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Abstract—This article investigates the problem of small fault
detection (sFD) for discrete-time nonlinear systems with uncer-
tain dynamics. The faults are considered to be “small” in the
sense that the system trajectories in the faulty mode always
remain close to those in the normal mode, and the magni-
tude of fault can be smaller than that of the system’s uncertain
dynamics. A novel adaptive dynamics learning-based sFD frame-
work is proposed. Specifically, an adaptive dynamics learning
approach using radial basis function neural networks (RBF NNs)
is first developed to achieve locally accurate identification of the
system uncertain dynamics, where the obtained knowledge can
be stored and represented in terms of constant RBF NNs. Based
on this, a novel residual system is designed by incorporating
a newmechanism of absolute measurement of system dynamics
changes induced by small faults. An adaptive threshold is then
developed for real-time sFD decision making. Rigorous analysis
is performed to derive the detectability condition and the ana-
lytical upper bound for sFD time. Simulation studies, including
an application to a three-tank benchmark engineering system,
are conducted to demonstrate the effectiveness and advantages
of the proposed approach.

Index Terms—Adaptive dynamics learning, discrete-time non-
linear uncertain systems, neural networks (NNs), small fault
detection (sFD).

I. INTRODUCTION

FAULT detection (FD) is an important issue in modern
engineering systems and has received a great deal of atten-

tion to date (see [1]–[4], [40], [41]). Its primary objective is to
identify the occurrence of system faults during real-time oper-
ation. Prompt and accurate FD is crucial for reliable and effec-
tive operations of many engineering systems especially those
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of critical safety, such as aero-engines, chemical processes,
power networks, etc.

The past decades have witnessed tremendous progress in
FD research, leading to a large variety of FD methods, which
in general can be categorized as the model-based methods [1],
signal-based methods [2], knowledge-based methods [5], and
their hybridizations [3]. A comprehensive review of the FD
literature has been nicely summarized in [6] and [7]. In
particular, compared with the other methods, the model-
based method has its unique advantage in providing a deeper
insight into the dynamical behaviors of the system, facili-
tating more efficient and accurate FD under the dynamical
process [6]. This has motivated considerable research efforts
in recent years dedicated to the development of model-based
FD methods. For example, Koenig [8] proposed a so-called
proportional multiple–integral observer for linear descriptor
systems with faults and unknown disturbed inputs. In [9],
the FD problem was solved for nonlinear switched stochas-
tic systems using filtering techniques. Li et al. [39] developed
a polynomial fuzzy FD filter to investigate the FD problem
for nonlinear discrete-time networked systems. A total mea-
surable fault information residual method was proposed and
refined in [10] and [11] for FD of LTI closed-loop systems.
More recently, the model-based FD methods have been further
extended to more challenging problems, such as fault-tolerant
control [36]–[38]. Despite rich literature, existing model-based
FD techniques are largely focused on systems with precisely
known dynamics. The FD problem for more complex but
realistic systems with unknown dynamics remains an open
problem, especially, when the detection of “small” faults is
concerned.

In the FD literature, small faults are typically referred
to those faults whose magnitudes are smaller than those of
system uncertainties (e.g., unmodeled dynamics or distur-
bances/noise), which normally appear in the early stage before
the occurrence of larger faults [12], [13]. Knowing that early
detection of small faults is critical for systems’ safe oper-
ation and prompt maintenance, as well as avoiding larger
faults and catastrophic consequences [14], [15], considerable
research efforts have been devoted to investigate the associated
problem of small FD (sFD) (see [12], [16], [42]). However, the
research is still in its primitive stage, leaving many challeng-
ing issues that have yet to be adequately addressed. One of the
most critical challenges lies in how to achieve sFD for non-
linear systems with unstructured uncertain dynamics, where
distinguishing small faults from unmodeled system dynamics
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is a well-known difficulty. Some attempts have been made
to overcome this difficulty. For instance, an adaptive dynam-
ics estimation approach was proposed in [17] to monitor the
system dynamics changes induced by faults, which, however,
is limited to large faults (i.e., magnitude of faults larger than
that of the system’s modeling uncertainty). Zhang et al. [16]
proposed an adaptive threshold-based sFD mechanism, which,
however, leads to a rather restrictive detectability condition.
In [12], an innovative sFD scheme was developed using the
smallest residual principle (SRP). This scheme was demon-
strated to be capable of dealing with small faults for nonlinear
uncertain systems, but its effectiveness can be guaranteed only
when the occurred faults strictly belong to a predefined fault
set, leading to a possible FD misjudgment when a new fault
occurs.

One promising solution to overcome the above challenge
is to realize accurate identification/modeling of the associ-
ated system dynamics changes induced by faults. The adaptive
neural network (NN) provides a powerful tool for this pur-
pose. Some success along this article direction has been
seen in recent years. For example, in [18], an online adap-
tive approximation-based FD method was developed by using
adaptive NNs to estimate the fault dynamics. However, conver-
gence of the associated NN weights to their optimal/true values
is not analytically guaranteed, meaning that accurate modeling
of fault dynamics is essentially not realized. Overcoming this
issue hinges on the satisfaction of the so-called persistently
exciting (PE) condition—a well-known technical challenge
in the field of adaptive NN identification and control [19].
Recently, a deterministic learning (DL) theory was proposed
in [20], which offers an elegant solution to the aforemen-
tioned issue. This theory adopts the following ingredients to
enable accurate modeling using adaptive NNs: 1) employ-
ment of the localized radial basis function (RBF) networks;
2) satisfaction of a partial PE condition along a periodic or
recurrent orbit; and 3) exponential convergence of partial RBF
NN weights to their optimal/true values along the recurrent
orbit. Consequently, locally accurate RBF NN identification of
nonlinear system dynamics can be obtained, represented, and
stored as a constant RBF NN model [21]. Applications of the
DL theory to the sFD problem for nonlinear uncertain systems
have been preliminarily explored in [12], [13], [22], and [42].
Several important issues are yet to be addressed, including
how to deal with more stringent faults with frequently chang-
ing signs, how to accelerate the FD speed, how to avoid all
those deficiencies induced by using the SRP (e.g., unable to
detect new coming faults), and how to extend the methodol-
ogy from continuous-time to discrete-time nonlinear uncertain
systems.

In this article, we aim to address all of these issues by
developing a new sFD approach based on the DL theory.
Specifically, we seek to achieve sFD for discrete-time non-
linear systems with uncertain dynamics. First, to tackle the
aforementioned problem that the small fault effects may be
hidden within the system’s uncertain dynamics, we propose
a new discrete-time adaptive dynamics learning approach by
leveraging the methodology from the continuous-time DL the-
ory. This new approach enables locally accurate identification

of the unknown system dynamics in the normal mode by
using RBF NNs. Second, we propose designing a novel
residual system by using a new mechanism of absolute mea-
surements of the difference between the monitored system
dynamics and the normal system dynamics (represented by
a constant RBF NN model obtained from the learning phase).
This residual system is able to monitor and estimate small
changes of the system dynamics induced by small faults.
Finally, based on the proposed residual system, an adap-
tive threshold is further designed for real-time sFD decision
making. It is demonstrated through both rigorous analysis
and extensive simulations that advanced over many existing
FD techniques (e.g., [12], [17], and [23]), the proposed sFD
scheme is able to remove the constraint on sign changes of
associated fault functions, and avoid the use of the average
L1-norm for FD decision making, leading to a significantly
relaxed detectability condition as well as shortened detection
time.

The contributions of this article can be summarized in the
following aspects.

1) We address the problem of sFD for nonlinear uncertain
systems, where the fault is allowed to be small in the
sense that their magnitudes could be smaller than those
of the system’s uncertain dynamics, and the associated
system trajectories (states and inputs) could stay close
to those in normal mode.

2) A novel discrete-time adaptive dynamics learning
approach is proposed, enabling effective and accu-
rate modeling of system’s uncertain dynamics, which
addresses the aforementioned technical challenge related
to satisfaction of the PE condition in model-based FD
research.

3) A new adaptive threshold-based sFD scheme is
developed by embedding a novel mechanism of absolute
measurements of dynamics difference into the sFD resid-
ual system, which advances the existing FD approaches
(e.g., [12], [17], and [23]) with a significantly
relaxed detectability condition and shortened detection
time.

The remainder of this article is organized as follows.
Section II provides some preliminary results and states the
problem. The proposed adaptive dynamics learning approach
is presented in Section III. Section IV presents the proposed
sFD scheme and rigorous analysis on its performance. The
simulation studies are shown in Section V. The conclusions
are made in Section VI.

Notation: R, R+, and Z+ denote, respectively, the set of
real numbers, the set of positive real numbers, and the set
of non-negative integers; R

m×n denotes the set of m × n real
matrices; and R

n denotes the set of n × 1 real column vec-
tors; and In denotes the n × n identity matrix. We denote
the open ball Br := {x ∈ R

n : ‖x‖ < r} with r being an
arbitrary positive constant. |·| is the absolute value of a real
number; ‖·‖ is the 2-norm of a vector or a matrix, that is,
‖x‖ = (xTx)(1/2); ‖·‖1 is the L1-norm of a vector or a matrix,
that is, ‖x(k)‖1 = (1/K)

∑k−1
h=k−K |x(h)| (k ≥ K > 1); and

�a� denotes the least integer greater than or equal to a real
number a.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Consider the following discrete-time systems:

x(k + 1) = f (x(k), k)+ d(k) (1)

where k ∈ Z+, x(k) : Z+ → R
n, f (x(k), k) : R

n × Z+ → R
n

is a single-valued function which is continuous in x(k), and
d(k) : Z+ → R

n is also a single-valued function representing
an unknown but bounded disturbance.

Lemma 1 [24]: If, for system (1), there exists a function
V(x(k), k) with continuous partial differences such that for x(k)
in a compact set � ⊂ R

n, V(x(k), k) is positive definite (i.e.,
V(x(k), k) > 0), and �V(x(k), k) := V(x(k + 1), k + 1) −
V(x(k), k) < 0 for ‖x(k)‖ > χ with some constant χ > 0
such that the ball of radius χ is contained in �, then the
system is uniformly ultimately bounded (UUB) and the norm
of the state is bounded within a neighborhood of χ .

Definition 1 [25]: A time-varying matrix sequence
ψ(k) : Z+ → R

m×n is said to be PE if it is bounded and
there exist some positive numbers K1 > 0 and δ > 0 such
that

∑K0+K1−1
k=K0

ψ(k)ψ(k)T ≥ δIm, ∀K0 ∈ Z+.
Consider the following linear time-varying system:

x(k + 1) = A(k)x(k)+ d(k) (2)

where A(k) : Z+ → R
n×n is a matrix, and d(k) : Z+ →

R
n is an unknown but bounded disturbance, which satisfies

‖d(k)‖ ≤ dM with a known positive constant bound dM .
Lemma 2 [26]: Consider system (2). Assume A(k) = In −

αψ(k)ψ(k)T with ψ ∈ R
n, α ∈ R, αψ(k)Tψ(k) < β and

0 < β < 2 for all k ∈ Z+, and dM is small. If ψ(k) is
PE, then the state x(k) will converge exponentially to a small
neighborhood around the origin.

The RBF networks can be described by fnn(Z) =∑Nn
i=1 wisi(Z) = WTS(Z) [27], where Z ∈ �Z ⊂ R

q is
the input vector, W = [w1, . . . ,wNn ]T ∈ R

Nn is the weight
vector, Nn is the NN node number, and S(Z) = [s1(‖Z −
ε1‖), . . . , sNn(‖Z − εNn‖)]T , with si(·) being an RBF, and
εi (i = 1, 2, . . . ,Nn) being distinct points in state space.
The Gaussian function si(‖Z − εi‖) = exp [(−(Z − εi)

T(Z −
εi))/(η

2
i )] is one of the most commonly used RBFs, where

εi = [εi1, εi2, . . . , εiq]T is the center of the receptive field
and ηi is the width of the receptive field. The Gaussian func-
tion belongs to the class of localized RBFs in the sense that
si(‖Z − εi‖) → 0 as ‖Z‖ → ∞. It is easily seen that
S(Z) is bounded and there exists a real constant SM ∈ R+
such that ‖S(Z)‖ ≤ SM [19]. It has been shown in [28]
that for any continuous function f (Z) : �Z → R, where
�Z ⊂ R

q is a compact set, and for the NN approximator,
where the node number Nn is sufficiently large, there exists
an ideal constant weight vector W∗, such that for any ε∗ > 0,
f (Z) = W∗TS(Z) + ε, ∀Z ∈ �Z , where |ε| < ε∗ is the ideal
approximation error. The ideal weight vector W∗ is an “arti-
ficial” quantity required for analysis, and is defined as the
value of W that minimizes |ε| for all Z ∈ �Z ⊂ R

q, that
is, W∗ := argminW∈RNn {supZ∈�Z

|f (Z)− WTS(Z)|}. Moreover,
based on the localization property of RBF NNs [19], for any
bounded trajectory Z(t) within the compact set �Z , f (Z) can

be approximated by using a limited number of neurons located
in a local region along the trajectory: f (Z) = W∗T

ζ Sζ (Z)+ εζ ,
where εζ is the approximation error, with εζ = O(ε) = O(ε∗),
Sζ (Z) = [sj1(Z), . . . , sjζ (Z)]T ∈ R

Nζ , W∗
ζ = [w∗

j1, . . . ,w∗
jζ ]T ∈

R
Nζ , Nζ < Nn, and the integers ji = j1, . . . , jζ are defined

by |sji(Zp)| > θ (θ > 0 is a small positive constant) for some
Zp ∈ Z(k). It is shown in [19] that for a localized RBF network
WTS(Z) whose centers are placed on a regular lattice, almost
any recurrent trajectory1 Z(k) can lead to the satisfaction of
the PE condition of the regressor subvector Sζ (Z). This result
can be formally summarized in the following lemma.

Lemma 3 [29]: Consider any recurrent trajectory
Z(k) : Z+ → R

q. Z(k) remains in a bounded compact
set �Z ⊂ R

q, then for the RBF network WTS(Z) with centers
placed on a regular lattice (large enough to cover compact set
�Z), the regressor subvector Sζ (Z) consisting of RBFs with
centers located in a small neighborhood of Z(k) is PE.

B. Problem Formulation

Consider the following nonlinear discrete-time system:

x(k + 1) = f (x(k), u(k))+ v(x(k), u(k))

+ β(k − k0)φ(x(k), u(k)) (3)

where x = [x1, . . . , xn]T ∈ R
n is the system state vector;

u = [u1, . . . , um]T ∈ R
m is the control input vector; f (x, u) =

[f1(x, u), . . . , fn(x, u)]T , v(x, u) = [v1(x, u), . . . , vn(x, u)]T ,
φ(x, u) = [φ1(x, u), . . . , φn(x, u)]T are nonlinear vector
fields, with f (x, u) representing the known nominal dynam-
ics, v(x, u) representing the modeling uncertainty, and φ(x, u)
representing the deviation in system dynamics due to fault.
β(k−k0) represents the fault time profile, where β(k−k0) = 0
for k < k0 and β(k − k0) = 1 for k ≥ k0 with k0 being the
unknown fault occurrence time. In this article, system (3) is
said to operate in the normal mode when no fault occurs (i.e.,
0 < k < k0), and operate in the faulty mode when some
fault occurs for k ≥ k0. To facilitate subsequent develop-
ment, as typically adopted in [19], we assume that the system
trajectories (x, u) in both the normal and faulty modes are
recurrent.

Following similar definitions from [12] and [13], the fault
considered in this article is small in the sense that: 1) the mag-
nitude of the fault function φ(x, u) is allowed to be smaller
than the magnitude of the modeling uncertainty v(x, u), which
means that the fault may be hidden within the modeling uncer-
tainty and 2) the system trajectory under faulty mode [denoted
by (xf , uf )] stays close to the under normal mode [denoted by
(x0, u0)], that is

dist
((

xf , uf
)
, (x0, u0)

)
:= max

{
min

{∥
∥
(
xf , uf

)
, (x0, u0)

∥
∥
}}

< dζ (4)

where dζ is a constant number satisfying 0 < dζ < d∗
ζ , where

d∗
ζ is the size of the NN approximation region to be defined

later.

1A recurrent trajectory represents a large set of periodic and periodic-
like trajectories generated from linear/nonlinear dynamics systems. A detailed
characterization of recurrent trajectories can be found in [19].
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Given the above system setup, a novel adaptive dynamics
learning-based sFD scheme will be proposed, which consists
of two components.

1) Accurate Adaptive Dynamics Learning: Aiming to
achieve locally accurate identification of unknown
system dynamics v(x, u) when the system is in normal
mode.

2) sFD: Aiming to realize rapid detection of occurrence of
small faults for system (3).

III. SYSTEM UNCERTAIN DYNAMICS IDENTIFICATION

This section will first present a novel adaptive dynamics
learning approach. Consider the normal system from (3)

x(k + 1) = f (x(k), u(k))+ v(x(k), u(k)) (5)

where v(x, u) is the system unknown dynamics to be accu-
rately identified. According to the RBF NN approximation
theory as presented in Section II-A, we know that there exists
an ideal constant NN weight vector W∗ = [W∗

1 , . . . ,W∗
n ] ∈

R
Nn×n (Nn is the number of NN nodes) such that

vi(x, u) = W∗T
i S(x, u)+ εi, i = 1, . . . , n (6)

where S(x, u) : R
n×R

m → R
Nn is a smooth RBF vector and εi

is the associated ideal estimation error satisfying |εi| < ε∗ with
ε∗ being a positive constant that can be made arbitrarily small
given a sufficiently large Nn. Then, motivated by [30], we
propose the following adaptive dynamics estimator to identify
the unknown dynamics v(x, u) of (5):

x̂i(k + 1) = ai
(
x̂i(k)− xi(k)

) + fi(x(k), u(k))

+ ŴT
i (k)S(x(k), u(k)), ∀ i = 1, . . . , n (7)

where x̂i ∈ R is the estimator state, xi is the state of system (5),
and ai is a positive design constant. Ŵi ∈ R

Nn is the estimate
of W∗

i , which is updated in real time using

Ŵi(k + 1) = Ŵi(k)− cix̃i(k + 1)S(x(k), u(k)) (8)

with ci being a positive constant and x̃i(k) := x̂i(k) − xi(k),
whose dynamics can be deduced from (5)–(7)

x̃i(k + 1) = aix̃i(k)+ W̃T
i (k)S(x(k), u(k))− εi (9)

where W̃i(k) := Ŵi(k)− W∗
i .

In the following theorem, we denote the trajectory generated
from the normal system (5) as ϕ0. Following [19], we use (·)ζ
and (·)ζ̄ to represent the parts of (·) related to the regions close
to and away from the trajectory ϕ0, respectively.

Theorem 1: Consider the adaptive learning system consist-
ing of the plant (5), the estimators (7), and the NN weight
updating law (8). Given recurrent orbits ϕ0, with initial con-
ditions (x(0), u(0)) ∈ �0 (where �0 is a compact set) and
Ŵi(0) = 0 (i = 1, . . . , n), if the associated coefficients ai

in (7) and ci in (8) are chosen to satisfy

0 < ai <

√
5 − 1

2
, 0 < ci <

1

S2
M(2 + ai)

(10)

with SM being the upper bound of ‖S(x, u)‖, then we have
the following.

1) All signals in the system remain UUB; the estimation
error x̃i converges to a small neighborhood around the
origin; and the local NN weight Ŵiζ converges to a small
neighborhood of its associated ideal value W∗

iζ
along the

trajectory ϕ0 for all i = 1, . . . , n.
2) A locally accurate approximation for the system uncer-

tainty vi(x, u) in (5) can be obtained by ŴT
i S(x, u)

as well as W̄T
i S(x, u) along the trajectory ϕ0 for all

i = 1, . . . , n, where

W̄i := 1

K2

K1+K2−1∑

k=K1

Ŵi(k) (11)

with k ∈ [K1, K1 + K2 − 1] representing a time segment
after the transient process.

Proof: 1) From (8) and (9), we obtain

W̃i(k + 1) = (
I − ciS(x(k), u(k))ST(x(k), u(k))

)
W̃i(k)

+ ciεiS(x(k), u(k))− ciaix̃i(k)S(x(k), u(k))

x̃i(k + 1) = aix̃i(k)+ W̃T
i (k)S(x(k), u(k))− εi. (12)

Consider a Lyapunov function candidate for (12)

Vi(k) = x̃2
i (k)+ 1

ci
W̃T

i (k)W̃i(k). (13)

The forward difference of (13) along (12) is given as

�Vi = Vi(k + 1)− Vi(k)

=
(

a2
i − 1 + cia

2
i ST(x(k), u(k))S(x(k), u(k))

)
x̃2

i (k)

+ (
ciS

T(x(k), u(k))S(x(k), u(k))− 1
)

× (
W̃T

i (k)S(x(k), u(k))
)2

− 2ciS
T(x(k), u(k))S(x(k), u(k))εiW̃

T
i (k)S(x(k), u(k))

+ 2ciaiS
T(x(k), u(k))S(x(k), u(k))x̃i

× (k)W̃T
i (k)S(x(k), u(k))

− (
2ai + 2ciaiS

T(x(k), u(k))S(x(k), u(k))
)
εix̃i(k)

+ (
1 + ciS

T(x(k), u(k))S(x(k), u(k))
)
ε2

i . (14)

Noting that ci > 0, ai > 0, and ST(x, u)S(x, u) ≥ 0, it is
easy to obtain the following inequalities:

−2ciS
T(x, u)S(x, u)εiW̃

T
i S(x, u)

≤ ciS
T(x, u)S(x, u)

(
ε2

i + (
W̃T

i S(x, u)
)2

)

2ciaiS
T(x, u)S(x, u)x̃iW̃

T
i S(x, u)

≤ ciaiS
T(x, u)S(x, u)

(
x̃2

i + (
W̃T

i S(x, u)
)2

)
. (15)

Substituting (15) into (14) results in

�Vi ≤ −λ1x̃2
i − λ2

(
W̃T

i S(x, u)
)2 − 2λ3εix̃i + λ4ε

2
i

= −λ1

(

x̃2
i + 2λ3

λ1
εix̃i − λ4

λ1
ε2

i

)

− λ2
(
W̃T

i S(x, u)
)2

(16)

where λ1 := 1 − a2
i − (a2

i + ai)ciST(x, u)S(x, u), λ2 := 1 −
(2 + ai)ciST(x, u)S(x, u), λ3 := ai + ciaiST(x, u)S(x, u), and
λ4 := 1 + 2ciST(x, u)S(x, u). Recalling that ST(x, u)S(x, u) ≤
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S2
M , combined with (10), we have: λ1 > 0, λ2 > 0, λ3 > 0,

and λ4 > 0. Then, according to (16), �Vi < 0 as long as

x̃2
i + 2λ3

λ1
x̃iεi − λ4

λ1
ε2

i > 0 (17)

which is equivalent to

|x̃i| > |εi|
λ3 +

√
λ2

3 + λ1λ4

λ1
. (18)

Similarly, completing the squares for x̃i using (16) yields

�Vi ≤ −λ1

(

x̃i + λ3

λ1
εi

)2

− λ2
(
W̃T

i S(x, u)
)2 + λ2

3 + λ1λ4

λ1
ε2

i .

(19)

Then, �Vi < 0 holds under condition (10) and

∣
∣W̃T

i S(x, u)
∣
∣ > |εi|

√
λ2

3 + λ1λ4

λ1λ2
. (20)

Consequently, according to Lemma 1, it can be concluded
that x̃i and W̃T

i S(x, u) are UUB, and all system signals in (12)
remain UUB. In addition, noting that |εi| < ε∗ in (6) and (18)
implies that given an arbitrary constant ρ satisfying ρ ≥
|εi|[(λ3+

√
λ2

3 + λ1λ4)/(λ1)] = O(ε∗), there must exist a finite
K such that for all k > K, |x̃i(k)| ≤ ρ, that is, x̃i(k) = O(ε∗).
Since ε∗ can be made arbitrary small, it implies that x̃i will
converge to a small neighborhood around the origin.

Moreover, by using the localization property of Gaussian
RBF NNs, along the system trajectory ϕ0, the dynamics of W̃i

in (12) yields for all i = 1, . . . , n that

W̃iζ (k + 1) =
(

I − ciSζ (x(k), u(k))ST
ζ (x(k), u(k))

)
W̃iζ (k)

+ ciεiζ Sζ (x(k), u(k))− ciaix̃i(k)Sζ (x(k), u(k)).

(21)

Since the trajectory of the NN input (x, u) is recurrent,
Sζ (x, u) satisfies PE according to Lemma 3. Note that Sζ (x, u)
is bounded, εiζ and x̃i are arbitrarily small and ci can be
selected to be small; thus, ‖ciεiζ Sζ (x, u)− ciaix̃iSζ (x, u)‖ can
be made arbitrarily small. Furthermore, under condition (10),
we have 0 < ciSζ (x, u)ST

ζ (x, u) < 1. Then according to
Lemma 2, the error W̃iζ = Ŵiζ −W∗

iζ
is guaranteed to converge

exponentially to a small neighborhood around the origin. Thus,
it is proved that along the system trajectory ϕ0, the weight
Ŵiζ will converge exponentially to a small neighborhood of
its ideal value W∗

iζ
.

2) Based on the localization property of RBF NNs, con-
vergence of Ŵiζ to a small neighborhood of W∗

iζ
implies that

along the trajectory ϕ0, the system uncertain dynamics vi(x, u)
(i = 1, . . . , n) in (5) can be rewritten as

vi(x, u) = W∗T
iζ Sζ (x, u)+ εiζ

= ŴT
iζ Sζ (x, u)− W̃T

iζ Sζ (x, u)+ εiζ

= ŴT
iζ Sζ (x, u)+ εiζ1

= W̄T
iζ Sζ (x, u)+ εiζ2

(22)

where εiζ1
= εiζ − W̃T

iζ
Sζ (x, u) = O(εiζ ) = O(ε∗), which is

small due to the exponential convergence of W̃iζ to a small

neighborhood around origin; W̄iζ is the corresponding sub-
matrix of W̄i defined in (11) along the trajectory ϕ0; and
εiζ2

is the approximation error using W̄T
iζ

Sζ (x, u) and satisfies
εiζ2

= O(εiζ1
) = O(ε∗) after the transient process [19].

In addition, for the neurons with centers far away from the
trajectory ϕ0, |Sζ̄ (x, u)| would become very small due to the
localization property of RBFs. In this case, the neural weights
Ŵiζ̄ would be only slightly updated and stay close to zero

under the NN adaptation law (8) with Ŵi(0) = 0. Then both
Ŵiζ̄ and ŴT

iζ̄
Sζ̄ (x, u), as well as W̄iζ̄ and W̄T

iζ̄
Sζ̄ (x, u), would

remain very small. Consequently, along the trajectory ϕ0, the
system uncertainty vi(x, u) can be represented as

vi(x, u) = ŴT
iζ Sζ (x, u)+ εiζ1

= ŴT
iζ Sζ (x, u)+ ŴT

iζ̄
Sζ̄ (x, u)+ εi1

= ŴT
i S(x, u)+ εi1 (23)

where εi1 = εiζ1
− ŴT

iζ̄
Sζ̄ (x, u) = O(ε∗).

Similarly, we have

vi(x, u) = W̄T
iζ Sζ (x, u)+ εiζ2

= W̄T
iζ Sζ (x, u)+ W̄T

iζ̄
Sζ̄ (x, u)+ εi2

= W̄T
i S(x, u)+ εi2 (24)

where εi2 = εiζ2
− W̄T

iζ̄
Sζ̄ (x, u) = O(ε∗).

Consequently, according to (23) and (24), we have that for
all i = 1, . . . , n, a locally accurate approximation of the system
uncertainty vi(x, u) can be obtained by ŴT

i S(x, u) as well as
W̄T

i S(x, u) along the trajectory ϕ0.
Remark 1: Since S(Z) consists of Nn number of Gaussian

function elements, a conservative selection for the value of SM

in (10) could be
√

Nn. For a tighter upper bound of ‖S(Z)‖,
one can refer to [33].

Remark 2: Note that the proposed adaptive dynamics
learning scheme (7) and (8) differs from those proposed
in [30] and [34] in two important aspects.

1) The system dynamics to be identified are different.
Yuan and Wang [30] and Wu et al. [34] considered iden-
tifying continuous-time dynamics using sampling data;
while this article considers learning unknown nonlinear
dynamics in a general discrete-time form.

2) The methods for proving system stability and parameter
convergence are different. Wu et al. [34] incorporated
small-gain theorem with Lyapunov functions; while this
article proposes a relatively simpler and more compact
proof by utilizing only the Lyapunov stability method.

Remark 3: The proof of Theorem 1 demonstrates that
system (12) is UUB, and there exists a finite time K such that
the error signals x̃i and W̃iζ will converge to a small bounded
neighborhood around the origin. Note that these results are
sufficient to ensure the stability and convergence properties
of the proposed adaptive learning system, establishing explicit
relationships between K and the error bounds is not mandatory
for its effective implementation. Nevertheless, addressing this
problem is meaningful, which although is out of the scope of
this article. The promising methods for future research along
this direction can be found in [25], [30], and [35].
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According to (24), for (x0, u0) ∈ ϕ0, the RBF NN
W̄T

i S(x0, u0) with constant weights W̄i defined in (11) pro-
vides locally accurate approximation of the system uncertain
dynamics vi(x0, u0) with the approximation error εi2 satisfying
εi2 = O(ε∗). Based on this, one can always prespecify a small
constant number ε∗ such that |εi2 | < ε∗ by using a sufficiently
large number of neurons. Furthermore, according to [31],
W̄T

i S(x0, u0) has a certain ability of generalization in the sense
that the locally accurate approximation of W̄T

i S(x0, u0) for
vi(x0, u0) is achieved in a local region �0

ζ along the trajectory
ϕ0, where �0

ζ can be defined as

�0
ζ :=

{
(x, u)|dist

(
(x, u), ϕ0

)
< d∗

ζ

}
(25)

with d∗
ζ > 0 characterizing the size of the NN approxima-

tion region. Such a generalization ability indicates that if
(x, u) ∈ �0

ζ , we have that vi(x, u) can be locally accurately
approximated by W̄T

i S(x, u), that is, vi(x, u) = W̄T
i S(x, u)+εi3

for all i = 1, . . . , n, where the approximation error εi3 is
bounded by |εi3 | < ξ∗ with ξ∗ depending on d∗

ζ . Based
on this, with the small fault assumption given in (4), a
faulty trajectory (xf , uf ) generated from system (3) satisfies
dist((xf , uf ), (x0, u0)) < d∗

ζ , implying that (xf , uf ) ∈ �0
ζ . As

a result, we have

vi
(
xf , uf

) = W̄T
i S

(
xf , uf

) + εi3, ∀ i = 1, . . . , n. (26)

In summary, with (24) and (26), we rewrite the RBF
NN approximation of the system uncertainty vi(x, u) in the
following form for all i = 1, . . . , n and (x, u) ∈ �0

ζ :

vi(x, u) = W̄T
i S(x, u)+ ξi (27)

where (x, u) is the system trajectory generated from (3), and
ξi is the generalized approximation error with |ξi| = |εi2 | <
ε∗ for (x, u) = (x0, u0) and |ξi| = |εi3 | < ξ∗ for (x, u) =
(xf , uf ).

IV. SMALL FAULT DETECTION

Based on the results from the previous section, this section
will present a novel sFD scheme and its performance analysis.

A. Residual System Design and Detection Scheme

Recall the monitored system from (3) as follows:

x(k + 1) = f (x(k), u(k))+ v(x(k), u(k))

+ β(k − k0)φ(x(k), u(k)) (28)

where k0 is the fault occurrence time. For 0 ≤ k < k0,
system (28) operates in the normal mode, that is, (x, u) =
(x0, u0), and for k ≥ k0, the system operates in the faulty
mode, that is, (x, u) = (xf , uf ). We propose the following
residual system embedded with a novel mechanism of absolute
measurements of dynamics difference:

ei(k) = biei(k − 1)+ ∣
∣W̄T

i S(x(k − 1), u(k − 1))

+ fi(x(k − 1), u(k − 1))− xi(k)|, i = 1, . . . , n

(29)

where ei is the state of the residual system and xi is the state
of the monitored system (28); fi(x, u) is the known nominal
dynamics of (28); bi is a design parameter satisfying 0 ≤
bi < 1; and W̄T

i S(x , u) is a constant RBF NN obtained from
the identification phase.

Remark 4: According to (27), W̄T
i S(x(k − 1), u(k − 1)) +

fi(x(k−1), u(k−1)) provides a locally accurate approximation
of xi(k) = fi(x(k − 1), u(k − 1)) + vi(x(k − 1), u(k − 1)). So,
|W̄T

i S(x(k−1), u(k−1))+ fi(x(k−1), u(k−1))−xi(k)| in (29)
essentially characterizes the absolute difference between the
monitored system dynamics in (28) and the normal system
dynamics.

Based on (29), an adaptive threshold will be further
developed for real-time sFD decision making. Such an adap-
tive threshold is a time-varying function that will bound the
residual signal of (29) [i.e., ei(k)] at every time instant k
if the system is operating in normal mode. To this end,
from (27) and (28), we can rewrite (29) as

ei(k) = biei(k − 1)+ |β(k − 1 − k0)φi(x(k − 1), u(k − 1))

+ ξi|. (30)

Choosing ei(0) = 0, the solution to (30) can be obtained as

ei(k) =
k−1∑

h=0

bk−1−h
i |β(h − k0)φi(x(h), u(h))+ ξi| (31)

which shows that the fault effect can be directly reflected by
the residual ei (with a weighting factor bi).

When system (28) operates in normal mode, we have β(k−
k0)φi(x(k), u(k)) = 0. Noting that |ξi| = |εi2 | < ε∗ from (27),
we can further obtain the following result from (31):

ei(k) =
k−1∑

h=0

bk−1−h
i

∣
∣εi2

∣
∣ <

k−1∑

h=0

bk−1−h
i ε∗ =

(
1 − bk

i

)
ε∗

1 − bi
(32)

for 0 < k ≤ k0. Consequently, the adaptive threshold, denoted
by ēi, can be specified as

ēi(k) :=
(
1 − bk

i

)
ε∗

1 − bi
, i = 1, . . . , n. (33)

Recall that bi is the design parameter, and ε∗ is the desired
accuracy level of the NN approximation as defined in (27),
which can be prespecified by setting a sufficiently large num-
ber of neurons in the identification phase (as will be illustrated
in Section V).

Based on this, we are ready to present the sFD decision-
making scheme. The key idea is illustrated in Fig. 1. If no
fault occurs in the monitored system (28), ei(k) (i = 1, . . . , n)
in (29) will remain small such that ei(k) ≤ ēi(k). Whenever
this condition is violated, it indicates that the monitored system
is no longer operating in normal mode and there must exist
some faults in it. We formalize this idea as follows.

sFD Decision Scheme: Compare ei(k) of the residual
system (29) with the adaptive threshold ēi(k) in (33) for each
i = 1, . . . , n. If there exists a finite time kd > 0 and at least
one component i ∈ {1, . . . , n} such that ei(kd) > ēi(kd), then
occurrence of a fault is deduced at time kd.
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Fig. 1. Schematic of the proposed adaptive threshold-based sFD scheme. (a) Architecture of the sFD system. (b) Illustrative time profile of fault function
φi(x, u). (c) Illustrative time profiles of residual ei and adaptive threshold ēi. Fault occurs at time k0 and is detected at time kd when ei(k) > ēi(k), the
corresponding FD time is Kd = kd − k0.

Remark 5: The proposed adaptive threshold ēi (i =
1, . . . , n) in (33) is tight, that is, it can be made small due
to its dependency of ε∗.

Remark 6: Existing FD schemes as proposed
in [17] and [23] are not capable of coping with faults
that have frequently changing signs. This is because the
residual systems designed therein are all based on direct
(instead of absolute) measurements of the system dynamics
difference. This leads to that if the occurred fault function
frequently changes its sign, the difference of the system
dynamics between the normal mode and the faulty mode
could be offset, making it difficult to observe fault occurrence
from the associated residual signal which will stay close
to zero. This issue is overcome with our proposed residual
system (29) by using absolute measurement of dynamics
difference. Specifically, it is noted from (31) that even the
fault function φi(x, u) has frequently changing signs, its
accumulated effects would not be offset and thus ei will
not approach to zero. This demonstrates the superiority of
our sFD scheme in dealing with more general and stringent
faults. Another important advantage of our method lies in
that ei can be used directly for decision making without
any tedious additional signal processing (e.g., the average
L1-norm processing as adopted in [12], [13], and [22]).

Remark 7: Existing NN-based FD schemes
(e.g., [17] and [23]) cannot guarantee accurate approxi-
mation of fault dynamics. As a result, they usually require
the magnitude of occurred fault to be larger enough than that
of the system uncertainty, which is not always feasible under
the sFD context. This issue is addressed with our new sFD
approach, which ensures accurate RBF NN approximation
of uncertain system dynamics. In addition, since the system
uncertainty can be accurately approximated, stored, and
represented in terms of constant RBF NN models, and further
reused for FD, our method does not need any further online
parameter estimation during the detection process, which
significantly reduces the computational burden and thus
enhances the FD efficiency.

Remark 8: An important class of existing sFD schemes
is based on the SRP (e.g., [12] and [22]), which suffers
from a critical drawback that only those faults belonging to

a predefined fault set can be detected, leading to a possi-
ble FD misjudgment when a new coming fault occurs. As
such, in order to enhance their detection capabilities, a suf-
ficiently large number of possible faults usually need to be
identified and included in the predefined fault set, resulting
in a large number of estimators (residual systems) needed for
online sFD. However, this drawback is overcome in our sFD
scheme, that is, the predefined fault set is not required and
only one estimator needs to be implemented for online sFD.
This is due to the adoption of an adaptive threshold mecha-
nism instead of the SRP. Moreover, with our scheme, except
the system uncertain dynamics in normal mode, any fault
dynamics does not need to be identified. This distinguishes
our method from the sFD schemes in [12] and [22], where
all the predefined fault dynamics need to be identified in the
learning phase.

B. Fault Detectability Condition and Detection Time

To analyze the performance of the proposed sFD scheme,
we denote the absolute FD time as kd, and the FD time Kd as
Kd = kd − k0. We first study the detectability condition.

Theorem 2: Consider the monitored system (28) and the
sFD system consisting of (29) and (33). Under the proposed
sFD scheme, if for at least one component i ∈ {1, . . . , n}, there
exists a finite time kf > k0 such that

kf −1∑

h=k0

b
kf −1−h
i |φi(x(h), u(h))| > ξ∗ + ε∗

1 − bi
(34)

then ei(kf ) > ēi(kf ) [where ēi is defined in (33)] holds and the
fault will be detected at kf , that is, kd = kf .

Proof: Consider (30) and (31), the residual signal ei(kf ) (for
kf > k0) can be described by

ei
(
kf

) =
k0−1∑

h=0

b
kf −1−h
i |ξi| +

kf −1∑

h=k0

b
kf −1−h
i |φi(x(h), u(h))+ ξi|.

(35)
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Noting that bi ≥ 0 and for k ≥ k0, (x, u) = (xf , uf ) and
|ξi| = |εi3 | < ξ∗ from (27), by the triangular inequality, we
have

ei
(
kf

) ≥
kf −1∑

h=k0

b
kf −1−h
i

∣
∣φi(x(h), u(h))+ εi3

∣
∣

≥
kf −1∑

h=k0

b
kf −1−h
i |φi(x(h), u(h))| −

kf −1∑

h=k0

b
kf −1−h
i

∣
∣εi3

∣
∣

>

kf −1∑

h=k0

b
kf −1−h
i |φi(x(h), u(h))| −

kf −1∑

h=k0

b
kf −1−h
i ξ∗

=
kf −1∑

h=k0

b
kf −1−h
i |φi(x(h), u(h))| −

(
1 − b

kf −k0
i

)
ξ∗

1 − bi

>

kf −1∑

h=k0

b
kf −1−h
i |φi(x(h), u(h))| − ξ∗

1 − bi

which yields ei(kf ) > ēi(kf ) = ([(1 − b
kf
i )ε

∗]/[1 − bi])
under (34).

Remark 9: The detectability condition (34) shows that for
some i ∈ {1, . . . , n}, if the magnitude of the fault func-
tion (i.e., |φi(x(k), u(k))|) accumulating over a certain time
interval [k0, kf − 1] (i.e.,

∑kf −1
h=k0

b
kf −1−h
i |φi(x(h), u(h))|) is

large enough, then the occurred fault can be detected at time
kf . This condition is not restrictive because the associated
lower bound [(ξ∗ + ε∗)/(1 − bi)] is depending on ε∗ and ξ∗
(which can be made small). In addition, even the fault function
φi(x(k), u(k)) has frequently changing signs, condition (34)
could still be satisfied due to the absolute measurements
of φi(x(k), u(k)). This is consistent with our discussions in
Remark 6.

We further study the FD time, that is, how to estimate the
upper bound of FD time Kd.

Theorem 3: Consider the monitored system (28) and the
sFD system consisting of (29) and (33). Under the proposed
sFD scheme, if for some i ∈ {1, . . . , n}, there exists at most
Ti number of separate time instants ki,t ∈ [k0, kd − 1] (t =
1, . . . ,Ti) such that

∣
∣φi

(
x
(
ki,t

)
, u

(
ki,t

))∣
∣ < μi (36)

where μi > ξ∗+ε∗ and Ti < logbi
[(ξ∗+ε∗)/μi], then ei(kd) >

ēi(kd) [where ēi is defined in (33)] holds and the fault will be
detected at kd. The upper bound on Kd is given by

K̄d = min
i=1,2,...,n

{⌈

logbi

bTi
i μi − ε∗ − ξ∗

μi − ξ∗

⌉}

. (37)

Proof: Consider (30) and (31), the residual signal ei(kd) (for
kd > k0) can be described by

ei(kd) =
k0−1∑

h=0

bkd−1−h
i |ξi| +

kd−1∑

h=k0

bkd−1−h
i |φi(x(h), u(h))+ ξi|.

(38)

Noting that for k ≥ k0, (x, u) = (xf , uf ), |ξi| = |εi3 | < ξ∗
according to (27), and bi ≥ 0, we obtain

ei(kd) ≥
kd−1∑

h=k0

bkd−1−h
i

∣
∣φi(x(h), u(h))+ εi3

∣
∣

≥
kd−1∑

h=k0

bkd−1−h
i

(|φi(x(h), u(h))| − |εi3 |
)

>

kd−1∑

h=k0

bkd−1−h
i |φi(x(h), u(h))| −

kd−1∑

h=k0

bkd−1−h
i ξ∗

=
kd−1∑

h=k0

bkd−1−h
i |φi(x(h), u(h))| −

(
1 − bkd−k0

i

)
ξ∗

1 − bi
.

(39)

Equation (36) implies that there exists at least kd − k0 − Ti

number of time instants ki,t̄ (ki,t̄ ∈ [k0, kd−1]/{ki,t}) satisfying
|φi(x(ki,t̄), u(ki,t̄))| ≥ μi. With 0 ≤ bi < 1, we have

kd−1∑

h=k0

bkd−1−h
i |φi(x(h), u(h))| ≥

∑

h=ki,t̄

bkd−1−h
i |φi(x(h), u(h))|

≥
∑

h=ki,t̄

bkd−1−h
i μi ≥

kd−Ti−1∑

h=k0

bkd−1−h
i μi

=
(

bTi
i − bkd−k0

i

)
μi

1 − bi
(40)

where
∑

h=ki,t̄
bkd−1−h

i |φi(x(h), u(h))| represents the sum of

b
kd−1−ki,t̄
i |φi(x(ki,t̄), u(ki,t̄))| for all ki,t̄ ∈ [k0, kd − 1]/{ki,t}.

Combining with (39), we obtain

ei(kd) >

(
bTi

i − bkd−k0
i

)
μi

1 − bi
−

(
1 − bkd−k0

i

)
ξ∗

1 − bi
. (41)

Then, ei(kd) > [ε∗/(1 − bi)] holds as long as

Kd = kd − k0 ≥ logbi

bTi
i μi − ε∗ − ξ∗

μi − ξ∗ (42)

where μi −ξ∗ > 0 and bTi
i μi −ε∗−ξ∗ > 0 given μi > ξ∗+ε∗

and Ti < logbi
[(ξ∗ + ε∗)/μi]. Note that

logbi

bTi
i μi − ε∗ − ξ∗

μi − ξ∗ = logbi

⎛

⎝bTi
i −

ε∗ +
(

1 − bTi
i

)
ξ∗

μi − ξ∗

⎞

⎠

> Ti (43)

which implies that (42) ensures Kd > Ti. Thus, under con-
dition (36), we can conclude that ei(kd) > ēi(kd) = ([(1 −
bkd

i )ε
∗]/[1 − bi]) holds, that is, the fault can be detected in a

finite time kd. Finally, since Kd ∈ Z+ and according to (42),
the upper bound of the FD time can be obtained as (37).

Remark 10: The upper bound K̄d in (37) represents the
worst-case detection time, meaning that at most in K̄d amount
of time steps after the fault occurrence at k0, the fault will
definitely be detected under condition (36), and such an upper
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bound can be estimated using (37). For better understand-
ing, (36) essentially specifies an upper limit for a total number
of time instants ki,t (i.e., Ti < logbi

[(ξ∗ + ε∗)/μi]), which are
not necessarily consecutive but should be within [k0, kd − 1],
allowing the magnitude of the associated fault function to be
smaller than some bound by μi (μi > ξ∗ + ε∗). This could be
more intuitively understood as: it requires that except at those
time instants ki,t’s (with the total number Ti), the magnitude of
the occurred fault should keep larger than μi, so as to enable
the estimation of the upper bound of the detection time. In
particular, if the occurred fault is sufficiently large (μi is large
and/or Ti is small), the upper bound of detection time could be
guaranteed to be small, indicating that FD under the proposed
scheme could be achieved in a rapid manner.

Remark 11: Condition (36) is relatively more restrictive
compared to the detectability condition (34) in Theorem 2.
However, it should be emphasized that (36) is established only
for facilitating the estimation of FD time, which might not be
achieved under condition (34). In other words, if only fault
detectability is concerned, (34) is sufficient.

V. SIMULATION STUDIES

A. Three-Tank System Example

Consider the well-known three-tank system [16] in Fig. 2.
Its discrete-time dynamic model can be obtained by employing
the Euler discretization with a sampling period Ts = 0.1 s

⎧
⎪⎨

⎪⎩

x1(k + 1) = x1(k)+ Ts
A (−q13(k)+ u1(k))

x2(k + 1) = x2(k)+ Ts
A (q32(k)− q20(k)+ u2(k))

x3(k + 1) = x3(k)+ Ts
A (q13(k)− q32(k))

(44)

where xi (0 < xi < 0.69 m, i = 1, 2, 3) are the liquid levels in
the three tanks; A = 0.00154 m2 is the cross section of three
tanks; q13(k) = r1Spsign(x1(k) − x3(k))

√
2g|x1(k)− x3(k)|

is the fluid flow rate (m3/s) between tank 1 and tank 3;
q32(k) = r3Spsign(x3(k) − x2(k))

√
2g|x3(k)− x2(k)| is the

fluid flow rate (m3/s) between tank 3 and tank 2; q20 =
r2Sp

√
2gx2(k) is the fluid flow of outlet rate (m3/s) from

the tank 2; Sp = 5 × 10−5 m2 is the cross section of the
connection pipes; g = 9.8 m/s2 is the gravity acceleration;
and r1 = 1, r2 = 0.8, r3 = 1 are the outflow coefficients.
ui(k) = δ(vi(k)) (i = 1, 2) are the fluid flow of inlet rate (m3/s)
from two pumps, where δ(vi(k)) = 0 if vi < 0 or vi > 1.2 ×
10−4 m3/s, and δ(vi(k)) = vi(k) if 0 ≤ vi ≤ 1.2 × 10−4 m3/s;
and v1(k) = −5Sp(x1(k) − 0.5) + 0.8Sp(1.5 + sin(w1k))
and v2(k) = −5Sp(x2(k) − 0.5) + 0.8Sp(1.5 + cos(w2k)),
w1 = 0.3, w2 = 0.3.

In this example, the system dynamics in (44) is
assumed to be unknown, that is, v1(x(k), u(k)) :=
x1(k) + (Ts/A)(−q13(k) + u1(k)), v2(x(k), u(k)) := x2(k) +
(Ts/A)(q32(k)− q20(k)+ u2(k)), and v3(x(k), u(k)) := x3(k)+
(Ts/A)(q13(k)−q32(k)). We consider the following four types
of small faults.

1) Faulty Mode 1: A multiplicative actuator fault occurs
in pump 1 by letting u′

1(k) = u1(k) + (α1 − 1)u1(k),
where u1 is the supply flow rate in the nonfault case, and
α1 is the parameter characterizing the magnitude of the

Fig. 2. Three-tank system (Example 1).

fault. In this case, the fault function is φ1
1(x(k), u(k)) :=

(Ts/A)(α1 − 1)u1(k). We set α1 = 0.8 for simulation
purpose.

2) Faulty Mode 2: A multiplicative actuator fault occurs
in pump 2 by letting u′

2(k) = u2(k) + (α2 − 1)u2(k).
Analogous to faulty mode 1, we denote the fault func-
tion as φ2

2(x(k), u(k)) := (Ts/A)(α2 − 1)u2(k) and set
α2 = 0.9.

3) Faulty Mode 3: Leakage occurs in tank 1. Assuming the
leak is circular in shape and of cross section Sl1 = 1 ×
10−6 m2, the outflow rate of the leak in tank 1 is obtained
as q1f (k) = r1Sl1

√
2gx1(k). The fault function is

described by φ3
1(x(k), u(k)) := −(Ts/A)r1Sl1

√
2gx1(k).

4) Faulty Mode 4: Leakage occurs in tank 2. Similar to
faulty mode 3, we assume q2f (k) = r2Sl2

√
2gx2(k) with

Sl2 = 2 × 10−6 m2 and denote the fault function as
φ4

2(x(k), u(k)) := −(Ts/A)r2Sl2
√

2gx2(k).
Based on the above system setup, we first achieve the

accurate identification of the system’s uncertain dynamics
vi(x, u) (i = 1, 2, 3) under normal mode. To this end, con-
sider the normal system (44), the proposed identifier consisting
of (7) and (8) is implemented. The desired learning accuracy is
specified by setting ε∗ = 0.056, which can be achieved by con-
structing a sufficiently large number of neurons. Specifically,
we construct the RBF networks ŴT

i S(x, u) in a regular lat-
tice, with nodes Nn = 29 × 15 × 13, the centers evenly
spaced on [0.510, 0.580]× [0.430, 0.465]× [0.475, 0.505] and
the widths ηt = 0.0025 (t = 1, 2, . . . , 5655). The design
parameters of (7) and (8) are ai = 0.1 and ci = 0.04,
respectively. The initial conditions are set as Ŵi(0) = 0,
x(0) = [0.54, 0.45, 0.50]T , and x̂(0) = [0, 0, 0]T . All the
above system setups are kept the same for all i = 1, 2, 3.
Due to the space limitation, here we only show the simulation
plots for identification of the uncertain dynamics v1(x, u). The
system trajectory ϕ0 under normal mode is plotted in Fig. 3(a),
implying a recurrent ϕ0. Fig. 3(b) shows that accurate approxi-
mation of the uncertain dynamics v1(x, u) along the trajectory
ϕ0 is achieved by ŴT

1 S(x, u). Fig. 3(c) shows the convergence
of the weights Ŵ1, based on which the constant weights W̄1
can be further obtained by W̄1 = (1/100)

∑4000
k=3901 Ŵ1(k).

Using the resulting constant network W̄T
1 S(x, u), accurate

approximation of v1(x, u) in normal mode is also achieved
in Fig. 3(d).

Then, we proceed to examine the performance of the
proposed sFD scheme. We first compare each faulty dynamics
[i.e., φi(x, u)] with the associated system uncertain dynamics
[i.e., vi(x, u)] in Fig. 4. It is seen that when either one of
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(a) (b)

(c) (d)

Fig. 3. Identification of the system uncertainty v1(x, u) in normal mode (Example 1). (a) Normal system trajectory ϕ0. (b) Function approximation: v1(x, u)
and ŴT

1 S(x, u). (c) Weight convergence of Ŵ1. (d) Function approximation: v1(x, u) and W̄T
1 S(x, u).

(a) (b)

(c) (d)

Fig. 4. Time profiles of fault functions and system uncertainty in faulty modes (Example 1). (a) System uncertainty v1(x, u) and fault function φ1
1 (x, u) in

faulty mode 1. (b) System uncertainty v2(x, u) and fault function φ2
2 (x, u) in faulty mode 2. (c) System uncertainty v1(x, u) and fault function φ3

1(x, u) in
faulty mode 3. (d) System uncertainty v2(x, u) and fault function φ4

2 (x, u) in faulty mode 4.

the faults 1, 2, 3, or 4 occurs, the magnitude of the occurred
fault function is much smaller than that of the system uncer-
tainty, meaning that the occurred fault may be hidden within
the system uncertainty and is difficult to detect using the exist-
ing FD schemes (e.g., [17] and [23]). For simulation purpose,
we assume that the occurrence time for each of these small
faults is at k0 = 1000. The residual system (29) is implemented

by setting b1 = b2 = b3 = 0.95. Associated with fault 1, the
residual signal e1 and the adaptive threshold ē1 are plotted in
Fig. 5(a), which shows that e1(k) becomes larger than ē1(k)
at k = kd = 1014. Thus, fault 1 can be promptly detected
at kd = 1014, 14 time steps after the fault occurrence. The
corresponding results for the other two faults are plotted in
Fig. 5(b)–(d), respectively.
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(a) (b)

(c) (d)

Fig. 5. FD results using the proposed sFD scheme (Example 1). Detection of (a) fault 1, (b) fault 2, (c) fault 3, and (d) fault 4.

(a) (b)

Fig. 6. FD using method of [12] based on SRP (Example 1). Detection of (a) fault 3 and (b) fault 4.

To demonstrate the advantages of our scheme, we compare
our results with those of [12] using SRP. Specifically, with
the method of [12], we need to first adopt the locally accu-
rate identification method proposed in this article to achieve
accurate identification for the uncertain dynamics under all
five operation modes (we use l = 0, 1, 2, 3, 4 to represent the
normal mode, faulty modes 1, 2, 3 and 4, respectively), and
obtain the associated constant RBF networks W̄lT

i S(x, u) for
all i = 1, 2, 3 and l = 0, 1, 2, 3, 4. Then, based on the iden-
tification results, according to the sFD scheme of [12] using
SRP, the following estimators are implemented:

x̂l
i(k) = bi

(
x̂l

i(k − 1)− xi(k − 1)
)

+ W̄lT
i S(x(k − 1), u(k − 1))

(45)

where bi = 0.95 for all i = 1, 2, 3. The resulting residual
signals can be processed via an average L1-norm for sFD deci-
sion making, that is, ‖x̃l

i(k)‖1 = (1/K)
∑k−1

h=k−K |x̂l
i(h)− xi(h)|

with K = 20. The simulation results for cases of faults 3
and 4 are depicted in Fig. 6. It shows that the detection time
of faults 3 and 4 are kd = 1068 and kd = 1062, respec-
tively, which are slower than those obtained with our proposed

method [as shown in Fig. 5(c) and (d)]. Moreover, it should
be pointed out that the SRP-based method needs to construct
15 estimators [in the form of (45)], entailing accurate iden-
tification of the system dynamics under the normal and all
possible faulty modes. This requires to precisely know all pos-
sible types of faults that the system will encounter in a priori.
While our method based on the adaptive threshold mechanism
only needs to implement three estimators [in the form of (29)],
entailing accurate identification of the system dynamics under
only the normal mode.

B. Duffing Oscillator Example

Consider the Duffing oscillator system [32], its Euler
approximation with a sampling period Ts = 0.1 s is obtained as

x1(k + 1) = x1(k)+ Tsx2(k)

x2(k + 1)

= x2(k)+ Ts

(
−p2x1(k)− p3x3

1(k)− p1x2(k)+ q cos(wTsk)
)

+ β(k − k0)φ
s
2(x(k), u(k)) (46)
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(a) (b)

(c) (d)

Fig. 7. Identification of the system uncertainty v(x, u) in normal mode (Example 2). (a) Normal system trajectory ϕ0. (b) Weight convergence of Ŵ.
(c) Function approximation: v(x, u) and W̄T S(x, u). (d) Approximation in space: v(x, u) and W̄T S(x, u).

(a) (b)

Fig. 8. Time profiles of fault functions and system uncertainty in faulty modes (Example 2). (a) System uncertainty v(x, u) and fault function φ1
2 (x, u) in

faulty mode 1. (b) System uncertainty v(x, u) and fault function φ2
2 (x, u) in faulty mode 2.

where x1 and x2 are the system states; p1 = 0.55, p2 =
−1.1, p3 = 1, w = 1.9, and q = 0.62 are the system
parameters; k0 = 6500 is the fault occurrence time; φs

2(x, u)
(s = 1, 2) represents the fault functions with φ1

2(x(k), u(k)) :=
θ1Ts cos(2x2(k) + x1(k)) (θ1 = 0.02) denoting fault 1, and
φ2

2(x(k), u(k)) := θ2Ts sin(3x2(k) + x1(k)) (θ2 = 0.03) denot-
ing fault 2. In this example, we assume that f1(x(k), u(k)) :=
x1(k)+Tsx2(k), f2(x(k), u(k)) := x2(k)+Tsq cos(wTsk) are the
known nominal dynamics of the system, and v(x(k), u(k)) :=
−Tsp2x1(k)−Tsp3x3

1(k)−Tsp1x2(k) is the system uncertainty.
In the identification phase, consider the normal mode of

system (46), we employ the proposed identifier (7), (8) to
accurately identify the system uncertainty v(x, u). Setting the
desired level of learning accuracy as ε∗ = 5.48 × 10−4,
we construct the RBF networks ŴTS(x, u) in a regular lat-
tice, with nodes Nn = 23 × 29, the centers evenly spaced

on [−0.2, 2] × [−1.4, 1.4] and the widths ηt = 0.1 (t =
1, 2, . . . , 667). The design parameters are ai = 0.1 and
ci = 0.1. The initial conditions are set as Ŵ(0) = 0
and x(0) = [0.2, 0.4]T . Fig. 7(a) shows that the normal
system trajectory ϕ0 is recurrent. Fig. 7(b) shows the con-
vergence of the weights Ŵ, based on which W̄ can be further
obtained by W̄ = (1/100)

∑1500
k=1401 Ŵ(k). Fig. 7(c) and (d)

demonstrates the accurate identification of v(x, u) using
W̄TS(x, u).

In the following text, we compare the performance of our
sFD scheme with different methods. Specifically, the resid-
ual system under our sFD scheme is constructed in the form
of (29) with b2 = 0.98, and the adaptive threshold ē2 is
implemented according to (33). We first consider the sFD
methods [17], [23] that are also based on the adaptive threshold
mechanism but using direct measurement of system dynamics
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(a) (b)

Fig. 9. FD using different methods (Example 2). Detection of (a) fault 1 and (b) fault 2.

(a) (b)

Fig. 10. FD using the method of [12] based on SRP (Example 2). Detection of (a) fault 1 and (b) fault 2.

(a) (b)

Fig. 11. Detection of fault 3 with different methods (Example 2). (a) SRP-based method of [12]. (b) Our proposed method based on adaptive threshold
mechanism.

difference. The associated FD system is constructed as

x̂2(k) = b2
(
x̂2(k − 1)− x2(k − 1)

) + x2(k − 1)+ Ts

× q cos(wTs(k − 1))+ W̄TS(x(k − 1), u(k − 1))

(47)

where W̄TS(x, u) is the same constant RBF network obtained
from the identification phase, b2 = 0.98. The resulting residual
signal can be obtained as |x̃2| = |x̂2 − x2|.

Using the above two methods, we carry out the simulations.
The time-domain behaviors of the fault functions φ1

2(x, u) and
φ2

2(x, u) as well as the system uncertainty v(x, u) are first plot-
ted in Fig. 8 to show the smallness of faults 1 and 2 compared
to the system uncertainty. When fault 1 occurs in system (46),
the sFD performance is plotted in Fig. 9(a). It shows that under
our scheme, fault 1 is detected at time kd = 6522, whereas
no fault is detected under the method (47). This is because
the fault 1 function φ1

2(x, u) has frequently changing signs
[see Fig. 8(a)]. In this case, the difference between the normal

system dynamics and faulty system dynamics would be offset,
making the residual signal |x̃2| stay close to zero. Our method
is capable of overcoming this issue due to the use of abso-
lute measurements of the system dynamics difference. Similar
comparison results are also observed when fault 2 occurs [see
Figs. 9(b) and 8(b)]. These comparisons justify our discussions
in Remark 6.

With the same system setup, another comparison study
is conducted by using the SRP-based sFD method of [12].
Specific implementation of the SRP-based method follows the
same procedure as detailed in (45). The associated estima-
tor parameters are set as K = 50 and bi = 0.98 (i = 1, 2).
The simulation results are plotted in Fig. 10. It shows that
fault 1 is detected at kd = 6552 [Fig. 10(a)] and fault 2 at
kd = 6582 [Fig. 10(b)], which are slightly slower than the
detection results obtained with our proposed method (Fig. 9).
Another important advantage of our method lies in its capa-
bility of detecting unknown faults. Specifically, we consider
a new coming fault that is not known in a priori, denoted
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as fault 3 with the associated fault function φ3
2(x(k), u(k)) :=

−0.0196 sin(x1(k))2. Since fault 3 is not a priori known, we
adopt the same estimators as above under the SRP-based
method of [12], and compare its FD performance with that
of our method. The simulation results are plotted in Fig. 11.
Fig. 11(a) shows the FD performance with the method of [12],
where the residual signal ‖x̃0

2‖1 (associated with the normal
mode) remains the smallest one even when fault 3 occurs,
indicating its incapability of detecting fault 3. In contrast,
our method is still capable of promptly detecting fault 3 at
kd = 6527 [see Fig. 11(b)].

VI. CONCLUSION

In this article, a novel adaptive dynamics learning-based
scheme has been proposed for sFD of discrete-time nonlin-
ear uncertain systems. First, to overcome the challenge that
small faults may be hidden within the system uncertainty, a
novel adaptive dynamics learning approach was developed to
achieve locally accurate approximation of the unknown system
dynamics in the normal mode, where the learned knowledge
can be obtained, represented, and stored in constant RBF NNs.
Based on this, a residual system was developed by using the
absolute measurements of the difference between the moni-
tored system dynamics and the normal system dynamics. An
adaptive threshold was then designed for real-time sFD deci-
sion making. Finally, the effectiveness and advantages of the
proposed approach have been demonstrated through both rig-
orous analysis and extensive numerical simulations. For future
work, it is promising to extend this new sFD methodology to
more challenging problems, for example, small fault isolation.
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