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A B S T R A C T

Nitrogen doped porous graphitic carbon spheres have been extensively studied for various applications such as
adsorption, catalysis, energy storage, and drug delivery due to their unique properties such as high surface area,
tunable porosity, and importantly their low cost. Among many strategies available for the synthesis of graphitic
carbons, catalytic graphitization is widely explored due to its industrial feasibility. Additionally, activated
carbons with fine micropores are vastly studied for CO2 capture at ambient conditions. In this case, in-situ
activation of carbon spheres is promising because it combines both carbonization and activation in a single-step.
This study is focused on the development of in-situ activated graphitic carbon spheres (AGCSs) by adopting a
one-pot modified Stӧber-like synthesis and restricting temperature treatment to a single step. Cobalt acetate and
potassium citrate were added in the synthesis, where the former acted as a graphitization catalyst, while the
latter acted as an activator. The resulting carbon spheres were characterized by scanning and transmission
electron microscopy, nitrogen adsorption, thermogravimetry, elemental analysis, infrared spectroscopy, and X-
ray diffraction. These spheres possess high volumes of ultramicropores in addition to graphitic and magnetic
properties. AGCSs were able to adsorb about 5 mmol·g−1 of CO2 at 0 °C and 1 bar.

1. Introduction

Graphitization and activation are considered as two economically

important strategies for improving physicochemical properties of
amorphous carbons. Conversion of amorphous carbons to porous gra-
phitic carbons enables them to be used in various applications such as
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supercapacitors [1–6], catalysis [7–10], adsorption [11–15], drug de-
livery [16–19], and gas capture and storage [20–25]. As compared to
conventional graphitization strategy, which treats carbons at tempera-
tures about 2000 °C, the catalytic graphitization can be achieved si-
multaneously with carbonization at lower temperatures. Catalysts
containing Fe, Ni and Co species are used in the synthesis to induce
graphitization at comparatively low temperatures, 700 °C and higher
[26–32]. The catalytic graphitization strategy reduces energy usage as
well as enables conversion of amorphous carbons to graphitic carbons
[33]. Activation of graphitic carbons under controlled conditions can be
used to increase porosity and surface area of carbons. Additionally,
activated carbons composed of graphitic domains exhibit higher capa-
citance under various electrolytes [33,34]. Recently Raymundo-Pinero
and co-workers [35] illustrated that partial desolvation of ions inside
micropores leads to the enhanced capacitance in carbons. Moreover,
metal oxides such as MnO2 [36], RuO2 [37], SnO2 [38], V2O5 [39], ZnO
[40], Fe3O4 [41], and Co3O4 [42] in carbons contribute to pseudoca-
pacitance viareversible redox reactions on the electrode surface [43].
Nonetheless, the controlled activation of metal-incorporated graphitic
carbons may improve their physicochemical properties, and therefore
industrial applicability.

Although potassium salts or CO2 are commonly used for post-
synthesis activation of carbons, these strategies are associated with an
additional step that requires a precise control of various factors such as
carbon to salt ratio, CO2 flow, temperature and duration of activation
process in order to generate meaningful microporosity without struc-
tural collapse. In contrast, in-situ activation strategies are gaining a
significant attention because activated carbons are produced in a single
step by incorporating potassium organic salts during synthesis [44,45].
Carbons obtained by in-situ activation feature a large fraction of ultra-
micropores (pores bellow 0.7 nm), which are highly beneficial for ap-
plications such as CO2 capture at ambient conditions.

Recently, various modifications of the Stӧber-like synthesis have
been explored to obtain carbon spheres with desired properties [46].
This synthesis is well suited for controlled addition of multiple chemical
species during the formation of phenolic resin spheres. Regardless of
various independent studies conducted to produce both graphitic and
activated nitrogen doped carbons, the efforts to introduce graphitic

domains, ultramicropores, and nitrogen species into carbon spheres
during one-pot synthesis are still seldom. In this study, we explore the
possibility of producing nitrogen doped activated graphitic carbon
spheres in a single carbonization/activation step following the modified
Stӧber-like synthesis strategy. Cobalt acetate and potassium citrate
were directly added to the synthesis mixture, where cobalt salt acted as
a graphitization catalyst and a source for forming magnetic cobalt na-
noparticles (desired for easy separation in potential liquid phase ap-
plications), while potassium salt acted as an in-situ activator. The re-
sulting magnetic graphitic carbon spheres with high volume of
micropores were tested for CO2 capture at ambient conditions.

2. Experimental

2.1. Materials

Resorcinol (98%), pyrrole (99%), and ethylenediamine (99%) were
obtained from Acros Organics. 3-aminophenol was purchased from Alfa
Aesar. Formaldehyde (37 wt%), cobalt acetate tetrahydrate (98%), and
potassium citrate monohydrate (99%) were purchased from Fisher
Scientific. Deionized water was obtained from an in-house Ion Pure Plus
150 Service Deionization Ion-exchange purification system and Aqua
One. All reagents were of analytical grade and were used without fur-
ther purification.

2.2. Potassium citrate and cobalt acetate assisted syntheses of phenolic resin
spheres

Cobalt acetate and potassium citrate were incorporated to two series
of polymer spheres (PS) using a modified one-pot hydrothermal
synthesis (see Scheme 1) [47]. To synthesize the first series of graphitic
carbon spheres, 0.1ml of ethylenediamine was added to an aqueous
alcoholic solution, which was prepared by mixing 8ml of ethanol with
20ml of deionized water. Thereafter, 0.2 g of 3-aminophenol was added
to the solution. Cobalt acetate was added in varying amounts
(0.1mmol, 0.3 mmol, 0.4 mmol, 0.6 mmol, 0.9mmol) to the above
mixture and stirred for ca. 30min to complete its dissolution. Finally,
0.28ml of formaldehyde was added and stirred for 24 h at room

Scheme 1. Synthesis routes to obtain magnetic graphitic carbon spheres (route 1) and activated magnetic graphitic carbon spheres (route 2).
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temperature. The obtained colloidal solution was transferred into a
125ml Teflon container placed in a metal sealed autoclave and then
subjected to thermal treatment at 100 °C for 24 h.

The second series of activated graphitic carbon spheres was syn-
thesized as described above but fixing the mass of cobalt acetate at
0.3 mmol level. Following addition of cobalt acetate, potassium citrate
in varying amounts (0.00050mol, 0.00075mol, 0.00100mol) was
added to the solution. Finally, formaldehyde was added to initiate
polymerization. After stirring for 24 h, the obtained colloidal solution
was subjected to a similar thermal treatment as described above.

2.3. Carbonization and activation of polymer spheres

Graphitic carbon (GC), graphitic carbon spheres (GCSs) and acti-
vated graphitic carbon spheres (AGCSs) were obtained by a single-step
carbonization and activation of the phenolic resin spheres. The mate-
rials were placed into a tube furnace and thermally treated under
flowing N2 in two steps. First at 350 °C for 2 h, then at 700 °C for an-
other 2 h; a heating rate of 1 °C·min−1 was used in both steps. The AGCS
materials were washed in deionized water to remove the excess of salt,
then separated from solution by centrifugation and dried in an oven at
100 ̊C for 2 h. The resulting carbon spheres were labeled as GC-CoX,
GCS-CoX and AGCS-CoX-KY, where “K” refers to potassium citrate, “X”
refers to the sample number of graphitic carbon series and “Y” refers to
the molar amount of potassium citrate rounded to the nearest whole
number, respectively. For instance, in the case of AGCS-Co2-K75,
“AGCS” refers to activated graphitic carbon spheres, “Co” refers to
cobalt, “2” refers to 2nd sample of graphitic carbon synthesized with
cobalt acetate (0.3mmol), “K” refers to potassium citrate and “75” re-
fers to 0.00075mol of potassium citrate.

2.4. Characterization

Nitrogen adsorption was measured for each sample at −196 °C
using an ASAP 2020 volumetric analyzer (Micromeritics, Inc.). CO2

adsorption measurements were carried out at 0 and 25 °C up to 1.2 atm
on an ASAP 2020 volumetric adsorption analyzer (Micromeritics, Inc.,
GA). Thermogravimetric (TG) profiles were recorded using a high re-
solution thermogravimetric TGA Q-500 analyzer (TA Instruments, Inc.).
Scanning electron microscopy (SEM) images were obtained using a
Hitachi S-2600 N scanning electron microscope. Transmission electron
microscopy (TEM) images were obtained on a FEI Tecnai G2 F20 mi-
croscope. The FTIR spectra were obtained on a Bruker Vector 33 with
resolution of 4 cm−1, and 32 scans. Elemental analysis of carbon, ni-
trogen, and hydrogen was obtained using a LECO TruSpec Micro ele-
mental analyzer.

3. Results and discussion

Fig. 1 shows the X-ray diffraction patterns for the synthesized ma-
terials and provides evidence of the presence of graphitic domains and
metallic cobalt in the carbon nanoparticles. The peak around 26° (2θ)
may indicate the presence of graphitic domains, while metallic cobalt is
evidenced by the peaks at 44°, 52° and 76° (2θ). These diffraction peaks
correspond to the (111), (200) and (220) planes, respectively[48], of
the FCC structure of metallic cobalt [ICDD 01-071-4651]. It is evident
that with increasing cobalt content the intensity of the peaks around
26°, 44°, and 52° (2θ) increases. This signifies the role of cobalt in
catalytic graphitization of the carbon matrix. Up to date, different co-
balt salts have been used to produce graphitic magnetic thin films [49],
graphitic carbon nanotubes [50], 2D graphene [51], and graphitic
spheres [52]. For instance, Liu and coworkers were able to incorporate
cobalt nanoparticles into mesoporous carbons [52].

Chen and coworkers utilized TPR experiments to study the behavior
of metallic cobalt formation from incorporated cobalt salts within
carbon framework [53]. According to their studies, Co(NO3)2 within
carbon nanotube framework is reduced to Co viatwo steps. First, the
formation of Co3O4 and Co2O3 occurs, which is followed by formation
of CoO (step 1), and further by reduction to Co (step 2). In a similar
study Xiong and coworkers [54] monitored the conversion of Co3O4

and CoO using Co(NO3)2 incorporated into nanotubes and carbon
spheres. The reduction of Co3O4 to CoO was observed at 280 ̊C, while
CoO to Co was observed at 363 ̊C. Therefore, it is expected that only
metallic cobalt will be present in all samples herein synthesized. To
further confirm this hypothesis FTIR experiment was performed for GC-
Co4 and GCS-Co2, and data are shown in Fig. S1 in supporting in-
formation. The absence of significant absorption bands on the FTIR
spectra (4000–400 cm−1) indicates a very low concentration of hy-
drogen in the material, which is characteristic for graphite [55].
Therefore, the change in the FTIR profile upon Co-addition indicates
that Co is catalyzing the graphitization of amorphous matrix. Moreover,
the presence of absorption bands for carbon spheres indicates the pre-
sence of C]C bond of aromatic group, and CCe (sp2-sp3) vibration
modes of an amorphous matrix [55]. The FTIR spectra for GC-Co4 and
GCS-Co2 show no absorption bands for neither cobalt oxides nor cobalt
carbide. Nonetheless, FTIR results complements the XRD results, and
show that pure metallic cobalt nanoparticles are only present in the
synthesized materials.

Activated graphitic carbon spheres (AGCSs) were synthesized by
incorporating different amounts of potassium citrate into the synthesis
mixture with a fixed amount of cobalt acetate (0.3mmol; AGCS-Co2-KY
samples). The resulting carbons obtained for cobalt acetate amount
larger than 0.3mmol deviated from spherical morphology. A compar-
ison of the XRD patterns obtained for the GCS-2, AGCS-Co2-K75, and
AGCS-Co2-K50−HCl-w samples is shown in Fig. 1b.

Thermogravimetric analysis (TGA) was performed for the samples

Fig. 1. (a) XRD patterns of the graphitic carbons studied, (b) and before and after cobalt dissolution.
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under air atmosphere. It was observed that with increasing cobalt mass
in the synthesis mixture, the decomposition temperature of carbon was
gradually reduced. The catalytic decomposition of carbons in the pre-
sence of Co species is reported elsewhere [56,57]. Herein we propose a
similar explanation for metallic cobalt-assisted decomposition of the
carbon framework. In the presence of oxygen there is the possibility of
conversion of the metallic cobalt nanoparticles back to respective
oxides such as Co3O4, which in turn can be reduced by the carbon, thus
this process can probably initiate the catalytic decomposition of the
carbon framework. Fig. 2(a,b), shows that this behavior is pronounced
for the samples with higher cobalt content. Regardless of having a
comparatively high cobalt mass, GCS-Co2 showed a slightly higher
thermal stability (up to 393 ºC) as compared to that of GCS-Co1, which
started to decompose around 360 ̊C. This deviation from the expected
trend can be attributed to the lower cobalt content present in the
aforementioned samples as compared to that of GC-Co3 and GC-Co4; in
the former, the carbon oxidation was predominant. Thus, for GC-Co3
and GC-Co4, the catalytic decomposition was attenuated during ther-
mogravimetric measurements under oxygen.

Thermal stability of activated samples (AGCS-Co-2-K series) was
also evaluated by heating in air, which is shown in Fig. 2(c and d).
Similarly, the activated samples exhibited lower thermal stabilities as
indicated by decomposition events in Table 1. Contribution from me-
tallic cobalt toward the catalytic decomposition was further studied
using the GCS-Co2-K75−HCl-w sample, in which cobalt was dissolved
by hydrochloric acid treatment. Removal of cobalt from AGCS-Co3-
K75−HCl-w was confirmed by analyzing the residual mass of the

sample, which was near 0 wt%. As expected, this carbon sample ex-
hibited high thermal stability up to 446 ºC. Note that non-graphitized
“CS” showed comparatively lower thermal stability (up to 421 ºC),
probably due to the absence of graphitic domains. The residual mass
percentages, ascribed to cobalt oxides (5–35 wt%), are shown in
Table 1. Overall all the samples exhibited thermal stability in air be-
yond 270 °C. Thermal decomposition and respective differential weight
profiles for the carbons that were synthesized using higher cobalt
acetate amounts; 0.6 mmol (GC-Co4) and 0.9 mmol (GC-Co5) are
shown in Fig. S2 in supporting information.

As can be seen from Fig. 3c, SEM studies revealed that the samples
synthesized using cobalt acetate amounts higher than 0.4mmol lost
their spherical morphology. We suggest that higher cobalt acetate mass
in the synthesis disturbs the polymerization between 3-aminophenol
and formaldehyde, leading to a non-spherical morphology. SEM images
of the samples synthesized with higher cobalt amounts are shown in
Fig. S3 of supporting information. Addition of varying amounts of po-
tassium citrate to the synthesis was done at the fixed mass of cobalt
acetate, 0.3mmol. Note that potassium citrate-assisted activation was
able to preserve the spherical morphology of the carbons studied
(Fig. 3d–f). However, the CS-Co2-K100 sample (see Fig. 3f) underwent
partial structural collapse due to the excessive activation (Fig. 3f).

TEM studies reveal that cobalt nanoparticles are well-dispersed in
the carbon spheres (Fig. 4a, b and d). Furthermore, graphitic domains
are found to be scattered around cobalt nanoparticles (see Fig. S4 in
supporting information). Both GCS-Co1 and GCS-Co2 samples possess
graphitic domains, however the degree of graphitization is much higher
in later sample, whereas GCS-Co1 sample is composed of mainly
amorphous carbon domains (as indicated by TGA analysis). The TEM
image of the GC-Co3 sample further confirms the effect of higher cobalt
mass toward polymerization of carbon precursors, where amorphous
carbon and cobalt seem to aggregate independently. Moreover, the
activation leads to the creation of additional pores within the carbon
framework and causes removal of some cobalt from the spheres (see
Fig. 4d). The average size of carbon spheres studied was found to be
around 450 nm, while the size distribution of dispersed cobalt nano-
particles was estimated between 20–30 nm. The presence of these co-
balt nanoparticles introduces magnetism to the carbons and as a result,

Fig. 2. (a,c) Thermogravimetric analysis, (b,d) and respective differential thermogravimetric profiles for the samples studied.

Table 1
Decomposition temperatures for the samples studied.

Sample Decomposition temperature (°C) Metal oxide (wt%)

GCS-Co1 360 6.28
GCS-Co2 393 10.18
GC-Co3 330 15.22
AGCS-Co2-K50 270 5.09
AGCS-Co2-K75 300 10.44
AGCS-Co2-K100 340 2.74
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they could be easily separated from a solution under the force of an
external magnetic field (see Fig. S5 in supporting information).

Nitrogen adsorption measurements were performed for carbons
studied at −196 °C to evaluate the specific surface area, pore volume
and pore size distribution (see Table 2, and Fig. 5). All isotherms pos-
sess hysteresis loops at high relative pressures, which indicate the
presence of mesopores. The source of these mesopores can be pores
generated during graphitization, and (or) inter particle voids. The pore

size distributions for each sample are shown in Fig. 5b and d. Fig. 5b
shows that the graphitic carbons exhibit bimodal distributions of mi-
cropores (pores below 2 nm); one below 1 nm, while the second is be-
tween 1–2 nm. However, the average volumes of these micropores are
as low as 0.05 cm3 g−1. Additionally, a broad distribution of peaks is
observed between 2–8 nm, which corresponds to mesopores, which
have a significant contribution to the porosity of all graphitic carbons
studied.

Fig. 3. Scanning electron microscope (SEM) images of the samples studied.

Fig. 4. Transmission electron microscopy (TEM) images of the samples studied.
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The adsorption isotherms and respective pore size distributions
obtained for activated carbons are shown in Fig. 5 c and d. As expected,
the activation led to a significant increase of micropore volumes, and
the BET surface areas, where the AGCS-Co2-K75 sample possesses the
highest surface area (828m2 g−1), and micropore volume
(0.29 cm3 g−1) among the activated samples. The use of potassium ci-
trate above 0.00075mol in the synthesis, along with 0.3 mmol of cobalt
acetate, led to the structural collapse during the catalytic graphitiza-
tion/activation process as observed for the AGCS-Co2-K100 sample.
Because of activation, microporosity becomes dominant in the pore size
distribution curves (see Fig. 5d). Activation generated a considerable
fraction of ultramicropores, which is highly favorable for CO2 capture
at ambient conditions. Previous studies show the potential of gen-
erating ultramicropores in carbons by incorporating different potassium
organic salts during the Stӧber-like synthesis [44,45]. Considering the
high surface area of these graphitic carbons, they would serve as pro-
mising materials not only in gas capture but also in fields such as energy
storage, catalysis, sensors, thermoelectric and sea water desalination
[58]. Doping of N and Co into graphene has been found to efficiently
tune its electronic structure and thus enhance the catalytic activity of
the resulting composite material. For instance, in N doped carbon ma-
terials electronegative N atoms accept electrons and activate the
neighboring C atoms, converting them into catalytic sites. Several stu-
dies have reported the potential of N-doped graphene and Co in-
corporated N doped graphene to act as metal-free catalysts for ORR in
H2O2 fuel cells [59–61].

However, preservation of a small volume of mesopores is still

evident as indicated by the desorption hysteresis in all isotherms
(Fig. 5c). Note that depending on the intended application, the volume
of these mesopores could be further increased by removal of embedded
cobalt nanoparticles viaacid treatment. Some mesoporous carbons with
graphitic domains have been tested for various applications such as
supercapacitors [62,63], oxygen reduction [64], fuel cells [65], pho-
tocatalysts [66], dye adsorption [13], heavy metal removal [67] and
drug delivery [68]. The evaluated BET surface areas, micropore vo-
lumes, total pore volumes, carbon and nitrogen percentages of all
samples are shown in Table 2, while N2 adsorption isotherms and re-
spective pore size distributions for the GC-Co4 (cobalt acetate
0.6 mmol) and GC-Co5 (cobalt acetate 0.9 mmol) samples are shown in
Fig. S6 of supporting information. Average nitrogen content in the
samples varies between 1.2–5.7 wt%. Ethylenediamine and 3-amino-
phenol could be possible sources of this nitrogen. It is noteworthy that
doped nitrogen atoms in graphitic carbons have been found to con-
tribute toward pseudocapacitance, when such carbons are used as su-
percapacitors [69,70].

All activated carbon samples exhibited relatively good CO2 uptake
at ambient conditions. Individual CO2 adsorption isotherms and re-
spective uptake values at 1 bar are shown in Fig. 6 and Table 3. The CO2

uptakes at 1 bar were in the range of 3.2–5.0mmol·g−1 (0 ºC), and
2.3–3.6mmol·g−1 (25 ºC). The main reason for these carbons to exhibit
relatively low CO2 adsorption capacities is probably due to insufficient
volume of carbon framework available for activation by potassium ci-
trate, since majority of the carbon volume was occupied by cobalt na-
noparticles and graphitic domains. Note that graphitic domains have no

Table 2
BET surface areas and pore volumes of the samples studied.

Sample SBET (m2·g−1) Micropore volume (< 1 nm) (cm3·g−1) Total pore volume (cm3·g−1) C% N%

GCS-Co1 283 0.04 0.20 72.8 5.7
GCS-Co2 279 0.05 0.24 65.6 5.2
GC-Co3 236 0.03 0.19 54.7 1.2
AGCS-Co2-K50 573 0.18 0.36 69.7 5.0
AGCS-Co2-K75 828 0.29 0.46 56.1 4.9
AGCS-Co2-K100 472 0.18 0.26 60.3 3.6

SBET - BET surface area.

Fig. 5. N2 adsorption isotherms (left panels) and corresponding pore size distribution curves (PSD) (right panels).
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significant contribution towards CO2 adsorption. As expected, the up-
take capacities are proportional to the ultramicropore volumes in each
sample. Further studies can be conducted to improve the CO2 capture
capacities of these carbons by optimizing activation conditions and
controlling the degree of graphitization.

4. Conclusions

Nitrogen doped porous graphitic carbon spheres possessing mag-
netic properties were successfully synthesized by adopting a modified
Stӧber-like method, followed by catalytic graphitization. The latter was
achieved by incorporating cobalt acetate, while in-situ activation was
carried out by incorporating potassium citrate. The desired graphitized
and activated carbons were obtained in a single temperature treatment
assisted by cobalt and potassium species. The resulting carbons were
characterized using various techniques and tested for CO2 capture. The
materials showed adequate CO2 capture capacities. Considering the
broad applicability of N and Co doped graphene analogues in energy
storage, catalysis and sensors, this study shows new prospects to obtain
scalable porous graphitic carbon spheres with tunable physicochemical
properties. Even though synthetic graphene is highly attractive material
in various fields, its commercial synthesis often suffer from layer ag-
gregation, which in turn nullify the benefits associated with layered
geometry. In contrast, graphitic carbon spheres produced in this study
are composed of graphitic domains distributed in close proximity
within the carbon structure along with a platform to optimize the
specific surface area. Therefore, these materials can serve as a plausible
low-cost alternative for synthetic graphene materials.
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