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ABSTRACT
Microbial assemblages residing within and on animal gastric tissues contribute to
various host beneficial processes that include diet accessibility and nutrient
provisioning, and we sought to examine the degree to which intergenerational and
community-acquired gut bacteria impact development in a tractable germ-free (GF)
invertebrate model system. Coprophagy is a common behavior in cockroaches
and termites that provides access to both nutrients and the primary means by which
juveniles are inoculated with beneficial gut bacteria. This hypothesis was tested in the
American cockroach (Periplaneta americana) by interfering with this means of
acquiring gut bacteria, which resulted in GF insects that exhibited prolonged growth
rates and gut tissue dysmorphias relative to wild-type (WT) P. americana.
Conventionalization of GF P. americana via consumption of frass (feces) from
conspecifics and siblings reared under non-sterile conditions resulted in colonization
of P. americana gut tissues by a diverse microbial community and a significant
(p < 0.05) recovery of WT level growth and hindgut tissue development phenotypes.
These data suggest that coprophagy is essential for normal gut tissue and organismal
development by introducing beneficial gut bacteria to P. americana, and that the
GF P. americana model system is a useful system for examining how gut bacteria
impact host outcomes.

Subjects Entomology, Microbiology
Keywords Germ-free insects, Gut microbiome, Development

INTRODUCTION
Host-associated bacteria are increasingly recognized as being inextricably involved in
the health, development and evolution of their animal hosts, and the digestive tract is a
major intersection for the host and its environment, and its gut bacterial consortia.
In vertebrates, microbial ecosystems located within animal digestive tracts, hereafter
referred to as “gut microbiota,” (Yasuda et al., 2015; Costea et al., 2018) can impact host
health, behavior, dietary nutrient accessibility, infectious disease susceptibility, and
disease morbidity (Sonnenburg & Bäckhed, 2016; Koppel, Maini Rekdal & Balskus, 2017;
Parker et al., 2017; Foster, Rinaman & Cryan, 2017; Zhao & Elson, 2018). Invertebrates also
harbor sparse-to-abundant multispecies microbial communities within gastric tissues
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that can be as specialized as those observed in vertebrates (Dillon & Dillon, 2004; Engel &
Moran, 2013; Douglas, 2015), and the global distribution, trophic diversity, ecological
contributions, and agricultural, environmental and human health impacts of insects have
stimulated interest in insect-gut microbiota interactions. Although host diet accessibility
and nutrient metabolism has been a major focus of insect host-gut microbiota work
(Six, 2013; Engel & Moran, 2013; Brune & Dietrich, 2015; Peterson & Scharf, 2016;
Kwong & Moran, 2016; Bonilla-Rosso & Engel, 2018), these microbial assemblages have
also been shown to participate in zoonotic infections (Aksoy, 2018), mediate plant-insect
interactions (Hansen & Moran, 2014; Casteel & Hansen, 2014; Shikano et al., 2017),
shape host behavior (Keesey et al., 2017), and stimulate immune system functions
(Ryu et al., 2008; Buchon, Broderick & Lemaitre, 2013) and host growth and development
(Coon et al., 2014; Zheng et al., 2017). When the gut microbiota is comprised of, or
dominated by, a single or few taxa, it is possible to link individual taxa to host benefits,
as observed in Riptortus pedestris stink bugs (Burkholderia that confer pesticide
resistance, (Kikuchi, Hosokawa & Fukatsu, 2007; Itoh et al., 2018)) and in honey bees
(Gilliamella that degrades pollen constituents and Bifidobacterium asteroids that produce
growth-promoting hormones, (Engel, Martinson & Moran, 2012; Kešnerová et al., 2017).
Additionally, amenability of these insect models, as well as Drosophila fruit flies
(Apidianakis & Rahme, 2011), to axenic/germ-free (GF) rearing has greatly facilitated
efforts to assign discrete functions to specific gut taxa.

Among invertebrate model systems, cockroaches are also proving to be useful for
exploring host-gut microbiota interactions. The gut microbiota of omnivorous cockroaches
had been characterized primarily by cultivation and microscopy approaches (Bracke,
Cruden & Markovetz, 1979; Cruden & Markovetz, 1980, 1987; Umunnabuike & Irokanulo,
1986; Dillon & Dillon, 2004; Thompson et al., 2012) until cultivation-independent
community profiling (i.e., 16S rRNA gene amplicon sequencing) approaches became widely
available. Tremendous phylogenetic diversity, spanning over 20 bacterial phyla
(Mikaelyan et al., 2015), has been detected in cockroach guts, with members of the
Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria comprising the majority of the
gut microbiota, and diet appears to exert a significant impact on presence and relative
abundance of the gut microbiota (Schauer, Thompson & Brune, 2012; Krych et al., 2013;
Sabree & Moran, 2014; Schauer et al., 2014; Dietrich, Köhler & Brune, 2014; Perez-Cobas
et al., 2015; Mikaelyan et al., 2015; Tinker & Ottesen, 2016; Zheng et al., 2017).
Additionally, cultivation under oxygen-limited conditions has coaxed new species of
cockroach gut bacteria into cultivation (Tegtmeier et al., 2016a, 2018).

Cockroaches are amenable to axenic rearing and such studies have helped to shed
light on some possible roles of gut bacteria in cockroach development and behavior.
The majority of these studies have focused on the cockroach Blattella germanica, reporting
successful but delayed development to adulthood, with normal fertility and viability of
young (House, 1949; Clayton, 1959; Benschoter & Wrenn, 1972). Host aggregation,
a common cockroach behavior, was found to be stimulated by gut bacterial products
in B. germanica that were absent when B. germanica was treated with antibiotics
(Wada-Katsumata et al., 2015). GF Shelfordella lateralis cockroaches have facilitated
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the determination of how oxygen impacts gut tissue colonization and metabolic activity of
two bacterial strains isolated from S. lateralis (Tegtmeier et al., 2016b). Additionally,
digestive tracts in GF S. lateralis exposed to environmental and animal-derived inocula
were capable of enriching for bacteria, primarily members of the Bacteroidetes, Firmicutes,
and Proteobacteria, that were closely related to gut residents typically found in S. lateralis
gut tissues (Mikaelyan et al., 2016). Furthermore, a clear phylogenetic signal was
detected between inoculum source (i.e., cockroach > termite > mice > soil) along with
recapitulation of a gut microbiota composition typically observed in S. lateralis (Mikaelyan
et al., 2016). Although these efforts have made great strides in illustrating how cockroaches
and their gut microbiota collaborate, less is known about host physiological responses
to gut microbiota colonization. Recent work has shown that consumption of feces
(coprophagy) from conspecifics and nestmates is common in cockroaches (Nalepa, Bignell &
Bandi, 2001; Kopanic et al., 2001), and is a means for the transfer of hindgut bacteria
(Rosas et al., 2018). Additionally, coprophagy provides consumers with amino acids,
lipids, carbohydrates, and micronutrients that remain in the diet post-digestion and from
microbes that have colonized the fecal pellet during digestion or since its deposition in
the environment (Nalepa, Bignell & Bandi, 2001). Cockroach nymphs exhibit the strongest
responses to aggregation pheromones present in feces (Dambach et al., 1995), of which
at least some of these chemical signals are produced by bacteria therein (Wada-Katsumata
et al., 2015), suggesting that inoculation of early-stage nymphs with gut bacteria via
coprophagy is important for normal development. This study seeks to detail the impact of
coprophagy on Periplaneta americana physiology and development, and it is expected
that physiological systems within the cockroach that are most heavily influenced by
exposure to microbiota-enriched frass will highlight sites of host-microbiota interactions
for further study.

MATERIALS AND METHODS
Insects
Periplaneta americana nymphs, adults and ootheca were obtained from a live collection
maintained for 60+ years in the Insectary at the Ohio State University Biological Sciences
Greenhouse (Columbus, Ohio).

Ootheca treatment
Ootheca were manually detached from gravid P. americana females and surface sterilized
by three rounds of cleaning using a detergent scrub (1% Alconox detergent), dilute bleach
(0.08% sodium hypochlorite), and then an enzymatic lysis buffer (lysozyme 10 mg/ml,
EDTA, Tris-HCl and Triton X-100), each step followed by three rinses with sterile MilliQ
water (MQW) to remove antiseptic solution and induce intermittent hypo-osmotic shock
on surface-clinging bacteria (Schwinghamer, 1980; Salema et al., 1982). An aliquot of
each thirdMQW rinse was reserved to monitor effectiveness of previous cleanings to reduce
bacterial load. Aseptic ootheca were incubated individually in sterile microcentrifuge
tubes capped with sterile cotton at 31 !C for approximately 30 days until hatching, which
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yielded up to 16 GF nymphs per oothecum. No decreased oothecum viability due to
washing treatments was observed.

Rearing germ-free P. americana
Cohorts of three to four GF first instar nymphs were aseptically-transferred to sterile
rearing chambers of approximately 16 cm3, stocked with gamma-irradiated (aseptic) rat
chow and aseptic water, which was renewed weekly. Rearing chambers were passively
ventilated with air filtered through a 0.22 mm membrane.

Rearing conventionalized P. americana
To introduce bacteria native to P. americana, cohorts of three to four GF first instars were
exposed to frass taken from a lab-maintained colony of non-sterile or “wild-type” (WT)
P. americana in lieu of food for 3 days. Subsequently, conventionalized (Conv) first
instar nymphs were housed under the same conditions as GF insects except for that
sterility was not maintained. As each generation of P. americana typically acquires their
gut microbial community through conspecific and nestmate coprophagy (Nalepa,
Bignell & Bandi, 2001; Bell et al., 2008), the conventionalization approach used reflects the
normal route of gut microbe acquisition.

Rearing wild-type P. americana
One-day old first instar insects from 10 ootheca were deposited in an aquarium containing
10 adult male cockroaches from a non-sterile mixed generation colony maintained in
the lab and provided with gamma-irradiated rat chow and access to MQW ad libitum;
nymphs from this colony were designated “WT”. WT hatchlings were free to interact with
adult cockroaches and their frass to facilitate coprophagy and subsequent acquisition
of normal gut microbiota. As cannibalism of deceased nestmates is also a putative
mechanism for gut microbiota acquisition, late-stage nymphs from the non-sterile colony
were sacrificed and deposited in the WT colony. WT insects did not experience spatial
constraints or undergo the oothecum sterilization procedure as compared to GF and
Conv insects and were exposed to unfiltered air.

Quality control
Quality control measures were employed throughout experiments to ensure maintenance
of GF status and to confirm colonization of Conv individuals. Oothecum rinse water,
collected between each antiseptic treatment, was plated in triplicate on Luria-Bertani agar
(LBA) plates (incubated at 31 !C for up to 1 week) to detect cultivable contaminants
flushed from ootheca, and to provide confidence that ootheca are aseptic as they enter
incubation. Ootheca shedding no contaminants at final rinses were considered to be
aseptic and used for subsequent experiments. At the time of hatching and installation into
habitats, one first instar nymph from each oothecum, or the oothecum itself, was sacrificed
and homogenized in sterile 1% PBS and plated on LBA in triplicate to confirm aseptic
status. At the termination of insect growth, and just prior to insect dissection, frass was
collected from rearing chambers, suspended in 1% PBS, and plated to confirm that habitats
remained GF throughout the duration of the experiment. Bi-monthly sampling of
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GF-reared individuals for contamination was performed by homogenizing individuals
at various instars and plating homogenate on LBA. During sterile treatment method
development, diagnostic PCR with universal 16S primers 27F (5′-AGAGTTTGATCMT
GGCTCAG-3′) and 1391R (5′-GACGGGCGGTGTGTRCA-3′) was performed on
DNA extracted from homogenates prepared from GF insects and their frass to detect
non-cultivable contaminants of the gut or habitat. Additionally, microscopic
examination of 4′,6-diamidino-2-phenylindole (DAPI)-stained frass, gut contents, and
gut thin-sections were performed to further evaluate the effectiveness of the GF, and
conventionalization protocols.

Instar duration measurement
Germ-free and Conv nymphs raised in cohorts of three to four insects were monitored
individually for molting activity, and dates of instar transitions of individuals within
each cohort were recorded. Aquarium rearing of WT insects in cohorts of dozens of
individuals prevented tracking of individual insects and corresponding molt date and
developmental times within the WT treatment. Insects dissected at subsequent instars
for gut morphological measurements resulted in decreasing sample sizes at later
instars, and non-parametric statistical methods were used when making comparisons
across instars. Targeting early instar insects constrains the experiment to a relatively
short timeframe, as rearing to adulthood is prohibitively long (6–12 months for
WT insects), with GF P. americana progression to adulthood uncertain.

Morphological measurements
Nymphs were collected as they molted to third, fourth, and fifth instars, and duration
(days) of these instars were recorded. Previous work has shown that the cumulative effects
of bacterial colonization, or lack thereof, in the host could be observed in fourth and
fifth instars and thus all experimental measures in this study were taken from fifth instar
individuals (Bracke, Cruden & Markovetz, 1978; Gijzen & Barugahare, 1992). Nymphs at
designated life stages were dissected approximately 5 days after molting, at peak of
feeding within instar (Valles, Strong & Koehler, 1996), to minimize variability in gut
morphology associated with instar transitions. Eight morphological metrics were collected
in millimeters (mm), unless otherwise noted: body length, body width, bodymass (grams, g),
whole gut length, foregut length, midgut length, hindgut length, and gut mass (g).
FIJI image analysis package (ImageJ) was used to perform measurements of the full length
of dissected guts (esophagus to anus) and their corresponding carcasses from digital
images of these tissues taken immediately following dissection. Results of statistical tests
performed on comparisons of morphological measurements are reported in Table S1.
Additionally, gut compartments and bodies were traced and lengths measured, with
measurements calibrated to a scale in each photo. Mass measurements were also collected
for whole GF, Conv, andWT individuals prior to dissection and of their dissected digestive
tracts using a microbalance. Additionally, qualitative observations of gut texture, color,
opacity, and segmentation were collected from dissected fifth instar GF, Conv, and
WT individuals.
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Phenotype analysis
All statistics were performed in R using vegan and FSA packages (Ogle; R Development
Core Team, 2013; Oksanen et al., 2015). Morphological measurements at instar rather than
calendar age yielded differences in sample size, as insects aged out of instar classes at
different rates; non-parametric statistics were utilized to accommodate sample size
variation. Instar duration, and morphological measurements were analyzed for statistical
differences using a Mann–Whitney Test for pairwise-comparisons. Kruskal–Wallis and
Dunn Tests were performed for multiple comparisons, with Bonferroni correction-
adjusted p-values. Principal component analysis (PCA) was performed to simultaneously
examine multiple morphological variables across treatments. The function “Varpart”
within the vegan R package was used to partition variance among morphological variables
and the PCA was constrained to the three variables representing 93% of the variation.
Subsequently, multi-response permutation procedure (MRPP) was used to assess the
significance of the observed differences between treatment centroids.

RESULTS
Germ-free insects exhibited reduced width and prolonged instar
duration
Germ-free (n ¼ 37) P. americana individuals remained in each instar an average of two
days longer than Conv (n ¼ 34) individuals (Fig. 1A), which resulted in longer times
between molts in GF insects and prolonged developmental periods (Fig. 1B) being
observed. While Conv insects molted to fifth instar after an average of 32.3 days, GF insects
required an average of 38.9 days to reach the same life stage. While stadium duration
of WT insects was not obtained for every instar because of the complexity of tracking
individual insects in a large cohort, average age at fifth instar was 30.2 days (Fig. S1).
GF insects also exhibited the lowest average body width (3.84 mm) when compared to WT
(4.18 mm) and Conv (4.08 mm) insects (Fig. 1C). Body lengths of GF and Conv individuals
were not significantly different at third, fourth, or fifth instars (Fig. 1D), and body mass
did not differ between treatments (Fig. S2).

Conventionalization of germ-free P. americana recovers normal
hindgut tissue morphology and development
Distinct visual contrasts between fifth instar WT (n ¼ 23) (Fig. 2A; Figs. S3A–S3C) and
GF (n ¼ 32) (Fig. 2B; Figs. S3D–S3F) hindgut tissues were consistently evident. WT
P. americana hindguts are characterized by numerous lateral folds along the length
of the hindgut that are visible as an undulating gut margin with lateral creases (Fig. 2D).
All inspected WT hindguts were opaque, turgid in texture, and generally filled with
mustard-yellow hindgut contents (Fig. 2A; Figs. S3A–S3C). Conv hindguts (Fig. 2C;
Figs. S3G–S3I) were similar to those from WT insects in that they were turgid in texture
and more opaque than GF hindguts (Fig. 2B; Figs. S3D–S3F), and Conv hindguts
exhibited frequent lateral folds and coloration characteristic of WT insects. Further,
dissection of Conv revealed mustard-yellow contents, similar to those observed in WT
digestive tracts, and this appears to be a mix of digestate and bacterial biomass (note the
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Figure 1 Maturation rate and body morphology. Limiting access to gut bacteria via coprophagy
prolongs development in Periplanata americana. (A) Duration (stadium) of individuals within each life
stage; (B) Cumulative development time; (C) Body width measurements; (D) Body length measurements.
Asterisks indicate significant (p < 0.05) differences given a Dunn test. n, number of individuals measured
per sample. Full-size DOI: 10.7717/peerj.6914/fig-1
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fluorescence of material in gut lumen in Fig. 3) lodged in hindgut folds (Fig. 3). DAPI
stained hindgut tissue thin sections reveal a dense mat of bacterial biomass adjacent
to the host gut epithelial lining and planktonic bacterial growth deep within the lumen of
WT and Conv insects (Fig. 3). In contrast, GF hindguts were uniformly flaccid,
translucent, and displayed less frequent and less pronounced lateral folding (Fig. 2B;
Figs. S2D–S2F). Additionally, gut contents were comprised of partially digested diet and
no evidence of bacteria were observed (Fig. 3). No amplicon was observed after
diagnostic PCR conducted on GF frass DNA extract (Fig. S4) using bacteria-specific
primers. Despite thorough cleaning of fat bodies from guts at the time of dissection, the
fat body specific endosymbiont Blattabacterium was detected in diagnostic PCR reactions
of gut tissue DNA extracts from GF insects, negating the utility of bacteria-specific
primers for contamination detection in gut homogenates by diagnostic PCR.

Average length of the complete fore-to-hindgut tissues was shorter in GF insects
(17.13 mm) than in both Conv (18.96 mm) and WT (21.24 mm) insects (Fig. 4A;

Figure 2 Qualitative comparisons of hindgut morphology in fifth instar Periplaneta americana.
Exemplars from three wild-type (A–C), germ-free (D–F), and conventionalized (Conv.; G–I) P. americana
individuals are presented. A magnified hindgut from a wild-type P. americana (J) is provided to highlight
normal morphological features, including undulating gut margin highlighted by a thick white line and gut
segmentation highlighted with thin dashed lines. Scale represents one mm.

Full-size DOI: 10.7717/peerj.6914/fig-2
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Dunn Test: GF-Conv p ¼ 0.0244, Conv-WT p ¼ 0.0028, GF-WT p ¼ 0.0054). When
fore- (Fig. S5) and mid-gut (Fig. 4B) sections were examined separately, average lengths
did not differ significantly between any treatments at any instar, except for between
GF (3.30 mm) and either WT (4.83 mm) or Conv (3.48 mm) third instar midguts
(Dunn Test: WT-GF p ¼ 0.0058, Conv-GF p ¼ 0.0455). Conversely, hindgut length was
significantly reduced in GF insects at third, fourth, and fifth instars relative to either Conv or
WT insects (Fig. 4C). Finally, significant differences in gut mass were only detected at
fourth instar between GF and WT insects (Fig. S6), with respective masses of 5.2 and 6.7 mg
(Dunn Test: WT-GF p < 0.0070), but variability was high within treatments.

Figure 3 Conventionalized Periplanata americana hindguts are enriched with microbial biomass.
Wild-type and conventionalized Periplanata americana hindguts are enriched with microbial biomass
that aggregates adjacent to the epithelium, while germ-free hindguts lack microbial biomass. 4′,6-dia-
midino-2-phenylindole (DAPI) stained thin-sections of hindguts from wild-type (WT) (n ¼ 3), germ-
free (GF) (n ¼ 3) and conventionalized (Conv) (n ¼ 3) P. americana were viewed under epifluorescence
to visualize DNA associated with epithelium and luminal contents. h, Hemocoel; l, lumen; n, gut epi-
thelial cell nuclei; m, microbial biomass; arrows—fluorescence consistent with bacterial morphology.

Full-size DOI: 10.7717/peerj.6914/fig-3
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Wild-type, conventionalized, and germ-free insects bear
morphological signatures that define a gradient across treatments
Of eight morphological variables examined in this study whole gut length, midgut length,
and hindgut length explained 91.4% of variance across treatments (Fig. S7). PCA was
performed to examine the relationship among treatments at each instar in reference to
these three response variables. Ordination was conducted on the first two principal
components, representing 84.5% and 6.9% of variance explained, respectively (Fig. 5).
Treatment centroids were significantly different (MRPP: p < 0.001), with the Conv

Figure 4 Gut morphology. Conventionalization of germ-free Periplaneta americana partially recovers
wild-type gut length morphology as individuals age. Whole gut (A) midgut (B) and hindgut (C) lengths
were measured in germ-free (GF), conventionalized (Conv) and Wild-Type (WT) individuals at third,
fourth and fifth instars, and, at the sixth instar for WT and Conv individuals. Asterisks indicate sig-
nificant (p < 0.05) differences given a Dunn test. n, number of individuals measured per sample.

Full-size DOI: 10.7717/peerj.6914/fig-4
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centroid being intermediate to that of GF and WT centroid. All vector loadings associated
with morphological variables were significant, with strong linearity (p < 0.001, whole gut
length r2 ¼ 0.99, midgut length r2 ¼ 0.91, hindgut length r2 ¼ 0.89). Loading vectors
for hindgut length and whole gut length demonstrate a gradient of low values in proximity
to the GF centroid to high values toward the WT centroid. The vector for midgut length
appears to follow a gradient associated with within-instar variation, as midgut length
varies more within instar than across treatments. A second PCA was performed on data
from all instars and treatments, simultaneously, with 93.1% and 1.9% of variance explained
by the first two axes, yielding greater linearity of loading vectors but reduced separation
of centroids (Fig. S8). With multiple instars represented within each treatment, vector
loadings previously associated with within-instar variation (i.e., midgut length) realign to
describe an across-treatment gradient, implying that variation in midgut length is better
explained by treatment than instar or within-instar effects.

DISCUSSION
We demonstrated that GF P. americana exposed to frass from lab-reared, WT conspecifics
partially restored instar duration periods and digestive tissue development, particularly
in hindgut tissues, to levels observed in WT insects, and these findings suggest a
relationship between exposure to gut microbiota in cockroach frass and host digestive
tissue and developmental outcomes. P. americana and other cockroaches typically live in
dense multigenerational aggregates that afford them easy access to waste, discarded
exoskeletons, and dead bodies, and the microbes therein, of conspecifics (Mira, 2000;
Nalepa, Bignell & Bandi, 2001; Kopanic et al., 2001; Rychtá!r et al., 2014). These social and

Figure 5 Principal Component Analysis (PCA) of morphological characteristics at fifth instar. PCA
and ordination was performed, constrained by the three variables explaining the greatest variation,
specifically, whole gut length (wg), hindgut length (hg), and midgut length (mg). The first component
explained 84.5% of variation, with 6.9% and 2.2% explained by the second and third components.
Treatment clusters displayed the least overlap at instar 5 and are situated with Conventionalized (Conv)
treatment sandwiched between germ-free (GF) treatments and Wild-Type (WT). Distance between
treatment centroids was 0.22 between the WT and GF centroids, 0.15 between the Conv and GF cen-
troids, and 0.12 between the Conv and WT centroids. All vector loadings are significant (p < 0.000999)
with r2 values of 0.99 (wg), 0.91 (hg), and 0.89 (mg). Vector length is proportional to fit.

Full-size DOI: 10.7717/peerj.6914/fig-5
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dietary behaviors are common in cockroaches and reflect a reliable means for the
transmission of gut microbes that contribute to host fitness (Nalepa, Bignell & Bandi, 2001;
Sabree & Moran, 2014). We hypothesized that P. americana relies upon community-
acquired gut microbes for normal development, and preventing their exposure to these
microbes (as in GF insects) would result in growth and developmental defects. GF insect
growth stalled in fourth and fifth instars, as no insects progressed to sixth instar within
the timeframe of the experiment and some insects remained in fifth instar indefinitely.
Future work may determine whether germ free P. americana progress to adulthood.
GF insects conventionalized by a single exposure to conspecific frass early in life (i.e., Conv
insects) exhibited a partial, but significant, remediation of instar duration (Figs. 1A–1C)
and gut tissue development (Figs. 2A–2D, 3 and 4A–4C). Interestingly, Conv insects
exhibited an initial delay in growth and maturation at first instar, compared to both
WT and GF insects (Figs. 1A–1D). This was likely due to the 3 day exposure to
frass, without food, to enforce frass consumption. Yet, the cumulative benefit of microbial
colonization allowed the Conv insects to surpass the GF and approach growth and
maturation levels observed in WT insects by fifth instar. Given these data, it was surmised
that the observed positive growth and developmental responses to frass exposure and
subsequent gut colonization were cumulative due to persistent colonization of the
cockroach gut rather than a burst of growth at time of exposure. It is notable that
Blattabacterium was not removed as part of making GF insects and was present in GF,
Conv, and WT insects, yet its contributions alone did not support normal host
development in the GF insects.

The partial recovery of WT growth and development observed may be due to Conv
insects having received only a single exposure to conspecific frass, instead of multiple
exposures, during development. Specifically, Conv insects were restricted to a single
exposure to WT frass during their first instar and were housed in small cohorts (n < 4)
for the duration of the experiment (i.e., through fifth instar) and each experienced at least
four moltings. Molting represents a potential bottleneck event during which portions
of the gut lining, along with substantial gut contents and associated bacteria, are
shed (Engel & Moran, 2013). If the exuvium and gut lining are not rapidly consumed
by insects there is potential for loss of gut microbes, especially oxygen-sensitive taxa
(e.g., some members of the Bacteroidetes and Firmicutes), that may not easily be
horizontally reacquired through coprophagy within a relatively tiny cohort of insects
of the same life-stage experiencing the same experimental conditions. Under normal
conditions, developing insects living in multigenerational, population dense
communities would have several opportunities to reacquire gut bacteria lost as a result of
molting by coprophagy. As these experimental conditions were meant to severely
limit exposure to microbes present in frass, further work is planned to determine
minimum frass exposure frequency for nymphs to achieve WT growth and development.

An additional explanation for the observed results is that the absence of gut microbes in
GF insects may have limited the host’s access to dietary nutrients that are typically
liberated by members of the gut microbiota, and thus prolonged their development due to
inadequate access to nutrients. Cockroaches and other insects that consume a diet
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comprised primarily of plant biomass that is rich in recalcitrant polysaccharides like
pectin, cellulose, and hemicellulose have a characteristically enlarged hindgut colonized
with diverse microbes that serves as an anaerobic digester for these biopolymers
(Bignell, 1977, 2016; Breznak, 1982; Kane & Breznak, 1991; Kane, 1997; Bell, Roth &
Nalepa, 2007; Watanabe & Tokuda, 2010). Exposure to conspecific frass partially
recovered WT levels of gut tissue development and instar duration, which may indicate
the colonization of some endemic taxa that facilitate dietary nutrient accessibility. It was
notable that despite little size and weight difference at equivalent instar, the
gastrointestinal tract developed differentially in GF and Conv insects, especially in the
hindgut where the highest numbers of bacteria have been found. The hindgut is a
major site of microbial activity along the cockroach alimentary tract, with the greatest
numbers of bacteria consistently identified in this compartment through methods as
diverse as microscopy, cultivation, and 16S sequencing (Bignell, 1977; Bracke, Cruden &
Markovetz, 1979; Schauer, Thompson & Brune, 2012; Schauer et al., 2014). As such, it is
unsurprising to find significant divergence in growth phenotype between GF and
either WT or Conv insects in this compartment in the absence of microbial influence.
Additionally, the microbial and biochemical composition of the frass is likely more
similar to that of the hindgut than the midgut, which may explain why the remediative
value of the frass was more pronounced in these tissues.

Gut microbes have been shown tomediate nutritional and immune factors and influence
physiological systems (Engel & Moran, 2013), and numerous avenues to microbial
promotion of host growth have been identified in other model organisms, and are likely
functioning in P. americana. Efforts to link gut microbiota to host health and development
have been spurred by the tremendous progress being made to detail the membership
and composition of these communities. Model systems, especially GF animals, provide
invaluable platforms for linking microbes to specific host outcomes. P. americana is
a valuable addition to available invertebrate model systems because it harbors species of
many bacterial taxonomic groups typically found in some vertebrates, including humans,
is trophically omnivorous, and can be reared GF without antibiotics and, given this
study, responds positively when exposed to conspecific frass. The relatively low rearing
costs and high fecundity add to the amenability of the GF P. americana model system,
which further ensures that many of the questions raised by results obtained in this study
can easily be experimentally pursued. Further efforts to scrutinize how conspecific
frass and its biochemical and microbial components are linked to host growth and
development are underway and may reveal details of host-microbe interactions that may
be generalizable to other animals.

CONCLUSION
A single inoculation of germ free P. americana with conspecific frass was sufficient to
yield persistent gut colonization by microbiota, significantly decrease instar duration and
speed maturation to fifth instar, while significantly increasing hindgut length. Future
work should examine whether inoculation frequency further impacts development.
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