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ABSTRACT: A dual catalytic sp3 a C–H arylation & al-
kylation of benzamides with organic halides is described. 
This protocol exhibits an exquisite site-, chemo- and en-
antioselectivity pattern, offering a complementary reac-
tivity mode to existing sp3 arylation or alkylation events 
via transition metal catalysis or photoredox events. 

Catalytic C–H functionalization reactions have stream-
lined the synthesis of valuable molecules by avoiding 
functional group manipulations while offering a reliable 
solution to forge C–C bonds from simple precursors.1 
However, the ability to rationally and predictably switch 
the site-selectivity pattern in these endeavors still remains 
a problematic, yet highly rewarding, scenario.2  

Scheme 1. Site-Selective sp3 Functionalization of Amides. 

 

The prevalence of aliphatic amines in a myriad of mole-
cules displaying biological activities3 has prompted 
chemists to develop mild, non-invasive site-selective sp3 
C–H functionalizations as a platform for structural diver-
sity.4 In this vein, photoredox catalysis has recently of-
fered new tactics for the a sp3 C–H functionalization of 
aliphatic tertiary amines via single-electron transfer (SET) 
or hydrogen-atom transfer (HAT) pathways due to their 
favorable redox profile.4,5Although the higher reduction 

potential of tertiary amide congeners makes the function-
alization of this substrate class more difficult, elegant so-
lutions have been described with more oxidizing catalysts 
or conditions.6 In contrast, the sp3 C–H functionalization 
of aliphatic secondary amides have received much less 
attention. Independent work developed by Rovis7 and 
Knowles8 established a new rationale for enabling d sp3 
C–H alkylation with activated Michael acceptors through 
[1,5]-HAT processes via amidyl radical species (Scheme 
1, path a).9 Although a site-selectivity switch has recently 
been obtained with specific amide patterns (path b),10 this 
technology remains confined to activated electron-defi-
cient olefins and stoichiometric HAT-mediators.6,11 In 
view of the foregoing, the design of a catalytic protocol 
aimed at expanding the boundaries of sp3 a-functionali-
zation of aliphatic secondary amides with broadly appli-
cable counterparts might provide an opportunity to ex-
plore inaccessible chemical space while offering new 
strategic bond-forming reactions. Herein, we describe the 
successful realization of this goal via dual catalysis 
(Scheme 1, bottom).12,13 Our protocol is distinguished by 
its mild reaction conditions, broad substrate scope and ex-
quisite site-, chemo- and enantioselective pattern. 

Scheme 2. sp3 a C–H Arylation of Aliphatic Benzamides. 
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We started our investigations by studying the sp3 a-aryla-
tion of 1a and 1k with 4-trifluoromethyl bromobenzene 
(Scheme 2). After systematic evaluation of all reaction 
parameters,14 we found that a protocol based on PC1/L1 
or PC2/L2 provided the best results under Blue-LED ir-
radiation, affording 2a and 2k in 70% and 53% yield.  As 
expected, the nature of the ligand, nickel precatalyst and 
photocatalyst had a non-negligible impact on reactivity. 
Equally important was the nature of the base and solvent; 
indeed, inferior results were found for K2HPO4 and 
Cs2CO3 or solvents other than dioxane and EtOAc, thus 
showing the subtleties of our protocol.15,16  

Table 1. sp3 a-Arylation of Benzamides.a 

 
a Isolated yields, average of two independent runs. b 1 (0.40 
mmol), (Het)ArBr (0.20 mmol), NiBr2·diglyme (10 mol%), 
L1 (15 mol%), PC1 (1 mol%), K3PO4 (0.30 mmol), dioxane 
(1.0 mL) at rt for 20 h.  c 1 (3 equiv) were used. d 1 (0.20 
mmol), (Het)ArBr (1.50 mmol), NiCl2·glyme (5 mol%), L2 
(5 mol%), PC2 (2 mol%), K3PO4 (0.4 mmol), EtOAc (1.0 
mL) at rt for 20 h. 

Next, we turned our attention to investigating the gener-
ality of our dual catalytic sp3 a-arylation. As shown in 
Table 1, compounds bearing esters (2d, 2j), nitriles (2s), 
sulfonamides (2i), ketones (2f, 2g, 2t) or amides (2j) 
could all be well-accommodated. Similar results were 
found independently whether substituents were located at 
the ortho, meta or para position. Importantly, however, 
electron-deficient arenes generally provided better yields 
of the targeted sp3 a-arylated products. The method 
shows a strong preference for aryl bromides, as the corre-
sponding aryl chlorides (2r), aryl fluorides (2c, 2p, 2s) or 
boronic esters (2n) remained inert, thus providing ample 
room for further derivatization via conventional cross-
coupling reactions. Albeit in slightly lower yields, the 
method was shown to be compatible with heteroaryl bro-
mides (2u-2w). The exclusive formation of 2j bearing 
two seemingly similar benzamides is particularly note-
worthy; no traces of sp3 C–H functionalization adjacent 
to the ester motif were found in the crude mixtures. Alt-
hough tentative, this result is consistent with C–C bond-
formation occurring at the more hydridic sp3 C–H bond 
that is more susceptible to HAT by electrophilic radical 
species.4,5 Notably, similar results were found for ben-
zamides possessing different electronic environments 
(2ac, 2ad) or with heteroaryl-substituted motifs (2ae) re-
gardless of the length of the alkyl side-chain (2x, 2y), 
even in the presence of free alcohols (2z), acetates (2aa) 
or alkyl chlorides (2ab).  

Table 2. sp3 a-Alkylation of Benzamides.a,b 

 
a 1 (0.60 mmol), (Het)ArBr (0.20 mmol), NiBr2·diglyme (10 
mol%), L3 (bipyridine; 15 mol%), PC1 (1 mol%), K3PO4 
(0.30 mmol), dioxane (1.0 mL) at rt. b Isolated yields, aver-
age of at least two independent runs.  
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Encouraged by these results, we wondered whether our 
method would be robust enough to forge related sp3–sp3 
linkages by using unactivated alkyl halides as counter-
parts. The successful implementation of such a protocol, 
however, might not be particularly straightforward. In-
deed, the available sp3 a-alkylation portfolio of aliphatic 
secondary amides largely remains confined to the use of 
particularly activated a,b-unsaturated carbonyls as cou-
pling partners,9a  although some developments from Mac-
Millan have described alkylations on substrate classes 
other than secondary aliphatic amides.9b  In addition, b-
hydride elimination and the low propensity for sp3–sp3 C–
C reductive elimination represent important drawbacks to 
be overcome.17 Therefore, at the outset of our investiga-
tions it was unclear whether it would be possible to pro-
mote a sp3–sp3 bond-formation adjacent to the amide 
function with unactivated alkyl halides. Gratifyingly, we 
found that the sp3 a-alkylation was within reach by using 
a Ni/L3 regime under otherwise identical reaction condi-
tions to those shown in the sp3 a-arylation event (Table 
2). As shown in Table 3, a host of unactivated alkyl hal-
ides possessing b-hydrogens promoted the targeted trans-
formation with similar ease. In addition, the presence of 
nitriles (3d), free alcohols (3f), alkyl chlorides (3g), am-
ides (3h), ketones or esters (3i) did not hinder the reaction.  

Table 3. Enantioselective sp3 a-Arylation of Benzamides.a,b 

 
a 1 (0.20 mmol), ArBr (1.50 mmol), NiCl2·glyme (5 mol%), 
iPrBiOx (5 mol%), PC1 (2 mol%), K3PO4 (0.40 mmol), 
EtOAc (1.0 mL) at –15 ºC. b Isolated yields. 

A close inspection into the literature data reveals that an 
asymmetric sp3 C–H arylation initiated via photoinduced 
HAT processes remains an elusive endeavour within the 
metallaphotoredox arena.13,18 To address this gap, we fo-
cused on developing an enantioselective sp3 a C–H func-
tionalization of aliphatic secondary amides with aryl hal-
ides. Gratifyingly, we found that a protocol based on 
iPrBiOx (L3) was particularly suited for our purposes 
(Table 3). Although preliminary, the corresponding a-ar-
ylated products could be obtained in high levels of enan-
tioselectivity with comparable yields to those shown in 
Table 2 regardless of the substitution pattern at both the 
aryl halide and the aliphatic amide backbone (4a-4c), thus 

constituting a complementary, yet powerful, platform to 
elegant protocols recently described by Doyle and Yu.18,19  

Prompted by the PCET work of Rovis6,8 and Knowles7 on 
the d sp3 C–H alkylation of aliphatic secondary amides 
with electron-deficient olefins,20 we anticipated that our 
protocol might serve as an orthogonal gateway to forge 
sp3 C–C bonds in aliphatic amides at either a- or d-posi-
tions. As shown in Scheme 3, this turned out to be the 
case and regiodivergent C–C bond-formation could be ac-
cessed by using 5 as substrate. As expected, d-alkylation 
with an activated a,b-unsaturated compound was ob-
tained by subjecting 5 to PC-3 and NBu4OP(O)(OBu)2 

under Blue-LED irradiation,7 whereas exclusive sp3 a-ar-
ylation (7a, 7b) was obtained under the Ni(L1)/PC1 or 
Ni(L2)/PC2 couple. Notably, 8 could be prepared from 
6b and 7b following the same rationale, demonstrating 
the orthogonality of our sp3 C–H functionalization ap-
proach for forging C–C bonds at either a or d-positions. 
At present, we don´t have an explanation for the low 
yields obtained. Taken together, the results in Tables 1-3 
and Scheme 3 illustrate the prospective impact of our dual 
catalytic platform for forging sp3 C–C linkages adjacent 
to benzamide motifs in a site-selective manner. 

Scheme 3. Orthogonality with 1,5-HAT processes.a 

 

Next, we decided to gather indirect evidence about the 
mechanism by deuterium-labelling (Scheme 4, top). As 
shown, a primary kinetic isotope effect (KIE) was ob-
served by exposing a 1:1 mixture of 1a and 1a-D2 under 
a PC1/L1 regime, suggesting that sp3 C–H bond-cleavage 
might be involved in the rate-determining step of the re-
action. Similar results were found using a 1:1 ratio of 
1k:1k-D2 with PC2/L2. Aimed at shedding light on the 
subsequent C–C bond-forming event, we turned our at-
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tention to study the reactivity of the putative oxidative ad-
dition species Ni-I, readily obtained by reacting 4-trifluo-
romethyl bromobenzene to Ni(COD)2 and L1 in THF 
(middle).14 As expected, Ni-I was found to be catalyti-
cally competent, affording 2a in 32% yield.21 Although 
speculative, the lower yields of 2a employing Ni-I when 
compared to an in situ protocol based on NiBr2·di-
glyme/L1 can tentatively be ascribed to its inherent insta-
bility in the absence of aryl bromide and its strong absorp-
tion in the visible light region.22 In addition, the prepara-
tion of 2x, 2y, 2aa and 2ab is particularly illustrative, ar-
guing against a scenario based on 1,5-HAT followed by 
recombination with Ni-I and a chain-walking manifold 
prior to C–C bond-formation at the a-position (bottom).23 
Whether the key transient radical species adjacent to the 
amide function are obtained via intermolecular HAT pro-
cesses or invoke other mechanistic considerations is the 
subject of ongoing studies.24 

Scheme 4. Preliminary Mechanistic Experiments.a 

 

In summary, we have documented a dual catalytic strat-
egy that enables an sp3 a-arylation and sp3 a-alkylation 
of benzamides, offering a complementary activation 
mode to existing metal-catalyzed or photoinduced pro-
cesses. The protocol is characterized by its mild condi-
tions, wide scope and exquisite site-, chemo- and enanti-
oselectivity. Further studies to unravel the mechanistic in-
tricacies of the reaction and the extension to other C–C 
bond-forming scenarios are currently ongoing.  
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