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Abstract. We study a three-dimensional incompressible viscous fluid in a horizontally periodic
domain with finite depth whose free boundary is the graph of a function. The fluid is subject
to gravity and generalized forces arising from a surface energy. The surface energy incorporates
both bending and surface tension effects. We prove that for initial conditions sufficiently close to
equilibrium the problem is globally well-posed and solutions decay to equilibrium exponentially fast,
in an appropriate norm. Our proof is centered around a nonlinear energy method that is coupled to
careful estimates of the fully nonlinear surface energy.
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1. Introduction. In this paper we study the dynamics of a three-dimensional
periodic layer of viscous incompressible fluid bounded below by a rigid interface and
above by a moving free boundary. The free boundary is advected with the fluid, but
the configuration of the free boundary gives rise to surface stresses that act as forcing
terms on the fluid. In this introductory section we discuss the origin and nature of
the surface stresses and then record the equations of motion.

1.1. Surface energies. We will restrict our attention in this paper to surface
stresses that are generated as generalized forces associated to an energy functional that
depends on the configuration of the surface. Here the generalized force is understood
in the sense that it is the negative gradient of the energy. The classical example of
such a force is surface tension, which is associated to the energy functional given by
a constant multiple of the area functional (the constant is known as the coefficient of
surface tension). The generalized force is then the mean curvature operator, which is
the trace of the second fundamental form. We can account for higher-order geometric
effects by considering more general functionals depending on the second fundamental
form itself. The classical example of such an energy is the Willmore functional, which
is the square of the mean curvature integrated over the surface. Our goal here is
to briefly survey the vast literature associated to Willmore-type energies and their
relation to interfacial mechanics.

The Willmore energy was popularized in the differential geometry literature by
Willmore's initial work on it [Wil65] and in his books on Riemannian geometry
[Wil82, Wil93]. Willmore also formulated the so-called Willmore conjecture, which
predicted the minimizers of the energy among immersed tori. The Willmore con-
jecture was proved recently by Marques and Neves [MN14]. Critical points of the
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4895

Willmore energy remain an active topic of study in geometric analysis and PDE: for
example, Kuwert and Sch\"atzle [KS04] studied removable singularities, Rivi\`ere [Riv08]
developed a theory of weak Willmore immersions, and Bernard and Rivi\`ere [BR14]
proved results about energy quantization and compactness.

Remarkably, energies of Willmore type arise naturally in many areas of applied
mathematics, and so such energies have received much attention outside of differential
geometry. Roughly speaking, one can justify the widespread appearance of Willmore-
type energies in applications through the lens of dimension reduction in elasticity. In
many applications one considers a thin three-dimensional elastic material. When the
size of the thin direction is very small relative to the two other directions, then it is
natural to seek an effective two-dimensional model, thereby reducing the dimension. A
rigorous derivation of Willmore-type energies as \Gamma -limits of three-dimensional elastic
energies was carried out by Friesecke, James, and M\"uller [FMJ02, FJM02] for plates
and Friesecke et al. [FJMM03] for shells.

One major area of interest in these energies is the study of biological membranes,
lipid bi-layers, and vesicles. All of these structures can be thought of as very thin elas-
tic materials and should thus have some relation to Willmore-type energies. In [Hel73]
Helfrich introduced such an energy to model the structure of lipid bi-layers, which led
to these energies being standard modeling tools in membrane biology. More recent
advances have considered coupled models of fluid-membrane dynamics: Du, Li, and
Liu [DLL07] and Du et al. [DLRW09] used phase field models to model fluid dynamics
coupled to vesicles, Farshbaf-Shaker and Garcke [FSG11] developed thermodynami-
cally consistent higher-order phase field models, and Ryham et al. [RKYC16] used
Willmore-type energies to study the energetics of membrane fusion.

The coupling of the full fluid equations to surface stresses generated by Willmore-
type energies presents numerous analytical challenges. Cheng, Coutand, and Shkoller
[CCS07] proved a local existence result for a viscous fluid coupled to a nonlinear elastic
biofluid shell, and Cheng and Shkoller [CS10] proved local existence for a model with
a Koiter shell. Local existence results for similar models related to hemodynamics
were proved by Muha and \^Cani\'c [MC15, MC16]. We refer to the work of Bonito,
Nochetto, and Pauletti [BNP11] and Barett, Garcke, and N\"urnberg [BGN17] and the
references contained therein for a discussion of the numerical analysis of such models.

A second major area of interest in energies of this type is the study of thin layers
of ice, which can be thought of as thin elastic materials. We refer to the book by
Squire et al. [SHKL96] and the references therein for an overview of the physics
specific to ice sheets. We refer to the work of Plotnikov and Toland [PT11] for a
discussion of how the Willmore functional is related to bending energies for thin sheets
of ice. The question of how fluids couple to the dynamics of ice sheets has attracted
much attention in recent years, though most attention has focused on inviscid fluids.
Solitary and traveling wave solutions and effective equations were studied by Milewski
et al. [MVBW11], Wang et al. [WVBM13], and Trichtchenko et al. [TMPV] in two
dimensions and by Milewski and Wang [MW13] and Trichtchenko et al. [TPVBM] in
three dimensions. For two-dimensional irrotational two-fluid flows, Liu and Ambrose
[LA17] proved well-posedness and Akers, Ambrose, and Sulon [AAS17] constructed
traveling wave solutions for a two-fluid model. The one-fluid model was studied by
Ambrose and Siegel [AS17].

Interestingly, Willmore-type energies also appear in other applications with no
clear connection to thin elastic structures. In [Rub17] Rubinstein details how the
energy appears in optics in questions related to optimal lens design. Hawking [Haw68]
also introduced a Willmore-like energy in his study of gravitational radiation.
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4896 ANTOINE REMOND-TIEDREZ AND IAN TICE

1.2. Examples of surface energies. In this paper we are concerned with peri-
odic slab-like geometries, which in particular means that we restrict our attention to
surfaces given as the graph of a function \eta : \BbbT 2 \rightarrow \BbbR , where \BbbT 2 = \BbbR 2/\BbbZ 2 is the usual
2-torus. This has the benefit of significantly simplifying the differential geometry of
the surface. The area element, the unit normal, and the shape operator (the matrix
in coordinates whose trace is the mean curvature) are then, respectively,

(1.1)
\sqrt{} 
1 + | \nabla \eta | 2, ( - \nabla \eta , 1)\sqrt{} 

1 + | \nabla \eta | 2
, and

1\sqrt{} 
1 + | \nabla \eta | 2

\biggl( 
I  - \nabla \eta \otimes \nabla \eta 

1 + | \nabla \eta | 2

\biggr) 
\nabla 2\eta .

We consider generalized Willmore-type energies that depend on both\nabla \eta and\nabla 2\eta ,
which allows for a combination of surface stresses of surface tension and bending
type. We specify the energy functional \scrW through the use of an energy density
f : \BbbR 2 \times \BbbR 2\times 2 \rightarrow \BbbR :

\scrW (\eta ) =

\int 
\BbbT 2

f
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
.

Note in particular that we neglect to allow the energy density to depend on \eta directly
since this is the case for surface energies that only depend on the geometric quantities
defined in (1.1). We now consider various examples of energies of this type. Along
the way we will record both the first and second variations of the energies.

Willmore energy. We consider the Willmore energy, which arises in the Helfrich
model of elasticity for a lipid membrane [Hel73], modeled as a surface \Sigma ,

\scrW H =

\int 
\Sigma 

C1 + C2(H  - H0)
2
+ C3K

for some nonnegative constants C1, C2, C3, and H0, where
\bullet H := tr s is the mean curvature,
\bullet K := det s the Gaussian curvature,
\bullet A :=

\sqrt{} 
1 + | \nabla \eta | 2 is the area element,

\bullet h := \nabla 2\eta 
A is the scalar extrinsic curvature, or scalar second fundamental form,

and
\bullet s := h\sharp is the shape operator, i.e., for any vector fields X, Y , g (s (X) , Y ) =
h (X,Y ), where g is the metric on \Sigma .

Note that since
\int 
\Sigma 
K is a topological invariant (due to Gauss and Bonnet), and that

since
\int 
\Sigma 
1 yields a lower-order differential operator (see the surface area discussion

below), we can simply consider the energy

\scrW =

\int 
\Sigma 

1

2
H2.

We may rewrite this energy as

2\scrW (\eta ) =

\int 
\Sigma 

H2 =

\int 
\BbbT 2

H2A =

\int 
\BbbT 2

\bigm| \bigm| g - 1 : h
\bigm| \bigm| 2A

=

\int 
\BbbT 2

1\sqrt{} 
1 + | \nabla \eta | 2

\bigm| \bigm| \bigm| \bigm| \biggl( I  - \nabla \eta \otimes \nabla \eta 
1 + | \nabla \eta | 2

\biggr) 
: \nabla 2\eta 

\bigm| \bigm| \bigm| \bigm| 2,D
ow

nl
oa

de
d 

06
/2

2/
20

 to
 1

28
.2

.1
49

.1
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4897

where g - 1 := I  - \nabla \eta \otimes \nabla \eta 
1+| \nabla \eta | 2 is the inverse of the metric tensor. The first variation

is nontrivial to compute, so we skip it here and refer to [Wil93], where a detailed
computation shows that1

\delta \scrW (\eta ) = \Delta \Sigma H +
1

2
H
\bigl( 
H2  - 4K

\bigr) 
,

where \Delta \Sigma f :=  - 1
A\nabla \cdot 

\bigl( 
Ag - 1 \cdot \nabla f

\bigr) 
is the Laplace--Beltrami operator on the surface

\Sigma . The second variation about a flat equilibrium is the same as the linearization of
\delta \scrW (\eta ) about a flat equilibrium and is the bi-Laplacian: \delta 20\scrW = \Delta 2.

``Scalar"" Willmore energy. Computing the general second variation \delta 2\eta \scrW of
the Willmore energy presented above is a harrowing experience, and therefore we now
discuss a toy model similar to the full Willmore energy but simple enough to yield
tractable computations. This is what we call the ``scalar"" Willmore energy, namely

\scrW (\eta ) =

\int 
\BbbT 2

1

2
m (\nabla \eta ) | \Delta \eta | 2

for some smooth m : \BbbR 2 \rightarrow (0,\infty ) with m (0) > 0. Simple computations then show
that the variations of \scrW are given by

\delta \scrW (\eta ) = \Delta 
\Bigl( 
m (\nabla \eta )\Delta \eta 

\Bigr) 
 - \nabla \cdot 

\Bigl( 1
2
\nabla m (\nabla \eta ) | \Delta \eta | 2

\Bigr) 
and \bigl( 

\delta 2\eta \scrW 
\bigr) 
\phi = \Delta 

\Bigl( 
m (\nabla \eta )\Delta \phi +\nabla m (\nabla \eta ) \cdot \nabla \phi \Delta \eta 

\Bigr) 
 - \nabla \cdot 

\Bigl( 
\nabla m (\nabla \eta )\Delta \eta \Delta \phi +

1

2
| \Delta \eta | 2\nabla 2m (\nabla \eta ) \cdot \nabla \phi 

\Bigr) 
.

In particular, the second variation at the flat equilibrium is \delta 20\scrW = (
\sqrt{} 
m (0)\Delta )

2
.

Anisotropic Willmore energy. The last surface energy we discuss that yields a
fourth-order differential operator is one which, by contrast with the previous two, does
not linearize to the bi-Laplacian. This surface energy is thus a prototypical example
of anisotropic bending energies. In particular, we consider the surface energy

\scrW (\eta ) :=
1

2

\int 
\BbbT 2

\bigm| \bigm| C (\nabla \eta ) : \nabla 2\eta 
\bigm| \bigm| 2

for some C : \BbbR 2 \rightarrow Sym
\bigl( 
\BbbR 2\times 2

\bigr) 
such that C (0) is positive definite. Then the lin-

earization about the equilibrium of the first variation of \scrW is \delta 20\scrW =
\bigl( 
C (0) : \nabla 2

\bigr) 2
.

Note that for C (w) =
\sqrt{} 
m (w)I we recover the ``scalar"" Willmore energy and for

C (w) =
1

(1 + | w| 2)1/4

\biggl( 
I  - w \otimes w

1 + | w| 2

\biggr) 
we recover the Willmore energy discussed above.

1Note that our conventions differ slightly from those used by Willmore: we define the mean
curvature to be the sum of the principal curvatures, and not half of that sum, and we define the
Willmore energy to be half of the square of the mean curvature.
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4898 ANTOINE REMOND-TIEDREZ AND IAN TICE

Surface area. We now discuss how surface energies related to surface area yield
second-order differential operators that describe, for example, the forces due to surface
tension. Consider the surface energy

\int 
\Sigma 
1 =

\int 
\BbbT 2 A, where as above (in the discussion

of the Willmore energy) A =
\surd 

1+| \nabla \eta | 2. It is well-known that the first variation of
the area functional written above is precisely (minus) the mean curvature, and that
it models the effect of surface tension seeking to minimize the surface area of the free
surface. More precisely, its variations are given by

\delta \scrW (\eta ) =  - H =  - \nabla \cdot 

\left(  \nabla \eta \sqrt{} 
1 + | \nabla \eta | 2

\right)  
and

\bigl( 
\delta 2\eta \scrW 

\bigr) 
\phi =  - \nabla \cdot 

\biggl( 
g - 1 \cdot \nabla \phi 

A

\biggr) 
=  - \nabla \cdot 

\left(  \Biggl( I  - \nabla \eta \otimes \nabla \eta 
1 + | \nabla \eta | 2

\Biggr) 
\cdot \nabla \phi \sqrt{} 

1 + | \nabla \eta | 2

\right)  .

In particular, its linearization about equilibrium is \delta 20\scrW =  - \Delta .
Competing effects of surface tension and flexural forces. Our general

form of the surface energy allows for energetic contributions due to bending as well
as area, and as such we will allow for surface stresses of flexural and surface tension
type. Here we record some examples of what these forces look like in terms of the
local geometry of the surface. In particular, we see that there are instances in which
the bending and surface tension stresses are in opposition.

\bullet Circular arc: In a circular (one-dimensional) arc surface tension and flexural
forces act in opposite directions, the former pushing inward and the latter
pushing outward. This is due to the simple observation regarding the scaling
of these surface energies: \scrA =

\int 
\Sigma 
1 \sim R and \scrW =

\int 
\Sigma 
H2 \sim 1

R2R = 1
R .

\bullet Sigmoidal wave: Surface tension and flexural forces acting in opposite direc-
tions can also be seen locally in some more complicated geometries, such as
that of the sigmoidal wave shown in Figure 1. In particular, these forces act
in opposite directions to one another at the front and the tail of the wave.

\bullet Gaussian wave: This is another example, shown in Figure 1, of a geome-
try in which, locally, surface tension and flexural forces may act in opposite
directions.

1.3. Fluid equations. We now consider a slab of periodic fluid occupying the
moving domain

\Omega (t) :=
\bigl\{ 
x = (\=x, x3) \in \BbbT 2 \times \BbbR 

\bigm| \bigm|  - b < x3 < \eta (t, \=x)
\bigr\} 

for an unknown height function \eta : [0,\infty ) \times \BbbT 2 \rightarrow ( - b,\infty ). The lower boundary of
\Omega (t) is the rigid unmoving interface

\Sigma b :=
\bigl\{ 
x \in \BbbT 2 \times \BbbR 

\bigm| \bigm| x3 =  - b
\bigr\} 
,

while the upper boundary is the moving interface

\Sigma (t) :=
\bigl\{ 
x \in \BbbT 2 \times \BbbR 

\bigm| \bigm| x3 = \eta (t, \=x)
\bigr\} 
.

We assume that the fluid is subject to a uniform gravitational field of strength
g \in \BbbR acting perpendicularly to \Sigma b. Note in particular that we do not require g \geq 0:
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4899

(a) Effect of surface tension on a sigmoidal
wave

(b) Effect of surface tension on a Gaussian
wave

(c) Effect of flexural forces on a sigmoidal
wave

(d) Effect of flexural forces on a Gaussian
wave

(e) Combined effects on a sigmoidal wave (f) Combined effects on a Gaussian wave

Fig. 1. The purple curve is the profile of a free surface \Sigma given as the graph of \eta = tanh on

the left and of \eta (x) = e - x2/2 on the right. The black segments show the force \delta \scrW (\eta ) \nu \Sigma exercised
on the free surface corresponding to a surface energy \scrW . In (a) and (b), \scrW =

\int 
\Sigma 1; in (c) and (d),

\scrW =
\int 
\Sigma H2; and in (e) and (f), \scrW =

\int 
\Sigma \alpha +\beta H2 for some \alpha , \beta > 0. The other curve (orange in (a)

and (b), pink in (c) and (d), and gray in (e) and (f)) illustrates the new profile of the free surface
after application of the force \delta \scrW (\eta ) \nu \Sigma .

more will be said about this below in the latter part of section 2.2. We assume that
the free interface is subject to surface stresses generated by the energy

(1.2) \scrW (\eta ) =

\int 
\BbbT 2

f
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
for a function f : \BbbR 2 \times \BbbR 2\times 2 \rightarrow \BbbR satisfying the assumptions enumerated below in
section 2.2. If \nu denotes the unit normal pointing out of \Omega (t), then the surface stress is

(1.3)  - \delta \scrW (\eta ) ( - \nu ) = \delta \scrW (\eta ) \nu ,

i.e., the magnitude of the stress is  - \delta \scrW (\eta ) but the direction is  - \nu , which indicates
that the surface stress acts on the fluid. This form of \scrW allows us to consider a
generalized mixture of bending and surface tension stresses. Due to this general
form, we will not attribute the source of the energy (and hence the stress) to any
particular model, but as elaborated on above in section 1.1, such an energy would
arise if we viewed the surface as a thin biological membrane or as a thin layer of ice.
Our assumptions on f will always require that \delta \scrW (\eta ) is a fourth-order differential
operator, typically of quasilinear form.

We will assume that the fluid is incompressible and viscous, which means that
we can describe its state by specifying its velocity v (t, \cdot ) : \Omega (t) \rightarrow \BbbR 3 and pressure
q (t, \cdot ) : \Omega (t) \rightarrow \BbbR . We will also assume that, on the free surface, effects due to inertia
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4900 ANTOINE REMOND-TIEDREZ AND IAN TICE

and momentum transfer are negligible. For simplicity we will assume that the fluid
density and viscosity are normalized to unity. The equations of motion are then the
free boundary Navier--Stokes equations coupled to surface stresses of the form (1.3)
generated by the free energy (1.2). These read\left\{                 

\partial tv + (v \cdot \nabla ) v =  - \nabla q +\Delta v in \Omega (t),(1.4a)

\nabla \cdot v = 0 in \Omega (t),(1.4b)

(qI  - \BbbD v) \nu =
\Bigl( 
\delta \scrW (\eta ) + g\eta 

\Bigr) 
\nu on \Sigma (t),(1.4c)

\partial t\eta = (v \cdot \nu )
\sqrt{} 
1 + | \nabla \eta | 2 on \Sigma (t), and(1.4d)

v = 0 on \Sigma b,(1.4e)

where

(1.5) (\BbbD v)ij = \partial ivj + \partial jvi

is the symmetrized gradient and I is the 3\times 3 identity matrix. By a minor standard
abuse of notation in (1.4c) and (1.4d), all quantities involving \eta and its derivatives at
a point (x\prime , x3) in \Sigma (t) are understood to be determined by their values at x\prime \in \BbbT 2.
The first two equations are the usual incompressible Navier--Stokes system, the third
is the balance of stresses on the free interface, the fourth is the kinematic transport
equation, and the fifth is the no-slip condition at the rigid interface. Note that what
we call the pressure q is really the difference between the standard pressure \=q and
hydrostatic pressure  - gx3, i.e., q = \=q+ gx3. Making this substitution in the first and
third equations reveals that the gravitational term is originally a bulk force acting in
\Omega (t).

Sufficiently regular solutions to (1.4a)--(1.4e) obey the following equations: the
energy-dissipation identity

(1.6)
d

dt

\Biggl( \int 
\Omega (t)

1

2
| v| 2 +

\int 
\BbbT 2

g

2
| \eta | 2 +\scrW (\eta )

\Biggr) 
+

\int 
\Omega (t)

1

2
| \BbbD v| 2 = 0

and the mass conservation identity

(1.7)
d

dt

\int 
\BbbT 2

\eta = 0.

The first term in parentheses in (1.6) is the kinetic energy of the fluid, the second is
the total gravitational potential energy stored in the fluid, and the third is the surface
energy (1.2). The term outside parentheses is the usual viscous dissipation, which in
particular forces the total energy (the sum of the three terms) to be nonincreasing in
time. Equation (1.7) is understood as the integral form of mass conservation since
b +

\int 
\BbbT 2 \eta (\cdot , t) is the mass of the fluid body at time t \geq 0. We will assume that the

parameter b is chosen such that the initial mass of fluid is b, which means that

(1.8)

\int 
\BbbT 2

\eta 0 = 0 and hence

\int 
\BbbT 2

\eta (t, \cdot ) = 0 for t \geq 0.

From the no-slip condition, Korn's inequality (see Proposition B.13), and (1.6)
we conclude that any equilibrium (time-independent) solutions must satisfy v = 0. In
turn, this, (1.4a)--(1.4e), and (1.8) imply that q = 0, which reduces to \eta solving

(1.9) \delta \scrW (\eta ) + g\eta = 0.
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4901

It's clear that \eta = 0 is a solution to this, but it does not follow from our assumptions
on the energy density f (enumerated below in section 2.2) that 0 is the only solution
to this equation. However, our assumptions do require that 0 is a local minimum of
the total surface energy (the sum of \scrW and the gravitational potential \scrP )

(1.10) \scrW (\eta ) + \scrP (\eta ) := \scrW (\eta ) +

\int 
\BbbT 2

g

2
| \eta | 2

and that the second variation of \scrW + \scrP is positive definite at 0, when restricted to
functions of zero average. It is a simple matter to check that (1.9) corresponds to
the Euler--Lagrange equation \delta (\scrW + \scrP ) (\eta ) = 0, which means that 0 is an isolated
critical point of \scrW + \scrP . Then \eta = 0 is the only solution to (1.9) within an open
set containing 0. Thus, there is a locally unique equilibrium corresponding to a flat
slab of quiescent fluid. Our main goal in this paper is to show that this equilibrium
solution is asymptotically stable and to characterize the rate of decay to equilibrium.

Much is known about problems of the form (1.4a)--(1.4e) when \scrW is a multiple
\sigma \geq 0 of the area function, g > 0, and the cross section is either periodic (\BbbT 2) or
infinite (\BbbR 2). The case \sigma > 0 corresponds to surface tension, and \sigma = 0 corresponds
to no surface tension. Beale [Bea81] proved the first local well-posedness results for
the infinite cross section without surface tension. Beale [Bea84] also proved global
existence of solutions near equilibrium for the infinite problem with surface tension.
Beale and Nishida[BN85] then proved that these global solutions decay at an algebraic
rate. The existence of global solutions with and without surface tension was also
studied by Tani and Tanaka [TT95], but no decay information was obtained. Guo
and Tice [GT13b] proved that for the infinite problem without surface tension, small
data leads to global solutions that decay algebraically. For the periodic problem
without surface tension, Hataya [Hat09] constructed global solutions decaying at a
fixed algebraic rate, and Guo and Tice [GT13a] proved that solutions decay almost
exponentially, with the decay rate determined by the data. Nishida, Teramoto, and
Yoshihara [NTY04] proved that the periodic problem with surface tension leads to
global solutions near equilibrium that decay exponentially. Tan and Wang [TW14]
established a sort of continuity result, proving that the global solutions with surface
tension converge to the global solutions without surface tension as \sigma \rightarrow 0.

As mentioned in section 1.1, there are results on the local existence of solutions
to models coupling incompressible Navier--Stokes to free boundaries with elastic and
bending stresses [CCS07, CS10, MC15, MC16]. However, to the best of our knowledge,
there are no global existence or asymptotic stability results on the problem (1.4a)--
(1.4e) with \scrW combining bending and surface tension stresses.

2. Main result.

2.1. Reformulation in a fixed domain. In order to solve the problem (1.4a)--
(1.4e) we flatten the domain, which has the benefit of allowing us to work with a
domain that is no longer time-dependent. More precisely, we move from the Eulerian
domain \Omega (t) to the fixed equilibrium domain \Omega := \BbbT 2\times ( - b, 0) via a map \Phi : [0, T )\times 
\BbbT 2\times \BbbR \rightarrow \BbbT 2\times \BbbR such that for every 0 \leqslant t < T , \Phi (t, \cdot ) : \Omega \rightarrow \Omega (t) is a diffeomorphism
that maps the lower/upper boundary of \Omega to the upper/lower boundary of \Omega (t).

To precisely define this map we need two tools. The first is any smooth cutoff
function \chi : \Omega \rightarrow \BbbR such that \chi = 1 on \Sigma and \chi = 0 on \Sigma b. For instance, we can
define \chi (x3) = 1+ x3

b . The second tool is the harmonic extension map ext, the precise
definition of which can be found in section B.1. For 0 \leq t < T , the extension allows us
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η(t)

b

Σ(t)

Σb

Ω(t)
Φ−1

b

Σ

Σb

Ω

Fig. 2. A cartoon of the diffeomorphism fixing the domain.

to extend \eta (t, \cdot ) : \BbbT 2 \rightarrow \BbbR to the function ext \eta (t, \cdot ) : \Omega \rightarrow \BbbR , defined in the bulk. The
extension is done to help with regularity issues when taking the trace of \Phi onto \Sigma .

With these tools in hand, we define

(2.1) \Phi (t, \cdot ) = id+ ext \eta (t, \cdot )\chi e3

for the choice of cutoff \chi as above. An important observation is that if \eta is sufficiently
small (which is made precise in item 2 of Remark 4.3), then \Phi (t, \cdot ) is a diffeomorphism
onto \Omega (t). In particular, if we denote by \Sigma = \BbbT 2 \times \{ 0\} the upper boundary of the
fixed domain \Omega , then \Phi (t, (\Sigma )) = \Sigma (t) and \Phi (t, \cdot ) = id on \Sigma b: see Figure 2.

Any function f defined on the Eulerian domain \Omega (t) thus gives rise to a function
F := f \circ \Phi defined on the fixed domain \Omega . In particular, the manifestations on \Omega of
the temporal and spatial derivatives of f are given by \nabla \scrG F := \nabla 

\bigl( 
F \circ \Phi  - 1

\bigr) 
\circ \Phi and

\partial \scrG t F := \partial t
\bigl( 
F \circ \Phi  - 1

\bigr) 
\circ \Phi , i.e., f = F \circ \Phi  - 1 and \nabla f =

\bigl( 
\nabla \scrG F

\bigr) 
\circ \Phi  - 1 (and similarly for

temporal derivatives). The differential operators \nabla \scrG and \partial \scrG t are called \scrG -differential
operators. In more concrete terms, the \scrG -differential operators may be written as
\nabla \scrG = \scrG \cdot \nabla and \partial \scrG t = \partial t - (\partial t\Phi ) \cdot \nabla \scrG , where \scrG := (\nabla \Phi )

 - T
. Similarly, we define the \scrG -

versions of the symmetrized gradient and of the Laplacian via \BbbD \scrG F := \nabla \scrG F+
\bigl( 
\nabla \scrG F

\bigr) T
and \Delta \scrG F := \nabla \scrG \cdot 

\bigl( 
\nabla \scrG F

\bigr) 
. We may now reformulate (1.4a)--(1.4e) as a system of PDEs

on the fixed domain \Omega . Indeed, solutions \scrX \ast = (v, q, \eta ) on \Omega (t) of (1.4a)--(1.4e)
correspond to solutions \scrX = (v \circ \Phi , q \circ \Phi , \eta ) =: (u, p, \eta ) on \Omega of\left\{                 

\partial \scrG t u+
\bigl( 
u \cdot \nabla \scrG \bigr) u =  - \nabla \scrG p+\Delta \scrG u in \Omega ,(2.2a)

\nabla \scrG \cdot u = 0 in \Omega ,(2.2b) \bigl( 
pI  - \BbbD \scrG u

\bigr) 
\nu \scrG \partial \Omega =

\Bigl( 
\delta \scrW (\eta ) + g\eta 

\Bigr) 
\nu \scrG \partial \Omega on \Sigma ,(2.2c)

\partial t\eta = u \cdot \nu \scrG \partial \Omega on \Sigma , and(2.2d)

u = 0 on \Sigma b .(2.2e)

where \nu \scrG \partial \Omega is defined in (4.1). The rest of this paper is therefore concerned with the
study of this system.

2.2. Assumptions on the surface energy density. We now make precise
the assumptions that we impose on the surface energy density f : \BbbR 2 \times \BbbR 2\times 2 \rightarrow \BbbR 
throughout the paper. We assume the following:

1. f is smooth, i.e., infinitely differentiable. If we keep track of the regularity
needed on f at the lowest level of regularity to close the estimates in this
paper, then we only need f \in C7,1. However, no effort has been made to
make this regularity optimal in light of the fact that if we sought smooth
solutions, then f would have to be smooth as well.

2. f (0, 0) = 0 and \nabla f (0, 0) = 0. This is an assumption that can be made
without loss of generality because we may reduce the general case to this one
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by adding a null Lagrangian and a constant to the surface energy. Indeed,
for an arbitrary \~f , we may define

f (w,M) := \~f (w,M) - \~f (0, 0) +\nabla w
\~f (0, 0) \cdot w +\nabla M

\~f (0, 0) :M

such that indeed f (0) = 0, \nabla f (0) = 0 and for \eta : \BbbT 2 \rightarrow \BbbR sufficiently regular
we have that\int 

\BbbT 2

f
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
=

\int 
\BbbT 2

\~f
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
 - 
\int 
\BbbT 2

\~f (0)

 - 
\int 
\BbbT 2

\nabla w
\~f (0, 0) \cdot \nabla \eta +\nabla M

\~f (0, 0) : \nabla 2\eta 

=

\int 
\BbbT 2

\~f
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
 - 
\int 
\BbbT 2

\~f (0) ,

i.e., the surface energies defined by f and \~f only differ by an irrelevant con-
stant. Note that the third integral on the right side of the first equality
vanishes by integrating by parts.

3. The Hessian of f satisfies

(2.3) \nabla 2
M,Mf (0) \bullet 

\bigl( 
k\otimes 4

\bigr) 
 - \nabla 2

w,wf (0) \bullet 
\bigl( 
k\otimes 2

\bigr) 
+ g \gtrsim | k| 4

for all k \in \BbbZ 2 \setminus \{ 0\} , i.e., \delta 20\scrW + g is strictly elliptic over functions of average
zero. See section B.6 for a more detailed discussion of the ellipticity of \delta 20\scrW +g.

Note in particular that our assumptions on f do not necessarily imply that \scrW is
positive definite. However, the third assumption requires that the total surface energy
\scrW + \scrP defined in (1.10) is positive definite for sufficiently small perturbations of 0.

The third assumption can also be understood as saying that flexural effects dom-
inate. For example, if we consider

\scrW =

\int 
\Sigma 

\alpha + \beta H2,

then \delta 20\scrW =  - \alpha \Delta + \beta \Delta 2. If \alpha , g < 0, then upon applying the Fourier transform we
see that\bigl( 

\delta 20\scrW + g
\bigr) \wedge 

(k) = 16\pi 4\beta | k| 4 + 4\pi 2\alpha | k| 2 + g \geqslant 
\bigl( 
16\pi 4\beta + 4\pi 2\alpha + g

\bigr) 
| k| 4

since | k| \geqslant 1 for all k \in \BbbZ 2 \setminus \{ 0\} . In particular, even if \alpha , g < 0, as long as 16\pi 4\beta >
 - 
\bigl( 
4\pi 2\alpha + g

\bigr) 
, then \delta 20\scrW + g is strictly elliptic over functions of average zero. In

physically meaningful terms (cf. Figure 3 for a sketch), this means that sufficiently
strong flexural effects dominate over adverse surface tension and gravity effects. In
particular, we can allow for g < 0 in general.

2.3. Statement of the main result. In order to state the main result, it is
convenient to introduce the notion of an admissible initial condition and to introduce
the energy and dissipation functionals.

g

Fig. 3. Sufficiently strong flexural effects dominate adverse gravitational effects.
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4904 ANTOINE REMOND-TIEDREZ AND IAN TICE

An admissible initial condition is, loosely speaking, a pair (u0, \eta 0) such that u0
is incompressible, the boundary conditions are satisfied, an appropriate compatibility
condition holds, and \eta 0 has average zero. The precise definition of an admissible
initial condition may be found in Definition 6.4, and a more detailed discussion of the
compatibility condition is included in Remark 6.5.

Now let us introduce the energy and dissipation functionals. Given a triple \scrX =
(u, p, \eta ), the associated energy and dissipation functionals are

\scrE (\scrX ) := | | u| | 2H2(\Omega ) + | | \partial tu| | 2L2(\Omega ) + | | p| | 2H1(\Omega ) + | | \eta | | 2H9/2(\BbbT 2) + | | \partial t\eta | | 2H2(\BbbT 2)

and

\scrD (\scrX ) := | | u| | 2H3(\Omega ) + | | \partial tu| | 2H1(\Omega ) + | | p| | 2H2(\Omega ) + | | \eta | | 2H11/2(\BbbT 2)

+ | | \partial t\eta | | 2H5/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| \partial 2t \eta \bigm| \bigm| \bigm| \bigm| 2H1/2(\BbbT 2)

,

respectively. We will sometimes abuse notation slightly and write \scrE (t) := \scrE (\scrX (t))
and \scrD (t) := \scrD (\scrX (t)) when it is clear from context which triple \scrX is being used. We
may now state the main result of this paper.

Theorem 2.1. Assume that f satisfies the conditions enumerated in section 2.2.
Then there exist universal constants C, \lambda , \epsilon > 0 such that for every admissible initial
condition (u0, \eta 0) satisfying

(2.4) | | \eta 0| | 2H9/2(\BbbT 2) + | | u0| | 2H2(\Omega ) + | | u0 \cdot ( - \nabla \eta 0, 1)| | 2H2(\Sigma ) \leqslant \epsilon 

there exists a unique solution \scrX = (u, p, \eta ) of (2.2a)--(2.2e) on [0,\infty ) such that

sup
t\geqslant 0

\scrE (t) e\lambda t +

\int \infty 

0

\scrD (t) e\lambda tdt \leqslant C\scrE (0) .

Note that requiring the smallness of the third term in (2.4) comes from the com-
patibility condition (cf. section 6 for a more detailed discussion). Theorem 2.1 is
proved in section 6 in the somewhat more precise form of Theorem 6.11. Theorem 2.1
guarantees that \eta is regular and small enough to transform the solution back to the
Eulerian system, which then gives rise to a global decaying solution to (1.4a)--(1.4e),
obeying similar estimates.

3. Discussion. In order to prove global well-posedness and decay, we employ a
nonlinear energy method. We outline this method in section 3.1, discuss the difficulties
that arise in section 3.2, and provide a strategy of the proof in section 3.3. We
also discuss how the work presented in this paper fits with respect to previous work
considering other types of surface forces, highlighting that the present work may be
viewed, in some sense, as ``supercritical.""

3.1. Nonlinear energy method. In this section we provide a high-level over-
view of the nonlinear energy method employed to prove global well-posedness and
decay. The nonlinear energy method informs the scheme of a priori estimates that
we employ and begins as follows: we multiply the PDE by the unknown u and in-
tegrate by parts with respect to the nonlinear differential operators \nabla \scrG . This yields
the energy-dissipation relation

d

dt

\biggl( \int 
\Omega 

1

2
| u| 2J +\scrW (\eta ) +

\int 
\BbbT 2

g

2
| \eta | 2
\biggr) 
+

\biggl( \int 
\Omega 

1

2
| \BbbD \scrG u| 2J

\biggr) 
= 0,
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where J := det\nabla \Phi accounts for the local deformation in volume due to the change of
coordinates \Phi . Close to the equilibrium solution (u, p, \eta ) = 0, the energy-dissipation
relation becomes the same as that which is obtained by a standard energy estimate
for the linearization of the PDE about the equilibrium, namely

d

dt

\biggl( \int 
\Omega 

1

2
| u| 2 +\scrQ 0 (\eta ) +

\int 
\BbbT 2

g

2
| \eta | 2
\biggr) 

\underbrace{}  \underbrace{}  
E

+

\biggl( \int 
\Omega 

1

2
| \BbbD u| 2

\biggr) 
\underbrace{}  \underbrace{}  

D

= 0,

where \scrQ 0 denotes the quadratic approximation of \scrW about the equilibrium, and is
defined precisely in section 4.4.1. The good news is that if we restrict our attention to
terms involving u, i.e., consider only Eu := 1

2

\int 
\Omega 
| u| 2, then it follows from the no-slip

boundary condition u = 0 on \Sigma b and Korn's inequality, Proposition B.13, that the
dissipation is coercive over the energy, i.e.,

Eu =

\int 
\Omega 

1

2
| u| 2 \lesssim 

\int 
\Omega 

1

2
| \BbbD u| 2.

If for the moment we ignore the terms in the energy depending on \eta , then a Gronwall-
type argument shows that we should expect exponential decay of Eu:\left\{   

d

dt
Eu +D = 0

Eu \leqslant CD
\Rightarrow d

dt

\bigl( 
Eu (t) e

Ct
\bigr) 
\leqslant 0 \Rightarrow Eu (t) \leqslant e - CtEu (0) .

Of course, we are not actually able to ignore the \eta terms in the energy, so we must
find a mechanism for controlling these terms with the dissipation functional.

Such a mechanism is found by appealing to (2.2c) and (2.2d), which allow us to
estimate \eta and \partial t\eta . Indeed, in order to obtain this coercivity we may use the elliptic
nature of the dynamic boundary condition (2.2c) to transfer control of u (and p) onto
additional control of \eta . However, at this stage we can only conclude that u \in H1,
which is insufficient to make sense of the trace of the stress tensor in the dynamic
boundary condition, and so this mechanism for regularity transfer is not available
to us.

To resolve this issue we take derivatives of the problem that are compatible with
the no-slip boundary condition (temporal and horizontal spatial derivatives) and apply
a version of the energy-dissipation estimate. The extra control that this provides then
allows us to use a host of auxiliary estimates that permit the transfer of regularity
between u and \eta . For example, the dynamic boundary condition allows us to gain
control of higher-order derivatives of \eta . Proceeding in this fashion, we can close the
estimates by showing that the dissipation is coercive over the full energy.

3.2. Difficulties. We now turn to a discussion of the difficulties encountered
when employing the nonlinear energy method described above. The central difficulty
is that there is a nontrivial interdependence between two essential features of the
problem, namely the regularity gain and transfer mechanisms on one hand and the
energy-dissipation structure on the other hand. This difficulty is exacerbated by two
components of the problem in particular:

\bullet \scrW is of order two, which is supercritical (in a sense made precise below),
\bullet \delta \scrW is generally a quasilinear differential operator of order four.
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In order to describe the difficulties we encounter, it is helpful to write the problem
in a more compact form as N (\scrX ) = 0 for \scrX = (u, p, \eta ) the unknown and N the
nonlinear differential operator given by

N (\scrX ) = N (u, p, \eta ) =

\left(       
\partial \scrG t u+

\bigl( 
u \cdot \nabla \scrG \bigr) u+\nabla \scrG p - \Delta \scrG u

\nabla \scrG \cdot u
tr\Sigma 
\bigl( 
pI  - \BbbD \scrG u

\bigr) 
\nu \scrG \partial \Omega  - 

\Bigl( 
\delta \scrW (\eta ) + g\eta 

\Bigr) 
\nu \scrG \partial \Omega 

\partial t\eta  - tr\Sigma u \cdot \nu \scrG \partial \Omega 
tr\Sigma b

u

\right)       .

3.2.1. Structured estimates. Most terms in N may be viewed as linear oper-
ators with multilinear dependence on geometric coefficients under control (such as \scrG 
and J). When computing the commutators between N and partial derivatives, the
contribution from these kinds of terms is relatively benign. A more detailed descrip-
tion of these operators and the corresponding commutators may be found in section
5.1. However, the term \delta \scrW (\eta ), which comes from the fully nonlinear surface energy,
cannot be written in this form and as a consequence it gives rise to commutators that
are too singular to be controlled in a structured manner.

More precisely, the first attempt would be to write the equation \partial \alpha (N (\scrX )) = 0
as a perturbation of L\scrX = 0, where L denotes the linearization of N about the
equilibrium. In other words, we would seek to write \partial \alpha (N (\scrX )) = L\partial \alpha \scrX +C (\partial \alpha \scrX ) for
some commutators C. Then upon integrating by parts and deriving the corresponding
energy-dissipation relation, we would obtain commutators that are too singular to be
controlled in a structured manner.

To elucidate what we mean by this, let us consider the following cartoon. Consider
the energy-dissipation relation d

dtE +D \leqslant C where C denotes some commutators. If
we can show that

(3.1) | C| \leqslant 
\surd 
ED,

then for E \leqslant 1
4 (i.e., in the cartoon version of what we will later call the small energy

regime) we have that d
dtE + 1

2D \leqslant 0. Moreover, if the dissipation D is coercive over
the energy E (i.e., E \leqslant D), then we can conclude that the energy decays exponentially
fast. However, if instead of (3.1) we can only show that

(3.2) | C| \leqslant D3/2,

then we cannot conclude anything about the boundedness or decay of E. In other
words, while both (3.1) and (3.2) show that the commutators C can be controlled,
only (3.1) shows that the commutators can be controlled in a manner respectful of
the energy-dissipation structure. In particular, note that unstructured estimates like
(3.2) are typically easier to obtain than structured estimates like (3.1) due to the fact
that the dissipation is coercive over the energy, and hence

\surd 
ED \leqslant D3/2.

A more specific discussion of why our scheme of a priori estimates would fail due
to the term coming from the nonlinear surface energy may be found in Remark 5.3.

3.2.2. Parabolic criticality. As hinted at earlier, a particular source of dif-
ficulty when attempting to estimate these commutators comes from the fact that
energies of order two, like the energies of Willmore-type considered here, are ``su-
percritical."" This critical phenomenon comes from the fact that the Stokes system
embedded into our problem imposes parabolic scaling on u, but when we use the
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equations of motion to gain dissipative control of spatial and temporal derivatives of
\eta this generally induces nonparabolic scaling for \eta estimates. This mismatch between
the u scaling and the \eta scaling is precisely the source of the critical threshold. In
particular, as will be detailed below, previous work dealing with capillary forces due
to surface tension may be viewed as ``subcritical"" while this work dealing with flexural
forces due to bending may be viewed as ``supercritical.""

To better understand this difficulty it is helpful to consider a toy example in which

\scrW (\eta ) =

\int 
\BbbT 2

| | \nabla | \alpha \eta | 2

for some \alpha > 0. We then observe that if u \in Hs (\Omega ) (and so p \in Hs - 1 (\Omega )), then we
may use the kinematic and dynamic boundary conditions,\Biggl\{ \bigl( 

\delta 20\scrW 
\bigr) 
\eta = tr (pI  - \BbbD u) : (e3 \otimes e3) \in Hs - 3

2

\bigl( 
\BbbT 2
\bigr) 
and

\partial t\eta = tru \cdot e3 \in Hs - 1
2

\bigl( 
\BbbT 2
\bigr) 
,

to obtain the following control over \eta and \partial t\eta :\Biggl\{ 
| | \eta | | Hs+2\alpha  - 3/2(\BbbT 2) \lesssim | | u| | Hs(\Omega ) + | | p| | Hs - 1(\Omega ) and

| | \partial t\eta | | Hs - 1/2(\BbbT 2) \lesssim | | u| | Hs(\Omega ).

Therefore the difference in regularity between \eta and \partial t\eta is
\bigl( 
s+ 2\alpha  - 3

2

\bigr) 
 - 
\bigl( 
s - 1

2

\bigr) 
=

2\alpha  - 1. To summarize schematically, the induced dissipative \eta scaling is

\partial t\eta \sim | \nabla | 2\alpha  - 1
\eta ,

where this should be understood in the sense that if we control \partial t\eta in Hs, then we
expect to control \eta in Hs+(2\alpha  - 1), and vice versa (i.e., control of \eta in Hs is expected
to correspond to control of \partial t\eta in Hs - (2\alpha  - 1)).

This scaling mismatch complicates the design of a scheme of a priori estimates
in which control of time derivatives is leveraged to gain control of spatial derivatives,
but temporal differentiation of the equations leads to high-order commutators. In
particular, we have the following:

\bullet For \alpha < 3
2 , temporal derivatives of \eta are cheap relative to spatial derivatives

(by contrast with parabolic scaling). This is what we refer to as the subcritical
case. The case of surface tension, which corresponds to \alpha = 1, falls into this
category.

\bullet For \alpha = 3
2 , \eta follows parabolic scaling.

\bullet For \alpha > 3
2 , temporal derivatives of \eta are expensive relative to spatial deriv-

atives (by contrast with parabolic scaling). This is what we refer to as the
supercritical case. The case of flexural forces, which corresponds to \alpha = 2
and which is considered in this paper, falls into this category.

Since the Willmore-type energies we consider here are supercritical, we must therefore
be very wary of commutators involving time derivatives of \eta . Again, the precise
manner in which this can be an issue for the scheme of a priori estimates presented
here is discussed in Remark 5.3.

3.2.3. Appropriate linearization. To summarize the difficulties discussed so
far, we seek to estimate the commutators in a structured manner, and we have to
be particularly careful regarding terms involving time derivatives of \eta due to the
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4908 ANTOINE REMOND-TIEDREZ AND IAN TICE

supercriticality of the Willmore-type energies discussed here. To address both of these
issues we proceed as follows. Instead of linearizing the PDE system directly (whether
about the equilibrium or about any \scrX ), we find a quadratic approximation of the
energy and dissipation, and then derive the associated PDE---which is also linear but
not the same as the linearization of the nonlinear operator N . In some sense, it is
beneficial to perform the linearization in this manner since it is more respectful of
the structure of the fully nonlinear surface energy. In a more precise sense, we will
see below that performing the linearization in this manner leads to commutators that
can be controlled.

We thus view N as a perturbation of some linear operator L\scrX (i.e., a linear
operator whose coefficients depend on \scrX ) different from its linearization but such
that the energy-dissipation relation associated with L\scrX has ``good commutators.""
Note that we write L\scrX to emphasize that the coefficients of this linear operator
depend on \scrX . We will thus consider the commutators (called this by a slight abuse
of language) \partial \alpha \circ N  - L\scrX \circ \partial \alpha , where L\scrX is given by

L\scrX (\scrY ) := L\scrX (v, q, \zeta ) =

\left(       
\partial \scrG t v +

\bigl( 
u \cdot \nabla \scrG \bigr) v +\nabla \scrG p - \Delta \scrG v

\nabla \scrG \cdot v
tr\Sigma 
\bigl( 
qI  - \BbbD \scrG v

\bigr) 
\nu \scrG \partial \Omega  - 

\Bigl( 
\delta 2\eta \scrW (\zeta ) + g\zeta 

\Bigr) 
\nu \scrG \partial \Omega 

\partial t\zeta  - tr\Sigma v \cdot \nu \scrG \partial \Omega 
tr\Sigma b

u.

\right)       .

Note here that \scrG = \scrG (\eta ) and \nu \Sigma = \nu \Sigma (\eta ), i.e., these geometric coefficients depend on
\eta (i.e., on \scrX ) and not \zeta (i.e., not on \scrY ).

This is where the subtle interdependence between the energy-dissipation structure
and the regularity gain and transfer structure is most apparent. On one hand the
linearization of N about the equilibrium, denoted by L, tells us how much regularity
can be gained and therefore tell us which commutators can be controlled, and on the
other hand the energy-dissipation structure associated with N tells us which form of
control of these commutators is allowed in order to close the estimates. The precise
form of L\scrX is then chosen such that it yields ``good"" commutators respectful of both
of these features, i.e., commutators upon which we have structured control and which
are also tame enough despite the supercriticality of the surface energy. In particular,
note that when \scrX is the equilibrium solution, i.e., \scrX = 0, then L0 = L.

3.2.4. Failure of coercivity. We discussed above that surface energies of order
\alpha = 3/2 are critical, in some sense. Nonetheless, close to that exponent, i.e., whether
in the case of surface tension where \alpha = 1 or in the case of bending energies where
\alpha = 2, exponential decay of the energy can be obtained. While this is not addressed
directly in this paper, it is worth pointing out that this is no longer true when \alpha < 1/2
or \alpha > 5/2.

\bullet When \alpha < 1/2 one does not obtain exponential decay of the energy for the
linearized problem about equilibrium, but only algebraic decay. We refer to
Tice and Zbarsky [TZ18] for details.

\bullet When \alpha > 5/2, the scheme of a priori estimates is not sufficient to obtain
coercivity of the dissipation over the energy. Recall that in order to show that
the dissipation is coercive over the energy, we must differentiate the PDE.
Indeed, upon differentiating we obtain enough control on u to make sense of
the trace of the stress tensor pI  - \BbbD u, which in turn allows us to leverage the
dynamic boundary condition to turn control of u into higher-order control
of \eta , thus obtaining coercivity. Taking derivatives up to parabolic order two
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4909

(i.e., taking one temporal and two spatial derivatives) we see that the only

appearance of \partial t\eta in the energy is via the term \scrQ 0 (\partial t\eta ) \asymp | | \partial t\eta | | 2H\alpha (\BbbT 2),

while the kinematic boundary tells us that \scrD \gtrsim | | u| | 2H3(\Omega ) \gtrsim | | tru| | 2H5/2(\BbbT 2) \gtrsim 

| | \partial t\eta | | 2H5/2(\BbbT 2). So indeed, for \alpha > 5
2 , \scrD \not \gtrsim \scrE . Note that this problem cannot

be circumvented by applying more time derivatives, as it will always occur
for the highest-order term.

3.3. Strategy of the proof. In this section we sketch the strategy of the proof.
We describe the key moving pieces in section 3.3.1, then discuss how they interact in
section 3.3.2. This allows us to identify in section 3.3.3 the ``hard analysis"" estimates
that have to be made to close the estimates and thus conclude the proof. Throughout
this section we also outline the plan of the paper, pointing to the location of each step
of the proof.

3.3.1. The moving pieces. The key moving pieces are (1)L, (2)L\scrX , and (3)
the various versions of the energy and the dissipation.

1. We denote by L the linearization of N about the equilibrium, which is re-
sponsible for the regularity gain and transfer mechanisms.

2. We denote by L\scrX a linear approximation of N about \scrX , which is responsible
for the energy-dissipation structure of the problem. In particular L\scrX dictates
the precise form of the energy-dissipation relation and of the commutators
\partial \alpha \circ N  - L\scrX \circ \partial \alpha .

3. The various versions of the energy and the dissipation (precisely defined in
section 4.5.2) are as follows:

\bullet The equilibrium versions, denoted by \scrE and \scrD , which come from the
energy-dissipation relation corresponding to the linearized problem about
the equilibrium and consist of functional norms of the unknowns.

\bullet The improved versions, denoted by \scrE and \scrD , which are obtained by
bootstrapping from the equilibrium versions, using the regularity gain
and transfer mechanisms embedded in L. In other words, if L\scrX = 0,
then \scrE controls \scrE and \scrD controls \scrD .

\bullet The geometric versions, denoted by \widetilde \scrE and \widetilde \scrD , which come from the
energy-dissipation relation corresponding to N and L\scrX and consist of
functional norms of the unknowns involving the \scrG -differential operators
and weighted by the geometric coefficient (such as J).

In particular, note that since L\scrX depends on \scrX , so do \widetilde \scrE and \widetilde \scrD , and so we
also write them as \widetilde \scrE (\cdot ;\scrX ) and \widetilde \scrD (\cdot ;\scrX ), respectively. Moreover, note that
the notation we use is consistent since on one hand, when \scrX = 0 we have
that L0 = L, and on the other hand \widetilde \scrE (\cdot ; 0) = \scrE and \widetilde \scrD (\cdot ; 0) = \scrD . This is
summarized in the diagram below, where IBP denotes integration by parts.

L\scrX \scrY = 0 d
dt
\widetilde \scrE (\scrY ;\scrX ) + \widetilde \scrD (\scrY ;\scrX ) = 0

L\scrY = 0 d
dt\scrE (\scrY ) +\scrD (\scrY ) = 0

IBP

\scrX =0 \scrX =0

IBP

The precise derivation of the energy-dissipation relations can be found at the
start of section 5.1.

3.3.2. How the moving pieces interact. As discussed earlier, there are two
key features of the problem that our proof relies on:
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4910 ANTOINE REMOND-TIEDREZ AND IAN TICE

L\scrX = R N (\scrX ) = 0 d
dt
\widetilde E0 (\scrX ) + \widetilde D0 (\scrX ) = 0

\Biggl\{ 
\scrE \lesssim \scrE +\scrN E

\scrD \lesssim \scrD +\scrN D

L\scrX (\partial \alpha \scrX ) = C\alpha d
dt
\widetilde E (\partial \alpha \scrX ;\scrX ) + \widetilde D (\partial \alpha \scrX ;\scrX ) = \langle C\alpha , \partial \alpha \scrX \rangle \scrX 

\scrG  - IBP

\partial \alpha 

\scrG  - IBP

Fig. 4. Schematic overview of the strategy of the proof, where \scrG  - IBP refers to integration
by parts with respect to the \scrG -differential operators (cf. section A.1 for the relevant integration
theorems).

1. Given the equilibrium versions of the energy and the dissipation, the regular-
ity gain and transfer mechanisms embedded in the linearization L dictate the
form of the improved versions. The general form of the auxiliary estimates
obtained from those regularity gain and transfer mechanisms can be found at
the start of section 5.2.

2. The form of L\scrX dictates the energy-dissipation structure, which thus deter-
mines the form of the geometric versions of the energy and dissipation, as
well as the form of the commutators \partial \alpha \circ N  - L\scrX \circ \partial \alpha . The derivation of the
energy-dissipation relation and the computation of the commutators can be
found at the start of section 5.1.

The interaction of the moving pieces is also summarized more tersely in Figure 4.

3.3.3. The ``hard analysis"" estimates. In order to close the estimates, we
need to show that, in the small energy regime,

\bullet the commutators are small, which is done in the latter part of section 5.1,
and

\bullet all versions of the energy are comparable (and similarly for the dissipation),
which is done in the latter part of section 5.2 (where we essentially show that
the equilibrium and improved versions are comparable) and in section 5.3
(where we essentially show that the equilibrium and geometric versions are
comparable).

4. Notation. The purpose of this section is to collect in a single place all of the
notational conventions we will use throughout the rest of the paper.

4.1. Basics. Here we collect notation for variables, derivatives, and tensor ma-
nipulations.

4.1.1. Variables and derivatives. We use the following notation for space-
time variables:

\bullet T \in (0,\infty ] denotes a time.
\bullet For any x = (x1, x2, x3) \in \BbbR 3, we write \=x := (x1, x2) \in \BbbR 2 and \~x := (\=x, 0) =

(x1, x2, 0) \in \BbbR 3.
\bullet Similarly, we employ the following notation for derivatives: \nabla = (\partial 1, \partial 2, \partial 3),

\nabla := (\partial 1, \partial 2), and \widetilde \nabla :=
\bigl( 
\nabla , 0

\bigr) 
= (\partial 1, \partial 2, 0).

4.1.2. Parabolic order of multi-indices. For any \alpha = (\alpha 0, \=\alpha ) \in \BbbN 1+n such
that \partial \alpha = \partial \alpha 0

t \partial \=\alpha 
\=x , we define | \alpha | t,x2 := 2\alpha 0 + \=\alpha and call it the parabolic order of \alpha .

4.1.3. Inequalities. We say a constant C is universal if it only depends on the
various parameters of the problem, the dimension, etc., but not on the solution or the
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4911

data. The notation \alpha \lesssim \beta will be used to mean that there exists a universal constant
C > 0 such that \alpha \leq C\beta .

4.1.4. Contractions, inner products, and derivatives of tensors. Through-
out the paper we will use the Einstein summation convention of summing over re-
peated indices. We will also need the following scalar products:

\bullet a \cdot b = aibi for any a, b \in \BbbR n,
\bullet A : B = AijBij for any A,B \in \BbbR n\times n,

\bullet T \bullet S = Ti1...ikSi1...ik for any T, S \in \BbbR 

k times\underbrace{}  \underbrace{}  
n\times \cdot \cdot \cdot \times n = (\BbbR n)\otimes k.

When contracting tensors of different ranks we will write

\bullet (T \bullet S)j1...jpk1...kr = Tj1...jpi1...iqSi1...iqk1...kr for any T \in (\BbbR n)\otimes (p+q)
and S \in 

(\BbbR n)\otimes (q+r)
, such that T \bullet S \in (\BbbR n)\otimes (p+r)

.
For derivatives of tensors we write

\bullet 
\bigl( 
\nabla lS

\bigr) 
i1...ika1...al

= \partial a1 . . . \partial alSi1...ik for any S : \BbbR n \rightarrow (\BbbR n)\otimes k,

\bullet (
\bigl( 
\nabla l
\bigr) T
S)

a1...ali1...ik
= \partial a1 . . . \partial alSi1...ik for any S : \BbbR n \rightarrow (\BbbR n)\otimes k.

4.2. Sobolev spaces. Here we record our notation for Sobolev spaces.
\bullet For sets of the formD = \BbbT 2 or \Omega we writeHs(D) to denote the usual L2-based
Sobolev space of order s \geq 0 and write \.Hs (D) to denote their homogeneous
counterparts. When D = \BbbT 2 we extend this to include s < 0 using the
standard Fourier characterization.

\bullet For sets of the form D = \BbbT 2 or \Omega , the notation Hs+ (D) will be employed to
mean the following:\Biggl\{ 

\alpha \lesssim | | f | | Hs+(D) means that \forall \epsilon > 0,\exists C > 0 s.t. \alpha \leqslant C| | f | | Hs+\epsilon (D),

| | f | | Hs+(D) \lesssim \beta means that \exists \epsilon > 0,\exists C > 0 s.t. | | f | | Hs+\epsilon (D) \leqslant C\beta .

4.3. Domains and coefficients. Here we record notation related to the Eule-
rian and fixed domains and the coefficients associated to them.

4.3.1. Eulerian and flattened domains. We recall that the Eulerian and fixed
or equilibrium domains satisfy the following:

The Eulerian domain The fixed domain
\bullet \Omega (t) :=

\bigl\{ 
x \in \BbbT 2 \times \BbbR 

\bigm| \bigm|  - b < x3 < \eta (t, \=x)
\bigr\} 

\bullet \Omega := \BbbT 2 \times ( - b, 0)
\bullet \Sigma (t) :=

\bigl\{ 
x \in \BbbT 2 \times \BbbR 

\bigm| \bigm| x3 = \eta (t, \=x)
\bigr\} 

\bullet \Sigma := \BbbT 2 \times \{ 0\} 
\bullet \Sigma b :=

\bigl\{ 
x \in \BbbT 2 \times \BbbR 

\bigm| \bigm| x3 =  - b
\bigr\} 

\bullet \Sigma b as before
\bullet \partial \Omega (t) = \Sigma (t) \sqcup \Sigma b \bullet \partial \Omega = \Sigma \sqcup \Sigma b

4.3.2. Geometric coefficients. Recall that the flattening map \Phi defined by
(2.1) allows us to map \Omega to \Omega (t). Associated to the flattening map are the following
essential geometric coefficients:

\bullet J := det\nabla \Phi = 1 + \partial 3 (\chi ext \eta ),

\bullet \scrG := (\nabla \Phi )
 - T

= (I + e3 \otimes \nabla (\chi ext \eta ))
 - T

= I  - \nabla (\chi ext \eta )\otimes e3
1+\partial 3(\chi ext \eta ) .

See Lemma A.1 for the computations of J and \scrG .

4.3.3. Differential operators with variable coefficients. Given any matrix
field M : \Omega \rightarrow \BbbR 3\times 3 and any vector field v : \Omega \rightarrow \BbbR 3, we define

\nabla M :=M \cdot \nabla , i.e., \partial Mi =Mij\partial j and \BbbD Mv := 2 Sym
\bigl( 
\nabla Mv

\bigr) 
= \nabla Mv +

\bigl( 
\nabla Mv

\bigr) T
.
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Σ(t)

Σb

Ω(t)
Φ−1

Σ

Σb

Ω

Fig. 5. Horizontal slices in the fixed domain are mapped to curved hypersurfaces in the Eulerian
domain by the diffeomorphism flattening the domain.

When M = \scrG , these operators arise naturally as ``\Phi -conjugates"" of the usual differen-
tial operators \nabla and \BbbD . More precisely, upon changing variables via \Phi we have that
\nabla \scrG f = \nabla 

\bigl( 
f \circ \Phi  - 1

\bigr) 
\circ \Phi (and similarly for the symmetrized gradient). Note that, as

illustrated in Figure 5, horizontal slices in the fixed domain correspond to curved hy-
persurfaces in the Eulerian domain. In particular, horizontal derivatives in the fixed
domain correspond to derivatives tangential to these hypersurfaces in the Eulerian
domain.

Since \Phi is time-dependent, we also define \scrG -versions of time derivatives:

\partial \scrG t := \partial t  - (\partial t\Phi ) \cdot \nabla \scrG = \partial t  - 
1

J
\chi ext (\partial t\eta ) \partial 3 and Dv,\scrG 

t := \partial \scrG t + v \cdot \nabla \scrG 

(cf. Lemma A.1 for the computation of \partial t\Phi ). Once again, these differential operators

arise naturally when changing variables since \partial \scrG t f = \partial t
\bigl( 
f \circ \Phi  - 1

\bigr) 
\circ \Phi . Similarly, Dv,\scrG 

t

arises naturally in the context of the \scrG -Reynolds transport theorem (cf. Proposition
A.3). Finally, when integrating by parts, since \nabla \scrG \not = \nabla we will pick up a normal
\nu \scrG \partial \Omega \not = \nu \partial \Omega , where \nu \partial \Omega denotes the outer unit normal to \partial \Omega , defined as

\nu \scrG \partial \Omega := (\scrG J)\underbrace{}  \underbrace{}  
cof\nabla \Phi 

\cdot \nu \partial \Omega =

\Biggl\{ 
 - \widetilde \nabla \eta + e3 on \Sigma ,

 - e3 = \nu \partial \Omega on \Sigma b
(4.1)

(see Proposition A.2 for the statement of the \scrG -divergence theorem).

4.4. Terms related to the surface energy. Here we record notation related
to the surface energy.

4.4.1. Functionals and operators associated with the surface energy.
We consider some surface energy density f : \BbbR 2 \times \BbbR 2\times 2 \rightarrow \BbbR and define the following
for any sufficiently regular \eta , \phi , \psi , \phi i : \BbbT 2 \rightarrow \BbbR , where i = 1, . . . , k:

\bullet Jet: \scrJ \eta :=
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
, i.e., \scrJ =

\bigl( 
\nabla ,\nabla 2

\bigr) 
such that \scrJ \ast (w,M) =  - \nabla \cdot w+\nabla 2 :

M .
\bullet Surface energy: \scrW (\eta ) :=

\int 
\BbbT 2 f (\scrJ \eta ).

\bullet Directional derivatives: \delta \phi \scrW (\eta ) := d
dt\scrW (\eta + t\phi ) | t=0.

\bullet Derivative: D\scrW defined via \langle D\scrW (\eta ) , \phi \rangle := \delta \phi \scrW (\eta ).
\bullet Second derivative: D2\scrW defined via

\bigl\langle 
D2\scrW (\eta ) , (\phi , \psi )

\bigr\rangle 
:= \delta \phi \delta \psi \scrW (\eta ) =

\delta \psi \delta \phi \scrW (\eta ).
\bullet Higher-order derivatives: for k \in \BbbN , Dk\scrW defined via\bigl\langle 

Dk\scrW (\eta ) , (\phi 1, \phi 2, . . . , \phi k)
\bigr\rangle 
:= \delta \phi 1

\delta \phi 2
. . . \delta \phi k

\scrW (\eta ) .

\bullet First variation: \delta \scrW (\eta ) := \scrJ \ast (\nabla f (\scrJ \eta )) such that

\langle D\scrW (\eta ) , \phi \rangle =
\int 
\BbbT 2

\delta \scrW (\eta )\phi =

\int 
\BbbT 2

\nabla f (\scrJ \eta ) \cdot \scrJ \phi .
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4913

\bullet Second variation:
\bigl( 
\delta 2\eta \scrW 

\bigr) 
\phi := \scrJ \ast \bigl( \nabla 2f (\scrJ \eta ) \cdot \scrJ \phi 

\bigr) 
such that

\bigl\langle 
D2\scrW (\eta ) , (\phi , \psi )

\bigr\rangle 
=

\int 
\BbbT 2

\bigl( \bigl( 
\delta 2\eta \scrW 

\bigr) 
\phi 
\bigr) 
\psi =

\int 
\BbbT 2

\nabla 2f (\scrJ \eta ) \bullet (\scrJ \phi \otimes \scrJ \psi ) .

\bullet Higher-order variations: for k \in \BbbN ,\bigl( 
\delta k\eta \scrW 

\bigr) 
(\phi 1, \phi 2, . . . , \phi k - 1) := \scrJ \ast \bigl( \nabla kf (\scrJ \eta ) \bullet (\scrJ \phi 1 \otimes \scrJ \phi 2 \otimes \cdot \cdot \cdot \otimes \scrJ \phi k - 1)

\bigr) 
such that \bigl\langle 

Dk\scrW (\eta ) , (\phi 1, \phi 2, . . . , \phi k - 1, \phi k)
\bigr\rangle 

=

\int 
\BbbT 2

\Bigl( \bigl( 
\delta k\eta \scrW 

\bigr) 
(\phi 1, \phi 2, . . . , \phi k - 1)

\Bigr) 
\phi k

=

\int 
\BbbT 2

\nabla kf (\scrJ \eta ) \bullet (\scrJ \phi 1 \otimes \scrJ \phi 2 \otimes \cdot \cdot \cdot \otimes \scrJ \phi k - 1 \otimes \scrJ \phi k) .

\bullet Quadratic approximation:

\scrQ \eta (\phi ) :=
1

2

\int 
\BbbT 2

\nabla 2f (\scrJ \eta ) \bullet (\scrJ \phi \otimes \scrJ \phi ) = 1

2

\int 
\BbbT 2

\bigl( \bigl( 
\delta 2\eta \scrW \phi 

\bigr) \bigr) 
\phi 

=
1

2

\bigl\langle 
D2\scrW (\eta ) , (\phi , \phi )

\bigr\rangle 
.

\bullet Derivatives of the quadratic approximation: for any \alpha \in \BbbN 2,

(\partial \alpha \scrQ \eta ) (\phi ) :=
1

2

\int 
\BbbT 2

\partial \alpha 
\Bigl( 
\nabla 2f (\scrJ \eta )

\Bigr) 
\bullet (\scrJ \phi \otimes \scrJ \phi )

and in particular \scrQ \.\eta := \partial t\scrQ \eta .

4.4.2. Constants associated to \bfitf . At several points in our analysis we will
need to refer to special constants related to the surface energy density f . We define
these now.

Definition 4.1 (universal constants). We define the following:
\bullet Define C1 := | | \scrJ | | \scrL (H9/2(\BbbT 2);L\infty (\BbbT 2)) and observe that C1 is a finite universal

constant since it only depends on the Sobolev embedding Hs
\bigl( 
\BbbT 2
\bigr) 
\lhook \rightarrow L\infty \bigl( \BbbT 2

\bigr) 
for all s > 1.

\bullet Define, for all k \in \BbbN ,

C
(k)
f :=

\bigm| \bigm| \bigm| \bigm| \nabla kf
\bigm| \bigm| \bigm| \bigm| 
L\infty (B(0,C1)).

Crucially, note that if we are in the small energy regime (see Definition 4.2),
where in particular \scrE \leqslant 1, then\bigm| \bigm| \bigm| \bigm| \nabla kf (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
L\infty (\BbbT 2)

\leqslant C
(k)
f <\infty 

since for all \eta : \BbbT 2 \rightarrow \BbbR sufficiently regular

| | \scrJ \eta | | L\infty (\BbbT 2) \leqslant C1| | \eta | | H9/2(\BbbT 2) \leqslant C1

\surd 
\scrE \leqslant C1.

This will be helpful to recall when we are performing the a priori estimates
since the term

\bigm| \bigm| \bigm| \bigm| \nabla kf (\scrJ \eta )
\bigm| \bigm| \bigm| \bigm| 
L\infty (\BbbT 2)

frequently appears (for various values of k).
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4914 ANTOINE REMOND-TIEDREZ AND IAN TICE

4.5. Quantities associated with the unknowns. Here we collect notation
associated with the unknowns.

4.5.1. Unknown variables. We will use the following notation to refer to un-
knowns in the fluid equations:

\bullet Velocities are u, v : [0, T )\times \Omega \rightarrow \BbbR 3.
\bullet Pressures are p, q : [0, T )\times \Omega \rightarrow \BbbR .
\bullet Stress tensors are S\scrG , T\scrG : [0, T ) \times \Omega \rightarrow Sym

\bigl( 
R3\times 3

\bigr) 
defined by S\scrG := pI  - 

\BbbD \scrG u and T\scrG := qI  - \BbbD \scrG v.
\bullet Surface elevations are \eta , \zeta : [0, T )\times \BbbT 2 \rightarrow ( - b,\infty ).

4.5.2. The different versions of the energy and dissipation. We will need
various forms of the energy and dissipation functionals. We record the definitions of
these now.

Geometric versions. For \scrX 0 = (u, p, \eta ) and \scrY = (v, q, \zeta ), we define\left\{       
\widetilde E0 (\scrX 0) :=

1

2

\int 
\Omega 

| u| 2J (\eta ) +\scrW (\eta ) +
g

2

\int 
\BbbT 2

| \eta | 2,

\widetilde E (\scrY ;\scrX 0) :=
1

2

\int 
\Omega 

| v| 2J (\eta ) +\scrQ \eta (\zeta ) +
g

2

\int 
\BbbT 2

| \zeta | 2,

\left\{       
\widetilde D0 (\scrX 0) :=

1

2

\int 
\Omega 

| \BbbD \scrG (\eta )u| 
2
J (\eta ) , and

\widetilde D (\scrY ;\scrX 0) :=
1

2

\int 
\Omega 

| \BbbD \scrG (\eta )v| 
2
J (\eta )

where we have written J (\eta ) and \scrG (\eta ) instead of writing, as we do elsewhere, J and \scrG 
respectively in order to emphasize the dependence on \eta of these geometric coefficients.
We also define\left\{     

\widetilde \scrE (\scrY ;\scrX 0) := \widetilde E0 (\scrX 0) + \widetilde E (\partial t\scrY ;\scrX 0) + \widetilde E \bigl( \nabla \scrY ;\scrX 0

\bigr) 
+ \widetilde E \Bigl( \nabla 2\scrY ;\scrX 0

\Bigr) 
and(4.2a)

\widetilde \scrD (\scrY ;\scrX 0) := \widetilde D0 (\scrX 0) + \widetilde D (\partial t\scrY ;\scrX 0) + \widetilde D \bigl( \nabla \scrY ;\scrX 0

\bigr) 
+ \widetilde D \Bigl( \nabla 2\scrY ;\scrX 0

\Bigr) 
,(4.2b)

i.e., sum up to derivatives of parabolic order two, where we write F
\bigl( 
\nabla \scrY 

\bigr) 
to mean\sum 

i F
\bigl( 
\nabla i\scrY 

\bigr) 
and F

\Bigl( 
\nabla 2\scrY 

\Bigr) 
to mean

\sum 
i,j F

\bigl( 
\nabla ij\scrY 

\bigr) 
.

Note that \widetilde E0 (\scrX 0) and \widetilde D0 (\scrX 0) are functions whose domain is the space where

\scrX 0 lives, but \widetilde E (\scrY ;\scrX 0) and \widetilde D (\scrY ;\scrX 0) are approximations of theses functions about
\scrX 0, taking values \scrY in the tangent space to the space where \scrX 0 lives, hence they are
quadratic in \scrY .

Equilibrium versions. For \scrX eq = (ueq, peq, \eta eq) = (0, 0, 0), i.e., the equilibrium
configuration, and \scrY = (v, q, \zeta ), we define\left\{                 

E (\scrY ) := \widetilde E (\scrY ;\scrX eq)=
1

2

\int 
\Omega 

| v| 2 +\scrQ 0 (\zeta ) +
g

2

\int 
\BbbT 2

| \zeta | 2

=
1

2

\int 
\Omega 

| v| 2 + 1

2

\int 
\BbbT 2

\bigl( \bigl( 
\delta 20\scrW + g

\bigr) 
\zeta 
\bigr) 
\zeta and

D (\scrY ) := \widetilde D (\scrY ;\scrX eq)=
1

2

\int 
\Omega 

| \BbbD v| 2.
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4915

Note that, using the uniform ellipticity of \delta 20\scrW + g stated in section 2.2, we obtain
that

E (\scrY ) \asymp | | v| | 2L2(\Omega ) + | | \zeta | | 2H2(\BbbT 2) and D (\scrY ) \asymp | | \BbbD v| | 2L2(\Omega ).

Then we define, once again summing up to derivatives of parabolic order two,\left\{     
\scrE (\scrY ) := E (\scrY ) + E (\partial t\scrY ) + E

\bigl( 
\nabla \scrY 

\bigr) 
+ E

\Bigl( 
\nabla 2\scrY 

\Bigr) 
,(4.3a)

\scrD (\scrY ) := D (\scrY ) +D (\partial t\scrY ) +D
\bigl( 
\nabla \scrY 

\bigr) 
+D

\Bigl( 
\nabla 2\scrY 

\Bigr) 
.(4.3b)

Improved versions. For \scrY = (v, q, \zeta ), we define\left\{             

\scrE (\scrY )(4.4a)

:= | | u| | 2H2(\Omega ) + | | \partial tu| | 2L2(\Omega ) + | | p| | 2H1(\Omega ) + | | \eta | | 2H9/2(\BbbT 2) + | | \partial t\eta | | 2H2(\BbbT 2) and

\scrD (\scrY ) := | | u| | 2H3(\Omega ) + | | \partial tu| | 2H1(\Omega ) + | | p| | 2H2(\Omega )

+ | | \eta | | 2H11/2(\BbbT 2) + | | \partial t\eta | | 2H5/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| \partial 2t \eta \bigm| \bigm| \bigm| \bigm| 2H1/2(\BbbT 2)

.(4.4b)

Note that defined this way, coercivity is immediate, i.e., we have that \scrE \lesssim \scrD .

4.5.3. Small energy regime. We now define the ``small energy regime"" that
is used throughout the paper.

Definition 4.2 (small energy regime). Let C0 > 0 be defined by

C0 := | | ext| | \scrL (H3/2(\BbbT 2); L\infty (\Omega ))

\biggl( 
1

b
+
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \surd  - \Delta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrL (H5/2(\BbbT 2); H3/2(\BbbT 2))

\biggr) 
and fix some 0 < \delta 0 < min

\bigl( 
1
C2

0
, 1
\bigr) 
. We say that we are in the ``small energy regime""

if and only if there exists a solution \scrX = (u, p, \eta ) on [0, T ) such that

sup
t\in [0,T )

\scrE (\scrX ) \leqslant \delta 0 and sup
t\in [0,T )

\scrD (\scrX ) <\infty .

The following remarks will be important later.

Remark 4.3.
1. C0 < \infty since

\surd 
 - \Delta is a bounded operator from H5/2

\bigl( 
\BbbT 2
\bigr) 
to H3/2

\bigl( 
\BbbT 2
\bigr) 
,

ext is a bounded operator from H3/2
\bigl( 
\BbbT 2
\bigr) 
to H2 (\Omega ), and H2 (\Omega ) embeds

continuously in L\infty (\Omega ).
2. If \scrX is a solution such that \scrE (\scrX ) \leqslant \delta 0, then in particular, by definition of \chi 

(cf. section 2.1), and by Lemma B.2,

| | \partial 3 (\chi ext \eta )| | L\infty (\Omega ) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ext \eta b + \chi ext
\surd 
 - \Delta \eta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\infty (\Omega )

\leqslant | | ext| | \scrL (H3/2(\BbbT 2);L\infty (\Omega ))

\Biggl( 
1

b
| | \eta | | H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \surd  - \Delta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\scrL (H5/2(\BbbT 2);H3/2(\BbbT 2))

| | \eta | | H5/2(\BbbT 2)

\Biggr) 
\leqslant C0| | \eta | | H5/2(\BbbT 2) \leqslant C0

\surd 
\scrE \leqslant C0

\sqrt{} 
\delta 0 < 1
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4916 ANTOINE REMOND-TIEDREZ AND IAN TICE

and therefore inf ext \eta \geqslant  - bC0

\surd 
\delta 0 >  - b such that \Phi is well-defined, and

inf J = 1 + inf

\biggl( 
ext \eta 

b
+ \chi ext

\sqrt{} 
( - \Delta \eta )

\biggr) 
\geqslant 1 - C0

\sqrt{} 
\delta 0 > 0

such that \Phi is diffeomorphism.
3. We require \delta < 1 in order to simplify the a priori estimates by not having to

track powers of the energy. Indeed, for \scrE \leqslant \delta 0 < 1, \scrE \alpha 1 + \cdot \cdot \cdot +\scrE \alpha n \lesssim \scrE min\alpha i .

5. A priori estimates.

5.1. Energy-dissipation estimates. In this section we record the energy-
dissipation relations arising from the original problem (known as the zeroth-order
energy-dissipation relation) in Proposition 5.1 and from the differentiated problem
(known as the higher-order energy-dissipation relation) in Proposition 5.2. We then
sketch the computation of the commutators, relegating the full details to the appen-
dix, and we estimate these commutators in Lemma 5.4.

We start by recording, immediately below, the energy-dissipation relation arising
from the original problem. Note that in the notation of section 3.2 this is the energy-
dissipation relation corresponding to the system of PDEs N (\scrX ) = 0.

Proposition 5.1 (zeroth-order energy-dissipation relation). If (u, p, \eta ) solves
(2.2a)--(2.2e), then

d

dt

\biggl( \int 
\Omega 

1

2
| u| 2J +\scrW (\eta ) +

\int 
\BbbT 2

g

2
| \eta | 2
\biggr) 
+

\biggl( \int 
\Omega 

1

2
| \BbbD \scrG u| 2J.

\biggr) 
= 0.

In other words, for \widetilde E0 and \widetilde D0 as defined in section 4.5.2 and \scrX 0 = (u, p, \eta ), we have
that

d

dt
\widetilde E0 (\scrX 0) + \widetilde D0 (\scrX 0) = 0.

Proof. We take the dot product of (2.2a) with u, multiply by J to account for
the geometry, and integrate over \Omega . This results in

0 =

\int 
\Omega 

\Bigl( 
Du,\scrG 
t u

\Bigr) 
\cdot uJ +

\int 
\Omega 

\bigl( 
\nabla \scrG \cdot S\scrG \bigr) \cdot uJ

(1)
=

\int 
\Omega 

Du,\scrG 
t

\biggl( 
1

2
| u| 2
\biggr) 
J  - 

\int 
\Omega 

S\scrG :
\bigl( 
\nabla \scrG u

\bigr) 
J +

\int 
\Omega 

\Bigl( \bigl( 
S\scrG \bigr) T \cdot u

\Bigr) 
\cdot \nu \scrG \partial \Omega 

(2)
=

d

dt

\biggl( \int 
\Omega 

1

2
| u| 2J

\biggr) 
+

\int 
\Omega 

1

2
| \BbbD \scrG u| 2J +

\int 
\partial \Omega 

\bigl( 
S\scrG \cdot \nu \scrG \partial \Omega 

\bigr) 
\cdot u

=
d

dt

\biggl( \int 
\Omega 

1

2
| u| 2J

\biggr) 
+

\int 
\Omega 

1

2
| \BbbD \scrG u| 2J +

\int 
\BbbT 2

(\delta \scrW (\eta ) + g\eta )
\bigl( 
u \cdot \nu \scrG \partial \Omega 

\bigr) 
=

d

dt

\biggl( \int 
\Omega 

1

2
| u| 2J

\biggr) 
+

\int 
\Omega 

1

2
| \BbbD \scrG u| 2J +

\int 
\BbbT 2

(\delta \scrW (\eta ) + g\eta ) \partial t\eta 

=
d

dt

\biggl( \int 
\Omega 

1

2
| u| 2J

\biggr) 
+

\int 
\Omega 

1

2
| \BbbD \scrG u| 2J +

d

dt

\biggl( 
\scrW (\eta ) +

\int 
\BbbT 2

g

2
| \eta | 2
\biggr) 

=
d

dt

\biggl( \int 
\Omega 

1

2
| u| 2J +\scrW (\eta ) +

\int 
\BbbT 2

g

2
| \eta | 2
\biggr) 
+

\int 
\Omega 

1

2
| \BbbD \scrG u| 2J.

Here in (1) we have used the \scrG -divergence theorem (Proposition A.2) and the fact that
\nabla \cdot 
\bigl( 
MT \cdot v

\bigr) 
= M : \nabla v + (\nabla \cdot M) \cdot v. In (2) we have used the \scrG -Reynolds transport

theorem (Proposition A.3) and the fact that \nabla \scrG \cdot u = 0.
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4917

Having recorded the energy-dissipation relation associated with the original prob-
lem above in Proposition 5.1, we now record the energy-dissipation relation associated
with the differentiated problem below in Proposition 5.2. Note that in the notation
of section 3.2 and for C =

\bigl( 
C1, C2, C3, C4

\bigr) 
this is the energy-dissipation relation

corresponding to the system of PDEs L\scrX 0 (\scrY ) = C.

Proposition 5.2 (higher-order energy-dissipation relation). If \scrX 0 = (u, p, \eta )
and \scrY = (v, q, \zeta ) solve\left\{                 

Du,\scrG 
t v +\nabla \scrG \cdot T\scrG = C1 in \Omega ,(5.1a)

\nabla \scrG \cdot v = C2 in \Omega ,(5.1b) \Bigl( \bigl( 
\delta 2\eta \scrW 

\bigr) 
\zeta + g\zeta 

\Bigr) 
\nu \scrG \partial \Omega  - T\scrG \cdot \nu \scrG \partial \Omega = C3 on \Sigma ,(5.1c)

\partial t\zeta  - v \cdot \nu \scrG \partial \Omega = C4 on \Sigma , and(5.1d)

v = 0 on \Sigma b,(5.1e)

where recall that T\scrG := qI  - \BbbD \scrG v (cf. section 4.5.1) and where \scrG = \scrG (\eta ), then

d

dt

\biggl( \int 
\Omega 

1

2
| v| 2J (\eta ) +\scrQ \eta (\zeta ) +

\int 
\BbbT 2

g

2
| \zeta | 2
\biggr) 
+

\biggl( \int 
\Omega 

1

2
| \BbbD \scrG (\eta )v| 2J (\eta )

\biggr) 
= \scrQ \.\eta (\zeta ) +

\int 
\Omega 

\bigl( 
C1 \cdot v

\bigr) 
J (\eta ) +

\int 
\Omega 

C2qJ (\eta ) +

\int 
\BbbT 2

C3 \cdot v +
\int 
\BbbT 2

C4
\bigl( 
\delta 2\eta \scrW + g

\bigr) 
\zeta 

=: \langle C,\scrY \rangle \scrX 0

for C =
\bigl( 
C1, C2, C3, C4

\bigr) 
. In other words, for \widetilde E and \widetilde D as defined in section 4.5.2,

d

dt
\widetilde E (\scrY ;\scrX 0) + \widetilde D (\scrY ;\scrX 0) = \langle C,\scrY \rangle \scrX 0

,

where we have written J (\eta ) and \scrG (\eta ) instead of writing, as we do elsewhere, J and \scrG 
respectively in order to emphasize the dependence on \eta of these geometric coefficients.

Proof. Taking the dot product of (5.1a) with uJ and integrating over \Omega yields

I\underbrace{}  \underbrace{}  \int 
\Omega 

\bigl( 
C1 \cdot v

\bigr) 
J =

\int 
\Omega 

\bigl( 
D\scrG 
t v
\bigr) 
\cdot vJ +

\int 
\Omega 

\bigl( 
\nabla \scrG \cdot T\scrG \bigr) \cdot vJ

=

\int 
\Omega 

D\scrG 
t

\biggl( 
1

2
| v| 2
\biggr) 
J  - 

\int 
\Omega 

\bigl( 
T\scrG : \nabla \scrG v

\bigr) 
J +

\int 
\partial \Omega 

\bigl( 
T\scrG \cdot v

\bigr) 
\cdot \nu \scrG \partial \Omega 

=
d

dt

\biggl( \int 
\Omega 

1

2
| v| 2J

\biggr) 
\underbrace{}  \underbrace{}  

II

 - 
\int 
\Omega 

qC2J\underbrace{}  \underbrace{}  
III

+

\int 
\Omega 

1

2
| \BbbD \scrG v| 2J\underbrace{}  \underbrace{}  
IV

+

\int 
\BbbT 2

\bigl( 
T\scrG \cdot \nu \scrG \partial \Omega 

\bigr) 
\cdot v\underbrace{}  \underbrace{}  

( \star )

,

where

( \star ) =

\int 
\BbbT 2

\Bigl( \bigl( 
\delta 2\eta \scrW + g

\bigr) 
\zeta 
\Bigr) \bigl( 
v \cdot \nu \scrG \partial \Omega 

\bigr) 
 - 
\int 
\BbbT 2

C3 \cdot v

=

\int 
\BbbT 2

\Bigl( \bigl( 
\delta 2\eta \scrW + g

\bigr) 
\zeta 
\Bigr) 
\partial t\zeta  - 

\int 
\BbbT 2

\Bigl( \bigl( 
\delta 2\eta \scrW + g

\bigr) 
\zeta 
\Bigr) 
C4  - 

\int 
\BbbT 2

C3 \cdot v

=

\left(   d

dt

\Bigl( 
\scrQ \eta (\zeta )

\Bigr) 
\underbrace{}  \underbrace{}  

V

 - \scrQ \.\eta (\zeta )\underbrace{}  \underbrace{}  
VI

\right)   +
d

dt

\biggl( \int 
\BbbT 2

g

2
\zeta 2
\biggr) 

\underbrace{}  \underbrace{}  
VII

 - 
\int 
\BbbT 2

\Bigl( \bigl( 
\delta 2\eta \scrW + g

\bigr) 
\zeta 
\Bigr) 
C4\underbrace{}  \underbrace{}  

VIII

 - 
\int 
\BbbT 2

C3 \cdot v\underbrace{}  \underbrace{}  
IX
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4918 ANTOINE REMOND-TIEDREZ AND IAN TICE

So finally

I = II - III + IV + V - VI + VII - VIII - IX

\Leftarrow \Rightarrow (II + V + VII) + IV = VI + I + III + IX + VIII

\Leftarrow \Rightarrow d

dt

\biggl( \int 
\Omega 

1

2
| v| 2J +\scrQ \eta (\zeta ) +

\int 
\BbbT 2

g

2
| \zeta | 2
\biggr) 
+

\biggl( \int 
\Omega 

1

2
| \BbbD \scrG v| 2J

\biggr) 
= \scrQ \.\eta (\zeta ) +

\int 
\Omega 

\bigl( 
C1 \cdot v

\bigr) 
J +

\int 
\Omega 

C2qJ +

\int 
\BbbT 2

C3 \cdot v

+

\int 
\BbbT 2

C4
\bigl( 
\delta 2\eta \scrW + g

\bigr) 
\zeta .

Using the notation from the sketch in section 3.2, we can rephrase Proposition 5.2
as follows: if \scrX 0 and \scrY solve L\scrX 0

(\scrY ) = C, then d
dt
\widetilde \scrE (\scrY ;\scrX 0) +D (\scrY ;\scrX 0) = \langle C,\scrY \rangle \scrX 0

.
We thus seek to compute C\alpha = L\scrX (\partial \alpha \scrX ) - \partial \alpha (N (\scrX )).

As discussed in section 3.2, the ``commutator"" C\alpha is not quite equal to [N, \partial \alpha ]
because of the ``fully nonlinear"" term coming from the surface energy. In particular,
the terms in N are of two types: almost all terms can be written as nonconstant
coefficient linear operators which have a multilinear dependence on their coefficients,
and one term (coming from the surface energy) is ``fully nonlinear"" and cannot be
written in that form. For terms of the first type, we have genuine commutators, and
these are easy to compute: if L = \^L (\pi 1, . . . , \pi k) is a linear operator depending in a
multilinear way on sufficiently differentiable parameters (\pi 1, . . . , \pi k), then

[\partial \alpha , L] =
\sum 

\beta +
\sum k

i=1 \gamma i=\alpha 
\beta <\alpha 

\^L (\partial \gamma 1\pi 1, . . . , \partial 
\gamma k\pi k) \circ \partial \beta .

For the term of the second type, we do not compute the commutator\bigl[ 
\nu \scrG \partial \Omega \delta \scrW , \partial \alpha 

\bigr] 
=
\bigl( 
\nu \scrG \partial \Omega \delta \scrW 

\bigr) 
\circ \partial \alpha  - \partial \alpha \circ 

\bigl( 
\nu \scrG \partial \Omega \delta \scrW 

\bigr) 
but instead compute

\scrC \scrW ,\alpha (\eta ) :=
\Bigl( \bigl( 
\nu \scrG \partial \Omega \delta 

2
\eta \scrW 
\bigr) 
\circ \partial \alpha  - \partial \alpha \circ 

\bigl( 
\nu \scrG \partial \Omega \delta \scrW 

\bigr) \Bigr) 
(\eta ) .

Remark 5.3. Using \delta 2\eta \scrW , as opposed to \delta 20\scrW , in the differentiated version of the
PDE is natural since it is precisely this operator which appears when differentiating
\delta \scrW , i.e., since \partial \alpha (\delta \scrW (\eta )) =

\bigl( 
\delta 2\eta \scrW 

\bigr) 
(\partial \alpha \eta ). Using \delta 20\scrW instead of \delta 2\eta \scrW would also

make it difficult to close the estimates since it would yield (due to commutators arising
when differentiating the PDE in time) interactions of the form\int 

\BbbT 2

\bigl( 
\delta 2\eta \scrW  - \delta 20\scrW 

\bigr) \underbrace{}  \underbrace{}  
( \star )

(\partial t\eta ) (tr \partial tu) ,

where typically, i.e., unless the surface energy density f has a special structure, ( \star )
involves fourth-order derivatives. For example, in the case of the ``scalar"" Willmore
energy, i.e., \scrW (\eta ) :=

\int 
\BbbT 2 m (\nabla \eta ) | \Delta \eta | 2 for some smooth m : \BbbR 2 \rightarrow (0,\infty ) with

m (0) > 0, we have that\bigl( 
\delta 2\eta \scrW  - \delta 20\scrW 

\bigr) 
\phi = (m (\nabla \eta ) - m (0))\Delta 2\phi + 2\nabla (m (\nabla \eta )) \cdot \nabla \Delta \phi +\Delta (m (\nabla \eta ))\Delta \phi .
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VISCOUS SURFACE WAVES AND SURFACE ENERGIES 4919

In general \bigl( 
\delta 2\eta \scrW  - \delta 20\scrW 

\bigr) 
\phi = \scrJ \ast \bigl( \bigl( \nabla 2f (\scrJ \eta ) - \nabla 2f (0)

\bigr) 
\bullet \scrJ \phi 

\bigr) 
,

which (again, unless f has some special structure) typically involves fourth-order
derivatives of \phi . Such interactions would be troublesome because they would thus
take the form \int 

\BbbT 2

\bigl( 
\nabla 4\partial t\eta 

\bigr) 
(tr \partial tu) (l.o.t.)

for some lower-order terms that could be controlled via the energy. Terms like this can-
not be controlled in our scheme of a priori estimates because we have insufficient con-

trol of \partial t\eta and \partial tu, since we only know that \scrD \gtrsim 
\bigm| \bigm| \bigm| \bigm| \nabla 4\partial t\eta 

\bigm| \bigm| \bigm| \bigm| 2
H - 3/2(\BbbT 2)

+| | tr \partial tu| | 2H1/2(\BbbT 2).

To compute the commutators \scrC \scrW ,\alpha (\eta ) we use the identities

\partial \beta 
\Bigl( 
\delta \scrW (\eta )

\Bigr) 
= \delta 2\eta \scrW 

\bigl( 
\partial \beta \eta 

\bigr) 
and \partial \beta +\gamma 

\Bigl( 
\delta \scrW (\eta )

\Bigr) 
= \delta 3\eta \scrW 

\bigl( 
\partial \beta \eta , \partial \gamma \eta 

\bigr) 
+\delta 2\eta \scrW 

\bigl( 
\partial \beta +\gamma \eta 

\bigr) 
,

where | \beta | = | \gamma | = 1. It follows that, for | \beta | = 1, \scrC \scrW ,\beta (\eta ) =
\bigl( 
\partial \beta \nu \scrG \partial \Omega 

\bigr) 
(\delta \scrW ) (\eta ), and

for | \beta | = | \gamma | = 1,

\scrC \scrW ,\beta +\gamma (\eta ) =
\bigl( 
\partial \beta +\gamma \nu \scrG \partial \Omega 

\bigr) 
(\delta \scrW ) (\eta ) +

\bigl( 
\partial \beta \nu \scrG \partial \Omega 

\bigr) \bigl( 
\delta 2\eta \scrW 

\bigr) 
(\partial \gamma \eta )

+
\bigl( 
\partial \gamma \nu \scrG \partial \Omega 

\bigr) \bigl( 
\delta 2\eta \scrW 

\bigr) \bigl( 
\partial \beta \eta 

\bigr) 
+ \nu \scrG \partial \Omega 

\bigl( 
\delta 3\eta \scrW 

\bigr) \bigl( 
\partial \beta \eta , \partial \gamma \eta 

\bigr) 
.

Putting it all together, we obtain that

\langle C\alpha , \partial \alpha \scrX \rangle \scrX = \scrQ \.\eta (\partial 
\alpha \eta ) - 

\int 
\Omega 

\bigl( \bigl[ 
\partial t\Phi \cdot \nabla \scrG , \partial \alpha 

\bigr] 
u
\bigr) 
\cdot (\partial \alpha u) J

+

\int 
\Omega 

\bigl( \bigl[ 
u \cdot \nabla \scrG , \partial \alpha 

\bigr] 
u
\bigr) 
\cdot (\partial \alpha u) J

 - 
\int 
\Omega 

\bigl( \bigl[ \bigl( 
\nabla \scrG \cdot \scrG T

\bigr) 
\cdot \nabla , \partial \alpha 

\bigr] 
u
\bigr) 
\cdot (\partial \alpha u) J

 - 
\int 
\Omega 

\bigl( \bigl[ \bigl( 
\scrG T \cdot \scrG 

\bigr) 
: \nabla 2, \partial \alpha 

\bigr] 
u
\bigr) 
\cdot (\partial \alpha u) J

+

\int 
\Omega 

\bigl( \bigl[ 
\nabla \scrG , \partial \alpha 

\bigr] 
p
\bigr) 
\cdot (\partial \alpha u) J +

\int 
\Omega 

\bigl( \bigl[ 
\nabla \scrG \cdot , \partial \alpha 

\bigr] 
u
\bigr) 
(\partial \alpha p) J

+

\int 
\BbbT 2

\bigl( \bigl[ 
\nu \scrG \partial \Omega \cdot \BbbD \scrG , \partial \alpha 

\bigr] 
u
\bigr) 
\cdot \partial \alpha u - 

\int 
\BbbT 2

\bigl( \bigl[ 
\nu \scrG \partial \Omega , \partial 

\alpha 
\bigr] 
p
\bigr) 
\cdot \partial \alpha u

+ g

\int 
\BbbT 2

\bigl( \bigl[ 
\nu \scrG \partial \Omega , \partial 

\alpha 
\bigr] 
\eta 
\bigr) 
\cdot \partial \alpha u+

\int 
\BbbT 2

\scrC \scrW ,\alpha (\eta ) \cdot \partial \alpha u

 - 
\int 
\BbbT 2

\bigl( \bigl[ 
\nu \scrG \partial \Omega \cdot , \partial 

\alpha 
\bigr] 
u
\bigr) \Bigl( \bigl( 

\delta 2\eta \scrW + g
\bigr) 
(\partial \alpha \eta )

\Bigr) 
=: I + II + III + IV + V+VI + VII + VIII + IX + X+XI + XII.

(5.2)

The following lemma shows how these terms may be estimated.

Lemma 5.4. If the small energy assumptions hold (see Definition 4.2), then there
are functionals \scrC 1, \scrC 2 such that\sum 

| \alpha | t,x2\leq 2

\langle C\alpha , \partial \alpha \scrX \rangle \scrX = \scrC 1 +
d

dt
\scrC 2 with | \scrC 1| \lesssim 

\surd 
\scrE \scrD and | \scrC 2| \lesssim 

\surd 
\scrE \scrE .
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4920 ANTOINE REMOND-TIEDREZ AND IAN TICE

Proof. We begin with a sketch of the general argument. Most of the commutators
appearing in I-XII in (5.2) are multilinear in terms of quantities that we control (such
as the unknowns u, p, \eta and geometric coefficients J , \scrG , \Phi , \nu \scrG \partial \Omega ; cf. Lemma A.1). To
handle such commutators, we use the H\"older and Sobolev inequalities. See Proposition
B.4 for how we control terms of the form

\bigm| \bigm| \int f1 \cdot \cdot \cdot fk\bigm| \bigm| when we control the fi's in some
Hsi spaces.

In some cases, we may need to use a couple of other tools to be able to place
functions in Sobolev spaces of sufficiently high regularity. We may need to ``borrow""
regularity, i.e., use that Hs+\alpha (\BbbR n)\cdot Hs+\beta (\BbbR n) \lhook \rightarrow Hs (\BbbR n): see Propositions B.5, B.6,
and B.7. We also need to use postcomposition results, i.e., use that Ck,\alpha (Hs (\BbbR n)) \lhook \rightarrow 
Hs (\BbbR n): see Proposition B.8.

For a few commutators, namely, XI and XII, we will need to use the smallness
and boundedness of variations of the surface energy, i.e., Lemmas A.6, A.7, and A.8.

Estimates of these forms ultimately contribute to \scrC 1. We now turn to the ques-
tion of how \scrC 2 arises. The term VII involves an appearance of \partial tp, which is not
controlled in either the energy or the dissipation, though it is defined through the
local existence theory in a manner that allows us to integrate by parts in time:\int 
\Omega 
(\partial tp)w = d

dt

\bigl( \int 
\Omega 
pw
\bigr) 
 - 
\int 
\Omega 
p (\partial tw).

Note that the non-time-differentiated term can be controlled by
\surd 
\scrE \scrD like any

of the other commutators contributing to \scrC 1, but the time-differentiated term must
be controlled at a lower regularity level by \scrE 3/2. In particular, the term of the form\int 
\Omega 
pw arising from commutator VII is the only contribution to \scrC 2.
We now provide detailed proofs for the estimates of four terms that are partic-

ularly delicate. Indeed, three of them are ``critical"" in the sense that they lead to a
full factor of \scrD appearing, suggesting that they are precisely at the limit of what the
improved energy and dissipation allow us to control. Moreover, these four terms are
representative of various difficulties encountered. We thus detail how to control

1. the commutator I when \partial \alpha = \partial t since it highlights how to handle terms of
the form | 

\int 
f1 . . . fk| ,

2. the commutator VII when \partial \alpha = \partial t since this is precisely the term that requires
integration by parts in time in order to be brought under control,

3. the commutator XI when \partial \alpha = \nabla 2
since it requires intermediate results about

the smallness of \delta \scrW and boundedness of \delta 2\eta \scrW and \delta 3\eta \scrW , and since it highlights
how product estimates in Sobolev spaces are used, and

4. the commutator XII when \partial \alpha = \partial t, for the same reasons.
Estimating the remaining commutators follows a similar procedure and thus we omit
those estimates.

1. A typical estimate on the surface. We detail how to control the commutator
I when \partial \alpha = \partial t. The commutator is

\scrQ \.\eta (\partial t\eta ) =
1

2

\int 
\BbbT 2

\nabla 3f (\scrJ \eta ) \cdot 
\Bigl( 
(\scrJ \partial t\eta )\otimes 3

\Bigr) 
and it can be controlled using Proposition B.4 and recalling that C

(3)
f is

defined in Definition 4.1:

| \scrQ \.\eta (\partial t\eta )| \lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 3f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
L\infty (\BbbT 2)

| | \scrJ \partial t\eta | | L2(\BbbT 2)| | \scrJ \partial t\eta | | 
2
L4(\BbbT 2)

\lesssim C
(3)
f | | \partial t\eta | | H2(\BbbT 2)| | \scrJ \partial t\eta | | 

2
H1/2(\BbbT 2)

\lesssim 
\surd 
\scrE | | \partial t\eta | | 2H5/2(\BbbT 2) \lesssim 

\surd 
\scrE \scrD .
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2. Integration by parts in time. We detail how to control the commutator VII
when \partial \alpha = \partial t. The commutator is

\int 
\Omega 
(\partial t\scrG ) : (\nabla u) (\partial tp) J . Schematically, we

have
\int 
\Omega 
(\partial tp)w = d

dt

\bigl( \int 
\Omega 
pw
\bigr) 
 - 
\int 
\Omega 
p (\partial tw), where we may only use the energy

(and not the dissipation) to control
\int 
\Omega 
pw since it is time-differentiated, and

where we may proceed as usual, i.e., using both the energy and the dissipation,
but not using the dissipation more than twice, to control

\int 
\Omega 
p (\partial tw). The first

term is
\int 
\Omega 
(\partial t\scrG : \nabla u) pJ, and it can be estimated using Proposition B.4 and

Lemma A.1:

| . . .| \lesssim | | \partial t\scrG | | L3(\Omega )| | \nabla u| | L3(\Omega )| | p| | L3(\Omega )| | J | | L\infty (\Omega )

\lesssim | | \partial t\scrG | | H1/2(\Omega )| | \nabla u| | H1/2(\Omega )| | p| | H1/2(\Omega )| | J | | H3/2+(\Omega )

\lesssim 
\Bigl( 
1 +

\surd 
\scrE 
\Bigr) 
\scrE 3/2 \lesssim \scrE 3/2.

The second term is
\int 
\Omega 

\bigl( 
\partial 2t \scrG : \nabla u

\bigr) 
Jp +

\int 
\Omega 
(\partial t\scrG : \nabla \partial tu) Jp +

\int 
\Omega 
(\partial t\scrG : \nabla u)

(\partial tJ) p, and it too can be estimated using Proposition B.4 and Lemma A.1:

| . . .| \lesssim 
\bigm| \bigm| \bigm| \bigm| \partial 2t \scrG \bigm| \bigm| \bigm| \bigm| L2(\Omega )

| | \nabla u| | L6(\Omega )| | J | | L\infty (\Omega )| | p| | L6(\Omega )

+ | | \partial t\scrG | | L6(\Omega )| | \nabla \partial tu| | L2(\Omega )| | J | | L\infty (\Omega )| | p| | L6(\Omega )

+ | | \partial t\scrG | | L3(\Omega )| | \nabla u| | L3(\Omega )| | \partial tJ | | L\infty (\Omega )| | p| | L3(\Omega )

\lesssim 
\bigm| \bigm| \bigm| \bigm| \partial 2t \scrG \bigm| \bigm| \bigm| \bigm| L2(\Omega )

| | \nabla u| | H1(\Omega )| | J | | H3/2+(\Omega )| | p| | H1(\Omega )

+ | | \partial t\scrG | | H1(\Omega )| | \nabla \partial tu| | L2(\Omega )| | J | | H3/2+(\Omega )| | p| | H1(\Omega )

+ | | \partial t\scrG | | H1/2(\Omega )| | \nabla u| | H1/2(\Omega )| | \partial tJ | | H3/2+(\Omega )| | p| | H1/2(\Omega )

\lesssim 
\surd 
\scrD 
\Bigl( 
1 +

\surd 
\scrE 
\Bigr) 
\scrE +

\Bigl( 
1 +

\surd 
\scrE 
\Bigr) 
\scrE 3/2 + \scrE 2 \lesssim (1 + \scrE ) \scrE 

\surd 
\scrD .

3. Another typical estimate on the surface. We detail how to control the com-

mutator XI when \partial \alpha = \nabla 2
. The commutator is\int 

\BbbT 2

\bigl( 
\nabla 3\eta 

\bigr) 
\delta \scrW (\eta )

\bigl( 
tr\nabla 2u

\bigr) 
+

\int 
\BbbT 2

\bigl( 
\nabla 2\eta 

\bigr) \bigl( \bigl( 
\delta 2\eta \scrW 

\bigr) 
(\nabla \eta )

\bigr) \bigl( 
tr\nabla 2u

\bigr) 
+

\int 
\BbbT 2

\nu \scrG \partial \Omega 
\bigl( \bigl( 
\delta 3\eta \scrW 

\bigr) 
(\nabla \eta ,\nabla \eta )

\bigr) \bigl( 
tr\nabla 2u

\bigr) 
=: XI1 +XI2 +XI3.

The first two terms can be estimated using Proposition B.4 and Lemmas A.6
and A.7:

| XI1 +XI2| \lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 3\eta 

\bigm| \bigm| \bigm| \bigm| 
L\infty (\BbbT 2)

| | \delta \scrW (\eta )| | L2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| tr\nabla 2u
\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 2\eta 

\bigm| \bigm| \bigm| \bigm| 
L\infty (\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \bigl( \delta 2\eta \scrW \bigr) (\nabla \eta )\bigm| \bigm| \bigm| \bigm| L2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 2u
\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT 2)

\lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 3\eta 

\bigm| \bigm| \bigm| \bigm| 
H1+(\BbbT 2)

| | \delta \scrW (\eta )| | L2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 2u
\bigm| \bigm| \bigm| \bigm| 
H1/2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| \nabla 2\eta 

\bigm| \bigm| \bigm| \bigm| 
H1+(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \bigl( \delta 2\eta \scrW \bigr) (\nabla \eta )\bigm| \bigm| \bigm| \bigm| L2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 2u
\bigm| \bigm| \bigm| \bigm| 
H1/2(\Omega )

\lesssim 
\surd 
\scrE 
\surd 
\scrE 
\surd 
\scrD +

\surd 
\scrE 
\surd 
\scrD 
\surd 
\scrD \lesssim \scrE 

\surd 
\scrD +

\surd 
\scrE \scrD .

The last term requires a bit more precaution and can be estimated using
Lemma A.8, Proposition B.6, and Lemma A.1:

| XI3| \lesssim 
\bigm| \bigm| \bigm| \bigm| \nu \scrG \partial \Omega \bigl( tr\nabla 2u

\bigr) \bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \bigl( \delta 3\eta \scrW \bigr) (\nabla \eta ,\nabla \eta )\bigm| \bigm| \bigm| \bigm| H - 1/2(\BbbT 2)

\lesssim 
\bigm| \bigm| \bigm| \bigm| \nu \scrG \partial \Omega \bigm| \bigm| \bigm| \bigm| H 3

2
+(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| tr\nabla 2u
\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

| | \nabla \eta | | 2H7/2(\BbbT 2)

\lesssim 
\Bigl( 
1 +

\surd 
\scrE 
\Bigr) \surd 

\scrD \scrE \lesssim \scrE 
\surd 
\scrD ,
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4. One last typical estimate on the surface. We detail how to control the com-
mutator XII when \partial \alpha = \partial t. The commutator is

\int 
\BbbT 2 (\nabla \partial t\eta ) (tru)

\bigl( \bigl( 
\delta 2\eta \scrW + g

\bigr) 
(\partial t\eta )

\bigr) 
, and it can be estimated using Proposition B.5 and Lemma A.7,

| . . .| \lesssim | | (\nabla \partial t\eta ) (tru)| | H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \bigl( \delta 2\eta \scrW + g
\bigr) 
(\partial t\eta )

\bigm| \bigm| \bigm| \bigm| 
H - 3/2(\BbbT 2)

\lesssim | | \nabla \partial t\eta | | H3/2(\BbbT 2)| | tru| | H3/2(\BbbT 2)

\biggl( \bigm| \bigm| \bigm| \bigm| \delta 2\eta \scrW \bigm| \bigm| \bigm| \bigm| \scrL (H5/2;H - 3/2)
+ 1

\biggr) 
| | \partial t\eta | | H5/2(\BbbT 2)

\lesssim 
\surd 
\scrD 
\surd 
\scrE 
\surd 
\scrD \lesssim 

\surd 
\scrE \scrD .

5.2. Regularity gain. In this section we record the auxiliary estimates arising
from the linearized problem (about the equilibrium) in Proposition 5.5, we compute
the nonlinear remainders obtained when writing the full nonlinear problem as a per-
turbation of its linearization, and finally we estimate these nonlinear remainders in
Lemma 5.7.

We begin by recording our auxiliary estimates in a general form.

Proposition 5.5 (generic form of the auxiliary estimates). Let R =
\bigl( 
R1, R2, R3,

R4
\bigr) 
be given and suppose that (u, p, \eta ) solves\left\{               

\partial tu - \Delta u+\nabla p = R1 in \Omega ,

\nabla \cdot u = R2 in \Omega ,\bigl( 
\delta 20\scrW + g

\bigr) 
\eta e3 + \BbbD u \cdot e3  - pe3 = R3 on \Sigma ,

\partial t\eta  - u \cdot e3 = R4 on \Sigma , and

u = 0 on \Sigma b.

Then2

| | u| | H2(\Omega ) + | | \partial tu| | L2(\Omega ) + | | p| | H1(\Omega ) + | | \eta | | H9/2(\BbbT 2) + | | \partial t\eta | | H2(\BbbT 2)

\lesssim | | \partial tu| | L2(\Omega ) + | | \eta | | H4(\BbbT 2) + | | \partial t\eta | | H2(\BbbT 2) + | | u| | L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R1

\bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

(5.3)

and3

| | u| | H3(\Omega ) + | | \partial tu| | H1(\Omega ) + | | p| | H2(\Omega ) + | | \eta | | H11/2(\BbbT 2) + | | \partial t\eta | | H5/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| \partial 2t \eta \bigm| \bigm| \bigm| \bigm| H1/2(\BbbT 2)

\lesssim | | \BbbD u| | L2(\Omega ) + | | \BbbD \partial tu| | L2(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \BbbD \nabla 2

u
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R1

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 
H5/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \partial tR4

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

(5.4)

i.e.,

\scrE \lesssim \scrE +\scrN E and \scrD \lesssim \scrD +\scrN D

2Note that the terms
\bigm| \bigm| \bigm| \bigm| \nabla u

\bigm| \bigm| \bigm| \bigm| 
L2 and

\bigm| \bigm| \bigm| \bigm| \nabla 2
u
\bigm| \bigm| \bigm| \bigm| L2 are present in \scrE but are absent from the right-hand

side of the estimate.
3Note that the term

\bigm| \bigm| \bigm| \bigm| \BbbD \nabla u
\bigm| \bigm| \bigm| \bigm| 
L2 is present in \scrD but are absent from the right-hand side of the

estimate.
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for\Biggl\{ 
\scrN E :=

\bigm| \bigm| \bigm| \bigm| R1
\bigm| \bigm| \bigm| \bigm| 2
L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 2
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 2
H1/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 2
H3/2(\BbbT 2)

\scrN D :=
\bigm| \bigm| \bigm| \bigm| R1

\bigm| \bigm| \bigm| \bigm| 2
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 2
H2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 2
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 2
H5/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \partial tR4

\bigm| \bigm| \bigm| \bigm| 2
H1/2(\BbbT 2)

.

Proof. We begin with the estimates related to the energy. We divide the argument
into several steps.

1. We initiate our scheme of estimates in the usual way for parabolic problems:
treat temporal derivatives as forcing terms in the stationary equations in
order to recover control of the spatial derivatives from control of the temporal
derivatives. In particular, note that (u, p, \eta ) solves a Stokes problem with
mixed boundary conditions where \partial tu and \partial t\eta are treated as forcing terms,
i.e., \left\{               

 - \Delta u+\nabla p =  - \partial tu+R1 in \Omega ,

\nabla \cdot u = R2 in \Omega ,

u \cdot e3 = \partial t\eta  - R4 on \Sigma ,

(\BbbD ue3)tan =
\bigl( 
R3
\bigr) 
tan

on \Sigma , and

u = 0 on \Sigma b,

where for any vector field w : \Sigma \rightarrow \BbbR 3 we denote by wtan its tangential
part, i.e., wtan = (I  - e3 \otimes e3)w. Therefore, by using elliptic regularity esti-
mates for the Stokes problem (i.e., the auxiliary estimate Proposition B.10)
we obtain that

| | u| | H2(\Omega ) + | | \nabla p| | L2(\Omega ) \lesssim 
\bigm| \bigm| \bigm| \bigm|  - \partial tu+R1

\bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| \partial t\eta  - R4

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \bigl( R3

\bigr) 
tan

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

\leqslant | | \partial tu| | L2(\Omega ) + | | \partial t\eta | | H3/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| R1

\bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| \bigl( R3

\bigr) 
tan

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

.

2. Ultimately, we wish to control the full H1 norm of p via the improved energy,
but so far we only control the gradient of p. In order to proceed further we
therefore use the normal component of the dynamic boundary condition to
obtain control of the trace of p on the top boundary. Indeed, since

p = \BbbD u : (e3 \otimes e3) +
\bigl( 
\delta 20\scrW + g

\bigr) 
\eta  - R3 \cdot e3 on \BbbT 2 (\sim \Sigma )

it follows that

| | tr\Sigma p| | L2(\BbbT 2) \lesssim | | tr\Sigma \BbbD u| | L2(\BbbT 2) + | | \eta | | H4(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| R3 \cdot e3

\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT 2)

\lesssim | | u| | H3/2(\Omega ) + | | \eta | | H4(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| R3 \cdot e3

\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT 2)

.

3. We can now, as intended, recover control of the full H1 norm of p by us-
ing a Poincar\'e-type inequality (i.e., auxiliary estimate (B.1)): | | p| | H1(\Omega ) \lesssim 
| | tr\Sigma p| | L2(\BbbT 2) + | | \nabla p| | L2(\Omega ).

4. Now that we have enough control on the stress tensor to obtain estimates for
its trace onto the boundary, we can use the normal component of the dynamic
boundary condition to obtain control of higher-order spatial derivatives of \eta .
Indeed, since \bigl( 

\delta 20\scrW + g
\bigr) 
\eta = p - \BbbD u : (e3 \otimes e3) +R3 \cdot e3
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4924 ANTOINE REMOND-TIEDREZ AND IAN TICE

it follows from the elliptic regularity of \delta 20\scrW + g (i.e., the auxiliary estimate
Proposition B.11) that

| | \eta | | H9/2(\BbbT 2) \lesssim | | tr\Sigma p| | H1/2(\BbbT 2) + | | tr\Sigma \BbbD u| | H1/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| R3 \cdot e3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

\lesssim | | p| | H1(\Omega ) + | | u| | H2(\Omega ) +
\bigm| \bigm| \bigm| \bigm| R3 \cdot e3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

.

Assembling the above estimates, we see that

| | u| | H2(\Omega ) + | | p| | H1(\Omega ) + | | \eta | | H9/2(\BbbT 2) \lesssim | | \partial tu| | L2(\Omega ) + | | \partial t\eta | | H3/2(\BbbT 2) + | | \eta | | H4(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R1

\bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

.

Then (5.3) follows immediately from this.
We now turn our attention to estimates related to the dissipation. Again, we

divide the argument into steps.
1. We begin by trading control of the symmetrized gradient for control of full
H1 norms. This is possible due to the no-slip boundary conditions and a
Korn-type inequality (i.e., auxiliary estimate Proposition B.13):

| | u| | H1(\Omega ) \lesssim | | \BbbD u| | L2(\Omega ), | | \partial tu| | H1(\Omega ) \lesssim | | \BbbD \partial tu| | L2(\Omega ),

and
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \nabla 2

u
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

\lesssim 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \BbbD \nabla 2

u
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

.

2. Next we use the fact that the horizontal derivatives of the trace of u are equal
to the trace of the horizontal derivatives, i.e., \nabla \circ tr\Sigma = tr\Sigma \circ \nabla . From this
and standard trace estimates we obtain

| | tr\Sigma u| | H5/2(\BbbT 2) \lesssim | | tr\Sigma u| | H1/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \nabla 2

(tr\Sigma u)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

\lesssim | | u| | H1(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| tr\Sigma \nabla 2

u
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
H1/2(\Omega )

\lesssim | | u| | H1(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \nabla 2

u
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

.

3. We can now recover control of all the derivatives of u by using the trace of
u as datum in a Stokes problem with Dirichlet boundary conditions. Indeed,
since \left\{         

 - \Delta u+\nabla p =  - \partial tu+R1 in \Omega ,

\nabla \cdot u = R2 in \Omega ,

u = u on \Sigma ,

u = 0 on \Sigma b

it follows from elliptic regularity estimates for the Stokes problem (i.e., the
auxiliary estimate Proposition B.9) that

| | u| | H3(\Omega ) + | | \nabla p| | H1(\Omega ) \lesssim 
\bigm| \bigm| \bigm| \bigm|  - \partial tu+R1

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H2(\Omega )

+ | | tr\Sigma u| | H5/2(\BbbT 2)

\leqslant | | \partial tu| | H1(\Omega ) + | | tr\Sigma u| | H5/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R1

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H2(\Omega )

.

4. Next we observe that
\bigl( 
\delta 20\scrW + g

\bigr) \bigl( 
\nabla \eta 
\bigr) 
= \nabla p  - \BbbD \nabla u : (e3 \otimes e3) + \nabla R3 on

\BbbT 2 (\sim \Sigma ) and therefore elliptic estimates for the operator \delta 20\scrW + g (i.e., the
auxiliary estimate Proposition B.11) provide the bounds\bigm| \bigm| \bigm| \bigm| \nabla \eta \bigm| \bigm| \bigm| \bigm| 

H9/2(\BbbT 2)
\lesssim 
\bigm| \bigm| \bigm| \bigm| tr\Sigma \nabla p

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| tr\Sigma \BbbD \nabla u

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla R3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

\lesssim | | \nabla p| | H1(\Omega ) + | | u| | H3(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \nabla R3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

.
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Moreover, since
\int 
\BbbT 2 \eta = 0, we have that | | \eta | | H11/2 \lesssim 

\bigm| \bigm| \bigm| \bigm| \nabla \eta \bigm| \bigm| \bigm| \bigm| 
H9/2 (by auxiliary

estimate (B.2)), and so, finally, we have

| | \eta | | H11/2(\BbbT 2) \lesssim | | \nabla p| | H1(\Omega ) + | | u| | H3(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \nabla R3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

.

5. We now parlay the \eta estimates into full H2 control of the pressure by arguing
as we did for the energy, obtaining control of the trace of the pressure. Since

p = \BbbD u : (e3 \otimes e3) +
\bigl( 
\delta 20\scrW + g

\bigr) 
\eta  - R3 \cdot e3 on \BbbT 2 (\sim \Sigma ) ,

it follows that

| | tr\Sigma p| | L2(\BbbT 2) \lesssim | | tr\Sigma \BbbD u| | L2(\BbbT 2) + | | \eta | | H4(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT 2)

\lesssim | | u| | H3/2(\Omega ) + | | \eta | | H4(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT 2)

.

We then use a Poincar\'e-type inequality (i.e., auxiliary estimate (B.1)) to
bound

| | p| | H2(\Omega ) \lesssim | | tr\Sigma p| | L2(\BbbT 2) + | | \nabla p| | H1(\Omega ).

6. Finally, we use the kinematic boundary condition and its time-differentiated
version to obtain control of \partial t\eta and \partial 2t \eta . Indeed, the kinematic bound-
ary condition tells us that \partial t\eta = u \cdot e3 + R4 on \BbbT 2 (\sim \Sigma ) and therefore
| | \partial t\eta | | H5/2(\BbbT 2) \lesssim | | tr\Sigma u| | H5/2(\BbbT 2) +

\bigm| \bigm| \bigm| \bigm| R4
\bigm| \bigm| \bigm| \bigm| 
H5/2(\BbbT 2)

\lesssim | | u| | H3(\Omega ) +
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 
H5/2(\BbbT 2)

.

The time-differentiated kinematic boundary condition tells us that \partial 2t \eta =
(\partial tu) \cdot e3 + \partial tR

4 on \BbbT 2 (\sim \Sigma ) and therefore
\bigm| \bigm| \bigm| \bigm| \partial 2t \eta \bigm| \bigm| \bigm| \bigm| H1/2(\BbbT 2)

\lesssim | | \partial tu| | H1/2(\Omega ) +\bigm| \bigm| \bigm| \bigm| \partial tR4
\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

.

Combining these estimates then shows that

| | u| | H3(\Omega ) + | | \partial tu| | H1(\Omega ) + | | p| | H2(\Omega ) + | | \eta | | H11/2(\BbbT 2) + | | \partial t\eta | | H5/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| \partial 2t \eta \bigm| \bigm| \bigm| \bigm| H1/2(\BbbT 2)

\lesssim | | \BbbD u| | L2(\Omega ) + | | \BbbD \partial tu| | L2(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \BbbD \nabla 2

u
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R1

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R2

\bigm| \bigm| \bigm| \bigm| 
H2(\Omega )

+
\bigm| \bigm| \bigm| \bigm| R3

\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla R3

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)\underbrace{}  \underbrace{}  

\lesssim | | R3| | 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| R4

\bigm| \bigm| \bigm| \bigm| 
H5/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \partial tR4

\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

,

and then (5.4) follows immediately.

Proposition 5.5 tells us in which norm we need to be able to control the nonlinear
remainders. In the notation used in the sketch in section 3.2, these remainders R are
given by R = (L - N) (\scrX ). Here N corresponds to the system (2.2a)--(2.2e), while L
corresponds to the system\left\{               

\partial tu+\nabla \cdot S = 0 in \Omega ,

\nabla \cdot u = 0 in \Omega ,\bigl( 
\delta 20\scrW + g

\bigr) 
\eta e3  - S \cdot e3 = 0 on \Sigma ,

\partial t\eta  - u \cdot e3 = 0 on \Sigma , and

u = 0 on \Sigma b.
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4926 ANTOINE REMOND-TIEDREZ AND IAN TICE

It follows that the remainders are given by\left\{               

R1 =
\Bigl( 
Du,\scrG 
t u - \partial tu

\Bigr) 
+
\bigl( 
\nabla \scrG \cdot S\scrG  - \nabla \cdot S

\bigr) 
,(5.5a)

R2 = \nabla \scrG \cdot u - \nabla \cdot u,(5.5b)

R3 =
\Bigl( 
\delta \scrW (\eta ) \nu \scrG \partial \Omega  - 

\bigl( 
\delta 20\scrW 

\bigr) 
\eta e3

\Bigr) 
+ g\eta 

\bigl( 
\nu \scrG \partial \Omega  - e3

\bigr) 
 - 
\bigl( 
S\scrG \cdot \nu \scrG \partial \Omega  - S \cdot e3

\bigr) 
, and(5.5c)

R4 = u \cdot 
\bigl( 
\nu \scrG \partial \Omega  - e3

\bigr) 
.(5.5d)

Before recording our estimates for these terms we discuss how to Taylor expand
the surface energy terms.

Remark 5.6. An important subtlety in performing the estimates in this section
arises from the fact that the surface energy density may be fully nonlinear. This plays
a role in two terms in particular: \delta \scrW (\eta ) and

\bigl( 
\delta \scrW  - \delta 20\scrW 

\bigr) 
(\eta ). We write these terms

in a manner more amenable to estimates by performing a Taylor expansion of \nabla f :
\bullet For \delta \scrW ,

\delta \scrW (\eta ) = \scrJ \ast (\nabla f (\scrJ \eta )) = \scrJ \ast (\nabla f (\scrJ \eta ) - \nabla f (0))

= \scrJ \ast 
\biggl( \int 1

0

\nabla 2f (t\scrJ \eta ) dt \bullet \scrJ \eta 
\biggr) 

= \scrJ \ast (h (\scrJ \eta ) \bullet \scrJ \eta ) ,

where h (z) :=
\int 1

0
\nabla 2f (tz) dt for z = (w,M) \in \BbbR n\times \BbbR n\times n. Note that we may

also write \delta \scrW (\eta ) = \scrJ \ast (\scrR 0 [\nabla f, 0] (\scrJ \eta )), where \scrR 0 is defined in Proposition
B.14. This is a useful way of writing \delta \scrW (\eta ) since it provides us with a unified
way of estimating a certain number of terms showing up in the remainders.

\bullet For
\bigl( 
\delta \scrW  - \delta 20\scrW 

\bigr) 
(\eta ),

\delta \scrW (\eta ) - \delta 20\scrW (\eta ) = \scrJ \ast 
\Bigl( 
\nabla f (\scrJ \eta ) - \nabla 2f (0) \bullet \scrJ \eta 

\Bigr) 
= \scrJ \ast 

\Bigl( 
\nabla f (\scrJ \eta ) - \scrP 1 [\nabla f, 0] (\scrJ \eta )

\Bigr) 
= \scrJ \ast 

\Bigl( 
\scrR 1 [\nabla f, 0] (\scrJ \eta )

\Bigr) 
= \scrJ \ast 

\biggl( \biggl( 
1

2

\int 1

0

(1 - t)\nabla 3f (t\scrJ \eta ) dt
\biggr) 
\bullet (\scrJ \eta \otimes \scrJ \eta )

\biggr) 
= \scrJ \ast 

\Bigl( 
q (\scrJ \eta ) \bullet (\scrJ \eta \otimes \scrJ \eta )

\Bigr) 
,

where q (z) := 1
2

\int 1

0
(1 - t)\nabla 3f (tz) dt for z = (w,M) \in \BbbR n\times \BbbR n\times n and where

\scrP 1 and \scrR 1 are defined in Proposition B.14.
Summarizing, we have

(5.6)

\Biggl\{ 
\delta \scrW (\eta ) = \scrJ \ast (\scrR 0 [\nabla f, 0] (\scrJ \eta )) = \scrJ \ast (h (\scrJ \eta ) \bullet \scrJ \eta ) ,\bigl( 
\delta \scrW  - \delta 20\scrW 

\bigr) 
(\eta ) = \scrJ \ast (\scrR 1 [\nabla f, 0] (\scrJ \eta )) = \scrJ \ast (q (\scrJ \eta ) \bullet (\scrJ \eta \otimes \scrJ \eta )) ,

where \scrR 0 and \scrR 1 are defined in Proposition B.14 and where

h (z) := r0 [\nabla f, 0] (\scrJ \eta ) =
\int 1

0

\nabla 2f (tz) dt and

q (z) := r1 [\nabla f, 0] (\scrJ \eta ) =
1

2

\int 1

0

(1 - t)\nabla 3f (tz) dt

for z = (w,M) \in \BbbR n \times \BbbR n\times n and for r0 and r1 defined in Proposition B.14.
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Our next result records estimates for the remainder terms.

Lemma 5.7. Let \scrN E and \scrN D be as defined in Proposition 5.5, and let R1, R2, R3,
R4 be as defined by (5.5a)--(5.5d). If the small energy assumptions hold (see Definition
4.2), then

\scrN E \lesssim \scrE 2 and \scrN D \lesssim \scrE \scrD .

Proof. First let us sketch the argument. As in the proof of Proposition 5.5,
most terms are easily handled via the standard combination of H\"older and Sobolev
inequalities (cf. Proposition B.4) since they are multilinear, but some terms arising
from the fully nonlinear surface energy have to be handled differently. Essentially,
to control those, we make use of the fact that we are in a small energy regime and
use Taylor expansions (cf. Proposition B.14 for the notation used) to bring it back
to the multilinear (i.e., polynomial) case. More precisely, the troublesome terms are
\delta \scrW  - \delta 20\scrW and \delta \scrW , which we handle by employing (5.6).

Let us now estimate each remainder in detail. R2 and R4 are easy to deal with
since

R2 = (\scrG  - I) : \nabla u and R4 =  - (tru) \cdot \nabla \eta 

and therefore we can use standard product estimates in Sobolev spaces (cf. Proposi-
tions B.5, B.6, and B.7).

R1 is similar and only requires expanding out further before being estimated in
the same way as R2 and R4 above:

R1 =  - (\partial t\Phi ) \cdot \scrG \cdot (\nabla u)T + u \cdot \scrG \cdot (\nabla u)T + (\scrG  - I) \cdot \nabla p

 - \nabla 
\Bigl( 
Sym

\Bigl( 
(\nabla u) \cdot (\scrG  - I)

T
\Bigr) \Bigr) 

: (\scrG  - I)

 - (\nabla \BbbD u) : (\scrG  - I) - \nabla \cdot 
\Bigl( 
Sym

\Bigl( 
(\nabla u) \cdot (\scrG  - I)

T
\Bigr) \Bigr) 

.

R3 requires more care, since it can be expanded out to be

R3 =  - (\delta \scrW (\eta ) + g\eta ) (\nabla \eta ) +
\bigl( 
\delta \scrW (\eta ) - \delta 20\scrW (\eta )

\bigr) 
e3 + p\nabla \eta 

 - Sym
\bigl( 
(\nabla u)\scrG T

\bigr) 
\cdot (\nabla \eta ) + Sym ((\nabla u) (\scrG  - I)) \cdot e3,

where we have used that R3 is defined on \Sigma and \nu \scrG \partial \Omega | \Sigma =  - \widetilde \nabla \eta +e3. Most terms in the
expansion of R3 can be handled by standard product estimates, but as sketched above,
two terms require particular care, namely the ones involving \delta \scrW (\eta ) and \delta \scrW (\eta )  - 
\delta 20\scrW (\eta ).

According to (5.6), the key estimates required to control \delta \scrW and \delta \scrW  - \delta 20\scrW in
Hs are therefore the control of h (\scrJ \eta ) and q (\scrJ \eta ) in Hs. The details of this estimate
rely on postcomposition estimates in Sobolev spaces and are recorded in the appendix
in Lemma A.9 and Corollary A.10. From this we obtain that for any s \geqslant 2,\left\{   | | h (\scrJ \eta )| | Hs(\BbbT 2) \lesssim C

(2)
f + C

(\lceil s\rceil +2)
f

\Bigl( 
| | \eta | | Hs+2(\BbbT 2) + | | \eta | | \lceil s\rceil Hs+2(\BbbT 2)

\Bigr) 
and

| | q (\scrJ \eta )| | Hs(\BbbT 2) \lesssim C
(3)
f + C

(\lceil s\rceil +3)
f

\Bigl( 
| | \eta | | Hs+2(\BbbT 2) + | | \eta | | \lceil s\rceil Hs+2(\BbbT 2)

\Bigr) 
,

where here we recall that the constants C
(k)
f are defined in Definition 4.1.
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4928 ANTOINE REMOND-TIEDREZ AND IAN TICE

We may now proceed with the estimates. Since, as detailed above, most terms in
the remainder are easy to control, we only highlight those which are more delicate and
representative of the difficulties encountered. More precisely, we estimate in detail

1. the term involving \delta \scrW (\eta ) - \delta 20\scrW (\eta ) in \scrN E ,
2. the term involving \delta \scrW (\eta ) + g\eta in \scrN D, and
3. the term involving \delta \scrW (\eta ) - \delta 20\scrW (\eta ) in \scrN D.

These estimates are obtained as follows:
1. We seek to control

\bigm| \bigm| \bigm| \bigm| \bigl( \delta \scrW (\eta ) - \delta 20\scrW (\eta )
\bigr) 
e3
\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

:

\bigm| \bigm| \bigm| \bigm| \bigl( \delta \scrW (\eta ) - \delta 20\scrW (\eta )
\bigr) 
e3
\bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

=
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrJ \ast 

\Bigl( 
q (\scrJ \eta ) \bullet (\scrJ \eta \otimes \scrJ \eta )

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
H1/2(\BbbT 2)

\lesssim | | q (\scrJ \eta ) \bullet (\scrJ \eta \otimes \scrJ \eta )| | H5/2(\BbbT 2)

\lesssim | | q (\scrJ \eta )| | H5/2(\BbbT 2)| | \scrJ \eta | | 
2
H5/2(\BbbT 2)

\lesssim 1 \cdot 
\surd 
\scrE 
\surd 
\scrE = \scrE .

2. We seek to control | | (\delta \scrW (\eta ) + g\eta )\nabla \eta | | H3/2(\BbbT 2) and thus the key term to

control is | | \delta \scrW (\eta )| | H3/2(\BbbT 2). Since \delta \scrW (\eta ) is a differential operator of order

4, and since \scrD \gtrsim | | \eta | | H11/2(\BbbT 2) \gtrsim 
\bigm| \bigm| \bigm| \bigm| \nabla 4\eta 

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

, we cannot get away with

writing \delta \scrW (\eta ) = \scrJ \ast (\nabla f (\scrJ \eta )) and estimating | | \nabla f (\scrJ \eta )| | H7/2(\BbbT 2). Instead,
we use Lemma A.5 to obtain

| | \delta \scrW (\eta )| | H3/2(\BbbT 2) \leqslant 
\bigm| \bigm| \bigm| \bigm| \nabla 2

M,Mf (\scrJ \eta ) \bullet \nabla 4\eta 
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 2

w,wf (\scrJ \eta ) \bullet \nabla 2\eta 
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 3

M,M,Mf (\scrJ \eta ) \bullet 
\bigl( 
\nabla 3\eta \otimes \nabla 3\eta 

\bigr) \bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 3

M,M,wf (\scrJ \eta ) \bullet 
\bigl( 
\nabla 3\eta \otimes \nabla 2\eta 

\bigr) \bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 3

w,M,wf (\scrJ \eta ) \bullet 
\bigl( 
\nabla 2\eta \otimes \nabla 2\eta 

\bigr) \bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 2f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 4\eta 
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 2f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 2\eta 
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 3f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 3\eta 
\bigm| \bigm| \bigm| \bigm| 2
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 3f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 3\eta 
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 2\eta 
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+
\bigm| \bigm| \bigm| \bigm| \nabla 3f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 2\eta 
\bigm| \bigm| \bigm| \bigm| 2
H3/2(\BbbT 2)

\lesssim | | \eta | | H11/2(\BbbT 2) + | | \eta | | H7/2(\BbbT 2) + | | \eta | | 2H9/2(\BbbT 2) + | | \eta | | H9/2(\BbbT 2)

| | \eta | | H7/2(\BbbT 2) + | | \eta | | 2H7/2(\BbbT 2) \lesssim 
\surd 
\scrD +

\surd 
\scrE + 3\scrE \lesssim 

\surd 
\scrD ,

where we have used that for k = 2, 3,

\bigm| \bigm| \bigm| \bigm| \nabla kf (\scrJ \eta )
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

\leqslant 
\bigm| \bigm| \bigm| \bigm| \nabla kf (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
H2(\BbbT 2)

\lesssim C
(k)
f + C

(k+3)
f

\Bigl( 
| | \eta | | H4(\BbbT 2) + | | \eta | | 2H4(\BbbT 2)

\Bigr) 
\lesssim 1 +

\surd 
\scrE + \scrE \lesssim 1
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for the constants C
(k)
f as defined in Definition 4.1. So finally

| | (\delta \scrW (\eta ) + g\eta )\nabla \eta | | H3/2(\BbbT 2) \lesssim | | \delta \scrW (\eta ) + g\eta | | H3/2(\BbbT 2)| | \nabla \eta | | H3/2(\BbbT 2)

\lesssim 
\Bigl( \surd 

\scrD + | | \eta | | 2H3/2(\BbbT )

\Bigr) 
| | \eta | | H5/2(\BbbT 2)

\lesssim 
\Bigl( \surd 

\scrD +
\surd 
\scrE 
\Bigr) \surd 

\scrE \lesssim 
\surd 
\scrE 
\surd 
\scrD .

3. We seek to control
\bigm| \bigm| \bigm| \bigm| \bigl( \delta \scrW (\eta ) - 

\bigl( 
\delta 20\scrW 

\bigr) 
\eta 
\bigr) \bigm| \bigm| \bigm| \bigm| 

H3/2(\BbbT 2)
. Observe that (using

Lemma A.5 again)

\delta \scrW (\eta ) - 
\bigl( 
\delta 20\scrW 

\bigr) 
\eta =

\bigl( 
\nabla 2
M,Mf (\scrJ \eta ) - \nabla 2

M,Mf (0)
\bigr) 
\bullet \nabla 4\eta 

 - 
\bigl( 
\nabla 2
w,wf (\scrJ \eta ) - \nabla 2

w,wf (0)
\bigr) 
\bullet \nabla 2\eta 

+\nabla 3
M,M,Mf (\scrJ \eta ) \bullet 

\bigl( 
\nabla 3\eta \otimes \nabla 3\eta 

\bigr) 
+\nabla 3

M,M,wf (\scrJ \eta ) \bullet 
\bigl( 
\nabla 3\eta \otimes \nabla 2\eta 

\bigr) 
+\nabla 3

w,M,wf (\scrJ \eta ) \bullet 
\bigl( 
\nabla 2\eta \otimes \nabla 2\eta 

\bigr) 
.

In particular, for

F (z) :=

\int 1

0

\nabla \nabla 2
M,Mf (tz) dt and G (z) :=

\int 1

0

\nabla \nabla 2
p,pf (tz) dt,

where z = (w,M) \in \BbbR n \times \BbbR n\times n, we have (by the fundamental theorem of
calculus)

\delta \scrW (\eta ) - 
\bigl( 
\delta 20\scrW 

\bigr) 
\eta =(F (\scrJ \eta ) \bullet \scrJ \eta ) \bullet \nabla 4\eta + (G (\scrJ \eta ) \bullet \scrJ \eta ) \bullet \nabla 2\eta 

+\nabla 3
M,M,Mf (\scrJ \eta ) \bullet 

\bigl( 
\nabla 3\eta \otimes \nabla 3\eta 

\bigr) 
+\nabla 3

M,M,wf (\scrJ \eta ) \bullet 
\bigl( 
\nabla 3\eta \otimes \nabla 2\eta 

\bigr) 
+\nabla 3

w,M,wf (\scrJ \eta ) \bullet 
\bigl( 
\nabla 2\eta \otimes \nabla 2\eta 

\bigr) 
.

Crucially, all terms have a part which is quadratic in \eta . By an argument sim-
ilar to that of Lemma A.9 we have, in the small energy regime, the estimates

| | F (\scrJ \eta )| | Hs(\BbbT 2) \lesssim 1 and | | G (\scrJ \eta )| | Hs(\BbbT 2) \lesssim 1

for any s \in 
\bigl[ 
2, 52

\bigr] 
. So finally, we can perform the estimate\bigm| \bigm| \bigm| \bigm| \bigl( \delta \scrW (\eta ) - 
\bigl( 
\delta 20\scrW 

\bigr) 
\eta 
\bigr) \bigm| \bigm| \bigm| \bigm| 

H3/2(\BbbT 2)
\lesssim | | F (\scrJ \eta )| | H3/2(\BbbT 2)| | \scrJ \eta | | H3/2(\BbbT 2)\bigm| \bigm| \bigm| \bigm| \nabla 4\eta 

\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+ | | G (\scrJ \eta )| | H3/2(\BbbT 2)| | \scrJ \eta | | H3/2(\BbbT 2)

\bigm| \bigm| \bigm| \bigm| \nabla 2\eta 
\bigm| \bigm| \bigm| \bigm| 
H3/2(\BbbT 2)

+ l.o.t.

\lesssim | | F (\scrJ \eta )| | H2(\BbbT 2)| | \eta | | H7/2(\BbbT 2)| | \eta | | H11/2(\BbbT 2)

+ | | G (\scrJ \eta )| | H2(\BbbT 2)| | \eta | | 
2
H7/2(\BbbT 2) + l.o.t.

\lesssim 
\surd 
\scrE 
\surd 
\scrD + \scrE + l.o.t. \lesssim 

\surd 
\scrE 
\surd 
\scrD ,

where we have omitted the details for the lower-order terms involving \nabla 3f
(denoted l.o.t. above) since they follow exactly as in the second item
above.
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5.3. Geometric corrections. In this section we compute the geometric correc-
tions to the energy and dissipation (i.e., the difference between their geometric and
equilibrium versions) in Remark 5.8, and we estimate these corrections in Lemma 5.9.

Remark 5.8. The geometric corrections are \scrG E (\scrX ) = \widetilde \scrE (\scrX ;\scrX ) - \scrE (\scrX ) and \scrG D (\scrX )

= \widetilde \scrD (\scrX ;\scrX )  - \scrD (\scrX ) (cf. (4.2a), (4.2b), (4.3a), and (4.3b) for the definitions of the
geometric and equilibrium versions of the energy and dissipation). For \scrX = (u, p, \eta ) a
simple application of Taylor's theorem allows us to compute the geometric corrections
to be

\scrG E (\scrX ) =
\sum 

| \alpha | t,x2\leq 2

\Biggl( 
1

2

\int 
\Omega 

| \partial \alpha u| 2 (J  - 1) +
1

2

\int 
\BbbT 2

\biggl( \int 1

0

g\alpha (t)\nabla 3f (t\scrJ \eta ) dt
\biggr) 

\bullet (\scrJ \eta \otimes \scrJ \partial \alpha \eta \otimes \scrJ \partial \alpha \eta )

\Biggr) 

and

\scrG D (\scrX ) =
\sum 

| \alpha | t,x2\leq 2

\Biggl( 
1

2

\int 
\Omega 

| \BbbD \scrG  - I\partial \alpha u| 2J  - 
\int 
\Omega 

\bigl( 
\BbbD \scrG  - I\partial \alpha u : \BbbD \partial \alpha u

\bigr) 
J

+
1

2

\int 
\Omega 

| \BbbD \partial \alpha u| 2 (J  - 1)

\Biggr) 
,

where

(5.7) g\alpha (t) :=

\Biggl\{ 
1
3 (1 - t)

2
for \alpha = 0,

1 for \alpha \not = 0.

Note that | g\alpha | \leqslant 1 on [0, 1] and that \nabla 3f appears in the geometric corrections to

the energy. This is as expected since \scrG E (\scrX ) = \widetilde \scrE (\scrX ;\scrX ) - \scrE \scrX \sim \widetilde \scrE (\scrX ;\scrX ) - \widetilde \scrE (\scrX , 0)
where \widetilde \scrE depends on \nabla 2f . Therefore, upon Taylor expanding about the equilibrium
solution \scrX = 0 we pick up a term involving \nabla 3f .

We now estimate the geometric corrections.

Lemma 5.9. In the small energy regime (see Definition 4.2) we have the estimates

| \scrG E | \lesssim 
\surd 
\scrE \scrE and | \scrG D| \lesssim 

\surd 
\scrE \scrD ,

where \scrG E and \scrG D are defined in Remark 5.8.

Proof. First we check that the term involving g\alpha is small. Observe that since
| g\alpha (t)| \leq 1 when t \in [0, 1], it follows that

sup
| z| \leqslant R

\bigm| \bigm| \bigm| \bigm| \int 1

0

g\alpha (t)\nabla 3f (tz) dt

\bigm| \bigm| \bigm| \bigm| \leqslant \bigm| \bigm| \bigm| \bigm| \nabla 3f
\bigm| \bigm| \bigm| \bigm| 
L\infty (B(0,R))

and hence \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \int 1

0

g\alpha (t)\nabla 3f (t\scrJ \eta ) dt
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\infty 

\leq 
\bigm| \bigm| \bigm| \bigm| \nabla 3f

\bigm| \bigm| \bigm| \bigm| 
L\infty 

\Bigl( 
B(0,| | \scrJ \eta | | \infty )

\Bigr) \leqslant C
(3)
f ,
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where the constant C
(3)
f is defined in Definition 4.1. In particular, in a small energy

regime, | | \scrJ \eta | | \infty \lesssim 
\surd 
\scrE , and hence\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \int 1

0

g\alpha (t)\nabla 3f (t\scrJ \eta ) dt
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\infty 

\lesssim C
(3)
f \lesssim 1.

Note that due to the fashion in which we perform the estimates, it is sufficient to

handle the case \partial \alpha = \partial t,\nabla 
2
. Recall that the control we have over the geometric

coefficients \scrG and J is recorded in Lemma A.1.
We now estimate the corrections to the energy.

\partial t The geometric correction is

1

2

\int 
\Omega 

| \partial tu| 2 (J  - 1) +
1

2

\int 
\BbbT 2

\biggl( \int 1

0

\nabla 3f (t\scrJ \eta ) dt
\biggr) 
\bullet (\scrJ \eta \otimes \scrJ \partial t\eta \otimes \scrJ \partial t\eta ) ,

and it can be estimated in the following way:

| . . .| \lesssim | | \partial tu| | 2L2(\Omega )| | J  - 1| | L\infty (\Omega )

+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \int 1

0

g\alpha (t)\nabla 3f (t\scrJ \eta ) dt
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\infty (\BbbT 2)

| | \scrJ \eta | | L\infty (\BbbT 2)| | \scrJ \partial t\eta | | 
2
L2(\BbbT 2)

\lesssim | | \partial tu| | 2L2(\Omega )| | J  - 1| | H3/2+(\Omega ) + | | \scrJ \eta | | H1+(\BbbT 2)| | \scrJ \partial t\eta | | 
2
L2(\BbbT 2)

\lesssim \scrE 
\surd 
\scrE +

\surd 
\scrE \scrE \lesssim \scrE 3/2.

\nabla 2
Note that the control of \eta in the energy is similar to parabolic scaling, but
with a little bit more spatial regularity. Consequently we handle this term as
we did the previous one involving \partial t and obtain (omitting the details)\bigm| \bigm| \bigm| \bigm| 12

\int 
\Omega 

| \nabla 2u| 2 (J  - 1) +
1

2

\int 
\BbbT 2

\biggl( \int 1

0

\nabla 3f (t\scrJ \eta ) dt
\biggr) 
\bullet 
\bigl( 
\scrJ \eta \otimes \scrJ \nabla 2\eta \otimes \scrJ \nabla 2\eta 

\bigr) \bigm| \bigm| \bigm| \bigm| 
\lesssim \scrE 3/2.

Next we estimate the dissipative corrections. Note that | \BbbD Mv| = | 2 Sym
\bigl( 
\nabla Mv

\bigr) 
| \lesssim 

| M | | \nabla v| .
\partial t The geometric correction is

1

2

\int 
\Omega 

| \BbbD \scrG  - I\partial tu| 2J  - 
\int 
\Omega 

\bigl( 
\BbbD \scrG  - I\partial tu : \BbbD \partial tu

\bigr) 
J +

1

2

\int 
\Omega 

| \BbbD \partial tu| 2 (J  - 1) ,

and it can be estimated in the following way:

| . . .| \lesssim | | \scrG  - I| | 2L\infty (\Omega )| | \nabla \partial tu| | 
2
L2(\Omega )| | J | | L\infty (\Omega )

+ | | \scrG  - I| | L\infty (\Omega )| | \nabla \partial tu| | 
2
L2(\Omega )| | J | | L\infty (\Omega )

+ | | \nabla \partial tu| | 2L2(\Omega )| | J  - 1| | L\infty (\Omega )

\lesssim | | \scrG  - I| | 2H3/2+(\Omega )| | \nabla \partial tu| | 
2
L2(\Omega )| | J | | H3/2+(\Omega )

+ | | \scrG  - I| | H3/2+(\Omega )| | \nabla \partial tu| | 
2
L2(\Omega )| | J | | H3/2+(\Omega )

+ | | \nabla \partial tu| | 2L2(\Omega )| | J  - 1| | H3/2+(\Omega )

\lesssim \scrE \scrD 
\Bigl( 
1 +

\surd 
\scrE 
\Bigr) 
+
\surd 
\scrE \scrD 

\Bigl( 
1 +

\surd 
\scrE 
\Bigr) 
+\scrD 

\surd 
\scrE \lesssim 

\surd 
\scrE \scrD .

D
ow

nl
oa

de
d 

06
/2

2/
20

 to
 1

28
.2

.1
49

.1
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4932 ANTOINE REMOND-TIEDREZ AND IAN TICE

\nabla 2
Since the control we have on u follows parabolic scaling precisely, upon re-
placing \partial tu by \nabla 2u we can proceed in exactly the same way we did above.
We therefore obtain that\bigm| \bigm| \bigm| \bigm| 12

\int 
\Omega 

| \BbbD \scrG  - I\nabla 2u| 2J  - 
\int 
\Omega 

\bigl( 
\BbbD \scrG  - I\nabla 2u : \BbbD \nabla 2u

\bigr) 
J +

1

2

\int 
\Omega 

| \BbbD \nabla 2u| 2 (J  - 1)

\bigm| \bigm| \bigm| \bigm| 
\lesssim 

\surd 
\scrE \scrD .

5.4. Synthesis. In this section we piece together the various elements of the
a priori estimates into our main ``a priori"" theorem.

Theorem 5.10 (a priori estimates). There exist \delta , \lambda , Cap > 0 such that if there
exists a solution \scrX = (u, p, \eta ) on [0, T ) with initial condition \scrX 0 = (u0, p0, \eta 0) satis-
fying

sup
t\in [0,T )

\scrE (\scrX ) \leqslant \delta and

\int T

0

\scrD (\scrX ) <\infty 

(and so in particular, for \delta \leqslant 1, we are in the small energy regime as defined in 4.2),
then

sup
t\in [0,T )

\scrE (\scrX ) e\lambda t +

\int T

0

\scrD (\scrX ) e\lambda s ds \leqslant Cap\scrE (\scrX 0) .

Proof. In order to define \delta , \lambda , and Cap, we must keep track of the constants in
Lemmas 5.4, 5.7, and 5.9 and Proposition 5.5. In particular, we take CC,E , CC,D, CN,E ,
CN,D, CG,E , CG,D, CA,E , CA,D > 0 such that\Biggl\{ 

| \scrC 1| \leqslant CC,E
\surd 
\scrE \scrD ,

| \scrC 2| \leqslant CC,D
\surd 
\scrE \scrE ,

\Biggl\{ 
\scrN E \leqslant CN,E,\scrE 2,

\scrN D \leqslant CN,D\scrE \scrD ,\Biggl\{ 
| \scrG E | \leqslant CG,E,

\surd 
\scrE \scrE ,

| \scrG D| \leqslant CG,D
\surd 
\scrE \scrD ,

\Biggl\{ 
\scrE \leqslant CA,E

\bigl( 
\scrE +\scrN E

\bigr) 
, and

\scrD \leqslant CA,D
\bigl( 
\scrD +\scrN D

\bigr) 
.

Moreover we assume without loss of generality that CC,E , CC,D, CN,E , CN,D, CG,E ,
CG,D, CA,E , CA,D \geqslant 1. Now pick

\delta =min

\Biggl( 
\delta 0,

1

2CA,ECN,E
,

\biggl( 
1

2CG,ECA,E

\biggr) 2

,

\biggl( 
1

8CC,ECA,E

\biggr) 2

,

1

2CA,DCN,D
,

\biggl( 
1

2CG,DCA,D

\biggr) 2

,

\biggl( 
1

8CC,DCA,D

\biggr) 2
\Biggr) 
,

1

2\lambda 
= 8CA,D

\Bigl( 
1 + CC,E

\sqrt{} 
\delta 0

\Bigr) \Bigl( 
1 + 2CG,ECA,E

\sqrt{} 
\delta 0

\Bigr) 
, and

C := max (8CA,E , 16CA,D) 4CA,E

\Bigl( 
1 + 2CA,ECG,E

\sqrt{} 
\delta 0

\Bigr) \Bigl( 
1 + (1 + 2CA,E)CG,E

\sqrt{} 
\delta 0

\Bigr) 
> 0.

We divide the remainder of the proof into several steps.
Step 1. We show that in the \delta -small energy regime, i.e., when sup \scrE \leqslant \delta and\int 

\scrD <\infty , all versions of the energy, and all versions of the dissipation, are equivalent.
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The key observation is that the difference between various versions of the energy and
the dissipation can be controlled (by Lemmas 5.4, 5.7, and 5.9) by quantities of the
form \scrE \alpha \scrE and \scrE \alpha \scrD , respectively, for some \alpha > 0. In particular, by picking \delta small and
imposing that \scrE \leqslant \delta we may ensure that \scrE \alpha is small enough to perform absorption
arguments. More precisely, we show that

\scrE \asymp \scrE \asymp \widetilde \scrE and \scrD \asymp \scrD \asymp \widetilde \scrD ,
and in particular we show that \left\{           

\scrE \leqslant \scrE ,(5.8a)

\scrE \leqslant CEimp,eq\scrE ,(5.8b) \widetilde \scrE \leqslant CEgeo,eq\scrE ,(5.8c)

\scrE \leqslant CEimp,geo
\widetilde \scrE ,(5.8d) \left\{           

\scrD \leqslant \scrD ,(5.9a)

\scrD \leqslant CDimp,eq\scrD ,(5.9b) \widetilde \scrD \leqslant CDgeo,eq\scrD ,(5.9c)

\scrD \leqslant CDimp,geo \widetilde \scrD ,(5.9d)

where\left\{     
CEimp,eq = 2CA,E ,

CEgeo,eq = 1 + 2CG,ECA,E
\surd 
\delta 0,

CEimp,geo = 4CA,E ,

\left\{     
CDimp,eq = 2CA,D,

CDgeo,eq = 1 + 2CG,DCA,D
\surd 
\delta 0, and

CDimp,geo = 4CA,D.

To start, note that (5.8a) follows immediately from the definition of \scrE and \scrE . To
obtain (5.8b), we apply Proposition 5.5 and Lemma 5.7, and note that since \scrE \leqslant \delta \leqslant 

1
2CA,ECN,E

it follows that
CA,E

1 - CA,ECN,E\scrE \leqslant 2CA,E = CEimp,eq. Thus

\scrE \leqslant CA,E
\bigl( 
\scrE +\scrN E

\bigr) 
\leqslant CA,E

\bigl( 
\scrE + CN,E\scrE 2

\bigr) 
and hence \scrE \leqslant 

CA,E
1 - CA,ECN,E\scrE 

\scrE 

\leqslant CEimp,eq\scrE .

To obtain (5.8c), we use Remark 5.8, Lemma 5.9, and (5.8b) to see that\widetilde \scrE = \scrE + \scrG E \leqslant \scrE + CG,E
\surd 
\scrE \scrE \leqslant 

\Bigl( 
1 + 2CG,ECA,E

\sqrt{} 
\delta 0

\Bigr) 
\scrE = CEgeo,eq\scrE .

To obtain (5.8d) we apply (5.8b), Remark 5.8, and Lemma 5.9 to see that

\scrE \leqslant CEimp,eq\scrE = CEimp,eq

\Bigl( \widetilde \scrE  - \scrG E
\Bigr) 
\leqslant CEimp,eq

\Bigl( \widetilde \scrE + CG,E
\surd 
\scrE \scrE 
\Bigr) 

\Rightarrow \scrE \leqslant 
CEimp,eq

1 - CG,ECEimp,eq
\surd 
\scrE 
\widetilde \scrE =

2CA,E

1 - 2CG,ECA,E
\surd 
\scrE 
\widetilde \scrE ( \star )

\leqslant 4CA,E \widetilde \scrE = CEimp,geo \widetilde \scrE ,
where ( \star ) holds since \scrE \leqslant \delta \leqslant 

\bigl( 
1

2CG,ECA,E

\bigr) 2
. The bound (5.9a) follows immediately

from the definition of \scrD and \scrD . To obtain (5.9b), we apply Proposition 5.5 and
Lemma 5.7 to see that

\scrD \leqslant CA,D
\bigl( 
\scrD +\scrN D

\bigr) 
\leqslant CA,D

\bigl( 
\scrD + CN,D\scrE \scrD 

\bigr) 
and hence \scrD \leqslant 

CA,D
1 - CA,DCN,D\scrE 

\scrD 
( \star )

\leqslant 2CA,D\scrD = CDimp,eq\scrD ,
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where ( \star ) holds since \scrE \leqslant \delta \leqslant 1
2CA,DCN,D

. To obtain (5.9c), we use Remark 5.8,

Lemma 5.9, and (5.9b) to see that

\widetilde \scrD = \scrD + \scrG D \leqslant \scrD + CG,D
\surd 
\scrE \scrD \leqslant 

\Bigl( 
1 + 2CG,DCA,D

\sqrt{} 
\delta 0

\Bigr) 
\scrD = CDgeo,eq\scrD .

To obtain (5.9d) we apply (5.9b), Remark 5.8, and Lemma 5.9 to see that

\scrD \leqslant CDimp,eq\scrD = CDimp,eq

\Bigl( \widetilde \scrD  - \scrG D
\Bigr) 
\leqslant CDimp,eq

\Bigl( \widetilde \scrD + CG,D
\surd 
\scrE \scrD 
\Bigr) 

\Rightarrow \scrD \leqslant 
CDimp,eq

1 - CG,DCDimp,eq
\surd 
\scrE 
\widetilde \scrD =

2CA,D

1 - 2CG,DCA,D
\surd 
\scrE 
\widetilde \scrD ( \star )

\leqslant 4CA,D \widetilde \scrD = CDimp,geo \widetilde \scrD ,
where ( \star ) holds since \scrE \leqslant \delta \leqslant 

\bigl( 
1

2CG,DCA,D

\bigr) 2
.

Step 2. We apply the generic energy-dissipation relations computed in Proposi-
tions 5.1 and 5.2 to the case where \scrY = \partial \alpha \scrX , and then sum over | \alpha | t,x2 \leqslant 2 to obtain
the energy-dissipation relation:

d

dt
\widetilde \scrE + \widetilde \scrD = \scrC 1 +

d

dt
\scrC 2 \leftrightarrow d

dt

\Bigl( \widetilde \scrE  - \scrC 2
\Bigr) 
+
\Bigl( \widetilde \scrD  - \scrC 1

\Bigr) 
= 0.

Step 3. Recall that \scrD \geqslant \scrE , i.e., the dissipation is coercive over the energy. We
now use Steps 1 and 2 with this coercivity, as well as Lemma 5.4, (5.8a), (5.8c), (5.9d),

and the bounds \scrE \leqslant \delta \leqslant \delta 0 and \scrE \leqslant \delta \leqslant ( 1
8CA,DCC,D

)
2
to obtain a Gronwall-type

inequality:

\widetilde \scrD  - \scrC 1 \geqslant 
1

4CA,D
\scrD  - \scrC 1 \geqslant 

1

4CA,D
\scrD  - CC,D

\surd 
\scrE \scrD 

=

\biggl( 
1

4CA,D
 - CC,D

\surd 
\scrE 
\biggr) 
\scrD \geqslant 

1

8CA,D
\scrD \geqslant 

1

8CA,D
\scrE 

\geqslant 
1

8CA,D
\bigl( 
1 + CC,E

\surd 
\delta 0
\bigr) \bigl( \scrE  - \scrC 2

\bigr) 
\geqslant 

1

8CA,D
\bigl( 
1 + CC,E

\surd 
\delta 0
\bigr) \biggl( 1

1 + 2CG,ECA,E
\surd 
\delta 0
\widetilde \scrE  - \scrC 2

\biggr) 
\geqslant 

1

8CA,D
\bigl( 
1 + CC,E

\surd 
\delta 0
\bigr) \bigl( 

1 + 2CG,ECA,E
\surd 
\delta 0
\bigr) \Bigl( \widetilde \scrE  - \scrC 2

\Bigr) 
= 2\lambda 

\Bigl( \widetilde \scrE  - \scrC 2
\Bigr) 
,

and therefore

d

dt

\Bigl( \widetilde \scrE  - \scrC 2
\Bigr) 
+ \lambda 

\Bigl( \widetilde \scrE  - \scrC 2
\Bigr) 
+

1

16CA,D
\scrD \leqslant 0.

Upon integrating in time, we obtain that for all t \in [0, T ),

\Bigl( \widetilde \scrE  - \scrC 2
\Bigr) 
(\scrX ) e\lambda t +

\int t

0

1

16CA,D
\scrD (\scrX ) e\lambda sds \leqslant 

\Bigl( \widetilde \scrE  - \scrC 2
\Bigr) 
(\scrX 0) .
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Now observe that using (5.8d), Lemma 5.4, and the fact that \scrE \leqslant \delta \leqslant 
\bigl( 

1
8CA,ECC,E

\bigr) 2
,

we obtain that

\widetilde \scrE  - \scrC 2 \geqslant 
1

4CA,E
\scrE  - CC,E

\surd 
\scrE \scrE =

\biggl( 
1

4CA,E
 - CC,E

\surd 
\scrE 
\biggr) 
\scrE \geqslant 

1

8CA,E
\scrE ,

while using (5.8c), (5.8a), and Lemma 5.4, we obtain that

\widetilde \scrE  - \scrC 2 \leqslant 
\Bigl( 
1 + 2CG,ECA,E

\sqrt{} 
\delta 0

\Bigr) 
\scrE + CC,E

\sqrt{} 
\delta 0\scrE =

\Bigl( 
1 + (1 + 2CA,E)CG,E

\sqrt{} 
\delta 0

\Bigr) 
\scrE .

Therefore, for all t \in [0, T ),

1

8CA,E
\scrE (\scrX ) e\lambda t +

\int t

0

1

16CA,D
\scrD (\scrX ) e\lambda sds \leqslant 

\Bigl( 
1 + (1 + 2CA,E)CG,E

\sqrt{} 
\delta 0

\Bigr) 
\scrE (\scrX 0)

\leqslant 4CA,E

\Bigl( 
1 + 2CA,ECG,E

\sqrt{} 
\delta 0

\Bigr) \Bigl( 
1 + (1 + 2CA,E)CG,E

\sqrt{} 
\delta 0

\Bigr) 
\scrE (\scrX 0) ,

so indeed we have that

sup
t\in [0,T )

\scrE (\scrX ) e\lambda t +

\int T

0

\scrD (\scrX ) e\lambda s ds \leqslant Cap\scrE (\scrX 0) .

6. Global well-posedness and decay. In this section we prove the main result
of the paper, namely Theorem 6.11. Before proving this global existence and decay
result, we first consider the issue of local well-posedness.

6.1. Local well-posedness. The local existence theory can be rigorously de-
veloped by modifying the techniques used to prove the a priori estimates (see, for
instance, [CCS07, CS10, GT13c, TW14, Wu14, WTK14, JTW16, Zhe17, ZT17]), so
for the sake of brevity we will only sketch what can be obtained in this manner.

In order to discuss the local well-posedness theory, we will need the following
notation.

Definition 6.1 (norm measuring the size of the initial condition). We define
the following:

\bullet For \scrZ = (u0, \eta 0) we write

\scrI (\scrZ ) := | | \eta 0| | 2H9/2(\BbbT 2) + | | u0| | 2H2(\Omega ) +
\bigm| \bigm| \bigm| \bigm| u0 \cdot \nu \scrG \partial \Omega 0

\bigm| \bigm| \bigm| \bigm| 2
H2(\Sigma )

,

where we recall from section 4.3.3 that \nu \scrG \partial \Omega 0
| \Sigma =

\bigl( 
 - \nabla \eta 0, 1

\bigr) 
.

\bullet For \scrX = (u, p, \eta ) we abuse notations slightly and also write \scrI (\scrX ) := \scrI (u, \eta ).

It is most natural to specify the initial data u0 and \eta 0, but in our analysis we also
need \scrE (0), which means we must construct \partial tu| t=0, p| t=0, and \partial t\eta | t=0. We sketch
how this construction proceeds in the following remark.

Remark 6.2. In this remark we sketch how to construct p0, \partial tu0, and \partial t\eta 0 from
u0, and \eta 0. Recall that the PDE is (2.2a)--(2.2e).

Constructing p0. Taking the \scrG -divergence of (2.2a) and using (2.2b) yields  - \Delta \scrG p

= \nabla \scrG u :
\bigl( 
\nabla \scrG u

\bigr) T
. Dotting (2.2c) with \nu \scrG \partial \Omega and dividing by

\bigl( 
1 + | \nabla \eta | 2

\bigr) 
then yields

p =
\bigl( 
\BbbD \scrG u

\bigr) 
33

+ \delta \scrW (\eta ) + g. Finally, taking the trace of (2.2a)\cdot e3 onto \Sigma b yields
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\partial \scrG 3 p = \Delta \scrG u3. So p solves\left\{       
 - \Delta \scrG p = \nabla \scrG u :

\bigl( 
\nabla \scrG u

\bigr) T
in \Omega ,

p =
\bigl( 
\BbbD \scrG u

\bigr) 
33

+ \delta \scrW (\eta ) + g on \Sigma , and

\partial \scrG 3 p = \Delta \scrG u3 on \Sigma b.

In particular, in the small energy regime where \scrG \sim I, standard elliptic estimates
coupled with product estimates in Sobolev spaces (to handle the nonlinear but small
remainders) allows us to recover p0 from u0 and \eta 0 using this PDE.

Constructing \partial tu0 and \partial t\eta 0. We use (2.2a) and (2.2d) to define \partial tu0 :=  - 
\bigl( 
u0 \cdot \nabla \scrG \bigr) 

u0  - \nabla \scrG p0 +\Delta \scrG u0 and \partial t\eta 0 := u0 \cdot \nu \scrG \partial \Omega 0
.

Following the procedure outlined in Remark 6.2 leads to the following result,
which not only constructs the data but provides an estimate in the small energy
regime.

Proposition 6.3 (constructing the initial conditions). There exist \beta ,CIC > 0
such that for every T > 0 for which \scrX = (u, p, \eta ) is a solution on [0, T ], if \scrI (\scrX (0)) \leqslant 
\beta , then \scrE (\scrX (0)) \leqslant CIC\scrI (\scrX (0)).

Next we define the notion of admissible data.

Definition 6.4 (admissible initial condition). We say that (u0, \eta 0) \in H2
\bigl( 
\Omega ;\BbbR 3

\bigr) 
\times H9/2

\bigl( 
\BbbT 2;\BbbR 

\bigr) 
is an admissible initial condition if it satisfies

1. \nabla \cdot u0 = 0,
2. tr\Sigma b

u0 = 0,
3. (I  - \nu \partial \Omega 0

\otimes \nu \partial \Omega 0
) (tr\Sigma \BbbD u0 \cdot \nu \partial \Omega 0

) = 0,
4. tr\Sigma u0 \cdot \nu \scrG \partial \Omega 0

\in H2 (\Sigma ),

5.
\int 
\BbbT 2 \eta 0 = 0, and

6. \scrI (u0, \eta 0) \leqslant \beta for \beta as in Proposition 6.3.

A few remarks are in order.

Remark 6.5.
1. The first three items are nothing more than incompressibility and parts of

the boundary conditions.
2. The fifth condition, namely requiring that

\int 
\BbbT 2 \eta = 0, is related to (1.8).

3. The fourth condition, namely requiring that tru0 \cdot \nu \scrG \partial \Omega 0
be in H2, is a com-

patibility condition. Indeed, knowing that u belongs to H2 and \eta belongs to
H9/2 only allows us to conclude that tru0 \cdot \nu \partial \Omega 0 = tru0 \cdot 

\bigl( 
 - \nabla \eta 0, 1

\bigr) 
belongs

to H3/2. This gap in regularity means the procedure sketched in Remark 6.2
cannot close without assuming that this additional compatibility condition
holds a priori. Note that we will prove that this condition persists in time,
so there is no trouble iteratively applying the local theory.

4. The sixth condition is there to ensure that the nonlinear PDEs used in the
sketch from Remark 6.2 are sufficiently close to their linear counterpart (cor-
responding to \eta = 0 and \scrG = I) such that the appropriate estimates can be
made to produce the result from Proposition 6.3.

We now state the local existence result.

Theorem 6.6 (local well-posedness). There exist T, \kappa 0, Clwp > 0 such that for
every \kappa \in (0, \kappa 0], if (u0, \eta 0) \in H2

\bigl( 
\Omega ;\BbbR 3

\bigr) 
\times H9/2

\bigl( 
\BbbT 2;\BbbR 

\bigr) 
is an admissible initial
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condition (cf. Definition 6.4) satisfying

\scrI (u0, \eta 0) \leqslant \kappa 

(cf. Definition 6.1 for the definition of \scrI ), then there exists a unique solution \scrX =
(u, p, \eta ) of (2.2a)--(2.2e) on [0, T ] that satisfies

sup
0\leqslant t\leqslant T

\scrE (\scrX (t)) +

\int T

0

\scrD (\scrX (t)) dt+
\bigm| \bigm| \bigm| \bigm| \partial 2t u\bigm| \bigm| \bigm| \bigm| 2\scrV \ast 

T

\leqslant Clwp\kappa ,

where

\scrV T :=
\Bigl\{ 
u \in L2

\bigl( 
[0, T ] ;H1 (\Omega )

\bigr) \bigm| \bigm| \bigm| tr\Sigma b
u (t) = 0 and \nabla \scrG (t)\cdot u (t) = 0 for a.e. t \in [0, T ]

\Bigr\} 
.

Proof. There are numerous examples of how to use a scheme of a priori estimates
as a blueprint for proving the local well-posedness of viscous free boundary problems
(see, for instance, [CCS07, CS10, GT13c, TW14, Wu14, WTK14, JTW16, Zhe17,
ZT17]) within the functional framework needed to justify the a priori estimates. Be-
cause of this and the fact that a fully detailed construction would be prohibitively long
and contribute little analytic novelty, we will only present a terse sketch of one poten-
tial strategy for the present problem. The central feature of the strategy is to follow
the idea employed by Beale in [Bea84] for the problem with surface tension. This
leads us to first make a nonlinear change of unknowns w := J\scrG T v, which amounts
to geometrically modifying the velocity field as well as the spatial coordinates. The
benefit of this approach is that the equations \nabla \scrG \cdot u = 0 and \partial t\eta = u \cdot \nu \scrG \partial \Omega become
\nabla \cdot w = 0 and \partial t\eta = w3. Of course, this change of unknown is useless if it cannot
be undone to produce a solution to the original problem. However, due to the reg-
ularity gain afforded by the fourth-order operator \delta \scrW (\eta ) + g\eta , which is two degrees
of differentiability higher than that provided by surface tension, we can freely switch
back and forth between u and w while preserving the same estimates, i.e., staying in
the same functional setting. Note that this is unfortunately not possible with just
gravity, which is why a different scheme is needed in [GT13c, Wu14].

Employing the above change of unknown, we rewrite the problem (2.2a)--(2.2e)
as \left\{               

\partial tw +\nabla p - \Delta w = \Psi 1 in \Omega ,(6.1a)

\nabla \cdot w = 0 in \Omega ,(6.1b)

(pI  - \BbbD w) e3 =
\Bigl( 
\delta \scrW (\eta ) + g\eta 

\Bigr) 
e3 +\Psi 2 on \Sigma ,(6.1c)

\partial t\eta = w3 on \Sigma , and(6.1d)

w = 0 on \Sigma b,(6.1e)

where \Psi 1 and \Psi 2 are nonlinear functions of w and \eta . To construct local-in-time
solutions to this problem we employ a contraction mapping argument in an appropri-
ately chosen complete metric space that encodes the smallness of time along with the
smallness of the data. This mapping is defined via ( \~w, \~p, \~\eta ) \mapsto \rightarrow (w, p, \eta ) with the latter
solving (6.1a)--(6.1e) with \Psi 1,\Psi 2 functions of \~w, \~\eta but the term \delta \scrW (\eta ) retained as is.
The nonlinearity is retained in order to deal with the issues described in Remark 5.3,
which leads to a retention of useful energy-dissipation estimates for solutions.

The task then becomes to develop the existence theory for the problem (6.1a)--
(6.1e) via a perturbative argument based on a linear problem that respects the energy-
dissipation structure. The only nonlinearity remaining is in \delta \scrW (\eta ), so the issue is
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4938 ANTOINE REMOND-TIEDREZ AND IAN TICE

how to linearize this in a way that respects the energy-dissipation structure. One
possible way to do this is to employ a standard mollifier \varphi \varepsilon for \varepsilon > 0. Given a
function \zeta in the same space as \eta we replace the nonlinearity with the linear operator
\scrJ \ast (h(\scrJ \varphi \varepsilon \ast \varphi \varepsilon \ast \zeta )\scrJ \eta ), where h is as defined in Lemma A.6, which equals \delta \scrW (\eta )
when \varphi \varepsilon \ast \varphi \varepsilon \ast \zeta is replaced by \eta . In the resulting \varepsilon -dependent linear problem we may
eliminate \eta by integrating \partial t\eta = w3 and rewriting the resulting problem as a linear
integro-differential equation for (w, p). For every \varepsilon > 0 this may be readily solved with
a Galerkin scheme, and the resulting solutions live in the desired functional setting.
We then employ another fixed point argument and note that the double mollification
allows for good \varepsilon -independent estimates, so we can ultimately send \varepsilon \rightarrow 0 to produce
the solution to (6.1a)--(6.1e) on an \varepsilon -independent time interval.

Remark 6.7. The local existence theorem is sufficient to justify our a priori esti-
mates.

Note that in light of Remark 6.5 (and item 2 therein, in particular) the admis-
sibility of initial conditions is propagated by the flow (provided the solution remains
small enough).

Proposition 6.8 (propagation of admissibility for initial conditions). Suppose
that (u, p, \eta ) is a solution on [0, T ] such that (u0, \eta 0) is an admissible initial condition.
For every t \in [0, T ], if \scrI (u (t) , \eta (t)) \leqslant \beta , then (u (t) , \eta (t)) is an admissible initial
condition (cf. Definition 6.4).

6.2. Proof of the main result. Before stating and proving the main result,
i.e., the global well-posedness and decay result, we state and prove two preliminary
lemmas. The first lemma, Lemma 6.9, is an eventual global well-posedness result
that shows that if small solutions exist past a critical time, then they exist globally
in time. The second lemma, Lemma 6.10, is a result about the existence of solution
on arbitrarily large finite time intervals, provided the initial data is small enough.
Combining these two lemmas will then allow us to prove global well-posedness in
Theorem 6.11.

We now prove our first lemma. It says that past a critical time Tcrit, the ex-
ponential decay from the a priori estimates is sufficiently strong to ensure that we
remain in a regime where the energy is small enough for the local well-posedness to
hold at every time thereafter. This is eventual well-posedness since it tells us that
there exists a critical time past which the solution is globally well-defined.

Lemma 6.9 (eventual global well-posedness). Let \delta , \lambda , and Cap be as in Theorem
5.10. Let \kappa 0, Clwp, and T be as in Theorem 6.6 and assume without loss of generality
that Clwp \geqslant 1. Let CIC be as in Proposition 6.3, and let Tcrit > 0 be such that

e\lambda (Tcrit - T
2 ) \geqslant CapCIC .

If \scrX = (u, p, \eta ) is a solution on [0, \tau ] for some \tau \geqslant Tcrit, with (u0, \eta 0) an admis-
sible initial condition that also satisfies the smallness conditions

(6.2)

\biggl\{ 
\scrI (\scrX 0) \leqslant min

\Bigl\{ 
\kappa 0,

\delta 
Clwp

\Bigr\} 
, sup
0\leqslant t\leqslant \tau 

\scrE (\scrX ) \leqslant \delta , and

\int \tau 

0

\scrD (\scrX ) <\infty ,

then the solution can be uniquely extended to a solution on [0,\infty ) satisfying

sup
t\geqslant 0

\scrE (\scrX (t)) \leqslant \delta and

\int \infty 

0

\scrD (\scrX (t)) dt <\infty .D
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Proof. Let \tau \geqslant Tcrit and let \scrX = (u, p, \eta ) be a solution on [0, \tau ] starting from
admissible data (u0, \eta 0) and satisfying (6.2). Define Tmax > 0 to be

Tmax := sup

\Biggl\{ 
T \geqslant 0

\bigm| \bigm| \bigm| \bigm| \bigm| solution \scrX exists on [0, T ] and satisfies

sup
0\leqslant t\leqslant T

\scrE (\scrX ) \leqslant \delta and

\int T

0

\scrD (\scrX ) <\infty .

\Biggr\} 

First note that Tmax \geqslant \tau \geqslant Tcrit. Now suppose, by way of contradiction, that
Tmax < \infty . Let \~T := Tmax  - T

2 > 0. By Theorem 5.10, Proposition 6.3, and the
definition of Tcrit, which is smaller than Tmax, we have

\scrE 
\Bigl( 
\scrX 
\Bigl( 
\~T
\Bigr) \Bigr) 

\leqslant Cape
 - \lambda (Tmax - T

2 )\scrE (\scrX (0)) \leqslant CapCICe
 - \lambda (Tcrit - T

2 )\scrI (\scrX (0)) \leqslant \scrI (\scrX (0)) .

Therefore, since \scrI (\scrX (0)) \leqslant min
\bigl\{ 
\kappa 0,

\delta 
Clwp

\bigr\} 
, we may employ Proposition 6.8 and

Theorem 6.6 to obtain a unique extension of the solution on
\bigl[ 
0, Tmax +

T
2

\bigr] 
satisfying

sup
0\leqslant t\leqslant Tmax+

T
2

\scrE (\scrX ) +

\int Tmax+
T
2

0

\scrD (\scrX ) \leqslant Clwp
\delta 

Clwp
\leqslant \delta .

We can thus use Theorem 5.10, Proposition 6.3, and the definition of Tcrit once more,
this time on

\bigl[ 
0, Tmax +

T
2

\bigr] 
, to obtain that

\scrE 
\biggl( 
\scrX 
\biggl( 
Tmax +

T

2

\biggr) \biggr) 
\leqslant Cape

 - \lambda (Tmax+
T
2 )\scrE (\scrX (0))

\leqslant CapCICe
 - \lambda Tcrit\scrI (\scrX (0)) \leqslant \scrI (\scrX (0)) \leqslant \delta ,

which contradicts the definition of Tmax. So indeed Tmax = \infty .

We now prove our second key lemma.

Lemma 6.10 (arbitrary finite-time well-posedness). For every \tau > 0 there exists
\gamma > 0 such that if (u0, \eta 0) is an admissible initial condition with \scrI (u0, \eta 0) \leqslant \gamma , then
there exists a unique solution \scrX = (u, p, \eta ) on [0, \tau ] satisfying

sup
0\leqslant t\leqslant \tau 

\scrE (\scrX (t)) +

\int \tau 

0

\scrD (\scrX (t)) dt \leqslant \delta 

for \delta as in Theorem 5.10.

Proof. Let \tau > 0, let T be as in Theorem 6.6, and pick N \in \BbbN such that NT \geqslant \tau .
Let Clwp be as in Theorem 6.6, and note that without loss of generality we may

assume that Clwp > 1. Let \beta be as in Proposition 6.3 and let \gamma := \beta 
CN

lwp

> 0.

Let (u0, \eta 0) be an admissible initial condition satisfying \scrI (u0, \eta 0) \leqslant \gamma . Then we
apply the local well-posedness result, i.e., Theorem 6.6, N times (using Proposition
6.8 to ensure the ``initial conditions"" are admissible at every step). More precisely, at
step 1 we use Theorem 6.6 to obtain a unique solution \scrX = (u, p, \eta ) on [0, T ] satisfying

sup
0\leqslant t\leqslant T

\scrE (\scrX ) +

\int T

0

\scrD (\scrX ) \leqslant Clwp\gamma .
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4940 ANTOINE REMOND-TIEDREZ AND IAN TICE

Since \gamma \leqslant \beta 
CN

lwp

\leqslant \beta 
Clwp

, it follows that (u (T ) , \eta (T )) is an admissible initial condition.

Then, at step n for n = 2, . . . , N , suppose that we have solution on [0, (n - 1)T ]
satisfying

sup
0\leqslant t\leqslant (n - 1)T

\scrE (\scrX ) +

\int (n - 1)T

0

\scrD (\scrX ) \leqslant Cn - 1
lwp \gamma 

such that (u ((n - 1)T ) , \eta ((n - 1)T )) is an admissible initial condition. We may then
apply Theorem 6.6 to extend the solution uniquely to [0, nT ] such that it satisfies

sup
0\leqslant t\leqslant nT

\scrE (\scrX ) +

\int nT

0

\scrD (\scrX ) \leqslant Clwp

\Bigl( 
Cn - 1
lwp \gamma 

\Bigr) 
= Cnlwp\gamma .

In particular, since \gamma \leqslant \beta 
CN

lwp

\leqslant \beta 
Cn

lwp
, it follows from Proposition 6.8 that

\bigl( 
u (nT ) ,

\eta (nT )
\bigr) 
is also an admissible initial condition. Finally, after stepN , we have a solution

on [0, NT ] \supseteq [0, \tau ] satisfying

sup
0\leqslant t\leqslant NT

\scrE (\scrX ) +

\int NT

0

\scrD (\scrX ) \leqslant CNlwp\gamma \leqslant \delta .

With the key lemmas in hand, we can now prove our main result.

Theorem 6.11 (global well-posedness and decay). There exists \epsilon > 0 such that
for every admissible initial condition (u0, \eta 0) satisfying \scrI (u0, \eta 0) \leqslant \epsilon there exists a
unique solution \scrX = (u, p, \eta ) on [0,\infty ) such that

sup
t\geqslant 0

\scrE (\scrX (t)) e\lambda t +

\int \infty 

0

\scrD (\scrX (t)) e\lambda tdt \leqslant C\scrE (\scrX (0)) ,

where C = Cap > 0 and \lambda > 0 are as in Theorem 5.10. Recall that admissible initial
conditions are defined in Definition 6.4.

Proof. Let \delta be as in the a priori estimates (i.e., Theorem 5.10), let \kappa 0 and Clwp be
as in the local well-posedness result (i.e., Theorem 6.6), let Tcrit be as in the eventual
global well-posedness result (i.e., Lemma 6.9), and let \gamma = \gamma (Tcrit) be as in the
arbitrary finite time existence result (i.e., Lemma 6.10). Pick \epsilon = min

\bigl( 
\gamma , \kappa 0,

\delta 
Clwp

\bigr) 
.

Now let (u0, \eta 0) be an admissible initial condition satisfying \scrI (u0, \eta 0) \leqslant \epsilon . By the
arbitrary finite time existence result (i.e., Lemma 6.10) and the choice of \epsilon , there
exists a unique solution \scrX = (u, p, \eta ) on [0, Tcrit] satisfying

sup
0\leqslant t\leqslant Tcrit

\scrE (\scrX (t)) +

\int Tcrit

0

\scrD (\scrX (t)) \leqslant \delta 

and therefore by the eventual global well-posedness result (i.e., Lemma 6.9) and the
choice of \epsilon there exists a unique extension of this solution to [0,\infty ) satisfying

sup
t\geqslant 0

\scrE (\scrX (t)) \leqslant \delta and

\int \infty 

0

\scrD (\scrX (t)) <\infty .

Finally we establish the exponential decay of the energy of this unique global solution.
The a priori estimates (i.e., Theorem 5.10) tell us that for every T > 0

sup
0\leqslant t\leqslant T

\scrE (\scrX (t)) e\lambda t +

\int T

0

\scrD (\scrX (t)) e\lambda tdt \leqslant C\scrE (\scrX (0))
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and so indeed, taking the supremum over T > 0 yields the global decay estimate

sup
t\geqslant 0

\scrE (\scrX (t)) e\lambda t +

\int \infty 

0

\scrD (\scrX (t)) e\lambda tdt \leqslant C\scrE (\scrX (0)) .

Appendix A. Intermediate results. In this first part of the appendix we
record various intermediate results of particular interest to the problem discussed in
this paper. We record computations and estimates for the geometric coefficients \Phi ,
\scrG , J , and \nu \scrG \partial \Omega , as well as computations and estimates for the variations of the surface
energy. We also sketch the computations of some commutators.

A.1. Geometric coefficients and differential operators. In this section we
record estimates for the geometric coefficients \Phi , \scrG , J , and \nu \scrG \partial \Omega (as defined in section
4.3) in Lemma A.1, and we record the \scrG -divergence and \scrG -transport theorems in
Propositions A.2 and A.3, respectively.

Lemma A.1 (estimates for the geometric coefficients). Recall the notational con-
ventions of section 4.3. Suppose that we are in the small energy regime (see Definition
4.2). On the upper surface we have the bounds

| | tr (\scrG  - I)| | H7/2(\BbbT 2) +
\bigm| \bigm| \bigm| \bigm| \nu \scrG \partial \Omega  - e3

\bigm| \bigm| \bigm| \bigm| 
H7/2(\BbbT 2)

\lesssim 
\surd 
\scrE .

In the bulk we have the bounds

| | \Phi  - id| | H5(\Omega ) + | | \partial t\Phi | | H5/2(\Omega ) + | | J  - 1| | H4(\Omega ) + | | \partial tJ | | H3/2(\Omega )

+ | | \scrG  - I| | H4(\Omega ) + | | \partial t\scrG | | H3/2(\Omega ) \lesssim 
\surd 
\scrE 

and

| | \Phi  - id| | H6(\Omega ) + | | \partial t\Phi | | H3(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \partial 2t\Phi \bigm| \bigm| \bigm| \bigm| H1(\Omega )

+ | | J  - 1| | H5(\Omega )

+ | | \partial tJ | | H2(\Omega ) + | | \partial t\scrG | | H2(\Omega ) +
\bigm| \bigm| \bigm| \bigm| \partial 2t \scrG \bigm| \bigm| \bigm| \bigm| H0(\Omega )

\lesssim 
\surd 
\scrD .

Proof. The estimates on \Phi  - id = \chi ext \eta e3 and its time derivatives \partial t\Phi =
\chi ext \partial t\eta e3 and \partial 2t\Phi = \chi ext \partial 2t \eta e3 are standard and follow directly from Proposition
B.6, Lemma B.3, and the definitions of \scrE and \scrD (cf. (4.4b) and (4.4b), respectively).

Now we compute J , noting first that \nabla \Phi = I + e3 \otimes \nabla (\chi ext \eta ) . A simple linear
algebra computation shows that for a, b \in \BbbR n, if a \cdot b \not =  - 1, then for M := I + a\otimes b,
detM = 1+ a \cdot b and M - 1 = I  - a\otimes b

1+a\cdot b . Therefore by definition of \chi (cf. section 2.1),
and by Lemma B.2

J = det\nabla \Phi = 1 + \partial 3 (\chi ext \eta ) = 1 +
ext \eta 

b
+ \chi ext

\surd 
 - \Delta \eta and \partial tJ = \partial 3 (\chi ext \partial t\eta ) .

Equipped with these formulae for J , the estimates for J  - 1 and its time derivative
follow from Proposition B.6 and Lemma B.3.

Now we compute \scrG . Recall that \scrG := (\nabla \Phi )
 - T

with \nabla \Phi = I + e3 \otimes \nabla (\chi ext \eta ).
Therefore, using the same observation from linear algebra as above, \scrG  - I =
g (\nabla (\chi ext \eta )) for g (w) :=  - w\otimes e3

1+w\cdot e3 for every w \in \BbbR 3 such that w3 \not = 1. The esti-
mation of \scrG  - I is more delicate than the estimations performed above, and so we
provide more details. We begin by using Proposition B.8 to obtain

| | \scrG  - I| | H4(\Omega ) \lesssim | | g (\nabla (\chi ext \eta ))| | L2(\Omega )

+ | | g| | 
C4,1(B(R))

\Bigl( 
| | \nabla (\chi ext \eta )| | H4(\Omega ) + | | \nabla (\chi ext \eta )| | 4H4(\Omega )

\Bigr) 
,
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where R = | | \nabla (\chi ext \eta )| | \infty . Crucially, since we are in the small energy regime (cf.
Definition 4.2), | | \partial 3 (\chi ext \eta )| | \infty \leqslant C0\delta 0 < 1 such that | | g| | 

C4,1(B(R)) < \infty (since g is

and well-defined and hence smooth on the compact set B (| | \nabla (\chi ext \eta )| | \infty )) and

| | g (\nabla (\chi ext \eta ))| | 2L2(\Omega ) =

\int 
\Omega 

| \nabla (\chi ext \eta )\otimes e3| 2

(1 + \partial 3 (\chi ext \eta ))
2 \leqslant 

1

(1 - C0\delta 0)
2

\int 
\Omega 

(\nabla (\chi ext \eta ))
2
.

Therefore, employing Proposition B.6, Lemma B.3, and the definition of \scrE (cf. (4.4b)),
we obtain

| | \scrG  - I| | H4(\Omega ) \lesssim | | \nabla (\chi ext \eta )| | L2(\Omega ) + | | \nabla (\chi ext \eta )| | H4(\Omega )

+ | | \nabla (\chi ext \eta )| | 4H4(\Omega ) \lesssim 
\surd 
\scrE + \scrE 2 \lesssim 

\surd 
\scrE 

since \scrE \leqslant \delta 0 < 1. We now compute the time derivatives of \scrG :\left\{       
\partial t\scrG = \partial t (g (\nabla (\chi ext \eta ))) = (\nabla g) (\nabla (\chi ext \eta )) \cdot \nabla (\chi ext \partial t\eta ) and

\partial 2t \scrG = \partial t ((\nabla g) (\nabla (\chi ext \eta )) \cdot \nabla (\chi ext \partial t\eta ))

=
\bigl( 
\nabla 2g

\bigr) 
(\nabla (\chi ext \eta )) :

\Bigl( 
\nabla (\chi ext \partial t\eta )

\otimes 2
\Bigr) 
+ (\nabla g) (\nabla (\chi ext \eta )) \cdot \nabla 

\bigl( 
\chi ext \partial 2t \eta 

\bigr) 
.

In particular we can estimate \partial t\scrG using Proposition B.6, Proposition B.8, Lemma B.3,
(4.4b) and (4.4b), and the fact that we are in the small energy regime, and similarly
we can estimate \partial 2t \scrG using H\"older's inequality, the Sobolev embedding H3/4 (\Omega ) \lhook \rightarrow 
L4 (\Omega ), Proposition B.6, Lemma B.3, (4.4b) and (4.4b), and the fact that we are in
the small energy regime.

Finally we estimate \nu \scrG \partial \Omega on \Sigma . We know from section 4.3.3 that \nu \scrG \partial \Omega | \Sigma =  - \widetilde \nabla \eta +e3.
Therefore

\bigm| \bigm| \bigm| \bigm| \nu \scrG \partial \Omega  - e3
\bigm| \bigm| \bigm| \bigm| 
H7/2(\BbbT 2)

= | | \nabla \eta | | H7/2(\BbbT 2) \lesssim 
\surd 
\scrE .

We now record versions of the divergence and transport theorem adapted to
the differential operators appearing in the PDE after performing the time-dependent
change of variables which fixes the domain. In what follows, recall that J and \nabla \scrG are
defined in sections 4.3.2 and 4.3.3, respectively.

Proposition A.2 (\scrG -divergence theorem). For any v : [0, T ] \times \Omega \rightarrow \BbbR 3 suffi-
ciently regular and integrable\int 

\Omega 

\bigl( 
\nabla \scrG \cdot v

\bigr) 
J =

\int 
\partial \Omega 

v \cdot \nu \scrG \partial \Omega .

Proof. This result follows from the divergence theorem and the identity\nabla \cdot (\scrG J) =
\nabla \cdot (cof\nabla \Phi ) = 0.

Next we record a version of the transport theorem.

Proposition A.3 (\scrG -transport theorem). For any f : [0, T ]\times \Omega \rightarrow \BbbR sufficiently
regular and integrable

d

dt

\biggl( \int 
\Omega 

fJ

\biggr) 
=

\int 
\Omega 

\Bigl( 
Du,\scrG 
t f

\Bigr) 
J,

where the differential operator Du,\scrG 
t is as defined in section 4.3.3.

Proof. It can readily be checked that \partial tJ =
\bigl( 
\nabla \scrG \cdot \partial t\Phi 

\bigr) 
J and u \cdot \nu \scrG \partial \Omega = \partial t\Phi \cdot \nu \scrG \partial \Omega 

on \partial \Omega . With these in hand, the identity follows from the \scrG -divergence theorem proved
in Proposition A.2.
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A.2. Commutators. In this section we record the commutators arising when
differentiating the problem. We record them in a form readily amenable to estimates
by writing them as commutators between partial derivatives and linear operators with
multilinear dependence on parameters which we control, namely \Phi , \scrG , J , and \nu \scrG \partial \Omega .

Lemma A.4 (computation of the commutators in multilinear form). Suppose

that (u, p, \eta ) solves (2.2a)--(2.2e). Then, for each \partial \alpha \in 
\bigl\{ 
\partial t,\nabla ,\nabla 

2\bigr\} 
, (\partial \alpha u, \partial \alpha p, \partial \alpha \eta )

satisfies \left\{               

Du,\scrG 
t v +\nabla \scrG \cdot T\scrG = C1,\alpha in \Omega ,

\nabla \scrG \cdot v = C2,\alpha in \Omega ,\Bigl( \bigl( 
\delta 2\eta \scrW 

\bigr) 
\zeta + g\zeta 

\Bigr) 
\nu \scrG \partial \Omega  - T\scrG \cdot \nu \scrG \partial \Omega = C3,\alpha on \Sigma ,

\partial t\zeta  - v \cdot \nu \scrG \partial \Omega = C4,\alpha on \Sigma , and

v = 0 on \Sigma b,

where\left\{                 

C1,\alpha =
\Bigl( 
 - 
\bigl[ 
\partial \alpha , \partial t\Phi \cdot \nabla \scrG \bigr] + \bigl[ \partial \alpha , u \cdot \nabla \scrG \bigr] \Bigr) 

 - 
\Bigl( \bigl[ 
\partial \alpha ,

\bigl( 
\nabla \scrG \cdot \scrG T

\bigr) 
\cdot \nabla 
\bigr] 
+
\bigl[ 
\partial \alpha ,

\bigl( 
\scrG T \cdot \scrG 

\bigr) 
: \nabla 2

\bigr] \Bigr) 
+
\bigl[ 
\nabla \scrG , \partial \alpha 

\bigr] 
p,

C2,\alpha =
\bigl[ 
\nabla \scrG \cdot , \partial \alpha 

\bigr] 
u,

C3,\alpha =
\Bigl( \bigl[ 
\nu \scrG \partial \Omega \cdot \BbbD \scrG , \partial \alpha 

\bigr] 
u - 

\bigl[ 
\nu \scrG \partial \Omega , \partial 

\alpha 
\bigr] 
p
\Bigr) 
+ g

\bigl[ 
\nu \scrG \partial \Omega , \partial 

\alpha 
\bigr] 
\eta + \scrC \scrW ,\alpha (\eta ) , and

C4,\alpha =  - 
\bigl[ 
\nu \scrG \partial \Omega \cdot , \partial \alpha 

\bigr] 
u.

Proof. Upon applying \partial \alpha to (2.2a), we find that

C1,\alpha =
\Bigl[ 
Du,\scrG 
t  - \Delta \scrG , \partial \alpha 

\Bigr] 
u+

\bigl[ 
\nabla \scrG , \partial \alpha 

\bigr] 
p

=
\Bigl[ 
\partial \alpha ,

\Bigl( 
\partial t  - \partial t\Phi \cdot \nabla \scrG 

\Bigr) 
+ u \cdot \nabla \scrG 

\Bigr] 
 - 
\bigl[ 
\partial \alpha ,

\bigl( 
\nabla \scrG \cdot 

\bigr) 
\circ 
\bigl( 
\nabla \scrG \bigr) \bigr] 

=  - 
\bigl[ 
\partial \alpha , \partial t\Phi \cdot \nabla \scrG \bigr] + \bigl[ \partial \alpha , u \cdot \nabla \scrG \bigr]  - \bigl[ \partial \alpha , \bigl( \nabla \scrG \cdot 

\bigr) 
\circ 
\bigl( 
\nabla \scrG \bigr) \bigr] 

=  - 
\bigl[ 
\partial \alpha , \partial t\Phi \cdot \nabla \scrG \bigr] + \bigl[ \partial \alpha , u \cdot \nabla \scrG \bigr]  - \bigl[ \partial \alpha , \bigl( \nabla \scrG \cdot \scrG T

\bigr) 
\cdot \nabla 
\bigr] 
 - 
\bigl[ 
\partial \alpha ,

\bigl( 
\scrG T \cdot \scrG 

\bigr) 
: \nabla 2

\bigr] 
.

The other commutators are computed by similarly differentiating (2.2b)--(2.2e).

A.3. Computing the variations of the surface energy. We record in this
section a more explicit expression for the first variation of the surface energy. This is
useful when performing some critical estimates where more compact expressions for
the first variation are not sufficient to close the estimates.

Lemma A.5. Let \scrW (\eta ) :=
\int 
\BbbT 2 f (\scrJ \eta ) where we write f = f (w,M). Then the

first variation of the surface energy can be written as

\delta \scrW (\eta ) = \nabla 2
M,Mf

\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
\bullet \nabla 4\eta  - \nabla 2

w,wf
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
\bullet \nabla 2\eta 

+\nabla 3
M,M,Mf

\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
\bullet 
\bigl( 
\nabla 3\eta \otimes \nabla 3\eta 

\bigr) 
+ 2\nabla 3

M,M,wf
\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
\bullet 
\bigl( 
\nabla 3\eta \otimes \nabla 2\eta 

\bigr) 
s

+\nabla 3
w,M,wf

\bigl( 
\nabla \eta ,\nabla 2\eta 

\bigr) 
\bullet 
\bigl( 
\nabla 2\eta \otimes \nabla 2\eta 

\bigr) 
.

The second variation at the equilibrium is given by\bigl( 
\delta 20\scrW 

\bigr) 
\phi = \nabla 2

M,Mf (0, 0) \bullet \nabla 4\phi  - \nabla 2
w,wf (0, 0) \bullet \nabla 2\phi .
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4944 ANTOINE REMOND-TIEDREZ AND IAN TICE

A.4. Estimates of the variations of the surface energy. In this section we
obtain estimates on the variations of the surface energy, obtaining estimates on \delta \scrW 
(Lemma A.6), \delta 2\eta \scrW (Lemma A.7), and \delta 3\eta \scrW (Lemma A.8), as well as estimates on
auxiliary functions derived from f by Taylor expanding f about the equilibrium, i.e.,
about 0 (Lemma A.9 and Corollary A.10).

Lemma A.6 (smallness of the first variation). The following hold:
1. For all s >  - 1 there exists C > 0 such that for every \eta : \BbbT 2 \rightarrow \BbbR sufficiently

regular
| | \delta \scrW (\eta )| | Hs(\BbbT 2) \leqslant C| | h (\scrJ \eta )| | Hs+2(\BbbT 2)| | \eta | | Hs+4(\BbbT 2)

for h (z) :=
\int 1

0
\nabla 2f (tz) dt, where z = (w,M) \in \BbbR n \times \BbbR n\times n.

2. In the small energy regime, for all s \in 
\bigl[ 
0, 12

\bigr] 
and for every \eta : \BbbT 2 \rightarrow \BbbR 

sufficiently regular,
| | \delta \scrW (\eta )| | Hs(\BbbT 2) \lesssim 

\surd 
\scrE .

Proof. The key observation is that we can rewrite \delta \scrW in a more amenable way
using the fundamental theorem of calculus. So let s >  - 1 and observe that

| | \delta \scrW (\eta )| | Hs(\BbbT 2) = | | \scrJ \ast (\nabla f (\scrJ \eta ))| | Hs(\BbbT 2) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrJ \ast 
\biggl( \int 1

0

\nabla 2f (t\scrJ \eta ) dt \bullet \scrJ \eta 
\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

Hs(\BbbT 2)

= | | \scrJ \ast (h (\scrJ \eta ) \bullet \scrJ \eta )| | Hs(\BbbT 2) \lesssim | | h (\scrJ \eta ) \bullet \scrJ \eta | | Hs+2(\BbbT 2)(A.1)

\lesssim | | h (\scrJ \eta )| | Hs+2(\BbbT 2)| | \eta | | Hs+4(\BbbT 2),

where in the last step we have used that s + 2 > 1 since s >  - 1. Next note that in
the small energy regime we may use Corollary A.10 to obtain, for any s \in 

\bigl[ 
0, 12

\bigr] 
,

| | \delta \scrW (\eta )| | Hs(\BbbT 2) \lesssim | | h (\scrJ \eta )| | Hs+2(\BbbT 2)| | \eta | | Hs+4(\BbbT 2) \lesssim | | \eta | | H9/2(\BbbT 2) \lesssim 
\surd 
\scrE .

Next we consider the second variation.

Lemma A.7 (boundedness of the second variation of the surface energy). Let

s0 > 3 and recall the constants C
(k)
f defined in Definition 4.1. If \eta \in Hs0

\bigl( 
\BbbT 2
\bigr) 
,

then for every s \in [2, s0  - 1) and every s \in (3, s0], there exists a constant 0 < C =

C
\bigl( 
| | \eta | | Hs0 (\BbbT 2), C

(\lfloor s0\rfloor +1)
f

\bigr) 
such that

\delta 2\eta \scrW \in \scrL 
\bigl( 
Hs
\bigl( 
\BbbT 2
\bigr) 
; Hs - 4

\bigl( 
\BbbT 2
\bigr) \bigr) 

with
\bigm| \bigm| \bigm| \bigm| \delta 2\eta \scrW \bigm| \bigm| \bigm| \bigm| \scrL (Hs(\BbbT 2);Hs - 4(\BbbT 2))

\lesssim C,

i.e., past a certain regularity threshold for \eta , we obtain that \delta 2\eta \scrW is a differential
operator of order 4, as expected.

Proof. Let \eta \in Hs0
\bigl( 
\BbbT 2
\bigr) 
and let \phi \in Hs

\bigl( 
\BbbT 2
\bigr) 
for some s \in [2, s0  - 1). If s \in 

[2, s0  - 1), then we may use Propositions B.5 and B.8 to see that\bigm| \bigm| \bigm| \bigm| \bigl( \delta 2\eta \scrW \bigr) \phi \bigm| \bigm| \bigm| \bigm| Hs - 4(\BbbT 2)
=
\bigm| \bigm| \bigm| \bigm| J\ast \bigl( \nabla 2f (\scrJ \eta ) \bullet J\phi 

\bigr) \bigm| \bigm| \bigm| \bigm| 
Hs - 4(\BbbT 2)

\lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 2f (\scrJ \eta ) \bullet J\phi 

\bigm| \bigm| \bigm| \bigm| 
Hs - 2(\BbbT 2)

\lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 2f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
Hs0 - 2(\BbbT 2)

| | J\phi | | Hs - 2(\BbbT 2)

\lesssim 

\Biggl( 
C

(2)
f + C

(\lfloor s0\rfloor )
f

\Bigl( 
| | \scrJ \eta | | Hs0 - 2(\BbbT 2) + | | \scrJ \eta | | \lceil s0\rceil  - 2

Hs0 - 2(\BbbT 2)

\Bigr) \Biggr) 
| | \phi | | Hs(\BbbT 2)

\lesssim 
\Bigl( 
C

(\lfloor s0\rfloor +1)
f

\Bigl( 
1 + | | \eta | | Hs0 (\BbbT 2) + | | \eta | | \lfloor s0\rfloor  - 2

Hs0 (\BbbT 2)

\Bigr) \Bigr) 
| | \phi | | Hs(\BbbT 2)

:= C| | \phi | | Hs(\BbbT 2).
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If s \in (3, s0], we proceed with the same estimates as above, but replacing s0 with s.
In particular, the key difference is that now, since s > 3, Hs - 2

\bigl( 
\BbbT 2
\bigr) 
is an algebra.

Next we consider the third variation.

Lemma A.8 (boundedness of the third variation of the surface energy). Let

s0 > 4 and recall that the constants C
(k)
f are given in Definition 4.1. If \eta \in Hs0

\bigl( 
\BbbT 2
\bigr) 
,

then for very s \in (3, s0  - 1) and every p, q \geqslant 0 such that p+ q > s+ 3 there exists a

constant 0 < C = C
\bigl( 
| | \eta | | Hs0 (\BbbT 2), C

(\lfloor s0\rfloor +2)
f

\bigr) 
such that

\delta 3\eta \scrW \in \scrL 2

\bigl( 
Hp \times Hq; Hs - 4

\bigr) 
with

\bigm| \bigm| \bigm| \bigm| \delta 3\eta \scrW \bigm| \bigm| \bigm| \bigm| \scrL 2(Hp\times Hq ;Hs - 4)
\lesssim C,

where for any normed vector spaces V,W,X, \scrL 2 (V \times W ;X) denotes the set of con-
tinuous bilinear forms on V \times W mapping into X.

Proof. Let \eta \in Hs0
\bigl( 
\BbbT 2
\bigr) 
and let \phi \in Hp

\bigl( 
\BbbT 2
\bigr) 
and \psi \in Hq

\bigl( 
\BbbT 2
\bigr) 
for some s, p, q \geqslant 0

such that s \in (2, s0  - 1) and p+ q > s+ 3. Then, using Propositions B.5 and B.8 we
obtain that\bigm| \bigm| \bigm| \bigm| \bigl( \delta 3\eta \scrW \bigr) (J\phi , J\psi )\bigm| \bigm| \bigm| \bigm| Hs - 4(\BbbT 2)

=
\bigm| \bigm| \bigm| \bigm| J\ast \bigl( \nabla 3f (\scrJ \eta ) \bullet (J\phi \otimes J\psi )

\bigr) \bigm| \bigm| \bigm| \bigm| 
Hs - 4(\BbbT 2)

\lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 3f (\scrJ \eta ) \bullet (J\phi \otimes J\psi )

\bigm| \bigm| \bigm| \bigm| 
Hs - 2(\BbbT 2)

\lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla 3f (\scrJ \eta )

\bigm| \bigm| \bigm| \bigm| 
Hs0 - 2(\BbbT 2)

| | J\phi \otimes J\psi | | Hs - 2(\BbbT 2)

\lesssim 

\Biggl( 
C

(3)
f + C

(\lfloor s0\rfloor +1)
f

\biggl( 
| | \scrJ \eta | | Hs0 - 2(\BbbT 2)

+ | | \scrJ \eta | | \lceil s0\rceil  - 2

Hs0 - 2(\BbbT 2)

\biggr) \Biggr) 
| | \phi | | Hp - 2(\BbbT 2)| | \psi | | Hq - 2(\BbbT 2)

\lesssim 
\Bigl( 
C

(\lfloor s0\rfloor +2)
f

\Bigl( 
1 + | | \eta | | Hs0 (\BbbT 2) + | | \eta | | \lfloor s0\rfloor  - 2

Hs0 (\BbbT 2)

\Bigr) \Bigr) 
| | \phi | | Hp(\BbbT 2)| | \psi | | Hq(\BbbT 2)

=: C| | \phi | | Hp(\BbbT 2)| | \psi | | Hq(\BbbT 2).

Next we control terms related to Taylor expansions of the surface energy.

Lemma A.9 (estimates for the auxiliary functions from the Taylor expansions of
the variations of the surface energy). For any s \geqslant 2, f : \BbbR 2 \times \BbbR 2\times 2 \rightarrow \BbbR , and
\eta : \BbbT 2 \rightarrow \BbbR we have that

| | rk [f, 0] (\scrJ \eta )| | Hs(\BbbT 2) \lesssim C
(k+1)
f + C

(\lfloor s\rfloor +k+2)
f

\Bigl( 
| | \eta | | Hs+2(\BbbT 2) + | | \eta | | \lceil s\rceil Hs+2(\BbbT 2)

\Bigr) 
,

where rk is defined in Proposition B.14 and C
(k)
f is defined in Definition 4.1. More-

over, in the small energy regime (see Definition 4.2), if s \in 
\bigl[ 
2, 52

\bigr] 
, then

| | rk [f, 0] (\scrJ \eta )| | Hs(\BbbT 2) \lesssim 1.

Proof. The result then follows from postcomposition estimates in Sobolev spaces
(see Proposition B.8) and from the observation that

(\partial \alpha (rk [f, 0])) (z) =

\int 1

0

(1 - t)
k
t| \alpha | \partial \alpha \nabla k+1f (tz) dt

such that, for any R \geqslant 0 and any l \in \BbbN ,

| | rk [f, 0]| | Cl,1(B(0,R)) \leqslant 
\bigm| \bigm| \bigm| \bigm| \nabla k+1f

\bigm| \bigm| \bigm| \bigm| 
Cl,1(B(0,R)).
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4946 ANTOINE REMOND-TIEDREZ AND IAN TICE

Therefore, since s \geqslant 2, we obtain from Proposition B.8 that, for K :=

B
\bigl( 
0, | | \scrJ \eta | | L\infty (\BbbT 2)

\bigr) 
,

| | rk [f, 0] (\scrJ \eta )| | Hs(\BbbT 2) \lesssim | | rk [f, 0]| | L\infty (K)

+ | | rk [f, 0]| | C\lfloor s\rfloor ,1(K)

\Bigl( 
| | \scrJ \eta | | Hs(\BbbT 2) + | | \scrJ \eta | | \lceil s\rceil Hs(\BbbT 2)

\Bigr) 
\lesssim C

(k+1)
f + C

(\lfloor s\rfloor +k+2)
f

\Bigl( 
| | \eta | | Hs+2(\BbbT 2) + | | \eta | | \lceil s\rceil Hs+2(\BbbT 2)

\Bigr) 
.

In particular, in the small energy regime where | | \eta | | H9/2(\BbbT 2) \lesssim 
\surd 
\scrE \leqslant 

\surd 
\delta 0, if s \in 

\bigl[ 
2, 92

\bigr] 
,

then
| | \eta | | H3+(\BbbT 2) \lesssim 1 and | | \eta | | Hs+2(\BbbT 2) \lesssim 1,

and hence

| | rk [f, 0] (\scrJ \eta )| | Hs(\BbbT 2) \lesssim 
\bigm| \bigm| \bigm| \bigm| \nabla k+1f

\bigm| \bigm| \bigm| \bigm| 
L\infty (B(0,C)) +

\bigm| \bigm| \bigm| \bigm| \nabla k+1f
\bigm| \bigm| \bigm| \bigm| 
Ck,1(B(0,C)) \lesssim 1.

Lemma A.9 has the following immediate corollary.

Corollary A.10. If for z = (w,M) \in \BbbR n \times \BbbR n\times n we set

h (z) :=

\int 1

0

\nabla 2f (tz) dt = r0 [\nabla f, 0] (z)

and q (z) :=
1

2

\int 1

0

(1 - t)\nabla 3f (tz) dt = r1 [\nabla f, 0] (z) ,

then for any s \geqslant 2 we have the bounds\left\{   | | h (\scrJ \eta )| | Hs(\BbbT 2) \lesssim C
(2)
f + C

(\lfloor s\rfloor +3)
f

\Bigl( 
| | \eta | | Hs+2(\BbbT 2) + | | \eta | | \lceil s\rceil Hs+2(\BbbT 2)

\Bigr) 
and

| | q (\scrJ \eta )| | Hs(\BbbT 2) \lesssim C
(3)
f + C

(\lfloor s\rfloor +4)
f

\Bigl( 
| | \eta | | Hs+2(\BbbT 2) + | | \eta | | \lceil s\rceil Hs+2(\BbbT 2)

\Bigr) 
,

where the constants C
(k)
f are defined in Definition 4.1. In particular, in the small

energy regime of Definition 4.2, if s \in 
\bigl[ 
2, 52

\bigr] 
, then

| | h (\scrJ \eta )| | Hs(\BbbT 2) \lesssim 1 and | | q (\scrJ \eta )| | Hs(\BbbT 2) \lesssim 1.

Appendix B. Generic tools. In this second part of the appendix we record
generic tools, i.e., results that are employed throughout this paper but whose ap-
plicability is not reduced to the problem in this paper. In particular, these results
are either well-known or slight modifications of standard results. They are therefore
recorded here so that they may be precisely stated as reference for when they are
invoked elsewhere in this paper.

B.1. Harmonic extension. In this section we record the standard definition
and estimates of the harmonic extension of a function from \BbbT 2 to \BbbT 2 \times ( - \infty , 0).
Although the extension is defined in this large set, we will typically only need it in
\BbbT 2 \times ( - b, 0).

Definition B.1 (harmonic extension). We define the following:
1. For any f \in L1(\BbbT 2), define ext f : \BbbT 2 \times ( - \infty , 0) \rightarrow \BbbR by, for every x \in 

\BbbT 2 \times ( - \infty , 0),

(ext f) (x) :=
\sum 
\=k\in \BbbZ 2

\Bigl( 
\^f
\bigl( 
\=k
\bigr) 
e2\pi | 

\=k| x3

\Bigr) 
e2\pi i

\=k\cdot \=x,

where \^\cdot denotes the Fourier transform and where we recall that x = (\=x, x3).
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2. For any f : [0, T ) \times \BbbT 2 \rightarrow \BbbR , define ext f : [0, T ) \times \BbbT 2 \times ( - \infty , 0) \rightarrow \BbbR by
(ext f)(t, \cdot ) := ext (f(t, \cdot )).

Next we record some identities and estimates related to the harmonic extension.

Lemma B.2. For any f : \BbbT 2 \rightarrow \BbbR sufficiently regular, \partial 3 ext f = ext
\surd 
 - \Delta f and

\nabla ext f = ext\nabla f , where
\bigl( \surd 

 - \Delta f
\bigr) \wedge \bigl( \=k\bigr) := 2\pi | \=k| for all \=k \in \BbbZ 2.

Proof. These results follow directly from short computations on the Fourier
side.

Lemma B.3 (Hs bounds on the harmonic extension). Recall that \Omega = \BbbT 2 \times 
( - b, 0). For any s \geqslant 0, there exists Cs > 0 such that for any f \in Hs - 1/2

\bigl( 
\BbbT 2
\bigr) 
,

| | ext f | | Hs(\Omega ) \leqslant Cs| | f | | Hs - 1/2(\BbbT 2),

Proof. See Lemma A.3 in [GT13a] for the proof where s is a natural number. For
noninteger s, the estimate follows from a standard interpolation argument.

B.2. General recipe for controlling interactions with Sobolev norms.
We record here a general recipe which allows us control interactions using Sobolev
norms by combining the H\"older inequality and appropriate Sobolev embeddings.
Proofs of similar results can be found in Chapter 5 of [Miz65] and section 4.8 of
[RS96].

Proposition B.4. Let n, k \in \BbbN and let s1, . . . , sk \geqslant 0 be such that either

(i)

k\sum 
i=1

min
\Bigl( 
si,

n

2

\Bigr) 
> n

\biggl( 
k

2
 - 1

\biggr) 
or (ii)

k\sum 
i=1

min
\Bigl( 
si,

n

2

\Bigr) 
\geqslant n

\biggl( 
k

2
 - 1

\biggr) 
and si \not =

n

2
\forall i

holds. Then there exists C > 0 such that for every f1 \in Hs1 (\BbbT n) , . . . , fk \in Hsk (\BbbT n),\bigm| \bigm| \bigm| \bigm| \int 
\BbbT n

f1 \cdot \cdot \cdot fk
\bigm| \bigm| \bigm| \bigm| \leqslant C| | f1| | Hs1 (\BbbT n) \cdot \cdot \cdot | | fk| | Hsk (\BbbT n).

B.3. Product estimates in Sobolev spaces. In this section we record for
which regularity indices s, t, u it holds that Hs \cdot Ht \lhook \rightarrow Hu. Using Fourier analysis,
these results boil down to

1. the pointwise bound on the Fourier side,

\langle \cdot \rangle s | (fg)s| \lesssim \langle \cdot \rangle s| \^f | \ast | \^g| + | \^f | \ast \langle \cdot \rangle s| \^g| 

for f, g : \BbbT n \rightarrow \BbbR , which follows from the elementary observation that \langle k\rangle 2 \lesssim 
\langle k  - l\rangle 2 + \langle l\rangle 2 for all k, l \in \BbbZ n;

2. Young's inequality for convolutions;
3. using H\"older's inequality on the Fourier side to show that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \langle \cdot \rangle s \^f \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

lp(\BbbZ n)
\lesssim | | f | | Hs+\alpha (\BbbT n)

for the appropriate values s, p and \alpha .

Proposition B.5 (Hs is a Banach algebra when s > s\ast ). Let D = \BbbT 2, \Omega and
correspondingly let s\ast = 1, 32 . If s > s\ast , then

Hs (D) \cdot Hs (D) \lhook \rightarrow Hs (D) ,

i.e., for every s > s\ast there exists C > 0 such that for every f, g \in Hs (D), the product
fg belongs to Hs (D) and satisfies the estimate

| | fg| | Hs(D) \leqslant C| | f | | Hs(D)| | g| | Hs(D).

D
ow

nl
oa

de
d 

06
/2

2/
20

 to
 1

28
.2

.1
49

.1
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4948 ANTOINE REMOND-TIEDREZ AND IAN TICE

Proposition B.6 (Hs+\alpha is a continuous multiplier on Hs when \alpha > s\ast ). Let
D = \BbbT 2, \Omega and correspondingly let s\ast = 1, 32 . For every s \geqslant 0, if \alpha > s\ast , then

Hs+\alpha (D) \cdot Hs (D) \lhook \rightarrow Hs (D) ,

i.e., for every such s and \alpha there exists C > 0 such that for every f \in Hs+\alpha (D) and
g \in Hs (D), the product fg belongs to Hs (D) and satisfies the estimate

| | fg| | Hs(D) \leqslant C| | f | | Hs+\alpha (D)| | g| | Hs(D).

Proposition B.7 (borrowing regularity from both factors). Let D = \BbbT 2, \Omega and
correspondingly let s\ast = 1, 32 . For every s \geqslant 0 and \alpha , \beta > 0, if s+ (\alpha + \beta ) > s\ast , then

Hs+\alpha (D) \cdot Hs+\beta (D) \lhook \rightarrow Hs (D) ,

i.e., for every such s, \alpha , and \beta there exists C > 0 such that for every f \in Hs+\alpha (D)
and g \in Hs+\beta (D), the product fg belongs to Hs (D) and satisfies the estimate

| | fg| | Hs(D) \leqslant C| | f | | Hs+\alpha (D)| | g| | Hs+\beta (D).

B.4. Postcomposition estimates in Sobolev spaces. We record here condi-
tions on s for Hs to be closed under postcomposition by a sufficiently smooth function
(also known as a Nemytskii operator or as a superposition operator). These postcom-
position estimates boil down to estimates of the multilinear terms involving derivatives
of various orders which appear in the Fa\`a di Bruno formula (i.e., the chain rule for
higher-order derivatives). The key observation is that these terms can be written as
derivatives of polynomials. Coupling this observation with the fact that Hs is an
algebra for sufficiently large s (cf. Proposition B.5) thus yields the post-composition
estimates. We refer to Chapter 5 in [Miz65] and Chapter 5 in [RS96] for proofs of
similar results.

Proposition B.8. Let D = \BbbT 2, \Omega and correspondingly let s\ast = 1, 32 . Let k \in \BbbN 
and \alpha \in [0, 1). If k > s\ast , then for every g \in Hk+\alpha (D;\BbbR ) and for every F \in 
Ck,1loc (\BbbR ;\BbbR ), F \circ g \in Hk+\alpha (D;\BbbR ) with

| | F \circ g| | Hk+\alpha (D) \lesssim | | F \circ g| | L2(D) + | | F | | 
Ck,1

\Bigl( 
B(0,| | g| | \infty )

\Bigr) \Bigl( | | g| | Hk+\alpha (D) + | | g| | k+\lceil \alpha \rceil 
Hk+\alpha (D)

\Bigr) 
\lesssim | | F | | 

L\infty 
\Bigl( 
B(0,| | g| | \infty )

\Bigr) + | | F | | 
Ck,1

\Bigl( 
B(0,| | g| | \infty )

\Bigr) \Bigl( 
| | g| | Hk+\alpha (D) + | | g| | k+\lceil \alpha \rceil 

Hk+\alpha (D)

\Bigr) 
,

where B (R) = ( - R,R) and \lceil x\rceil denotes the smallest integer greater than or equal
to x.

B.5. Elliptic estimates for the Stokes problem. In this section we record
estimates for the Stokes problem. These can be proven in a standard way using
techniques similar to those found in Chapter 4 of [BF13]. We begin with the case of
Dirichlet conditions.

Proposition B.9 (estimates for the Stokes problem with Dirichlet boundary
condition). Let s \geq 0, let f \in Hs (\Omega ), g \in Hs+1 (\Omega ), and h \in Hs+3/2 (\partial \Omega ) sat-
isfy

\int 
\Omega 
f =

\int 
\partial \Omega 
h \cdot \nu , and let (u, p) solve\left\{     

 - \Delta u+\nabla p = f in \Omega ,

\nabla \cdot u = g in \Omega , and

u = h on \partial \Omega .
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Then

| | u| | Hs+2(\Omega ) + | | \nabla p| | Hs(\Omega ) \lesssim | | f | | Hs(\Omega ) + | | g| | Hs+1(\Omega ) + | | h| | Hs+3/2(\partial \Omega ).

Next we consider the Stokes problem with different boundary conditions.

Proposition B.10 (estimates for the Stokes problem with mixed Dirichlet--
Neumann boundary condition). Let s \geq 0, let f \in Hs (\Omega ), g \in Hs+1 (\Omega ), h1 \in 
Hs+3/2 (\Sigma ), and h2 \in Hs+1/2 (\Sigma ), and let (u, p) solve\left\{               

 - \Delta u+\nabla p = f in \Omega ,

\nabla \cdot u = g in \Omega ,

u \cdot e3 = h1 on \Sigma ,

(\BbbD u \cdot e3)tan = h2 on \Sigma , and

u = 0 on \Sigma b,

where vtan := (I  - e3 \otimes e3) v, i.e., vtan is the tangential part of v. Then

| | u| | Hs+2(\Omega ) + | | \nabla p| | Hs(\Omega ) \lesssim | | f | | Hs(\Omega ) + | | g| | Hs+1(\Omega ) + | | h1| | Hs+3/2(\Sigma ) + | | h2| | Hs+1/2(\Sigma ).

B.6. Dynamic boundary conditions. We now turn our attention to estimates
related to the dynamic boundary condition (2.2c).

Proposition B.11 (estimates for the dynamic boundary condition). Let g > 0
and f : \BbbR 2\times \BbbR 2\times 2 \rightarrow \BbbR , write f = f (w,M) for (w,M) \in \BbbR 2\times \BbbR 2\times 2, and suppose that
(2.3) holds. Then for every s \geqslant 0 there exists \~C > 0 such that for every f \in Hs

\bigl( 
\BbbT 2
\bigr) 
,

if \eta satisfies
\int 
\BbbT 2 \eta = 0 and solves

\bigl( 
\delta 20\scrW + g

\bigr) 
\eta = f on \BbbT 2, then

| | \eta | | Hs+4(\BbbT n) \leqslant 
\~C| | f | | \.Hs(\BbbT n).

Proof. The assumption (2.3) tells us precisely that \delta 20\scrW + g is a strictly elliptic
fourth-order operator over functions of average zero. The estimate then follows from
simple Fourier analysis arguments as in [Fol95].

Next we consider Poincar\'e-type inequalities.

Proposition B.12 (Poincar\'e-type inequalities). The following hold:
1. There exists CP > 0 such that for every \phi \in H1 (\Omega ),

(B.1) | | \phi | | H1(\Omega ) \leq CP
\Bigl( 
| | tr\phi | | L2(\Sigma ) + | | \nabla \phi | | L2(\Omega )

\Bigr) 
.

2. For every s \geq 0, there exists CPs > 0 such that for every \eta \in Hs+1 (\BbbT n)
satisfying

\int 
\BbbT n \eta = 0 we have that

(B.2) | | \eta | | Hs+1 \leq CPs | | \nabla \eta | | Hs .

Korn's inequality, which we record now, is a sort of Poincar\'e-type inequality for
the symmetrized gradient. See Lemma 2.7 in [Bea81] for a proof.

Proposition B.13 (Korn inequality). There exist CK > 0 such that for every
\phi \in H1 (\Omega ), if \phi = 0 on \Sigma b, then | | \phi | | H1(\Omega ) \leq CK | | \BbbD \phi | | L2(\Omega ).
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B.7. Taylor's theorem. We record Taylor's theorem here in order to fix nota-
tion.

Proposition B.14 (Taylor's theorem with integral remainder). For any f \in 
Ck+1

\bigl( 
\BbbR d;\BbbR 

\bigr) 
and any z0 \in \BbbR d,

f = \scrP k [f, z0] + rk [f, z0] \bullet (\cdot  - z0)
\otimes (k+1)

= \scrP k [f, z0] +\scrR k [f, z0] ,

where, for any z \in \BbbR d,

\scrP k [f, z0] (z) :=
k\sum 
l=0

1

l!
\nabla lf (z0) \bullet (z  - z0)

\otimes l
,

\scrR k [f, z0] := rk [f, z0] \bullet (\cdot  - z0)
\otimes (k+1)

, and

rk [f, z0] (z) :=
1

(k + 1)!

\int 1

0

(1 - t)
k\nabla k+1f ((1 - t) z0 + tz) dt.

Example B.15. For example, when k = 2 we have

f (z) = f (0) +\nabla f (0) \cdot z + 1

2
\nabla 2f (0) \cdot (z \otimes z)\underbrace{}  \underbrace{}  

\scrP 2[f,0](z)

+
1

6

\biggl( \int 1

0

(1 - t)
2 \nabla 3f (tz) dt

\biggr) 
\bullet (z \otimes z \otimes z)\underbrace{}  \underbrace{}  

\scrR 2[f,0](z)

.
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