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ABSTRACT In this paper, a new concept of ‘‘similar fault’’ is introduced to the field of fault isolation (FI)
of discrete-time nonlinear uncertain systems, which defines a new and important class of faults that have
small mutual differences in fault magnitude and fault-induced system trajectories. Effective isolation of such
similar faults is rather challenging as their small mutual differences could be easily concealed by other system
uncertainties (e.g., modeling uncertainty/disturbances). To this end, a novel similar fault isolation (sFI)
scheme is proposed based on an adaptive threshold mechanism. Specifically, an adaptive dynamics learning
approach based on the deterministic learning theory is first introduced to locally accurately learn/identify
the uncertain system dynamics under each faulty mode using radial basis function neural networks (RBF
NNs). Based on this, a bank of sFI estimators are then developed using a novel mechanism of absolute
measurement of fault dynamics differences. The resulting residual signals can be used to effectively capture
the small mutual differences of similar faults and distinguish them from other system uncertainties. Finally,
an adaptive threshold is designed for real-time sFI decision making. One important feature of the proposed
sFI scheme is that: it is capable of not only isolating similar faults that belong to a pre-defined fault set (used
in the training/learning process), but also identifying new faults that do not match any pre-defined faults.
Rigorous analysis on isolatability conditions and isolation time is conducted to characterize the performance
of the proposed sFI scheme. Simulation results on a practical application example of a single-link flexible
joint robot arm are used to show the effectiveness and advantages of the proposed scheme over existing
approaches.

INDEX TERMS Adaptive dynamics learning, deterministic learning, discrete-time systems, neural net-
works, nonlinear uncertain systems, similar fault isolation.

I. INTRODUCTION
Fault isolation (FI) is an important and challenging problem
that has been extensively investigated in the systems and
control community [1]–[3]. It constitutes one of the critical
steps in many complicated control system designs, e.g., fault-
tolerant control [4], [5] and condition-based maintenance [6],
[7]. The past decades have witnessed considerable research
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interests in the field, leading to numerous interesting results
on both analysis and design of various FI algorithms (see,
e.g., [8]–[19]). In this paper, we will introduce a new con-
cept of ‘‘similar faults’’ to the FI field, which defines an
important class of faults that have small mutual differences in
magnitude and associated system trajectories. The associated
similar fault isolation (sFI) problem is of great importance
for many modern engineering systems (e.g., [20]–[22]). A
notable example is the high precision robotics [23], [24],
which is often used for complex assembly or positioning
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FIGURE 1. Architecture of the proposed sFI scheme (u and x represent the system inputs and
states, respectively): (a) fault dynamics identification phase; (b) fault isolation phase.

tasks to achieve high-precision motion. For such engineering
applications, to meet stringent safety and precision require-
ments, a reliable sFI scheme is necessary. However, different
from the control problem for which system faults could be
effectively handled by advanced nonlinear control methods
(e.g., [4], [5], [34]), the sFI problem is rather challenging,
especially when the system is subject to various system
uncertainties such as modeling uncertainty or disturbances.
The technical difficulty lies in that for similar faults, their
mutual differences are relatively small and could be easily
concealed by other system uncertainties. This makes many
existing FI schemes not applicable to dealing with the sFI
problem. For example, in [15]–[17], since the effects of
system uncertainties on measuring fault differences have not
been properly dealt with, an isolatable fault is required to
be sufficiently different from their mismatched faults, and
generally the magnitude of fault differences is required to be
larger than that of the system uncertainty, which may not be
always feasible under the sFI context.

In this paper, we focus on addressing the sFI problem
for discrete-time nonlinear uncertain systems by proposing
a novel adaptive threshold based sFI scheme. Specifically,
we aim at achieving accurate isolation for various types
of similar faults by distinguishing the occurring fault from
system uncertainties. As shown in Fig. 1, the proposed sFI
scheme consists of two phases, i.e., the fault dynamics iden-
tification phase, and fault isolation phase. The identification
phase seeks to overcome the system uncertainty issue as
discussed above. More specific, considering that the system
operates under different faulty modes, the uncertain system
dynamics will be accurately identified by using a determinis-
tic learning (DL) based adaptive dynamics learning approach
from [25]. The learned knowledge can be stored as a bank
of constant radial basis function neural network (RBF NN)
models. In the fault isolation phase, with the obtained RBF
NN models, a bank of sFI estimators are designed through a
novel mechanism of absolute measurement of fault dynamics

difference. Their generated residuals are able to capture the
fault differences (between the occurring fault and each trained
fault), and distinguish such differences from other system
uncertainties for sFI decision making. An adaptive threshold
is designed based on these residuals, which can be used to
pre-specify the required matching level between an isolatable
fault and its matched fault in the training set. The real-
time sFI decision making is based on an adaptive threshold
mechanism, i.e., the occurring fault is identified similar to
a unique trained fault when the related residual becomes
smaller than the threshold. Through rigorous analysis, it is
demonstrated that with the proposed sFI scheme, different
types of similar faults that have been trained can be accurately
isolated. In addition, for those faults that do not belong to the
training fault set, the proposed sFI scheme is still capable of
identifying them as new faults.

It should be noted that this research work is developed by
extending our previous work of small fault detection (sFD)
in [25]. Different from the sFD problem, the sFI problem
considered in this paper is more challenging. The techni-
cal difficulty lies in how to effectively evaluate the mis-
matching/matching level between the occurring fault and
each trained fault, especially when considering similar faults.
Specifically, since the mutual differences among similar
faults are relatively small, to accurately evaluate the fault
matching level, it is necessary to study the functional struc-
tures of the fault differences in terms of not only the magni-
tude but also the sign.Most of the existing FI approaches only
consider the magnitude factor. For example, in [14], [15],
FI is achieved by monitoring the accumulated effect of fault
differences. It requires that there is no change of sign and the
magnitude of fault differences should be sufficiently large
for a sufficiently long time. In the case when the fault dif-
ferences have frequently-changing signs, their accumulated
effect could be offset and approach zero, leading to possi-
ble FI misjudgment. In our scheme, this issue is addressed
based on a novel mechanism of absolute measurement of
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fault dynamics differences. Furthermore, for sFI, a class of
promising approaches [18], [19], [26] are developed based
on smallest residual principle (SRP), which, however, cannot
guarantee the desired fault matching level, leading to poor
isolation reliability. For example, with the methods of [18],
[19], [26], any kind of faults could be isolated (i.e., identified
similar to a trained fault), even for those new faults that do not
belong to the pre-defined set of trained faults. This deficiency
has been overcome in this paper with our method by using an
adaptive threshold mechanism instead of SRP.

The main contributions of this research work are summa-
rized as follows:

1) The sFI problem of discrete-time nonlinear uncertain
systems is addressed, where the considered similar
faults are allowed to have relatively small mutual dif-
ferences that could be easily concealed by other system
uncertainties.

2) An adaptive threshold mechanism based sFI approach
is proposed by developing a bank of sFI estimators
through a novel mechanism of absolute measurement
of fault dynamics differences, which are capable of
capturing the small fault differences and distinguishing
them from system uncertainties, and are also able to
overcome the aforementioned sign issue suffered by
existing FI approaches.

3) Rigorous performance analysis is conducted to derive
the fault isolatability conditions and the fault isolation
time under the proposed sFI scheme.

The rest of this paper is organized as follows. In Section 2,
the problem and some preliminary results are provided,
including the adaptive dynamics learning approach for
accurate identification of uncertain system dynamics.
Section 3 presents the proposed sFI scheme and rigor-
ous performance analysis. Simulation results are shown in
Section 4 to verify the effectiveness and advantages of the
proposed sFI scheme over existing approaches. Conclusions
are made in Section 5.
Notation: Throughout this paper, R, R+ and Z+ denote,

respectively, the set of real numbers, the set of positive real
numbers and the set of positive integers; Rm×n denotes the
set of m × n real matrices; Rn denotes the set of n × 1 real
column vectors; In denotes the n×n identity matrix; the open
ball Br = {x ∈ Rn

: ||x|| < r} with r being an arbitrary
positive constant; | · | is the absolute value of a real number;
|| · || is the 2-norm of a vector or a matrix, i.e. ||x|| = (xT x)

1
2 ;

|| · ||1 is the L1-norm of a vector or a matrix, i.e. ||x(k)||1 =
1
K

∑k−1
h=k−K |x(h)| (k ≥ K > 1); dae denotes the least integer

greater than or equal to a real number a.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
Consider the following discrete-time nonlinear uncertain sys-
tem:

x(k + 1) = f (x(k), u(k))+ v(x(k), u(k))

+β(k − k0)φs(x(k), u(k)), (1)

where x ∈ Rn, u ∈ Rm are the system state and input,
respectively, f : Rn

× Rm
→ Rn denotes the nominal

healthy system dynamics, v : Rn
× Rm

→ Rn denotes
the modeling system uncertainty, φs : Rn

× Rm
→ Rn

represents the functional structure of the deviation in system
dynamics due to the fault s ∈ {1, · · · ,N }, k0 is an unknown
fault occurrence time and β(k− k0) characterizes a fault time
profile, i.e., β(k − k0) = 0 for k < k0, meaning that no fault
occurs in system (1), and β(k − k0) = 1 for k ≥ k0, meaning
that the fault s occurs in (1).
Remark 1: In this paper, we assume that the system signals

(x, u) in (1) are measurable in real-time for fault isolation.
For those cases when full system states are not available (i.e.,
only partial states or output measurements are available),
one can resort to state observer techniques (e.g., [35], [36]),
which however is out of the scope of this paper and will be
investigated in our future work.

Without losing any generality, for fault isolation purpose,
we consider the case when system (1) operates in the s-th
faulty mode, i.e., k ≥ k0. Note that the fault occurrence time
k0 does not need to be pre-known, that is, fault detection
does not need to be achived in advance. Motivated by [18],
[19], we characterize the so-called ‘‘similar faults’’ φs(x, u)
occurring in (1) as: 1) the difference between the fault s and
each other fault s̄ (s̄ ∈ {1, · · · ,N }/{s}), denoted by φs(x, u)−
φ s̄(x, u), is small, which could be hidden within the modeling
uncertainty, that is, the magnitude of each φs(x, u)−φ s̄(x, u)
could be smaller than that of the system uncertain dynamics
v(x, u), and 2) the s-th faulty system trajectory (denoted by
(xs, us)) is close to each s̄-th faulty system trajectory (denoted
by (x s̄, us̄)), i.e.,

dist
(
(xs, us), (x s̄, us̄)

)
:= max {min ||(xs, us), (x s̄, us̄)||} < dζ , (2)

where dζ is the constant number satisfying 0 < dζ < d∗ζ
with d∗ζ being the size of the NN approximation region to be
specified later.

B. RBF NNs
Radial Basis Function Neural Network (RBF NN) is a neural
network architecture that can solve any function approxima-
tion problem [27]. Specifically, the RBF networks can be
described by fnn(Z ) =

∑Nn
i=1 wisi(Z ) = W T S(Z ), where Z ∈

�Z ⊂ Rq is the input vector, W = [w1, · · · ,wNn ]
T
∈ RNn is

the weight vector, Nn is the NN node number, and S(Z ) =
[s1(||Z − ς1||), · · · , sNn (||Z − ςNn ||)]

T , with si(·) being a
radial basis function, and ςi (i = 1, 2, · · · ,Nn) being distinct
points in state space. The Gaussian function si(||Z − ςi||) =
exp[−(Z−ςi)

T (Z−ςi)
η2i

] is one of the most commonly used radial

basis functions, where ςi = [ςi1, ςi2, · · · , ςiq]T is the center
of the receptive field. and ηi is the width of the receptive field.
The Gaussian function belongs to the class of localized RBFs
in the sense that si(||Z − ςi||) → 0 as ||Z || → ∞. It is
easily seen that S(Z ) is bounded and there exists a constant
SM ∈ R+ such that ||S(Z )|| 6 SM [28].
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It has been shown in [27], [29] that for any continuous
function f (Z ) : �Z → R where �Z ⊂ Rq is a compact set,
and for the NN approximator, where the node number Nn is
sufficiently large, there exists an ideal constant weight vector
W ∗, such that for any ε∗ > 0, f (Z ) = W ∗T S(Z ) + ε, ∀Z ∈
�Z , where |ε| < ε∗ is the ideal approximation error. The ideal
weight vectorW ∗ is an ‘‘artificial’’ quantity required for anal-
ysis, and is defined as the value of W that minimizes |ε| for
all Z ∈ �Z ⊂ Rq, i.e. W ∗ , argminW∈RNn {supZ∈�Z |f (Z )−
W T S(Z )|}. Moreover, based on the localization property
of RBF NNs [28], for any bounded trajectory Z (k) within
the compact set �Z , f (Z ) can be approximated by using a
limited number of neurons located in a local region along
the trajectory: f (Z ) = W ∗Tζ Sζ (Z ) + εζ , where εζ is the
approximation error, with εζ = O(ε) = O(ε∗), Sζ (Z ) =
[sj1(Z ), · · · , sjζ (Z )]T ∈ RNζ , W ∗ζ = [w∗j1, · · · ,w

∗
jζ ]

T
∈ RNζ ,

Nζ < Nn, and the integers ji = j1, · · · , jζ are defined by
|sji (Zp)| > θ (θ > 0 is a small positive constant) for some
Zp ∈ Z (k).

It is shown in [28] that for a localized RBF network
W T S(Z ) whose centers are placed on a regular lattice, almost
any recurrent trajectory1 Z (k) can lead to the satisfaction of
the PE condition of the regressor subvector Sζ (Z ). This result
is formally summarized in the following lemma.
Lemma 1 ( [30], [31]): Consider any recurrent trajectory

Z (k): Z+ → Rq. Z (k) remains in a bounded compact set
�Z ⊂ Rq, then for RBF networkW T S(Z )with centers placed
on a regular lattice (large enough to cover compact set �Z ),
the regressor subvector Sζ (Z ) consisting of RBFs with cen-
ters located in a small neighborhood of Z (k) is persistently
exciting (PE).

C. IDENTIFICATION OF FAULT DYNAMICS VIA
DETERMINISTIC LEARNING
In our previous work [25], an adaptive dynamics learning
approach has been proposed based on DL theory. It can
be employed for the identification of the system uncertain
dynamics under various faulty modes (i.e., the identification
phase as shown in Fig. 1). Specifically, consider the following
faulty dynamic systems:

xs(k + 1) = f (xs(k), us(k))+ v(xs(k), us(k))

+φs(xs(k), us(k)), (3)

where s = 1, · · · ,N is used to stand for the s-th faulty
mode. Note that the modeling uncertainty v(x, u) and fault
function φs(x, u) in (3) cannot be decoupled from each other,
we introduce a so-called general fault function ηs(x, u) :=
v(x, u)+ φs(x, u), and rewrite the system (3) as:

xs(k + 1) = f (xs(k), us(k))+ ηs(xs(k), us(k)). (4)

For this system, as typically adopted in the DL literature [25],
[28], the following assumption is made.

1A recurrent trajectory represents a large set of periodic and periodic-like
trajectories generated from linear/nonlinear dynamics systems. A detailed
characterization of recurrent trajectories can be found in [28].

Assumption 1: The faulty system trajectories (xs, us) (s =
1, · · · ,N) of (4) are all bounded and recurrent.
Consider the function ηs(x, u)= [ηs1(x, u), · · · , η

s
n(x, u)]

T

in (4), it is known that there exists an ideal constant RBF NN
weight W s∗

= [W s∗
1 , · · · ,W

s∗
n ] ∈ RNn×n (with Nn denoting

the number of NN nodes) such that

ηsi (x, u) = W s∗T
i S(x, u)+ εsi,0, (5)

where i = 1, · · · , n, s = 1, · · · ,N , S(x, u) : Rn
× Rm

→

RNn is a smooth RBF vector and εsi,0 is the estimation error
satisfying |εsi,0| < ε∗ with ε∗ being a positive constant
that can be made arbitrarily small given sufficiently large
number of neurons. Then, according to [25], we construct the
following dynamical identifier:

x̂i(k + 1) = ai(x̂i(k)− xsi (k))+ fi(x
s(k), us(k))

+Ŵ sT
i (k)S(xs(k), us(k)), (6)

where i = 1, · · · , n, s = 1, · · · ,N , x̂i ∈ R is the i-th
state of the identifier, xsi is the i-th state of the system (4),
0 < ai <

√
5−1
2 is a design parameter, and Ŵ s

i ∈ RNn is
the estimate of W s∗

i which is updated in real time using the
following adaptive learning law:

Ŵ s
i (k + 1) = Ŵ s

i (k)− cix̃i(k + 1)S(xs(k), us(k)), (7)

where 0 < ci < 1
S2M (2+ai)

is a design constant with SM being

the upper bound of ||S(xs, us)||, and x̃i := x̂i − xsi .
The rigorous analysis of the learning performance achieved

by the identifier (6)–(7) has been provided in [25]. Specifi-
cally, from Lemma 1, the partial PE condition of the regres-
sion vector S(xs, us) is guaranteed by the given recurrent
trajectory (xs, us) generated from the system (4). Based
on this, from [25], the estimation error x̃i will converge
to a small neighborhood around the origin, and the con-
structed Ŵ sT

i S(x, u) will achieve locally-accurate approxima-
tion for ηsi (x

s, us). In addition, according to [25], the weights
Ŵ s
i will converge to a small neighborhood of W s∗

i , and
a constant NN weight W̄ s

i can be derived by W̄ s
i :=

1
K2

∑K1+K2−1
k=K1

Ŵ s
i (k) with [K1,K1 + K2 − 1] representing

a time segment after the transient process. Consequently,
a constant model W̄ sT

i S(xs, us) can be obtained to represent
ηsi (x

s, us), i.e.,

ηsi (x
s, us) = W̄ sT

i S(xs, us)+ εsi,1, (8)

with the estimation error εsi,1 satisfying |εsi,1| ≤ ε∗i , where
ε∗i is an arbitrarily small constant which can always be pre-
designed and obtained by constructing a sufficiently large
number of neurons, as argued in [25].

Furthermore, according to [25], thanks to the general-
ization ability of constant RBF NN model W̄ sT

i S(xs, us)
in (8), its locally-accurate approximation for ηsi (x, u) can be
achieved in a local region

�s
ζ := {(x, u)

∣∣∣dist((x, u), (xs, us)) < d∗ζ }

along the trajectory (xs, us), with d∗ζ > 0 characterizing
the size of the NN approximation region. In such a region,
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a desirable accuracy level of the NN approximation (denoted
by ξ∗i ) will be guaranteed, i.e.,

|ηsi (x, u)− W̄
sT
i S(x, u)| ≤ ξ∗i , ∀(x, u) ∈ �

s
ζ .

Under the similar fault definition specified in (2), we have
that each faulty trajectory (x s̄, us̄) (generated from the
s̄-th faulty system, s̄ ∈ {1, · · · ,N }/{s}) satisfies
dist((xs, us), (x s̄, us̄)) < d∗ζ , i.e., (x

s̄, us̄) ∈ �s
ζ . Thus,

we obtain:

ηsi (x
s̄, us̄) = W̄ sT

i S(x s̄, us̄)+ εsi,2, |ε
s
i,2| ≤ ξ

∗
i . (9)

In view of (8) and (9), it is demonstrated that no matter
which faulty mode the system (1) operates in (i.e., (x, u) =
(xs, us) or (x, u) = (x s̄, us̄)), the constant RBF NN model
W̄ sT
i S(x, u) is able to reconstruct the general fault function

ηsi (x, u) with desired approximation accuracy. Consequently,
the s-th faulty system (4) can be represented by:

xsi (k + 1) = fi(x(k), u(k))+ W̄ sT
i S(x(k), u(k))

+εsi , i = 1, · · · , n, s = 1, · · · ,N , (10)

where xsi represents the s-th faulty system state, (x, u) is the
trajectory generated in real time from system (1), εsi is the
approximation error associated with W̄ sT

i S(x, u) satisfying
(i) |εsi | = |ε

s
i,1| ≤ ε∗i when the system (1) operates in

s-th faulty mode, i.e., (x, u) = (xs, us), and (ii) |εsi | =
|εsi,2| ≤ ξ

∗
i when the system (1) operates in s̄-th faulty mode,

i.e., (x, u) = (x s̄, us̄).

III. MAIN RESULTS
In this section, based on the above learning results, a bank of
novel sFI estimators will be designed and a sFI schemewill be
developed based on adaptive threshold mechanism. Rigorous
analysis of the performance of the proposed sFI scheme will
also be provided.

A. DESIGN OF SIMILAR FAULT ISOLATION ESTIMATOR
AND DECISION MAKING SCHEME
Assuming a fault l ′ (similar to the trained fault l, l ∈
{1, · · · ,N }) occurs, the monitored system is obtained as:

x(k + 1) = f (x(k), u(k))+ v(x(k), u(k))

+β(k − k0)φl
′

(x(k), u(k)). (11)

Recall that k0 is the fault occurrence time. For this sys-
tem, by utilizing the constant NN model W̄ sT

i S(x, u) (i =
1, · · · , n, s = 1, · · · ,N ) obtained from the learning phase,
we propose to construct a bank of sFI estimators (i.e., resid-
ual systems) embedded with a novel mechanism of absolute
measurement of faulty dynamics differences as follows:

esi (k) = biesi (k − 1)+ |fi(x(k − 1), u(k − 1))

+W̄ sT
i S(x(k − 1), u(k − 1))− xi(k)|, (12)

where i = 1, · · · , n, s = 1, · · · ,N ; esi is the i-th state of the s-
th residual systemwith initial conditions set as esi (0) = 0; bi is
a design parameter satisfying 0 ≤ bi < 1; xi is the i-th state of

the monitored system (11). Note that fi(x, u)+ W̄ sT
i S(x, u) is

able to represent the s-th faulty system (4), as verified in (10),
the term |fi(x(k − 1), u(k − 1)) + W̄ sT

i S(x(k − 1), u(k −
1))− xi(k)| in (12) can thus be used to represent the absolute
difference of the dynamics between the s-th faulty system (4)
and the monitored system (11).

From Eqs. (10) and (11), the residual systems (12) can be
rewritten as follows:

esi (k) = biesi (k − 1)+ |φsi (x(k − 1), u(k − 1))

−β(k − 1− k0)φl
′

i (x(k − 1), u(k − 1))− εsi |. (13)

Introducing a so-called fault mismatch function: %s,l
′

i (x, u)
:= φsi (x, u)− φ

l′
i (x, u), Eq. (13) is further equivalent to:

esi (k) = bk−k0i esi (k0)+
k−1∑
h=k0

bk−1−hi |%
s,l′
i (x(h), u(h))− εsi |.

(14)

where εsi is the approximation error derived from (10) and can
be made small.
Remark 2: The differences between the occurring fault l ′

and the trained fault s can be represented by the fault mis-
match function %s,l

′

i (x, u) (i = 1, · · · , n). The accumulated
effects of such fault differences over the time [k0, k − 1] are
characterized by the residual esi in (14), which essentially
manifests the matching level between the faults l ′ and s.
Remark 3: In the residual system (12), the constant model

W̄ sT
i S(x, u) (i = 1, · · · , n) is employed to deal with the

system uncertainty vi(x, u) in (11). This enables that the
differences between the occurring fault l ′ and each trained
fault s can be captured and distinguished from the system
uncertainty vi(x, u) by the residual esi of (14). Furthermore,
the residual system (12) is designed through a novel mecha-
nism of absolute measurement of fault dynamics differences.
This further enables that even when the fault difference
%
s,l′
i (x, u) has frequently-changing signs, its accumulated
effects would not be offset and the related residual will not
approach zero.

Based on the residual systems (14), an adaptive threshold
will be further developed for real-time sFI decision making.
Such an adaptive threshold is a time-varying function used
to bound the matched residual signal, i.e., eli(k) (k ≥ k0).
For this purpose, we first consider an ideal scenario that the
fault occurrence time is k0 = 0 and the occurring fault l ′

completely matches the trained fault l, i.e., %l,l
′

i (x, u) ≡ 0.
Consider the l-th residual system in the form of (14). Noting
that the system (11) operates in the l-th faulty mode for all
k ≥ 0, i.e., (x, u) = (x l, ul), and |εli | = |ε

l
i,1| ≤ ε

∗
i from (10),

the residual eli(k) in the form of (14) is obtained as:

eli(k) =
k−1∑
h=0

bk−1−hi |εli | ≤

k−1∑
h=0

bk−1−hi ε∗i =
(1− bki )ε

∗
i

1− bi
.

(15)
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FIGURE 2. Schematic of adaptive threshold based sFI scheme: (a) architecture of sFI system;
(b) fault function φl ′

i (x, u) (i = 1, · · · ,n); (c) sFI decision making: the matched residual el
i

(l ∈ {1, · · · ,N}), mismatched residuals el̄
i (l̄ ∈ {1, · · · ,N}/{l }) and adaptive threshold ēi .

Fault l ′ occurs at time k0 and is isolated at time kl with el
i (kl ) < ēi (kl ), the corresponding

isolation time Kl = kl − k0.

Based on (15), we further consider the general case when
k0 6= 0 and %l,l

′

i (x, u) 6= 0, and design an adaptive threshold
as:

ēi(k) :=
(1− bki )qiε

∗
i

1− bi
, i = 1, · · · , n, (16)

where qi > 1 is an auxiliary design parameter, bi is the param-
eter designed in residual systems (12), and ε∗i represents the
desired accuracy level of the NN approximation, as defined
in (10), which can be pre-specified and obtained by setting
a sufficiently large number of neurons in the identification
phase (an example will be given in the simulation section for
illustration).
Remark 4: In the adaptive threshold (16), the parameter qi

is designed to pre-specify the requiredmatching level between
an isolatable fault (fault l ′) and its matched fault (fault l). If
the value of qi is selected small (close to 1), for successful
isolation, the fault l ′ is required to perfectly match the fault
l (i.e., %l,l

′

i (x, u) ≈ 0), as verified in (15). Rigorous analysis
on the effect of qi on the isolation performance (in terms of
isolation accuracy and isolation time) will be conducted in
the next section.

Based on the residual systems (12) and the threshold (16),
an adaptive threshold based sFI scheme can be proposed,
as illustrated in Fig. 2. Specifically, after a fault l ′ occurs
(i.e., k ≥ k0), the matched residual eli(k) will decrease and
become very small such that eli(k) < ēi(k) for k ≥ kl (with kl
denoting absolute isolation time), whereas other mismatched
residuals el̄i(k) (l̄ ∈ {1, · · · ,N }/{l}) will remain large and
satisfy el̄i(k) ≥ ēi(k) for all k ≥ k0. The idea is formalized as
follows:
sFI Decision Making Scheme: Compare the residual sig-

nals esi (k) (i = 1, · · · , n, s = 1, · · · ,N ) in (12) with the
adaptive threshold ēi(k) in (16). For all i ∈ {1, · · · , n}, if there
exists a unique l ∈ {1, · · · ,N } and a finite time kl > 0 such
that eli(kl) < ēi(kl), then the occurring fault will be identified
similar to fault l at time kl .

Remark 5: Existing FI methods (e.g., [18], [19]) are
developed based the SRP, with which any possibly occurring
faults, even a new fault that does not match any trained faults,
will be identified similar to a trained fault, leading to a pos-
sible isolation misjudgment. Advanced over these schemes,
our sFI scheme is based on an adaptive threshold mechanism,
which can ensure desired isolation accuracy. More specific,
only when the difference between the occurring fault l ′ and
the trained fault l is sufficiently small, the related residual eli
(i = 1, · · · , n) could become smaller than the threshold ēi. As
for those occasions when no residual becomes smaller than
the threshold, the occurring fault will be identified as a new
fault.
Remark 6: With the proposed sFI scheme based on the

adaptive threshold mechanism, similar fault isolation can be
achieved without implementing fault detection in advance.
This is because when no fault occurs, all residuals will remain
larger than the adaptive threshold; when a trained fault
recurs, the associated residual will then become smaller than
the threshold, leading to successful fault isolation with no
need of a priori fault detection.

B. FAULT ISOLATABILITY CONDITION
AND ISOLATION TIME
In this section, we focus on studying the performance of the
proposed sFI scheme in terms of isolatability condition and
isolation time. For isolatability, we will examine under what
conditions the occurring fault l ′ could be identified similar to
a unique trained fault l.
Theorem 1 (Fault Isolatability): Consider the monitored

system (11) and the fault isolation system consisting of (12)
and (16). Under the proposed sFI scheme, if the following
conditions hold:

1) there exists a unique l ∈ {1, · · · ,N } and a
finite time kf ≥ k0 + logbi

(qi−1)ε∗i
(qi−1)ε∗i +(1−bi)E

l
i
with
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E li := maxk≤k0{e
l
i(k)}, such that for ∀i ∈ {1, · · · , n},

kf−1∑
h=k0

b
kf−1−h
i |%

l,l′
i (x(h), u(h))|

≤
(1− b

kf−k0
i )(qi − 1)ε∗i
1− bi

− b
kf−k0
i E li ; (17)

2) for each mismatched fault l̄ (l̄ ∈ {1, · · · ,N }/{l}), there
exist some i ∈ {1, · · · , n} such that

k−1∑
h=k0

bk−1−hi |%
l̄,l′
i (x(h), u(h))| ≥

qiε∗i + ξ
∗
i

1− bi
, ∀k>k0;

(18)

then we have eli(kf ) < ēi(kf ) and el̄i(kf ) > ēi(kf ), i.e., the
occurring fault l ′ is identified similar to the unique trained
fault l at time kf .

Proof: We first consider the l-th residual system in the
form of (14). Noting that k > k0, the monitored system (11)
operates in l-th faulty mode, i.e., (x, u) = (x l, ul), |εli | =
|εli,1| ≤ ε

∗
i from (10), and eli(k0) ≤ E

l
i , we obtain:

eli(kf )

= b
kf−k0
i eli(k0)+

kf−1∑
h=k0

b
kf−1−h
i |%

l,l′
i (x(h), u(h))− εli |

≤ b
kf−k0
i eli(k0)+

kf−1∑
h=k0

b
kf−1−h
i (|%l,l

′

i (x(h), u(h))| + |εli |)

≤ b
kf−k0
i E li +

kf−1∑
h=k0

b
kf−1−h
i |%

l,l′
i (x(h), u(h))|+

kf−1∑
h=k0

b
kf−1−h
i ε∗i

= b
kf−k0
i E li +

kf−1∑
h=k0

b
kf−1−h
i |%

l,l′
i (x(h), u(h))|+

(1−b
kf−k0
i )ε∗i

1− bi
.

(19)

Under condition (17), we have: eli(kf ) ≤
(1−b

kf −k0
i )qiε∗i
1−bi

<

(1−b
kf
i )qiε∗i

1−bi
= ēi(kf ). It should be noted that the time instant

kf is required to satisfy kf ≥ k0 + logbi
(qi−1)ε∗i

(qi−1)ε∗i +(1−bi)E
l
i
,

such that the right-hand side of condition (17) is larger than

zero, i.e.,
(1−b

kf −k0
i )(qi−1)ε∗i

1−bi
− b

kf−k0
i E li > 0, guaranteeing the

existence of
∑kf−1

h=k0
b
kf−1−h
i |%

l,l′
i (x(h), u(h))|.

Then we consider the l̄-th (l̄ ∈ {1, · · · ,N }/{l}) residual
system in the form of (14). Recall that k > k0, (x, u) =
(x l, ul), and |ε l̄i | = |ε

l̄
i,2| ≤ ξ

∗
i from (10), we have:

el̄i(k) = bk−k0i el̄i(k0)+
k−1∑
h=k0

bk−1−hi |%
l̄,l′
i (x(h), u(h))− ε l̄i |

≥

k−1∑
h=k0

bk−1−hi |%
l̄,l′
i (x(h), u(h))| −

k−1∑
h=k0

bk−1−hi |ε l̄i |

≥

k−1∑
h=k0

bk−1−hi |%
l̄,l′
i (x(h), u(h))| −

k−1∑
h=k0

bk−1−hi ξ∗i

>

k−1∑
h=k0

bk−1−hi |%
l̄,l′
i (x(h), u(h))| −

ξ∗i

1− bi
. (20)

Under condition (18), we obtain el̄i(k) ≥
qiε∗i
1−bi

>
(1−bki )qiε

∗
i

1−bi
=

ēi(k) for all k > k0, thus, the occurring fault l ′ will never
be identified similar to the mismatched fault l̄ under our sFI
scheme.

In view of (19) and (20), we have eli(kf ) < ēi(kf ) and
el̄i(kf ) > ēi(kf ), thus, the occurring fault l ′ will be identified
similar to a unique trained fault l at time kf . This ends the
proof. �
Remark 7: Our approach is developed by considering a

general case that the occurring fault l ′ in system (11) does
not necessarily have a perfect match to the trained fault l
(i.e., %l,l

′

i (x, u) 6= 0). The isolatability condition (17) is thus
proposed to restrict the matching level between the occurring
fault l ′ and the matched fault l. Particularly, if we consider a
special case that the occurring fault l ′ is completely identical
to the trained fault l, i.e., %l,l

′

i (x, u) ≡ 0 (as typically
adopted in the literature [15], [16]), the condition (17) will
be automatically satisfied and thus can be omitted.
Remark 8: For the isolatability conditions (17)–(18),

it should be noted that the bounds given therein can be made
small since they are dependent on the parameters ε∗i and
ξ∗i (both of which can be made arbitrarily small), and the
designed constants qi, bi (both of which can be selected freely
by qi > 1, 1 > bi ≥ 0). Such small bounds ensure that the
condition (18) can be satisfied even when |%l̄,l

′

i (x, u)| is small.
In the following, we denote the absolute fault isolation time

as kl , and the fault isolation timeKl as the time length between
the occurrence time k0 and the absolute fault isolation time kl ,
i.e., Kl = kl − k0. To further investigate the performance of
the proposed sFI scheme, we will derive the upper bound on
the isolation timeKl (denoted by K̄l), i.e., sFI will be achieved
at most in K̄l amount of time steps after the fault occurrence
time k0.
Theorem 2 (Isolation Time): Consider the monitored sys-

tem (11) and the fault isolation system consisting of (12)
and (16). Under the proposed sFI scheme, if the following
conditions hold:

1) for ∀i ∈ {1, · · · , n}, there exists a unique l ∈
{1, · · · ,N } and some time steps ki,t ∈ [k0, kl − 1] and
ki,t̄ ∈ [k0, kl − 1]/{ki,t } such that

|%
l,l′
i (x(ki,t ), u(ki,t ))| > (qi − 1)ε∗i ,

|%
l,l′
i (x(ki,t̄ ), u(ki,t̄ ))| < (qi − 1)ε∗i , (21)

with the total number of the elements in set {ki,t }
(denoted by Ti) satisfying 0 ≤ Ti < logbi

γi−(qi−1)ε∗i
γi−µi

,

where µi := maxk∈{ki,t̄ }{|%
l,l′
i (x(k), u(k))|} and γi :=

maxk∈{ki,t }{|%
l,l′
i (x(k), u(k))|}.
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2) for each mismatched fault l̄ (l̄ ∈ {1, · · · ,N }/{l}),
condition (18) is satisfied;

then, we have eli(kl) < ēi(kl) and el̄i(kl) > ēi(kl), i.e., the
occurring fault l ′ is isolated at time kl . The upper bound on
the isolation time Kl = kl − k0 is given by

K̄l = max
i=1,2,··· ,n

{dlogbi
bTii (γi − µi)+ (qi − 1)ε∗i − γi
(1− bi)E li + (qi − 1)ε∗i − µi

e},

(22)

with E li = maxk≤k0{e
l
i(k)}.

Proof:
For the matched fault l, under condition (21), we have
|%
l,l′
i (x(ki,t ), u(ki,t ))| ≤ γi for all ki,t ∈ [k0, kl − 1], and
|%
l,l′
i (x(ki,t̄ ), u(ki,t̄ ))| ≤ µi for all ki,t̄ ∈ [k0, kl − 1]/{ki,t }.

Recalling that for k > k0, (x, u) = (x l, ul), and |εli | =
|εli,1| ≤ ε∗i according to (10), and noting that E li ≥ eli(k0),
the state of the l-th residual system in (14) satisfies

eli(kl)

= bkl−k0i eli(k0)+
kl−1∑
h=k0

bkl−1−hi |%
l,l′
i (x(h), u(h))− εli |

≤ bkl−k0i eli(k0)+
kl−1∑
h=k0

bkl−1−hi (|εli | + |%
l,l′
i (x(h), u(h))|)

≤ bkl−k0i E li +
kl−1∑
h=k0

bkl−1−hi (ε∗i + |%
l,l′
i (x(h), u(h))|)

= bkl−k0i E li +
∑
h=ki,t

bkl−1−hi |%
l,l′
i (x(h), u(h))|

+

∑
h=ki,t̄

bkl−1−hi |%
l,l′
i (x(h), u(h))| +

(1− bkl−k0i )ε∗i
1− bi

≤ bkl−k0i E li +
(1− bkl−k0i )ε∗i

1− bi
+

∑
h=ki,t

bkl−1−hi γi

+

∑
h=ki,t̄

bkl−1−hi µi

= bkl−k0i E li +
(1− bkl−k0i )ε∗i

1− bi
+

∑
h=ki,t

bkl−1−hi (γi − µi)

+

∑
h=ki,t

bkl−1−hi µi +
∑
h=ki,t̄

bkl−1−hi µi

= bkl−k0i E li +
(1− bkl−k0i )ε∗i

1− bi
+

∑
h=ki,t

bkl−1−hi (γi − µi)

+

kl−1∑
h=k0

bkl−1−hi µi

= bkl−k0i E li +
(1− bkl−k0i )ε∗i

1− bi
+

∑
h=ki,t

bkl−1−hi (γi − µi)

+
1− bkl−k0i

1− bi
µi, (23)

where
∑

h=ki,t b
kl−1−h
i |%

l,l′
i (x(h), u(h))| is the sum of

bkl−1−ki,ti |%
l,l′
i (x(ki,t ), u(ki,t ))| for Ti numbers of ki,t , and∑

h=ki,t̄
bkl−1−hi |%

l,l′
i (x(h), u(h))| is the sum of b

kl−1−ki,t̄
i |

%
l,l′
i (x(ki,t̄ ), u(ki,t̄ ))| for kl − k0 − Ti numbers of ki,t̄ .
From condition (21), we know that γi > (qi − 1)ε∗ > µi,

and thus
γi−(qi−1)ε∗i
γi−µi

> 1. Therefore existence of Ti can be
guaranteed. Based on this, noting that 0 ≤ bi < 1, it can be
verified that the term

∑
h=ki,t b

kl−1−h
i (γi−µi) in (23) satisfies

∑
h=ki,t

bkl−1−hi (γi − µi) ≤
kl−1∑

h=kl−Ti

bkl−1−hi (γi − µi)

=
1− bTii
1− bi

(γi − µi), (24)

which results in

eli(kl) ≤ b
kl−k0
i E li +

(1− bkl−k0i )ε∗i
1− bi

+
1− bTii
1− bi

(γi − µi)+
1− bkl−k0i

1− bi
µi. (25)

From (25), eli(kl) ≤
(1−b

kl−k0
i )qiε∗i
1−bi

holds as long as

Kl = kl − k0 ≥ logbi
bTii (γi − µi)+ (qi − 1)ε∗i − γi
(1− bi)E li + (qi − 1)ε∗i − µi

,

(26)

where (1 − bi)E li + (qi − 1)ε∗i − µi > (qi − 1)ε∗i − µi > 0
and bTii (γi − µi) + (qi − 1)ε∗i − γi > 0 given the results of

γi > (qi − 1)ε∗i > µi and Ti < logbi
γi−(qi−1)ε∗i
γi−µi

under the
condition (21). Furthermore, we have

logbi
bTii (γi − µi)+ (qi − 1)ε∗i − γi
(1− bi)E li + (qi − 1)ε∗i − µi

> logbi
bTii (γi − µi)+ b

Ti
i ((qi − 1)ε∗i − γi)

(1− bi)E li + (qi − 1)ε∗i − µi

> logbi
bTii ((1− bi)E

l
i + (qi − 1)ε∗i − µi)

(1− bi)E li + (qi − 1)ε∗i − µi
= Ti,

which implies that (26) ensures Kl = kl − k0 > Ti.

Consequently, eli(kl) ≤
(1−b

kl−k0
i )qiε∗i
1−bi

<
(1−b

kl
i )qiε∗i

1−bi
= ēi(kl)

is guaranteed under condition (21). Furthermore, we have
el̄i(kl) > ēi(kl) under the condition (18), as verified in The-
orem 1. Thus, it can be deduced that the occurring fault l ′

will be identified similar to the trained fault l in a finite
time kl .

Finally, since Kl ∈ Z+ and according to (26), the upper
bound of the isolation time K̄l can be obtained as:

K̄l = max
i=1,2,··· ,n

{dlogbi
bTii (γi − µi)+ (qi − 1)ε∗i − γi
(1− bi)E li + (qi − 1)ε∗i − µi

e},

(27)

which ends the proof. �
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FIGURE 3. Schematic of an elastic robot.

Remark 9: In the above theorem, condition (21) implies
that during [k0, kl − 1], an isolatable fault l ′ is required to
sufficiently match the trained fault l for most of time (denoted
by ki,t̄ ), i.e., the associated fault difference |%

l,l′
i (x, u)| needs

to be relatively small. On the other hand, it is also allowable
that there exist some time instants ki,t (which could be non-
consecutive) when the fault difference is not sufficiently small
(while its upper bound still exists as denoted by γi). Theo-
rem 2 further implies that if the parametersµi, γi and Ti have
relatively small values, i.e., the occurring fault l ′ perfectly
matches the fault l, the isolation time K̄l in (22) then becomes
very small, indicating that fault isolation could be achieved
in a rapid manner.
Remark 10: In Theorems 1 and 2, the effect of the param-

eter qi on the isolation performance has been established.
Specifically, from (27), it is seen that increasing qi would
decrease the value of K̄l , enabling the isolation to be achieved
in a rapid manner. On the other hand, increasing qi will
increase the bounds given in (17)–(18), which could result
in failure of achieving accurate isolation for those sim-
ilar faults with relatively small mutual differences. Thus,
when designing the value for qi, the tradeoff between iso-
lation time and isolation accuracy should be taken into
account. An example will be given in next section for
illustration.

IV. SIMULATION RESULTS
In this section, to verify the effectiveness and advantages
of our scheme, we consider a sFI problem for a single-link
flexible joint robot [32], [33] as shown in Fig. 3. Its motion
equations are described as

J1q̈1 + k(q1 − q2)+ mgh sin q1 = 0

Jmq̈2 + Fmq̇2 − k(q1 − q2) = kτu, (28)

where q1 and q2 denote the angular positions of the controlled
link and the motor, respectively; u is the control torque gen-
erated by the motor; Jm = 3.7 × 10−3kg · m2 is the inertia
of the motor; J1 = 9.3 × 10−3kg · m2 is the inertia of the
link; the torsional spring constant is k = 1.8×10−1Nm/rad ;
link mass is m = 2.1 × 10−1kg; link length is h = 0.5m;
amplifier gain is kτ = 8× 10−2Nm/V ; viscous friction coef-
ficient is Fm = 4.6 × 10−2Nm/V ; and the gravity constant
is g = 9.8 m/s2.

Choosing x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, and through
Euler approximation, the system (28) can be discretized as:

x1(k + 1) = x1(k)+ Tsx2(k)

x2(k + 1) = x2(k)+
Ts
J1

(−mgh sin(x1(k))

−k(x1(k)− x3(k)))

x3(k + 1) = x3(k)+ Tsx4(k)

x4(k + 1) = x4(k)+
Ts
Jm

(k(x1(k)− x3(k))

−Fmx4(k)+ kτu(k)), (29)

with Ts = 0.01s being the sampling period. For sim-
ulation purpose, the system input is given by u(k) =
2 sin(2Tsk), and the system dynamics in (29) is assumed
completely unknown, i.e., v1(x(k), u(k)) := x1(k) +
Tsx2(k), v2(x(k), u(k)) := x2(k) +

Ts
J1
(−mgh sin(x1(k)) −

k(x1(k) − x3(k))), v3(x(k), u(k)) := x3(k) + Tsx4(k) and
v4(x(k), u(k)) := x4(k) +

Ts
Jm
(k(x1(k) − x3(k)) − Fmx4(k) +

kτu(k)) are all unknown functions. The following four types
of faults are considered for simulation purpose:
• Fault 1: Amultiplicative actuator fault that ismodeled by
letting u′(k) = (1+ θ1)u(k), where u is the normal con-
trol input when no fault occurs and θ1 is the parameter
characterizing the magnitude of the fault. Note that the
case of θ1 = 0 represents the normal operation condition
(no fault). The associated fault function can be described
by φ14 (x(k), u(k)) :=

Tskτ θ1
Jm

u(k). We set θ1 = 0.2 for
simulation purpose.

• Fault 2: An oscillation actuator fault by letting u′(k) =
u(k)+ θ1(θ2 sin(20 Ts(k − 1))+ 1)u(k), where θ2 is the
parameter describing the level of oscillation. We denote
fault 2 as φ24 (x(k), u(k)) :=

Tskτ θ1
Jm

(θ2 sin(20 Ts(k−1))+
1)u(k) with θ2 = 0.4.

• Fault 3: A fault leading to extra abnormal friction in the
motor by lettingF ′m = Fm+Fmf1 , whereFm is the normal
viscous friction constant, Fmf1 is the extra abnormal
viscous friction constant. In this case, the fault function
is φ34 (x(k), u(k)) := −

TsFmf1
Jm

x4(k), we set Fmf1 = −0.02
for simulation.

• Fault 4: An oscillation fault occurring in the motor by
letting F ′m = Fm + Fmf1 (Fmf2 cos(20 Ts(k − 1) + 1),
with Fmf2 characterizing the strength of the oscillation.
The fault function is denoted by φ44 (x(k), u(k)) :=

−
TsFmf1
Jm

(Fmf2 cos(20 Ts(k−1))+1)x4(k). We set Fmf2 =
0.3.

For the monitored system (29), the system states
(x1, x2, x3, x4) under all possible modes (including normal
mode and four faulty modes) are plotted in Fig. 4, indicating
that all faulty system trajectories are close to each other.
The fault mismatch functions, i.e., %1,24 (x, u) = φ14 (x, u) −
φ24 (x, u), %

2,3
4 (x, u) = φ24 (x, u) − φ34 (x, u), %

3,4
4 (x, u) =

φ34 (x, u) − φ
4
4 (x, u), %

4,1
4 (x, u) = φ44 (x, u) − φ

1
4 (x, u), are

compared with the system uncertainty v4(x, u) in Fig. 5. It is
seen that the magnitude of each fault mismatch function is
noticeably smaller compared to that of the system uncertainty.
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FIGURE 4. System state trajectories under normal mode and all possible faulty modes. (a) (x1, x2). (b) (x3, x4).

FIGURE 5. Comparison between system uncertainty v4(x, u) and the fault mismatch functions
%

s,l
4 (x, u) = φs

4(x, u)− φl
4(x, u) (s, l ∈ {1,2,3,4}). (a) v4(x, u) and %1,2

4 (x, u). (b) v4(x, u) and %2,3
4 (x, u).

(c) v4(x, u) and %3,4
4 (x, u). (d) v4(x, u) and %4,1

4 (x, u).

This demonstrates that the considered four types of faults are
similar faults.

Given the above system setup, to examine the effectiveness
of our sFI scheme, we first achieve the accurate identification
for the system dynamics under all faulty modes. For each
s-th faulty mode (s = 1, 2, 3, 4), the proposed identifier
consisting of (6) and (7) is implemented to learn the unknown
dynamics xi(k + 1) = vi(x(k), u(k)) + φsi (x(k), u(k))
(i = 1, 2, 3, 4) in (29). The desired learning accuracy level
is pre-designed as ε∗1 = 0.0082, ε∗2 = 0.0293, ε∗3 =
0.0215, ε∗4 = 0.0571, which can be achieved by constructing

a sufficiently large number of neurons. Through extensive
trial and error, we construct the RBF networks Ŵ sT

i S(x, u) in
a regular lattice, with nodes N = 7 × 11 × 13 × 23 × 14,
the centers evenly spaced on [−0.9, 0.9] × [−1.5, 1.5] ×
[−1.8, 1.8]× [−3.3, 3.3]× [−2, 2] and the widths ηt = 0.3.
The weights of the RBF networks Ŵ s

i are updated according
to (7). The design parameters of (6) and (7) are ai = 0.2 and
ci = 0.1. The initial conditions are set as Ŵ s

i (0) = 0, u(0) =
0, x(0) = [0, 0, 0, 0]T and x̂(0) = [0, 0, 0, 0]T . All the above
system setups are kept the same for all i = 1, 2, 3, 4 and s =
1, 2, 3, 4. In the following, we only show the identification
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FIGURE 6. Identification of the unknown function v4(x,u)+ φ1
4 (x,u) in faulty mode 1. (a) Weight convergence of Ŵ 1

4 . (b) Function approximation:
Ŵ 1T

4 S(x, u) and v4(x,u)+ φ1
4 (x,u). (c) Function approximation: W̄ 1T

4 S(x, u) and v4(x,u)+ φ1
4 (x,u).

FIGURE 7. Fault isolation results under different faulty modes (s = 1,2,3,4) by monitoring the time profiles of residual signals es
i

in (30) for all i = 1,2,3,4 and the associated threshold signals ēi in (16) for all i = 1,2,3,4.

results of the unknown function v4(x, u) + φ14 (x, u) in faulty
mode 1. Simulation results for learning the faulty modes 2,
3 and 4 are similar and omitted here due to the limita-
tion of space. Specifically, Fig. 6a shows the convergence

performance of weights Ŵ 1
4 . The accurate approximation

for the function v4(x, u) + φ14 (x, u) is achieved by the con-
structed RBF NN Ŵ 1T

4 S(x, u) as shown in Fig. 6b. Thanks
to the convergence of Ŵ 1

4 , the constant model W̄ 1T
4 S(x, u) is
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FIGURE 8. Fault isolation using the methods [15], [16], [18], [19] with utilization of direct measurement of
system dynamics differences. (a) Isolation of fault 3′ with methods [15], [16]. (b) Isolation of fault 3′ with
methods [18], [19]. (c) Isolation of fault 4′ with methods [15], [16]. (d) Isolation of fault 4′ with
methods [18], [19].

obtained by W̄ 1
4 =

1
100

∑3000
k=2901 Ŵ

1
4 (k), which can be used to

represent the unknown dynamics v4(x, u)+φ14 (x, u), as shown
in Fig. 6c.

Using the constant models W̄ sT
i S(x, u) (i, s = 1, 2, 3, 4),

from (12), we construct the following residual systems:

esi (k) = biesi (k − 1)+ |W̄ sT
i S(x(k − 1), u(k − 1))− xi(k)|,

(30)

with bi = 0.995. The adaptive threshold ēi is implemented
according to (16) by setting q1 = 1.1, q2 = 1.01, q3 = 1.01
and q4 = 1.01. For simulation purpose, the tested faults
are designed as: fault 1′ (similar to the trained fault 1) with
φ1
′

4 (x, u) :=
Tskτ θ ′1
Jm

u (θ ′1 = 0.201), fault 2′ (similar to the

trained fault 2) with φ2
′

4 (x, u) =
Tskτ θ ′1
Jm

(θ ′2 sin(20 Ts(k −
1)) + 1)u (θ ′2 = 0.42), fault 3′ (similar to the trained fault

3) with φ3
′

4 (x, u) := −
TsF ′mf1
Jm

x4 (F ′mf1 = −0.0205), and
fault 4′ (similar to the trained fault 4) with φ4

′

4 (x, u) :=

−
TsF ′mf1
Jm

(F ′mf2 cos(20 Ts(k − 1)) + 1)x4 (F ′mf2 = 0.302). The
fault occurrence time for these tested faults is set as k0 =
1000. The sFI simulation results for these tested faults are
plotted in Fig. 7. Considering the case of faulty mode 1,
i.e., the fault 1′ with θ ′1 = 0.201 occurs in the monitored sys-
tem (29), it can be seen from Fig. 7 that the matched residual
e1i (i = 1, 2, 3, 4) becomes smaller than the corresponding

threshold ēi at time kl = 1644, whereas other mismatched
residuals esi (s = 2, 3, 4, i = 1, 2, 3, 4) remain no smaller
than the thresholds. Thus fault 1′ is isolated at kl = 1644,
with an isolation timeKl = kl−k0 = 644. Similarly, it is also
observed in Fig. 7 that the fault 2′ is isolated at kl = 1673,
fault 3′ at kl = 1983 and fault 4′ at kl = 2038.
To verify the superiority of our sFI scheme over exist-

ing approaches, we conduct simulation comparisons with
existing approaches of the adaptive threshold mechanism-
based FI scheme [15], [16] and the SRP-based FI schemes
[18], [19]. All these approaches derive the residuals through
a mechanism of direct measurements of system dynamics
differences. Specifically, from [15], [16], the estimators for
each trained faulty mode s (s = 1, 2, 3, 4) are constructed as:

x̄si (k) = bi(x̄si (k − 1)− xi(k − 1))

+W̄ sT
i S(x(k − 1), u(k − 1)), i = 1, 2, 3, 4, (31)

where W̄ sT
i S(x, u) is the constant network obtained from

the learning phase as discussed above, bi is set as 0.995.
By comparing the dynamics of FI systems (31) with that of
monitored system (29), the residuals used for FI are obtained
as |x̃si | = |x̄

s
i − xi|. In another class of FI schemes [18],

[19], the estimators are constructed for not only the faulty
modes s = 1, 2, 3, 4 but also the normal mode s = 0,
which can be implemented following (31). The residual
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FIGURE 9. Fault isolation results with different tested faults 4′ and different parameters q4. F ′mf2
− Fmf2

denotes the difference

between the tested fault 4′ and the matched fault 4.

signals are generated in real time using an average L1 norm,
i.e., ||x̃si ||1 = ||x̄

s
i −xi||1 =

1
K

∑k−1
h=k−K |x̄

s
i (h)−xi(h)|, where

the coefficient K is selected as K = 30. With the methods
[15], [16] and [18], [19], for fault 3′ (as defined above with
F ′mf1 = −0.0205), the FI is achieved in Figs. 8a and 8b, rep-
sectively. It is seen that after fault occurrence, themismatched
residuals |x̃41 | (of [15], [16]) and ||x̃

4
1 ||1 (of [18], [19]) will

approach zero and finally be mixed up with the matched
residuals, i.e., |x̃31 | and ||x̃

3
1 ||1. This implies that the fault

difference between the faults 3′ and 4 cannot be accurately
captured by the residuals |x̃41 |, ||x̃

4
1 ||1. This is because the

fault difference between the 3-rd fault type and 4-th fault
type, i.e., %3,44 (x, u) shown in Fig. 5c, has frequently-changing
signs. With the residual systems of [15], [16] and [18], [19],
the accumulated effect of %3,44 (x, u) will be offset and cannot
manifest itself in the residuals |x̃41 |, ||x̃

4
1 ||1. As a result, under

the approaches [15], [16] and [18], [19], the fault 3′ could
be identified similar to fault 3 as well as fault 4. Similar
observation can also be found when fault 4′ (as defined above

with F ′mf2 = 0.302) occurs, as shown in Fig. 8c. These
comparison results justify the superiority of our approach
over the FI schemes of [15], [16], [18], [19].

In the following, we further investigate the relationship
between the parameter qi of the adaptive threshold (16)
and the isolation performance (in terms of isolation accu-
racy and isolation time). We consider a bank of tested
faults that are similar to the fault 4 (with φ44 (x, u) =

−
TsFmf1
Jm

(Fmf2 cos(20 Ts(k − 1)) + 1)x4, Fmf1 ≡ −0.02,

Fmf2 ≡ 0.3), i.e., φ4
′

4 (x, u) = −
TsF ′mf1
Jm

(F ′mf2 cos(20 Ts(k −
1)) + 1)x4 with F ′mf1 ≡ −0.02. The parameter F ′mf2 are
selected as F ′mf2 = 0.302, 0.38, 0.48, 0.58 (or F ′mf2 −
Fmf2 = 0.002, 0.08, 0.18, 0.28), representing four tested
faults with various fault differences. The fault occurrence
time is assumed at k0 = 1000. The simulation study is
carried out by setting the parameter qi in different values,
i.e., qi = 1.01, 2.5, 5, 7. The other system setups including
the design of residual systems (30) and the parameters bi, ε∗i
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FIGURE 10. Isolation of a new fault 7 using different methods. (a) SRP-based method in [18], [19]. (b) Our
proposed method based on adaptive threshold mechanism.

(i = 1, 2, 3, 4) in (16) are kept the same as above. Due to
the limitation of space, only the simulation results of i = 4 is
presented (as shown in Fig. 9), the results of i = 1, 2, 3 are
similar thus omitted here. We first consider the case of q4 =
1.01. In Fig. 9, only the tested fault with F ′mf2−Fmf2 = 0.002
is isolatable (identified similar to trained fault 4), whereas
those tested faults with F ′mf2 − Fmf2 ≥ 0.08 will be identified
as new faults. When increasing q4, as shown in Fig. 9, those
tested faults with larger fault differences, i.e., the magnitude
of F ′mf2 − Fmf2 becomes larger, can be isolated, and the FI
time kl is decreased. When the value q4 becomes too large,
e.g., q4 = 5 and q4 = 7, some tested faults (e.g., with
F ′mf2 − Fmf2 = 0.002, and F ′mf2 − Fmf2 = 0.08) would be
identified to match both the fault 4 and fault 3. In such cases,
the 3-rd fault type and 4-th fault type will be considered as
the same type of fault. These simulation results demonstrate
the effect of the parameter qi on the isolation performance,
which illustrate the discussions in Remark 10.

Finally, we further verify that our scheme has better isola-
tion reliability compared to the existing SRP-based FI meth-
ods of [18], [19]. To this end, two types of faults will be
considered for training: fault 5: φ54 (x, u) :=

Tskτ θ5
Jm

u with
θ5 = 0.1, and fault 6: φ64 (x, u) := −

Tsθ6
Jm

x4 with θ6 = 0.01.
Specific implementation of our method and the method in
[18], [19] follows the procedure as detailed in (30) and (31),
respectively. The associated parameters for our method are
set as ε∗1 = 0.0018, ε∗2 = 0.0056, ε∗3 = 0.0045, ε∗4 = 0.0117
and bi = 0.995, qi = 1.01 (i = 1, 2, 3, 4), and the parameters
for method [18], [19] are set as bi = 0.995 and K = 80. For
comparison, we assume a new fault (i.e., fault 7: φ74 (x, u) :=
−
Tsθ7
Jm

(θ8 sin(20 Ts(k−1))+1)x3 with θ7 = −0.02, θ8 = 0.3)
occurs in the system (29). The isolation results using the
method [18], [19] and our method are illustrated in Figs. 10a
and 10b, respectively. It can be seen that under the SRP-based
methods [18], [19] (see, Fig. 10a), fault 7 is identified similar
to fault 5, which is an isolation misjudgment. Nevertheless,
under our method (see, Fig. 10b), the fault 7 is identified
as a new fault that does not match any trained faults. These
comparisons justify our discussions in Remark 5.

V. CONCLUSIONS
In this paper, we have proposed a novel adaptive thresh-
old based sFI scheme for discrete-time nonlinear uncertain
systems. The scheme consists of the fault dynamics identi-
fication phase, and the fault isolation phase. In identifica-
tion phase, a DL-based adaptive dynamics learning approach
has been employed to locally-accurately identify uncertain
system dynamics. The learned knowledge can be obtained
and stored in a bank of constant RBF NNs models. In fault
isolation phase, with the obtained knowledge, a bank of sFI
estimators (residual systems) have been developed through a
novel mechanism of absolute measurement of fault dynamics
differences. Their generated residuals are able to effectively
capture the small fault differences and distinguish them from
the system uncertainty. An adaptive threshold was then pro-
posed based on the designed sFI estimators, such that the sFI
decision making can be achieved by comparing the residuals
with the designed threshold in real time. Rigorous analysis on
isolatability condition and isolation time has been conducted
to characterize the isolation capabilities of our scheme. The
effectiveness of all the proposed results has been verified by
extensive simulation studies on a practical application of a
single-link robotic arm.

For the future work, we plan to extend the current results to
(i) those cases when full system information is not available
(e.g., only partial system states or measurement outputs are
available) for fault isolation designs, promising approaches
including the state observer techniques from [35], [36] will
be explored; and (ii) applications of the proposed approach
to fault isolation of real engineering systems, such as robotic
manipulators or unmanned vehicles, etc.
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