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ABSTRACT: A dual catalytic sp* « C-H arylation & al-
kylation of benzamides with organic halides is described.
This protocol exhibits an exquisite site-, chemo- and en-
antioselectivity pattern, offering a complementary reac-
tivity mode to existing sp° arylation or alkylation events
via transition metal catalysis or photoredox events.

Catalytic C—H functionalization reactions have stream-
lined the synthesis of valuable molecules by avoiding
functional group manipulations while offering a reliable
solution to forge C—C bonds from simple precursors.
However, the ability to rationally and predictably switch
the site-selectivity pattern in these endeavors still remains
a problematic, yet highly rewarding, scenario.?

Scheme 1. Site-Selective sp® Functionalization of Amides.

R.
F
R4 C-
HN—
df;> path a
Y=C, SO HAT mediators &
this work sp® a-arylation sp® a-alkylation
The prevalence of aliphatic amines in a myriad of mole-
C—H functionalizations as a platform for structural diver-
aliphatic tertiary amines via single-electron transfer (SET)

I’ /\EWG 3 S (0]
d-selectivity activated partners
ArYO
cules displaying biological activities® has prompted
sity.* In this vein, photoredox catalysis has recently of-
or hydrogen-atom transfer (HAT) pathways due to their

B sp® C-H functionalization of amldes (EWR=electron- wnhdrawmg group)
HN
s o
path b EWG
B dual catalytic sp® a-arylation & alkylation of amides (this work)
Ar Ar\fo
HN HN HN
5 mild & broad scope 5 @
exquisite a-selectivity R
high enantioselectivity
chemists to develop mild, non-invasive site-selective sp°
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potential of tertiary amide congeners makes the function-
alization of this substrate class more difficult, elegant so-
lutions have been described with more oxidizing catalysts
or conditions.® In contrast, the sp® C—H functionalization
of aliphatic secondary amides have received much less
attention. Independent work developed by Rovis’ and
Knowles® established a new rationale for enabling & sp°
C—H alkylation with activated Michael acceptors through
[1,5]-HAT processes via amidyl radical species (Scheme
1, path a).” Although a site-selectivity switch has recently
been obtained with specific amide patterns (path b),'° this
technology remains confined to activated electron-defi-
cient olefins and stoichiometric HAT-mediators.®!" In
view of the foregoing, the design of a catalytic protocol
aimed at expanding the boundaries of sp® a-functionali-
zation of aliphatic secondary amides with broadly appli-
cable counterparts might provide an opportunity to ex-
plore inaccessible chemical space while offering new
strategic bond-forming reactions. Herein, we describe the
successful realization of this goal via dual catalysis
(Scheme 1, bottom).'*'* Our protocol is distinguished by
its mild reaction conditions, broad substrate scope and ex-
quisite site-, chemo- and enantioselective pattern.

Scheme 2. sp’ o C—H Arylation of Aliphatic Benzamides.
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We started our investigations by studying the sp’ a-aryla-
tion of 1a and 1k with 4-trifluoromethyl bromobenzene
(Scheme 2). After systematic evaluation of all reaction
parameters,'* we found that a protocol based on PC1/L1
or PC2/L.2 provided the best results under Blue-LED ir-
radiation, affording 2a and 2k in 70% and 53% yield. As
expected, the nature of the ligand, nickel precatalyst and
photocatalyst had a non-negligible impact on reactivity.
Equally important was the nature of the base and solvent;
indeed, inferior results were found for K;HPO. and
Cs,COs or solvents other than dioxane and EtOAc, thus
showing the subtleties of our protocol.!>:!®
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“Isolated yields, average of two independent runs. © 1 (0.40
mmol), (Het)ArBr (0.20 mmol), NiBr:-diglyme (10 mol%),
L1 (15 mol%), PC1 (1 mol%), KsPO4 (0.30 mmol), dioxane
(1.0 mL) at rt for 20 h. °1 (3 equiv) were used. 1 (0.20
mmol), (Het)ArBr (1.50 mmol), NiClz-glyme (5 mol%), L2
(5 mol%), PC2 (2 mol%), KsPO4 (0.4 mmol), EtOAc (1.0
mL) at rt for 20 h.

Next, we turned our attention to investigating the gener-
ality of our dual catalytic sp’ a-arylation. As shown in
Table 1, compounds bearing esters (2d, 2j), nitriles (2s),
sulfonamides (2i), ketones (2f, 2g, 2t) or amides (2j)
could all be well-accommodated. Similar results were
found independently whether substituents were located at
the ortho, meta or para position. Importantly, however,
electron-deficient arenes generally provided better yields
of the targeted sp® c-arylated products. The method
shows a strong preference for aryl bromides, as the corre-
sponding aryl chlorides (2r), aryl fluorides (2¢, 2p, 2s) or
boronic esters (2n) remained inert, thus providing ample
room for further derivatization via conventional cross-
coupling reactions. Albeit in slightly lower yields, the
method was shown to be compatible with heteroaryl bro-
mides (2u-2w). The exclusive formation of 2j bearing
two seemingly similar benzamides is particularly note-
worthy; no traces of sp’ C—H functionalization adjacent
to the ester motif were found in the crude mixtures. Alt-
hough tentative, this result is consistent with C—C bond-
formation occurring at the more hydridic sp° C—H bond
that is more susceptible to HAT by electrophilic radical
species.*> Notably, similar results were found for ben-
zamides possessing different electronic environments
(2ac, 2ad) or with heteroaryl-substituted motifs (2ae) re-
gardless of the length of the alkyl side-chain (2x, 2y),
even in the presence of free alcohols (2z), acetates (2aa)
or alkyl chlorides (2ab).

Table 2. sp’ a-Alkylation of Benzamides.*’
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(0.30 mmol), dioxane (1.0 mL) at rt. ? Isolated yields, aver-
age of at least two independent runs.



Encouraged by these results, we wondered whether our
method would be robust enough to forge related sp*—sp’
linkages by using unactivated alkyl halides as counter-
parts. The successful implementation of such a protocol,
however, might not be particularly straightforward. In-
deed, the available sp® a-alkylation portfolio of aliphatic
secondary amides largely remains confined to the use of
particularly activated o,B-unsaturated carbonyls as cou-
pling partners,’® although some developments from Mac-
Millan have described alkylations on substrate classes
other than secondary aliphatic amides.”® In addition, p-
hydride elimination and the low propensity for sp°—sp’® C—
C reductive elimination represent important drawbacks to
be overcome.!” Therefore, at the outset of our investiga-
tions it was unclear whether it would be possible to pro-
mote a sp°—sp’ bond-formation adjacent to the amide
function with unactivated alkyl halides. Gratifyingly, we
found that the sp® a-alkylation was within reach by using
a Ni/L3 regime under otherwise identical reaction condi-
tions to those shown in the sp’ a-arylation event (Table
2). As shown in Table 3, a host of unactivated alkyl hal-
ides possessing B-hydrogens promoted the targeted trans-
formation with similar ease. In addition, the presence of
nitriles (3d), free alcohols (3f), alkyl chlorides (3g), am-

ides (3h), ketones or esters (3i) did not hinder the reaction.

Table 3. Enantioselective sp® a-Arylation of Benzamides.”’
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EtOAc (1.0 mL) at —15 °C. ? Isolated yields.

A close inspection into the literature data reveals that an
asymmetric sp° C—H arylation initiated via photoinduced
HAT processes remains an elusive endeavour within the
metallaphotoredox arena.!*!® To address this gap, we fo-
cused on developing an enantioselective sp* . C—H func-
tionalization of aliphatic secondary amides with aryl hal-
ides. Gratifyingly, we found that a protocol based on
iPrBiOx (L3) was particularly suited for our purposes
(Table 3). Although preliminary, the corresponding c-ar-
ylated products could be obtained in high levels of enan-
tioselectivity with comparable yields to those shown in
Table 2 regardless of the substitution pattern at both the
aryl halide and the aliphatic amide backbone (4a-4c¢), thus

constituting a complementary, yet powerful, platform to
elegant protocols recently described by Doyle and Yu.'®!°

Prompted by the PCET work of Rovis®® and Knowles’ on
the 8 sp® C—H alkylation of aliphatic secondary amides
with electron-deficient olefins,?® we anticipated that our
protocol might serve as an orthogonal gateway to forge
sp® C—C bonds in aliphatic amides at either a- or 8-posi-
tions. As shown in Scheme 3, this turned out to be the
case and regiodivergent C—C bond-formation could be ac-
cessed by using 5 as substrate. As expected, 5-alkylation
with an activated o,p-unsaturated compound was ob-
tained by subjecting 5 to PC-3 and NBusOP(O)(OBu),
under Blue-LED irradiation,” whereas exclusive sp’ a-ar-
ylation (7a, 7b) was obtained under the Ni(L1)/PC1 or
Ni(L2)/PC2 couple. Notably, 8 could be prepared from
6b and 7b following the same rationale, demonstrating
the orthogonality of our sp® C—H functionalization ap-
proach for forging C—C bonds at either a or d-positions.
At present, we don’t have an explanation for the low
yields obtained. Taken together, the results in Tables 1-3
and Scheme 3 illustrate the prospective impact of our dual
catalytic platform for forging sp® C—C linkages adjacent
to benzamide motifs in a site-selective manner.

Scheme 3. Orthogonality with 1,5-HAT processes.”
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Next, we decided to gather indirect evidence about the
mechanism by deuterium-labelling (Scheme 4, fop). As
shown, a primary kinetic isotope effect (KIE) was ob-
served by exposing a 1:1 mixture of 1a and 1a-D? under
a PC1/L1 regime, suggesting that sp> C—H bond-cleavage
might be involved in the rate-determining step of the re-
action. Similar results were found using a 1:1 ratio of
1k:1k-D? with PC2/L2. Aimed at shedding light on the
subsequent C—C bond-forming event, we turned our at-



tention to study the reactivity of the putative oxidative ad-
dition species Ni-I, readily obtained by reacting 4-trifluo-
romethyl bromobenzene to Ni(COD), and L1 in THF
(middle).'* As expected, Ni-I was found to be catalyti-
cally competent, affording 2a in 32% yield.?! Although
speculative, the lower yields of 2a employing Ni-I when
compared to an in situ protocol based on NiBr;-di-
glyme/L1 can tentatively be ascribed to its inherent insta-
bility in the absence of aryl bromide and its strong absorp-
tion in the visible light region.?? In addition, the prepara-
tion of 2x, 2y, 2aa and 2ab is particularly illustrative, ar-
guing against a scenario based on 1,5-HAT followed by
recombination with Ni-I and a chain-walking manifold
prior to C—C bond-formation at the a-position (bottom).?
Whether the key transient radical species adjacent to the
amide function are obtained via intermolecular HAT pro-
cesses or invoke other mechanistic considerations is the
subject of ongoing studies.?*

Scheme 4. Preliminary Mechanistic Experiments.”
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In summary, we have documented a dual catalytic strat-
egy that enables an sp’ a-arylation and sp® c-alkylation
of benzamides, offering a complementary activation
mode to existing metal-catalyzed or photoinduced pro-
cesses. The protocol is characterized by its mild condi-
tions, wide scope and exquisite site-, chemo- and enanti-
oselectivity. Further studies to unravel the mechanistic in-
tricacies of the reaction and the extension to other C—C
bond-forming scenarios are currently ongoing.
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