA and LCP arrays.
We refer to the elements located within a processor as its ‘local
elements’ or ‘local array’.

5.1. Representation of GST by distributed data structures

We represent the generalized suffix tree (GST) of all the suf-
fixes of the strings S1, . . . , Sn using the following distributed data
structures.

1. Distributed SA, ISA, and LCP w.r.t. T.
2. Distributed SA′, ISA′ and LCP′ w.r.t.

←−
T

3. Local RMQ and RMQ′ data structures to answer range mini-
mum queries for the local LCP and LCP′ arrays respectively,
in every processor.

4. To enable distributed range minimum queries, we maintain
in every processor an array of size p, PMN , where PMN[i]
has the minimum value of processor i’s local LCP. Similarly
PMN ′ is constructed for LCP′ array.

For SA and ISA arrays, we use 64-bit integers. The LCP array
is implemented as a byte array because its entries in the worst-
case are limited by the length of the reads, and high throughput
sequencing reads have short lengths that can fit in a byte.

5.2. Representation of compact suffix tries

As described in Section 4.2, k-modified suffix sets are gen-
erated by a recursive construction of compact suffix tries. We
represent a compact suffix trie by two arrays: (a) the sorted
order of the suffixes that constitute the compact trie, and (b) LCP
array, which contains the lengths of the longest common prefixes
between every pair of consecutive suffixes.

5.3. Representation of internal nodes

An internal node u can be represented with the tuple (sp(u),
ep(u), string-depth(u), γ (u)) for both the GST and the compact
suffix tries constructed at the lower levels of recursion. For an
internal node u in the GST, γ (u) = 0. For an internal node in the
suffix trie generated for a set Ch

f , γ (u) is the length of the (h -
1)-modified suffix matched thus far.

To save space, we use the following representation: (sp(u),
w(u), string-depth(u), γ (u)), where w(u) = ep(u) − sp(u) + 1.
The advantage of this representation is that we can use a 32-
bit integer for w(u), even when T’s size exceeds the limit of
unsigned 32-bit integers. This is because for most datasets, the
largest of the primary nodes includes only few tens of million
suffixes (less than the size limit of a 32-bit integer). Also, both
string-depth(u) and γ (u) are bounded by the maximum length
of the input sequence, and hence, we use a byte each for both
string-depth(u) and γ (u). In total, each internal node takes only
14 bytes in this representation.

5.4. Construction of distributed GST

After constructing SA and LCP using [7], we construct the ISA
array corresponding to SA by an all-to-all communication of the
pairs (SA[i], ISA[SA[i]]) for each SA entry. We then construct
local RMQ table (an implementation of [6]) in each processor,
corresponding to the local LCP array. We then construct PMN by
gathering all processor LCP minimums. We also build a local RMQ
table on the PMN array.

We repeat the above steps to construct SA′, ISA′, LCP′, RMQ′

and PMN ′ w.r.t.
←−
T . Not including the communication costs to

construct SA and LCP, only a constant number of collective com-
munication operations is required.

5.5. Selection of primary nodes

We select the regions of interest in SA by scanning the LCP
array to select those regions where lcp values are≥ τ . All primary
node leaves should be from one of these regions. If a selected
region straddles two processors, this region is shifted to the lower
ranked processor so that any such region is completely contained
within a processor. As noted earlier in Section 4.1, our assumption
about the distribution of τ -length prefixes will limit the region
size per processor to O(N/p). Note that only SA and LCP arrays
are shifted. ISA, RMQ, ISA′, and RMQ′ tables remain distributed
as they were constructed.

In order to identify all the internal nodes from the selected
regions, we use the all-nearest-smaller-values (ANSV) solution [2]
with respect to the LCP array. Left-to-right and right-to-left ANSV
solutions of the LCP array produce the left most (sp(u)) and the
right most (ep(u)) indexes of the internal nodes respectively.
After collecting the internal node tuples generated by the ANSV
solution, we sort and remove the duplicate entries.

5.6. Batch processing of GST’s internal nodes

After selecting the internal nodes of GST, we process these
nodes in batches for two reasons. One, the memory available per
processor is not large enough to accommodate all the suffix tries
constructed. Two, the number of elements that can be commu-
nicated in a single all-to-all operation is limited in many MPI
implementations, and hence the number of elements that can
be queried and answered in distributed ISA and range minimum
queries is limited. This limit depends upon the MPI implementa-
tion.

We process the internal nodes in batches of size B. We choose
B to be more than the size of the largest primary node. We parti-
tion the nodes assigned to a processor into batches of size at least
B and at most 2B. Note that even if some processors complete
all their batches earlier than others, they have to participate in
the collective operations to answer the ISA and range minimum
queries addressed to them.

In order to achieve better load balancing among batches, the
batches are expected to have approximately uniform sizes across
all the p processors. As described in Section 5.5, internal node
tuples are identified by the ANSV solution and the duplicate
entries are eliminated by sorting. Internal nodes are added to the
batches in this final sorted order. There are two ways to sort these
tuples — either by (sp(u), w(u)) or by (w(u), sp(u)). We found
that sorting by sp(u) first produces more uniform batch sizes
across processors compared to sorting by w(u), and hence better
run-time performance.

76 S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79

5.7. Construction of compact tries

Given an input set of suffixes Ch
f , construction of the compact

trie is accomplished by building the corresponding SA and LCP
arrays. ISA queries are used to rank the suffixes in the trie’s SA,
while range minimum query (RMQ) results are used to construct
the trie’s LCP array. We only describe these queries in relation
to a Ch

f set generated during a rightward extension, i.e., modified
suffix sets in generating type-0 outputs. In case of Ch

f being a part
of order-h universe while processing S ′w (Section 4.4), we follow
a similar procedure except that instead of ISA and RMQ, we use
ISA′ and RMQ′.

5.7.1. SA of the compact trie
Note that Ch

f suffix sets are generated under the context of
some internal node u. After generating Ch

f from an internal node
u, the rank of these suffixes is queried from the distributed ISA.
We preform one distributed ISA query for all suffixes of Ch

f at the
current recursion level of the current batch as follows.

1. An all-to-all communication, where each processor sends
all its Ch

f suffixes in the current batch as queries to the
processors owning the ISA entries.

2. An all-to-all communication, where each processor re-
turns the ISA values back to the processor from which the
queries were received.

After receiving the ISA query results, we construct the trie’s
SA, and sort the SA entries based on their ISA rank. Since there
is a constant number of all-to-all communications required for
a round of suffix trie construction, communication complexity
described in Section 4.6 remains valid.

5.7.2. LCP of the compact trie
After constructing the SA w.r.t. Ch

f ’s trie, we construct the LCP
array by distributed range minimum queries as below.

1. Partition the entries of all the suffix arrays constructed in
the previous step into p parts, each part corresponding to
the processor owning the RMQ values of the SA entries.

2. An All-to-all communication to send the range minimum
queries (i.e., SA indexes of interest).

3. An All-to-all communication to send/receive the range
minimum query results. For a trie, RMQ results sent from
a processor include the following:

(a) The length of longest common prefixes between two
consecutive suffixes of the trie’s SA.

(b) The minimum value between the left most (corresp.
right most) SA entry in the queried processor and
the left most (corresp. right most) suffix of the trie’s
SA entry in that processor.

In distributed range minimum queries, the above results
are sent for all the tries generated while processing the
current batch.

Based on the RMQ results and the local PMN tables, the LCP
values between two consecutive suffixes in the SA corresponding
to the trie for Ch

f can be computed. The number of elements
queried and answered is bounded in a similar manner to the ISA
queries, and hence communication complexity remains the same.

5.8. Generation of maximal common substring pairs

After we construct the suffix tries using the procedure de-
scribed in Section 5.7, we generate the valid pairs as given in

Table 1
Datasets used for experiments.

D1 D2 D3

Accession SRR2891093 SRR2984882 SRR3169276
Type RNA DNA RNA
Organism H. sapiens S. cerevisiae H. sapiens
Source HEK293T WGS Stem cells
Sequencer NextSeq 500 HiSeq 2000 HiSeq 2500
No. of Reads 60,100,561 18,415,332 272,462,716
Read length 75 101 151
Total size 4.507 Gbp 1.860 Gbp 38.417 Gbp

Dataset Sizes after pre-processing

D1 D2 D3

No. of Reads 21,682,850 8,263,882 116,295,542
Data size 1.626 Gbp 0.835 Gbp 17.560 Gbp
Input size 3.154 Gbp 1.535 Gbp 34.318 Gbp

Sections 4.3 and 4.4 using the k-modified suffix sets. However,
in order to find which one of the |Σ | + 1 buckets a (modified)
suffix belongs to, we query the distributed array T to identify
the preceding character. Hence, maximal common substring pair
generation adds an extra round of all-to-all communication to
answer the queries against T.

6. Experimental results

We ran our experiments on an Intel Xeon Infiniband Cluster.
Each node has a 2.7 GHz 24-core Intel Xeon 6226 processor
with 192 GB of main memory and is running RHEL7.6 operating
system. The nodes of the cluster are interconnected with EDR
(100 Gbps) InfiniBand. Experiments were conducted on up to 64
nodes using 16 cores per node, totaling 1,024 cores. We evaluated
our algorithm on three different datasets, detailed in Table 1.
Dataset D2 (NCBI SRA Accession Number SRR2984882) consists
of 18.4 million reads, sampled from the genome of Yeast (S.
cerevisiae). Datasets D1 (Accession Number SRR2891093) and D3
(Accession Number SRR3169276) are human RNA-Seq datasets,
which are randomly sampled from expressed portions of the
genome (RNA sequences produced by the genome). The whole
genome dataset is sampled uniformly at random over the entire
length of the genome. While the sampling is uniformly random
over RNA sequences too, the frequency of each RNA sequence
itself is proportional to the expression of the corresponding gene.
Hence, these datasets constitute a highly non-uniform sampling
of the underlying genomic space. The datasets also cover three
different Illumina NGS sequencers — HiSeq 2000, HiSeq 2500 and
the desktop sequencer NextSeq 500.

Reads may be redundant in the sense that a read may be
fully contained in another. Clearly, such a contained read shares
potentially the same overlaps with other reads as the read con-
taining it. Hence, including the contained reads in the input is
not useful. It also significantly increases the output size and run-
time without adding any additional value. Hence, we developed a
pre-processing algorithm to eliminate all redundant reads. Also,
RNA-Seq reads are characterized by consecutive A’s at the end,
covering the poly-A tail of the mRNA molecule. Common sub-
strings that contain these have no biological relevance, hence we
trim the poly-A tail from the reads to avoid generating spurious
output pairs.

Note that the input size is approximately twice that of the
dataset size. This is because DNA is double stranded, with the two
strands being reverse complements (under A↔ T , C ↔ G substi-
tution) of each other. The input for each sequence consists of any
one of its strands. To correctly infer a maximal common substring
between two sequences given as complementary strands, the
input must take both forms of the sequence into account, thus

S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79 77

Table 2
Runtime in seconds vs No. of cores for D1 with τ = 15, 17 and τ = 19.
τ = 15

No. of cores k = 1 k = 2

Runtime (sec) Relative
speedup

Runtime (sec) Relative
speedup

64 947.81 1.00X 12005.6 1.00X
128 587.38 1.62X 7304.82 1.64X
256 280.21 3.38X 3428.42 3.50X
512 154.15 6.14X 1953.64 6.18X
1024 114.24 8.29X 1285.06 9.34X

τ = 17

No. of cores k = 1 k = 2

Runtime (sec) Relative
speedup

Runtime (sec) Relative
speedup

64 849.78 1.00X 10463.70 1.00X
128 532.09 1.59X 6828.73 1.53X
256 254.72 3.34X 2975.68 3.52X
512 141.88 5.98X 1699.56 6.16X
1024 102.05 8.32X 1097.10 9.53X

τ = 19

No. of cores k = 1 k = 2

Runtime (sec) Relative
speedup

Runtime (sec) Relative
speedup

64 792.48 1.00X 9229.78 1.00X
128 423.32 1.87X 4766.11 1.93X
256 236.61 3.35X 2639.18 3.49X
512 124.49 6.36X 1388.58 6.64X
1024 91.02 8.71X 991.36 9.31X

doubling its size. However, after removing duplicates that were
introduced by the addition of reverse complement sequences, the
input size is slightly less than that of the dataset size.

The value of τ depends upon the application, error rate of the
sequencing machine, and the read length. To demonstrate the
scalability of our proposed algorithm, we ran experiments with
multiple values of τ and k. For dataset D1, we ran experiments
with τ = 15, τ = 17 and τ = 19. For the longer read datasets
D2 and D3, we used τ = 20, 22 and τ = 30 respectively. For all
the chosen values of τ , we found that the largest subtree under
an internal node at depth τ or greater is significantly smaller
than N/p, validating the assumption used in deriving the run-
time complexity. Another interesting observation is that between
≈15% and 35% of the leaves do not belong to any primary nodes
(i.e., they are in the subtrees of internal nodes with string-depth
less than τ). These are not considered for processing by the
algorithm, hence eliminated.

The run-times for dataset D1 as a function of the number of
processor cores are shown in Table 2. To illustrate the run-time
behavior of the algorithm, the times are shown for k = 1 and
k = 2, and for three different values of τ . The run-time grows
exponentially with k, and this behavior is reflected in the signif-
icant increase in run-time for k = 2 over k = 1. However, given
the improving error rates of sequencing machines, applications
typically use very small values of k. As the value of τ increases,
the number of k-mismatch maximal common substrings that
satisfy the length criterion (φ ≥ (k+1)τ) decreases, thus reducing
the run-time.

The run-times for all parameter choices of k and τ , as the num-
ber of processor cores is varied from 64 to 1,024, demonstrate
reasonably good, but not perfect, scaling. To better illustrate the
scaling, the relative speedups when compared to the run-time
on 64 cores are also shown. For k = 1, the relative speedup on
1,024 cores ranged from 8.29X to 8.71X. This slightly improves to
9.29–9.34X, for k = 2.

A similar set of experimental observations for dataset D2 with
τ = 20 and τ = 22 are shown in Table 3. The reason for less

Table 3
Runtime in seconds vs. No. of cores for D2 with τ = 20 and τ = 22.
τ = 20

No. of cores k = 1 k = 2

Runtime (sec) Relative
speedup

Runtime (sec) Relative
speedup

64 624.67 1.00X 11506.40 1.00X
128 359.86 1.73X 6449.24 1.78X
256 189.89 3.29X 3688.41 3.11X
512 108.76 5.74X 2082.66 5.52X
1024 87.72 7.12X 1580.13 7.28X

τ = 22

No. of cores k = 1 k = 2

Runtime (sec) Relative
speedup

Runtime (sec) Relative
speedup

64 593.01 1.00X 10305.10 1.00X
128 341.07 1.74X 5750.79 1.79X
256 186.95 3.17X 3328.68 3.09X
512 103.22 5.74X 1887.19 5.46X
1024 86.85 6.82X 1526.13 6.75X

than ideal speedup is due to the imbalance in the work assigned
to the processor cores. While we make sure that every batch
has approximately same size in our batch-wise processing, the
distribution of internal node sizes is not uniform. We profiled the
runs of datasets D1 (with τ = 15) and D2 (with τ = 20) using
the hpctoolkit software [1]. hpctoolkit uses the CPU TIME
timer on Linux to profile the code and sampling at a frequency
of 200 samples per second per process. Using the profiler results,
we compute, among the total CPU time, the total time spent by all
processes waiting for the results of their distributed ISA and LCP
queries (Table 4). This time can serve as a proxy for the imbalance
in the work assigned to a processor. As the number of cores
increases, we note that there is significant increase in the waiting
time, while the total non-waiting time remains approximately the
same except for k = 1 with 1024 cores. In this case, the additional
time is due to the communication costs during the construction
of GST.

Even though the input size for D1 is larger than D2, Fig. 5
shows that the ratio of time taken for k = 2 to the time taken
for k = 1 is smaller for D1 compared to D2. For D1, k = 2 takes
10–12X longer than k = 1, while it is 17–20X longer for D2.
This is due to difference in coverage of the underlying sampled
space of the genome by the reads, in the respective datasets. D2
is a whole genome sequencing dataset for Yeast with a genome
length of ≈ 12.1×106 base pairs. Coverage of the genome by the
reads, defined as the ratio of the total length of the reads (N) to
the length of the genome, is ≈68X.

While it is not customary to define coverage for RNA-Seq
datasets as it varies for each expressed portion depending on the
rate of expression, we can use the average of these individual cov-
erages as an indicator of the depth of sampling. The total coding
region within the human genome (≈ 3.3× 109) is <2%, which is
sampled in RNA-seq datasets. This leads to an average coverage of
≈24X coverage for dataset D1. The lower the coverage, the fewer
the number of overlaps between input sequences. Therefore, the
height of GST is likely to be smaller, and hence, faster run-time.
This particular difference in the datasets also has an effect on
speedup, i.e., D1 exhibits better scaling than D2.

For k = 3, the run-times are too long to record observations
on fewer cores, underscoring the importance of the parallel algo-
rithm. Table 5 shows the run times on 1,024 cores for datasets
D1 and D2. As we can see from the third column in Table 5, the
ratio of run-times for k = 3 and k = 2 is roughly in line with
the increase from k = 2 to k = 1. This reflects the exponential
increase in run-time as a function of k.

78 S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79

Fig. 5. Runtime vs No. of cores for datasets D1 and D2 with τ = 15 and τ = 20 respectively.

Table 4
Profiling for datasets D1 and D2 with τ = 15 and τ = 20. Total CPU time, query waiting time and the non-waiting time are
presented in micro seconds.
D1 with τ = 15

No. of cores k = 1 k = 2

Total CPU
time (µs)

Query waiting
time (µs)

Non-waiting
time (µs)

Total CPU
time (µs)

Query waiting
time (µs)

Non-waiting
time (µs)

64 5.9 ×1010 6.9 ×109 5.2 ×1010 7.5×1011 2.0 ×1011 5.5 ×1011

128 7.0 ×1010 2.0 ×1010 4.9 ×1010 8.3×1011 2.8 ×1011 5.4 ×1011

256 7.7 ×1010 2.7 ×1010 5.0 ×1010 9.5×1011 4.0 ×1011 5.5 ×1011

512 8.6 ×1010 3.1 ×1010 5.4 ×1010 1.0×1012 4.9 ×1011 5.5 ×1011

1024 1.5 ×1011 8.6 ×1010 6.4 ×1010 1.7×1012 1.1 ×1012 5.7 ×1011

D2 with τ = 20

No. of cores k = 1 k = 2

Total CPU
time (µs)

Query waiting
time (µs)

Non-waiting
time (µs)

Total CPU
time (µs)

Query waiting
time (µs)

Non-waiting
time (µs)

64 4.3×1010 1.0×1010 3.2 ×1010 8.0 ×1011 3.4×1011 4.6 ×1011

128 4.6×1010 1.4×1010 3.1 ×1010 9.8 ×1011 5.2×1011 4.6 ×1011

256 5.5×1010 2.1×1010 3.4 ×1010 1.1 ×1012 7.1×1011 4.6 ×1011

512 6.7×1010 2.8×1010 3.8 ×1010 1.4 ×1012 9.2×1011 4.7 ×1011

1024 2.2×1011 1.7×1011 4.9 ×1010 2.1 ×1012 1.6×1012 4.8 ×1011

Table 5
Runtime for D1 and D2 with k = 3 and p = 1024.

Dataset τ Time (sec)
Runtime for k = 3
Runtime for k = 2

D1 15 18535.0 14.42
D1 17 14898.2 13.57
D1 19 12207.5 12.37
D2 20 38241.7 24.20
D2 22 33502.4 21.29

In order to push the limits of our algorithm, we ran dataset
D3 containing over 270 million reads with longer read length of
151, whose total size is an order of magnitude larger than D1. For

k = 1, we were able to process such a large dataset in under 1.5 h
(50001.29s) on 1,024 cores.

7. Conclusion

Approximate sequence matching algorithms are of significant
interest in computational biology as replacement for quadratic
alignment-based algorithms, particularly as high-throughput se-
quencers are producing large-scale datasets. In this paper, we
presented a parallel algorithm for finding k-mismatch, all-pair
maximal common substrings between a large set of strings. While
the only sub-quadratic sequential algorithm to solve this problem
is the one recently proposed by [22], there is no parallel algorithm

S.P. Chockalingam, S.V. Thankachan and S. Aluru / Journal of Parallel and Distributed Computing 144 (2020) 68–79 79

to solve this problem to date. Our work achieves an expected
parallel run-time complexity of O

(
(Np logN + occ) logk N

)
, where

occ is the number of such reported maximal common substrings.
We note that for k = 0 this reflects the best possible run-time for
computing exact all-pair maximal common substrings, while the
run-time degrades slowly by a factor of log n for each additional
error tolerated.

We also present our algorithm for the practical distributed
memory model of parallel computation, and demonstrate its per-
formance on real, large-scale datasets. While the scaling results
are constrained by the size of the parallel computer available
to us, we see no difficulty for the algorithm to scale beyond
the 1,024 cores it is demonstrated on. The algorithm is useful
in identifying overlaps between Illumina sequencer reads which
typically contain a small rate of substitution errors. As these
sequencers account for over 90% of DNA and RNA sequencing
worldwide, the algorithm could have significant impact. We are
currently exploring the use of this algorithm for applications in
genome mapping and assembly.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This research is supported in part by the U.S. National Science
Foundation under IIS-1416259, CCF-1704552 and CCF-1703489.

References

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
N.R. Tallent, HPCToolkit: Tools for performance analysis of optimized
parallel programs, Concurr. Comput.: Pract. Exper. 22 (6) (2010) 685–701.

[2] O. Berkman, B. Schieber, U. Vishkin, Optimal doubly logarithmic parallel
algorithms based on finding all nearest smaller values, J. Algorithms 14
(3) (1993) 344–370.

[3] S. Burkhardt, J. Kärkkäinen, Better filtering with gapped q-grams, Fund.
inform. 56 (1–2) (2003) 51–70.

[4] L. Devroye, W. Szpankowski, B. Rais, A note on the height of suffix trees,
SIAM J. Comput. 21 (1) (1992) 48–53.

[5] M. Farach-Colton, P. Ferragina, S. Muthukrishnan, On the sorting-
complexity of suffix tree construction, J. ACM 47 (6) (2000) 987–1011.

[6] J. Fischer, V. Heun, A new succinct representation of RMQ-information
and improvements in the enhanced suffix array, in: Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies, Springer, 2007, pp.
459–470.

[7] P. Flick, S. Aluru, Parallel distributed memory construction of suffix
and longest common prefix arrays, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ACM, 2015, p. 16.

[8] M.H.-Y. Fritz, R. Leinonen, G. Cochrane, E. Birney, Efficient storage of
high throughput DNA sequencing data using reference-based compression,
Genome Res. 21 (5) (2011) 734–740.

[9] M.G. Grabherr, B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X.
Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, et al., Full-length transcrip-
tome assembly from RNA-Seq data without a reference genome, Nature
Biotechnol. 29 (7) (2011) 644–652.

[10] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology, Cambridge University Press, 1997.

[11] A. Kalyanaraman, S. Aluru, S. Kothari, V. Brendel, Efficient clustering of
large EST data sets on parallel computers, Nucleic Acids Res. 31 (11) (2003)
2963–2974.

[12] G. Kucherov, D. Tsur, Improved filters for the approximate suffix-prefix
overlap problem, in: International Symposium on String Processing and
Information Retrieval, Springer, 2014, pp. 139–148.

[13] U. Manber, G. Myers, Suffix arrays: a new method for on-line string
searches, SIAM J. Comput. 22 (5) (1993) 935–948.

[14] E.M. McCreight, A space-economical suffix tree construction algorithm, J.
ACM 23 (2) (1976) 262–272.

[15] M.L. Metzker, Sequencing technologies – the next generation, Nat. Rev.
Genet. 11 (1) (2010) 31–46.

[16] K. Nakamura, T. Oshima, T. Morimoto, S. Ikeda, H. Yoshikawa, Y. Shiwa, S.
Ishikawa, M.C. Linak, A. Hirai, H. Takahashi, et al., Sequence-specific error
profile of Illumina sequencers, Nucleic Acids Res. 39 (13) (2011) e90.

[17] O. Sakarya, H. Breu, M. Radovich, Y. Chen, Y.N. Wang, C. Barbacioru, S.
Utiramerur, P.P. Whitley, J.P. Brockman, P. Vatta, et al., RNA-Seq mapping
and detection of gene fusions with a suffix array algorithm, PLoS Comput.
Biol. 8 (4) (2012) e1002464.

[18] A. Sarje, S. Aluru, All-pairs computations on many-core graphics processors,
Parallel Comput. 39 (2) (2013) 79–93.

[19] T.E. Scheetz, N. Trivedi, K.T. Pedretti, T.A. Braun, T.L. Casavant, Gene
transcript clustering: a comparison of parallel approaches, Future Gener.
Comput. Syst. 21 (5) (2005) 731–735.

[20] J.T. Simpson, R. Durbin, Efficient de novo assembly of large genomes using
compressed data structures, Genome Res. 22 (3) (2012) 549–556.

[21] J.T. Simpson, R. Durbin, Efficient de novo assembly of large genomes using
compressed data structures, Genome Res. 22 (3) (2012) 549–556.

[22] S.V. Thankachan, C. Aluru, S.P. Chockalingam, S. Aluru, Algorithmic
framework for approximate matching under bounded edits with appli-
cations to sequence analysis, in: International Conference on Research in
Computational Molecular Biology, Springer, 2018, pp. 211–224.

[23] N. Välimäki, S. Ladra, V. Mäkinen, Approximate all-pairs suffix/prefix
overlaps, Inform. and Comput. 213 (2012) 49–58.

[24] P. Weiner, Linear pattern matching algorithms, in: Switching and Automata
Theory, 1973, pp. 1–11.

Sriram P. Chockalingam is a research scientist in the
Institute for Data Engineering and Science at the Geor-
gia Institute of Technology, Atlanta, GA. He received
his Ph.D. degree in Computer Science and Engineering
from Indian Institute of Technology Bombay, India.
His research interests include parallel algorithms, ap-
proximate sequence matching and systems biology.

Sharma V. Thankachan is an Assistant Professor in
the Department of Computer Science at University
of Central Florida, Orlando. He received his Ph.D.
degree in Computer Science from Louisiana State
University in 2014. Prior to that, received his B.
Tech. degree in Electrical and Electronics Engineering
from National Institute of Technology Calicut, India in
2006. His research interests include parallel algorithms,
computational biology and succinct data structures.

Srinivas Aluru is the Executive Director of the Georgia
Tech Interdisciplinary Research Institute (IRI) in Data
Engineering and Science (IDEaS) and a professor in
the School of Computational Science and Engineering
within the College of Computing. He co-leads the NSF
South Big Data Regional Innovation Hub which nurtures
big data partnerships between organizations in the 16
Southern States and Washington D.C., and the NSF
Transdisciplinary Research Institute for Advancing Data
Science. Aluru conducts research in high performance
computing, data science, bioinformatics and systems bi-

ology, combinatorial scientific computing, and applied algorithms. He pioneered
the development of parallel methods in computational biology, and contributed
to the assembly and analysis of complex plant genomes. His contributions in
scientific computing lie in parallel Fast Multipole Method, domain decomposition
methods, spatial data structures, and applications in computational electromag-
netics and materials informatics. Aluru serves on the editorial boards of the
IEEE Transactions on Big Data, ACM/IEEE Transactions on Computational Biology
and Bioinformatics, the Journal of Parallel and Distributed Computing, and the
International Journal of Data Mining and Bioinformatics. He is a Fellow of the
American Association for the Advancement of Science (AAAS) and the Institute
for Electrical and Electronic Engineers (IEEE).

http://refhub.elsevier.com/S0743-7315(20)30297-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb1
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb2
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb3
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb4
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb5
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb5
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb5
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb6
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb7
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb7
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb7
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb7
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb7
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb7
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb7
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb8
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb8
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb8
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb8
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb8
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb9
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb10
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb11
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb11
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb11
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb11
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb11
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb12
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb13
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb14
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb15
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb16
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb17
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb18
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb18
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb18
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb19
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb20
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb20
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb20
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb21
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb22
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb22
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb22
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb22
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb22
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb22
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb22
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb23
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb23
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb23
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb24
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb24
http://refhub.elsevier.com/S0743-7315(20)30297-5/sb24

	Sequential and parallel algorithms for all-pair k-mismatch maximal common substrings
	Introduction
	Notation and preliminaries
	Suffix tree, suffix array and LCP data structures

	Our sequential algorithm
	The exact match case
	The k-mismatch case
	Details of phase-1
	Details of phase-2
	Improving the run time complexity via bucketing

	Our parallel algorithm
	Load balancing via re-distribution
	Processing of a primary node
	Generating type-0 answers
	Generating type-h answers for h1
	Bounding the run time
	Bounding the communication costs
	Space complexity

	Implementation details
	Representation of by distributed data structures
	Representation of compact suffix tries
	Representation of internal nodes
	Construction of distributed
	Selection of primary nodes
	Batch processing of 's internal nodes
	Construction of compact tries
	SA of the compact trie
	LCP of the compact trie

	Generation of maximal common substring pairs

	Experimental results
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

