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1 | INTRODUCTION

Abstract

We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein
assembly prediction challenge. The Round comprised a total of 20 targets including
14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets
and one heterodimer comprised proteins that could be readily modeled using tem-
plates from the Protein Data Bank, often available for the full assembly. The
remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-
order assemblies. These were more difficult to model, as their prediction mainly
involved “ab-initio” docking of subunit models derived from distantly related tem-
plates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on
average ~2000 models per target. About 17 groups participated in the CAPRI scor-
ing rounds, offered for most targets, submitting ~170 models per target. The predic-
tion performance, measured by the fraction of models of acceptable quality or
higher submitted across all predictors groups, was very good to excellent for the
nine easy targets. Poorer performance was achieved by predictors for the 11 diffi-
cult targets, with medium and high quality models submitted for only 3 of these tar-
gets. A similar performance “gap” was displayed by scorer groups, highlighting yet
again the unmet challenge of modeling the conformational changes of the protein
components that occur upon binding or that must be accounted for in template-
based modeling. Our analysis also indicates that residues in binding interfaces were
less well predicted in this set of targets than in previous Rounds, providing useful

insights for directions of future improvements.

KEYWORDS
blind prediction, CAPRI, CASP, docking, oligomeric state, protein assemblies, protein

complexes, protein-protein interaction, template-based modeling

of which form the building blocks of larger assemblies. This increasingly

rich structural repertoire in conjunction with the recent explosion of the

Protein-protein interactions and multiprotein complexes, which often
include other macromolecular components such as DNA or RNA, play
crucial roles in many cellular processes. Their disruption or deregula-
tion often leads to disease.'? Charting these interactions and elucidat-
ing the principles that governs them remains an important frontier
that molecular biology and medicine strive to conquer.

Data on the three-dimensional structures of protein complexes
determined by experimental methods and deposited in the PDB (Protein
Data Bank)® have taught us much of what we currently know about
these complexes.“'7 So far however, detailed structural information has
been available for only a small fraction of protein complexes, and more
particularly multiprotein complexes, that are active in the cell and can be
detected by modern proteomics and other methods. But this is changing
rapidly thanks to recent spectacular advances in single molecule cryo-EM
techniques, specifically geared at determining the structure of large
macromolecular assemblies at atomic resolution.®?

In the meantime, structural biology is continuing to successfully char-

acterize the structural and folding landscape of individual proteins, many

number of available protein sequences and progress in computational
methods are making it possible to model the 3D structure of individual
proteins with accrued accuracy from sequence information alone. Most
commonly, this is done using as templates the structures of related pro-
teins deposited in the PDB.%0-12

Owing to the recent explosion of the number of available protein
sequences, and progress in computational methods for exploiting
them to predict residue-residue contacts,*>*> the ability to model
protein structures in absence of available templates has also made sig-
nificant strides forward. Furthermore, information on structure and

16- 19)

sequence features of proteins (see for examples is being

exploited much more efficiently thanks to new developments in Artifi-

cial Intelligence Deep Learning techniques,2%*

enabling the predic-
tion of the 3D structure of proteins from sequence information alone,
as most recently demonstrated in the CASP13 ab-initio structure pre-
diction challenge.??

Protein structures from this increasingly rich repertoire, deter-

mined either experimentally or computationally, may be used as
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templates or scaffolds for designing artificial proteins with many use-
ful medical applications.?>2° Designing large artificial multiprotein
assemblies has also been attempted, but remains considerably more
challenging.?® Modeling natural higher order protein assemblies is
likewise difficult and involves sophisticated hybrid modeling

techniques,”'28

which integrate sequence and structural information
on individual proteins with various other types of data.
Computational approaches play a very important role in the
efforts to populate the uncharted landscape of protein assemblies.
Of particular relevance here are methods for modeling the 3D
structures of protein assemblies starting from the known structures
of the individual components, the so-called “docking” algorithms,
and the associated energetic criteria for singling out stable binding
modes.2?"31 CAPRI (Critical Assessment of PRedicted Interactions)
(http://pdbe.org/capri/; http://www.capri-docking.org/) is a com
munity-wide initiative inspired by CASP (Critical Assessment of
protein Structure Prediction). CAPRI was established in 2001 with
the mission of offering computational biologists the opportunity to
test their algorithms in blind predictions of experimentally deter-
mined 3D structures of protein complexes, the “targets,” provided
to CAPRI prior to publication. CASP has been very instrumental in
stimulating the field of protein structure prediction. CAPRI has
played a similar role in advancing the field of modeling protein
assemblies. Initially focusing on testing procedures for predicting
protein-protein complexes, CAPRI now also deals with protein-pep-
tide, protein-nucleic acids, and protein-oligosaccharide complexes.
In addition, CAPRI has conducted challenges geared at evaluating
computational methods for estimating binding affinity of protein-

protein complexes®2-34

and predicting the positions of water mole-
cules at the interfaces of protein complexes.®®

The task of modeling the atomic structure of protein complexes
has likewise evolved. It was initially limited to the classical docking
procedures. These procedures sample and score putative binding
poses of two or more proteins starting from the known unbound
structures of the individual components of a complex (see Reference
29). In recent years however, thanks to the growing ease with which
structural templates can be found in the PDB, docking calculations
can take as input homology-built models of the components, with an
increasing degree of success. It is furthermore not uncommon to find
templates for the entire protein assembly. Such cases occur most
often for assemblies of identical subunits (homodimers, or higher
order homo-oligomers), because closely related proteins tend to adopt
the same assembly mode (oligomeric state).3¢%” In such instances,
classical docking calculations may no longer be required because the
protein assembly can be modeled directly from the template, a task
also called “template-based docking.”20-3837

In a significant number of cases however, the modeling task
remains challenging because the template structure may differ signifi-
cantly from the structure of the protein to be modeled, or adequate
templates cannot be identified. Overcoming these important road
blocks calls for a much closer integration of methods for predicting
the 3D structure of individual protein subunits and those for modeling

protein assemblies, and developing means for improving the accuracy

of the resulting structures. An important step in this direction has
been to establish closer ties between the CASP and CAPRI communi-
ties by running joint CASP-CAPRI assembly prediction experiments.
Two such experiments were conducted in the summers of 2014 and
2016, respectively, with results presented at the CASP11 and CASP12
meetings in Cancun, Mexico, and Gaeta, Italy, and published in two
special issues of Proteins.*042

Here we present the results of the CASP13-CAPRI challenge,
the third joint assembly prediction experiment with CASP, rep-
resenting Round 46 of CAPRI. This prediction Round was held in
the summer of 2018 as part of the CASP13 prediction season.
Round 46 also included scoring experiments, where participants are
invited to identify the correct models from an ensemble of
anonymized predicted complexes generated during the docking
experiment.*>44

CAPRI Round 46 comprised a total of 20 targets including
14 homo-oligomers, and 6 heterocomplexes, for which predicted
models were assessed. These represented about half the total number
of targets (42) offered for the assembly prediction challenge to CASP
predictors. The targets of Round 46 were selected by the CAPRI man-
agement, as representing tractable modeling problems for the CAPRI
community. The selection criteria were less strict than in previous
joint CASP-CAPRI experiments. A target was considered a tractable
modeling problem even when it was a dimer, or higher order assem-
bly, for which only distantly related templates could be identified, for
at least a portion of the components of the target complex, using
available tools such as HHpred.*>**¢ But targets where even such tem-
plates could not be identified were considered as particularly difficult
ab-initio fold prediction problems, since both the 3D structures of the
subunits and their association modes need to be predicted simulta-
neously. Such problems are very challenging even for CASP groups
expert in ab-initio fold prediction, but remain intractable for CAPRI
groups where this expertise is mostly lacking. As in previous Rounds,
such targets where therefore not offered to CAPRI groups in this
Round.

Combining the still distinct methods and expertise of both com-
munities into an integrated modeling approach to the problem of
protein assembly prediction has been an important goal of the CASP-
CAPRI collaboration. In this third joint prediction Round, important
steps in this direction included relaxing the criteria for selecting CAPRI
targets, and the fact that subunit models made available by CASP
servers were increasingly used as input for docking calculations by
CAPRI groups, as will be further discussed.

A summary of the results of this CASP13-CAPRI assembly predic-
tion challenge was presented at the CASP13 meeting held in Cancun,
Mexico in December 2018. Here we present the complete results of
this challenge, which also include those of the predicted protein-
protein interfaces,*>*” for example, the amino acids residues that are
part of the recognition surfaces of the target proteins.

A separate evaluation of the CASP13 assembly prediction perfor-
mance, reported at the CASP13 meeting and in this Special issue,?2
was carried out by a team of independent assessors in collaboration
with the CASP team.
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2 | THE TARGETS

The 20 targets of the CASP13-CAPRI assembly prediction experi-
ment, which is henceforth denoted as Round 46, are listed in Table 1.
The targets are designated by their CAPRI target ID followed by their
corresponding CASP target ID, prefixed by “T” for homo-oligomers,
and by “H” for hetero-oligomers.

As in previous CASP-CAPRI challenges the majority of the targets
(14) were homo-oligomers. The remaining six targets were hetero-
complexes. These targets were proteins from different organisms with
the size of individual subunits spanning a very wide range (70-1589
residues). They were offered to this challenge by individual structural
biology laboratories. All the targets were high-resolution X-ray struc-
tures, with three exceptions: targets T144/T0984 and T147/T0995,
and the 18-mer hetero complex (T159/H1021), determined by cryo-
EM. Most of the targets had annotated biological function and the

TABLE 1
Easy Targets
Target ID Stoich. #Int. Area (A?)
T139 T0961 Al 2 2530/ 670
T140 T0973 A2 1 3610
T143 T0983 A2 1 920
T144 T0984 A2 1 4385
T147 T0995 A2/A4/A8 3 1980-520
T152 T1003 A2 1 4645
T153 T1006 A2 1 590
T158 T1020 A3 1 1130
T142 H0974 A1B1 1 670
Difficult Targets
Target ID Stoich. #Int. Area (A?)
T137 T0965 A2 2 1270-1050
T138 T0966 A2 2 1730-900
T141 T0976 A2 1 2700
T148 T0997 A2 1 1060
T149 T0999 A2 5 1710-400
T150 T0999
T151 T0999
T154 T1009 A2 1 2370
T146 H0993 A2B2 3 1910-630
T155 H1015 A1B1 1 1220
T156 H1017 A1B1 1 1025
T157 H1019 A1B1 1 820
T159 H1021 A6B6C6 7 1615-560

majority had an author-assigned oligomeric state of the protein,
although in a few cases these assignments may have been tentative.
In several cases analysis of the target crystal contacts and the predic-
tion results, with further support from computational procedures such
as PISA*® and EPPIC,* suggested alternative oligomeric states to
those assigned by the authors, as will be described below.

We classified the 20 targets of Round 46 into two categories: easy
targets and difficult (to model) targets. The nine easy targets (Table 1)
included eight homo oligomers (five homodimers, one homotrimer,
one homotetramer, and one homo-octamer), for which good structural
templates were available either for the full assembly, or for the main
interfaces (of the higher-order homomers).

These homo-oligomers comprised enzymes, transporters and
channels from bacteria, bacteria phages, plant, and human. Their sizes
ranged from 79 residues for the putative membrane transporter
(T153/T1006), to

magnetosome dimer from C. desulfamplus

CASP13-CAPRI assembly targets, divided into “Easy” and “Difficult” targets, depending on template availability

#Res. PDB Description
505 N/A Acyl-CoA dehydrogenase from Bdellovibrio
bacteriovorus
146 N/A Bacteriophage ESEO58 coat protein
245 N/A Cals10 protein
752 6NQ1 Two-pore calcium channel protein; EM
330 N/A Cyanide dihydratase (B. pumilus); EM
474 6HRH ALAS2, 5'-Aminolevulinate synthase 2
79 6QEK Putative membrane transporter (C. desulfamplus)
577 N/A SLAC1 protein
70/80 N/A Repressor-antirepressor complex (lysogeny switch)
#Res. PDB Description
326 6D2V NADP-dependent reductase
494 5Wé6L RasRap1 site-specific endopeptidase
252 2MXV Rhodanese-like family protein, bacteria
228 N/A LD-transpeptidase
1589 N/A Pentafunctional AROM polypeptide: five
main enzymes of the shikimate
pathway
Idem; with SAXS data
Idem; with crosslinking data
718 6DRU Alpha-xylosidase
275/112 N/A Lipid-transport, bacterial outer membrane
89/129 N/A CDI_213 protein, bacteria
111/129 N/A 201_INDD4 protein, E. coli
58/88 N/A CDI207t protein, E. coli
148/351/295 N/A 18-mer heterocomplex; EM

Note: The columns present respectively the CAPRI and CASP target ID, stoichiometry of the assembly, the number of interfaces, the surface area range
(largest to smallest) of the interfaces, the number of residues per monomer, the PDB-RCSB code (if available), and a textual description of the target. For
target structures not yet deposited in the PDB (N/A in column 7) structural details could not be revealed here.
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752 residues for the TTPC2 calcium channel dimer from human
(T144/T0984). The B. pumilus cyanide dehydratase (T147/T0995) was
potentially a higher order assembly, adopting a helical assembly of
dimeric repeats, featuring up to three interfaces. Also classified as an
easy target (although more challenging than the remaining eight tar-
gets in this category), was the putative Lactococcus phage repressor-
antirepressor hetero complex (T142/H0974); templates for this target
were not available for the complex as a whole.

The more difficult targets, 11 in all (Table 1), included
6 homodimers and 5 heterocomplexes, all were from bacteria or fungi.
They were classified as “medium difficulty” targets in CASP, where
the main focus is prediction of the 3D structure of the protein, but
were deemed difficult to model in CAPRI, where the focus is to cor-
rectly model the binding interfaces between proteins. The difficult
homodimers were rather large proteins, with sizes ranging from
326 residues for the NADP Dependent Oxidoreductase TerB (T137/
T0965) to 1589 residues for the pentafunctional AROM polypeptide
(T149/T0999), a protein comprising four structural domains. In addi-
tion, mostly distantly related templates were available for the individ-
ual subunits. To facilitate the task the pentafunctional AROM
polypeptide was also offered as a data driven modeling challenge,
guided by SAXS (small angle X-ray scattering) data (T150/50999) and
XLMS (cross linking mass spectrometry) data (T151/X0999). The diffi-
cult heterocomplexes comprised three heterodimers, one
heterotetramer and one 18-mer hetero complex, a cryo-EM structure,
comprising three different subunits. These hetero complexes were
composed of smaller subunits (88-295 residues) than their difficult

dimer counterparts.

3 | OVERVIEW OF THE PREDICTION
EXPERIMENT

As in the previous CASP-CAPRI challenges and in standard CAPRI
Rounds, predictor groups were provided with the amino-acid
sequence or sequences of the target proteins. Predictors were also
provided with information on the biologically relevant oligomeric
states of the proteins, provided by the authors for most targets, and
occasionally some additional relevant details about the protein.

Predictors generally start by querying public resources?¢°%>1

or
their own, for structures of protein homologs that can be used as tem-
plates for modeling the structure of the target protein. Modeling is
greatly facilitated when templates for the full assembly can be identi-
fied (which is more commonly the case for homodimers or homo-olig-
omers). For such targets (which are most often homodimers), the
modeling problem does not involve docking calculations to sample dif-
ferent association modes between the subunits. Instead, it reduces to
the simpler homology-based modeling problem whereby the target
complex as a whole is modeled on the basis of the known complex in
the templates. But the difficulty increases significantly when tem-
plates can be found only for individual subunits of the complex and
even more so when such templates correspond to proteins distantly

related to those of the target. Prediction of targets in this category

first requires building models of the individual subunits based on the
available templates. These models are then used as input for docking
calculations in order to identify the most likely association mode
between the subunits. Previous CAPRI evaluations clearly showed
that the prediction performance for such targets critically depends on
the accuracy of the built subunit models and tends to decrease drasti-
cally when the available templates are more distantly related to the
components of the target complex.*®#! To help tackle these more dif-
ficult cases, 3D models of the target proteins (mainly those of individ-
ual subunits) predicted by participating CASP servers were made
available to all predictor groups (of both CASP and CAPRI), 1 week
into the prediction round, and a good number of CAPRI groups used
them (see Supplementary Methods).

Lastly, it is important to note that predicting the structure of
higher order assemblies using as input homology modeled structures
(or even unbound versions) of the individual subunits is particularly
challenging, as was highlighted in previous evaluations.**#>2 Many
docking algorithm are built to deal with higher order assemblies
adopting simple dihedral or cyclic symmetries. Some methods impose
the required symmetry constraints from the onset, thereby reducing
the rigid-body search space.>®>5 Several docking servers, such as
SymmDock,56 HEX®® and CLUSPRO®’ offer them as well. When
modeling higher order assemblies, a common approach is to proceed
in a hierarchical fashion: predicting individual binary associations first,
and applying the symmetry constraints to select an optimal combina-
tion of interfaces (eg, a pair of interfaces in the case of D2 symmetry)
in a defined order.”® Often however, even small inaccuracies in the
predicted binary interfaces tend to propagate, making it difficult to
build a correct model for the full assembly. %4t

Following a recent practice in CAPRI, Round 46 predictors were
invited to submit 100 models for each target, to be used for the scor-
ing challenge (see below). It was stipulated however, that only the five
top ranking models should be evaluated, in compliance with CASP
regulations. To enable comparisons with the performance in previous
CAPRI rounds, prediction results based on the 10 top ranking models,
or on the single top ranking models, are also reported.

With the exception of target T137/T096, prediction experiments
were followed by the CAPRI scoring experiment. After the predictor
submission deadline, all the submitted models (100 per participating
group) were shuffled and made available to all the groups participating
in the scoring experiment. The “scorer” groups were in turn invited to
evaluate the ensemble of uploaded models using the scoring function
of their choice, and to submit their own five top-ranking ones. Scorer
results based on the top 10, and top 1 ranking models are also
reported. For the three target versions of the multidomain AROM
polypeptide (T149, T150, T151/T0999), all the models submitted by
predictor groups were combined and a single scoring experiment was
carried out on the combined set. Typical timelines for the prediction
and scoring experiments were 3 weeks and 5 days, respectively.

The number of CAPRI groups submitting predictions and the num-
ber of models assessed for each target are listed in the Supplementary
Material (Table S1). For Round 46 targets, 27 CAPRI groups submitted

on average ~2000 models per target of which 43 075 were assessed
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here. On average 17 scorer groups submitted a total of ~170 models

per target, of which a total of 3270 models were assessed.

4 | ASSESSMENT CRITERIA AND
PROCEDURES

To enable ready comparison with the results obtained in
previous CAPRI Rounds, including the two previous CASP-CAPRI

experiments,*>*!

models where evaluated using the standard CAPRI
assessment protocol. This protocol was complemented with the
DockQ score,>® a continuous quality metric that integrates the main
quality measures of the standard CAPRI protocol, as detailed below.

Additionally, we assessed the quality of the predicted protein-
protein interfaces in the submitted models, for example, the extent to
which residues from each of the contacting subunits that line the
binding interface are correctly identified. This is a distinct problem
from that of accurately predicting the detailed atomic structure of the
binding interface and of the protein complex (or assembly) as a whole.
It requires identifying only the residues from each subunit that form
the interface®” and was therefore assessed separately.

4.1 | The CAPRI assessment and ranking protocols

The predicted homo- and hetero-complexes were assessed by the
CAPRI assessment team, using the standard CAPRI assessment proto-
col detailed previously.**** This protocol uses three main parameters,
L_rms, i_rms and f(nat), to measure the quality of a predicted model. f
(nat) represents the fraction of native contacts in the target that is
recalled in the model. Atomic contacts below 3 A are considered cla-
shes and predictions with too many clashes are disqualified (for the
definition of native contacts, and the threshold for clashes see refer-
ence 43 and Supplementary Material). L_rms represents the backbone
rmsd (root means square deviation) over the common set of ligand
residues after the receptor proteins have been superimposed, and
i_rms represents the backbone rmsd calculated over the common set
of interface residues after the structural superposition of these resi-
dues. An interface residue is defined as such, when any of its atoms
(hydrogen atoms excluded) are located within 10 A of any of the
atoms of the binding partner. Based on the values of these three
parameters models are ranked into four categories: high quality,
medium quality, acceptable quality, and incorrect, as previously
described.*®

For targets representing higher order oligomers that feature more
than one distinct interface, as well as for some dimer targets with
seemingly ambiguous biological unit assignment, all distinct interfaces
formed with neighboring subunits in the crystal were examined. Sub-
mitted models were then evaluated by comparing each pair of inter-
acting subunits in the model to each of the relevant pairs of
interacting subunits in the target, as described previously.*® The qual-
ity score for the assembly as a whole, or for targets where more than
one interfaces was assessed, was taken as the score of the best-

predicted individual interface for the assembly. This is a much more

lenient criterion than used in previous CASP-CAPRI challenges, where
the score for the entire assembly was taken as the score of the worst
predicted interface. Schemes of intermediate leniency, representing
linear combinations of weighted scores for individual interfaces of the
assembly were also examined. But such schemes need to be adapted
to adequately balance the scores for low quality predictions for sev-
eral interfaces vs high quality predictions of, say, only one interface.
They must also deal with cases where alternative oligomeric state
assignments are considered. More work is therefore needed, and
approval by the CAPRI community must be obtained before these
schemes can be used to rank the prediction performance.

The quality of the modeled 3D structure of individual subunits
was also evaluated by computing the “molecular” root mean square
deviation, M-rms, of backbone atoms of the model vs the target. It
was used mainly to gauge the influence of the quality of subunit
models on the predicted structure of the assembly.

The performance of predictor and scorer groups and servers was
ranked based on their best-ranking model in the 5-model submission
for each target. The final score assigned to a group or a server was
expressed as a weighted sum of the individual target performance,
expressed in each of the three categories (acceptable, medium, and

high) as achieved by that group or server over all targets:
Scoreg = w1Nacc + w2Nmep + @3Nhig

where Nacc, Nmep, and Nygn are the number of targets of
acceptable-, medium-, and high-quality, respectively, and the values of
weights “o” were taken as w4 = 1, w, = 2, and w3 = 3.

This ranking method represents a significant difference with previ-
ous ranking protocols, where priority was given to the number of tar-
gets for which medium or high quality models were submitted, and
then to the number of targets with acceptable models. In particular, it
takes into account acceptable models in instances where a similar
number of medium and/or high quality models are submitted by a

given group.

4.2 | Additional assessment measures

To enable a higher-level analysis of the performance across targets,
we used a continuous quality metric as formulated by the DockQ

score, to evaluate each modeled interface®”:

DockQ = [ f[nat] + rmSscaled[L_rms, d1] + rmsscaleq|i_rms, do]] /3

2
With rmseeaiea =1/ [1 + () } .

where f(nat), L_rms, and i_rms are as defined above. The rms,.,jeq
represents the scaled rms deviations corresponding to either L_rms or
i_rms, s and d; is a scaling factor, d4 for L_rms and d, for i_rms, which
was optimized to fit the CAPRI model quality criteria, yielding
dy =8.5Aand dy = 1.5 A (see Reference °%)
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4.3 | Evaluating the prediction of interface residues

Models submitted by CAPRI predictor scorer and server groups
were also evaluated for the correspondence between residues in
the predicted interfaces and those observed in the corresponding
structures of the 22 targets of Round 46. A total of 38 distinct
protein-protein interfaces, sometimes representing more than
one interface for each interacting component, were evaluated. The
number of interfaces evaluated for individual targets in both
categories (easy and difficult) are listed in Table 1. Interface resi-
dues of the receptor (R) and ligand (L) components in both the tar-
get and predicted models were defined as those whose solvent
accessible surface area (ASA) is reduced (by any amount) in the
complex relative to that in the individual components.*” As in the
official CAPRI assessment, the surface area change was computed
from the structures of the individual components in their
bound form.

The agreement between the residues in the predicted vs the
observed interfaces was evaluated using the two commonly used
measures, Recall (sensitivity) and Precision (positive predictive value).
Recall is denoted as f(IR), the fraction of interface residues in the tar-
get complex recalled in the model. Precision = 1 — f(OP), where f(OP),
is the is the fraction of overpredicted residues (false positives) in the

predicted interface.

5 | RESULTS AND DISCUSSION

This section is divided into five main parts. The first part presents
the results of human predictors, servers, and scorer groups for the
20 individual CAPRI Round 46 targets for which the prediction and
scoring experiments were conducted. In the second part, we pre-
sent the rankings of the same groups established on the basis of
their performance across all targets, and discuss insights gained
from ranking the performance of these groups for the easy and
more difficult targets, respectively. In the third part, we report
results of the binding interface predictions obtained by the differ-
ent categories of participants for all targets. The fourth and final
part analyzes methods and factors that may have influenced the

prediction performance.

5.1 | Predictor server and scorer results for
individual targets

Detailed results obtained by all groups for individual targets analyzed
in this study can be found in Tables S2 and S3 of the Supplementary
Material. Values of all the CAPRI quality assessment measures for
individual models submitted by CAPRI participants for the 20 Round
46 targets can be found on the CAPRI website (URL: http://pdbe.org/
capri). Additional information on the performance of individual groups
can be found in the Supplementary Material (Individual Group

Summaries).

5.1.1 | Predictor and server results

Easy targets: T139, T140, T142,T143, T144, T147, T152,
T153,T158

The easy targets comprised eight homomers and one heterocomplex.
Since many predictors and groups performed well on these easy tar-
gets, we present the highlights of their performance in general terms,
without naming the best performing groups, which can be found in
Table S2.

For all the eight easy homomer targets, templates for the full
assembly were available in the PDB. Examples of available templates
used by predictors can be found in the Supplementary Material
(Individual Group Summaries). For five of the homomers (T139/
T0961, T143/T0983, T147/T0995, T152/T1003, T153/T1006) the
template quality was excellent. These templates featured sequence
identity levels of 50% or higher and backbone rmsd values signifi-
cantly below 2.0 A. Lower quality templates (25-45% sequence iden-
tity; backbone rmsd values ~3.5 A), were available for the remaining
three homomer targets (T140/T0973, T144/T0984, T158/T1020).
For the ninth target, the hetero complex (T142/H0974), lower quality
templates (29.3% sequence identify, 2.8 A rmsd) were only available
for the individual subunits and not for the assembly as a whole.

It was therefore not surprising that the prediction performance for
all the homomer targets was very good to excellent. For the five
homomer targets with excellent templates, an unusually large propor-
tion of the models submitted by individual predictor groups were of
high quality (see Table S2). For example, for T152/T1003, the seven
best performing groups each submitted between 3 and 5 high quality
models, whereas for T153/T1006, the number of groups with a simi-
lar performance was 4 but still significant. For T139/T0961 the homo-
tetramer, 7 out of the 10 best performing predictor groups each
submitted at least 4 high quality models for both interfaces among
their 5 top ranking submissions. Interestingly, for T147/T0995, the
higher order helical assembly, high quality models were submitted for
the smaller interfaces of this assembly (respectively 680 A2 and
520 A2), whereas only medium quality models were submitted for the
larger interface (1980 A?). But the number of groups submitting high
quality models was smaller (only one group for interface 2, and four
groups for interface 3), whereas 8 out of the top 10 groups submitted
as many as 5 medium quality models for interface 1.

For the three targets with lower quality templates (T140/T0973,
T144/0984, T158/T1020), a large proportion of the submitted
models were of medium quality. All eight top ranking predictor groups
submitted five medium quality models for target T140. Six of the top
ranking groups each submitted five and four such models for T144
and T158, respectively (Table S3).

Lastly, for the relatively more challenging heterocomplex (T142/
HO0974), the performance was significantly lower overall. Whereas all
the 10 best performing groups submitted between 1 and 4 medium
quality models, nearly all of the remaining ~20 predictor and server
groups submitted incorrect models for this target. In comparison, only

a small fraction of participating groups (between 2 and 10, out of a
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total of about 30) submitted incorrect models for the remaining easy
targets.

Figure 1 displays the best model (medium quality) submitted for
the heterodimer T142/H0974, and the best high quality models sub-
mitted for two of the easy homodimer targets, T140/T0973, and
T152/T1003, illustrating the level of accuracy achieved by predictors
for this category of targets.

It is noteworthy that automatic servers ranked frequently among
the 5 or 10 best performing groups for all the easy targets, with
servers such as LZerD, SwarmDock, GalaxyPPDock, Haddock, and

HDock achieving high performance more consistently.

Difficult targets: T137, T138, T141, T146, T148, T149 (T150,
T151), T154,T155,T156, T157, T159

As already mentioned, these difficult targets comprised six
homodimers, and five heterocomplexes, with the latter including one
heterotetramer and an 18-mer assembly obtained by cryo-EM
(Table 1). For all of these targets, including the homodimers, distantly
related templates were in general available only for individual
subunits.

Not too surprisingly, the predictions performance for these targets
was in general disappointing. For four of the homodimer targets,
(T137/T0965, T138/T0966, T148/T0997, T154/T1009) predictions
failed completely, with only incorrect models submitted by predictor
and server groups alike (Table S3). One of these targets, the RasRap1
site-specific endopeptidase (T138/T0966), was likely a case of an
ambiguous biological unit assignment for the experimental complex.
The biological unit assignment made available to the assessors and
predictors at the time of the experiment had the membrane localiza-
tion domain of the protein forming the rather large (1730 A?) dimer
interface (interface 1 for this target). Neither the PISA software,*® nor
any of the predictor groups recognized this to represent a stable inter-
face, and failed to predict it. This prompted the assessors to look for

Kihara Model 01 Eisenstein

f(nat) = 0.587 L-rms = 0.82 f(nat) = 0.676

DockQ = 0.797 I-rms = 0.72 DockQ = 0.804
FIGURE 1

potential alternative dimer interfaces among the crystal contacts. This
yielded a weaker interface (900 A?%) between the larger cytoplasmic
domains of the proteins, which altered the relative orientation of the
subunits, and positioned the two membrane localization domains fur-
ther apart from each other but pointing in the same direction and
seemingly well oriented to fit into a planar bilayer (Figure 2A,B). This
case turned out to illustrate well the challenge of assigning the biolog-
ically relevant oligomeric state of an assembly from the crystal struc-
ture. Indeed, PISA predicts neither interfaces of T138 as stable,
whereas EPPIC classifies both interfaces as stable. Furthermore, the
membrane localization domain seen to interact in the crystal structure
of T138, is found in a number of other known structures listed as
monomeric in the PDB. The latter observation together with the con-
tradictory conclusions of the computational assignments lends sup-
port to the biological unit being defined by the weaker interface in
T138. This interface was ultimately assigned as the biological unit in
the PDB entry for this complex (5W6L).

Interestingly, among all the participating groups, only the group of
Huang submitted a single acceptable model, which was for the weaker
interface of T138. This model was ranked 10th in their list of models
and was therefore not considered in the final group ranking.

For the remaining two difficult homodimers the best performance
was obtained for the primary interface of the multidomain
homodimers T149/T0999, also offered as data assisted targets T150/
S0999 (SAXS) and T151/X0999 (XLMS). For this target, five inter-
faces were evaluated independently, but only the main interface was
well predicted, as high-quality templates were available only for this
interface.

Lastly, only a few acceptable models were submitted, by both pre-
dictors and servers, for the rhodanese-like family homodimer (T141/
T0976). The difficulty with this target resided in the fact that the pro-
tein comprises two structurally similar domains, and forms an inter-
twined homodimer, where domain-domain contacts between subunits

C T142
(©) H0974

medium

Model 02 Zou Model 02
L-rms = 0.93 f(nat) = 0.476 L-rms = 2.83
I-rms = 0.87 DockQ = 0.635 I-rms = 1.42

Examples of the best quality models obtained for easy targets of Round 46. A, The high quality model by the group of Kihara,

obtained for the homodimer T152/T1003. B, The high quality model submitted by Eisenstein for the homodimer T140/T0973. C, The medium
quality model obtained by the group of Zou for the heterodimer T142/H0974. The models by Eisenstein and Zou were ranked second among the
top five models submitted by these predictors; the Kihara model was their top model. The values of f(nat), i_rms, L_rms, and the DockQ score for

these models are listed
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(A) T138/T0966 (C)

1. ,
1300 A

FIGURE 2

T146/H0993

Examples of targets with ambiguous biological unit assignments. A, B, lllustrates the case of target T138/T0966. A, Displays the

dimer association mode communicated by the authors, where the interface (interface 1, 1730 A2 buried area) is formed between the two
equivalent membrane localization domains. B, Displays the association mode suggested by the assessors after examining crystal contacts, where
the dimer interfaces (interface 2, 900 A?) is formed between the two cytoplasmic domains. In this new arrangement, the equivalent membrane
localization domains are now positioned roughly parallel to one another pointing in the same direction, an arrangement that seems compatible
with their insertion into the membrane. C-E, lllustrates the case of the A2/B2 heterotetramer T146/H0993. C, Shows the association mode
communicated by the authors, where the larger subunits form a homodimer (interface 1, 1300 A2) and two copies of the second smaller protein
bind at opposite sides of the dimer (interface 3, 460 A2), without contacting each other. D, Shows the association mode suggested by the
assessors following analysis of the crystal contacts. It forms a more globular complex, featuring the same dimer contact between the large
subunits, but involving a different interface between the large and small subunits (interface 2, 490 A?) as well as an additional small contact
between the two smaller subunits (200 A2), thereby reducing the total solvent accessible area upon complex formation. E, Displays both

association modes, using the same labels and color-code as in (C,D), with the larger MalF homodimer superimposed onto the cryo-EM structure
(PDB 6IC4). The panel illustrates the overlap of the alternative heterointerface of (D) with the interface formed with the other components of the
larger complex, lending support to the author assigned assembly of (C). The MalF chains of the EM structure and T146/H0993 align well and for

reasons of visibility only those of T146/H0993 are displayed

are more extensive than those within subunits. A hint about how the
domains interact in the dimer could be obtained from a number of
monomeric templates, featuring related domains that form a roughly
similar arrangement to that in the target dimer. Only six groups (four
human predictors: Kozakov, Zou, Shen, Eisenstein, and two servers:
CLUSPRO, and MDOCKPP) seemed to have successfully exploited
this hint and submitted acceptable models among their top five rank-
ing ones (Table S3).

The five heterocomplex targets presented a range of challenges.
Availability of poor templates for one or both subunits was a major
stumbling block for the prediction of the heterodimer complexes.
Only distantly related templates were available for T155/H1015
(~3 A rmsd, 34-40% sequence identity), resulting in a single
acceptable-quality model among the top 10 submitted by Huang (-
Table S3). For T156/H1017 and T157/H1019 both complexes of an
uncharacterized E. coli protein and a partner protein with a putative
adhesin/hemagglutinin/hemolysin activity, a relatively good template
that revealed some information about the potential interface was
available for one of the subunits, but not for the other. Among the top

five ranking models, only two acceptable-quality models were

submitted for T156/H1017 (by Venclovas and Zou), whereas four
such models were submitted for T157/H1019 (two by Fernandez-
Recio, and one each by the groups of Huang and Chang).

The two higher order heterocomplexes, the heterotetramer T146/
H0993 and the 18-mer complex featuring six copies of three different
subunits, T159/H1021, posed other major challenges. T146/H0993,
the complex of the two MlaF proteins involved in lipid transport, was
defined as consisting of a homodimer formed by the larger MlaF pro-
tein (275 residues), to which two copies of the second smaller protein
(112 residues) bind at opposite sides of the dimer without contacting
each other. Exploration of the crystal contacts by the CAPRI assess-
ment team suggested an alternative arrangement, which conserved
the homodimer, but positioned two different copies of the smaller
protein into contact with the dimer, forming a small interface (490 A?)
with each of the subunits of the dimer, while at the same time con-
tacting each other (200 A? interface), thereby forming a more com-
pact globular complex that buries overall a somewhat larger portion of
the solvent accessible surface of the component proteins (Figure 2C,
D). The submitted models were therefore assessed against three inter-

faces, the large homodimer interfaces (~1300 A?), and the two
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alternative interfaces formed with the smaller protein: the one
suggested by the authors (460 A?) and the one obtained by the asses-
sors using crystal symmetry operations (490 A2).

Not too surprisingly, the larger homodimer interface was
predicted with some success, thanks to the availability of homodimer
templates. In total 8 medium-quality and 15 acceptable models were
submitted by 6 predictor groups and one server (MDockPP), with the
groups of Eisenstein and Venclovas submitting 5 and 3 medium-
quality models, respectively. Of the two potential interfaces with the
smaller protein, the one suggested by the assessors was “detected”
only among the top 100 models of one group (that of Chang). On the
other hand, two groups, Moal and Kozakov, correctly predicted the
interface proposed by the authors among their top five models
(Table S3). However, neither of the smaller hetero interfaces were
supported by PISA and no templates were available for the A2B2
assembly to help with the assignment. Only after completing the eval-
uation, was the originally proposed interface for T146 observed in the
low-resolution cryo-EM multicomponent A. baumannii MLA complex
(PDB 61C4) (deposited December 2018), clearly lending support to the
quaternary structure proposed by the authors.

Interestingly however, the alternative interface proposed by the
assessors involves the same region of the MalfA dimer that binds the
transmembrane component of the larger Cryo-EM complex
(Figure 2E). This indicates in turn that the similarly sized alternative
interface also conveys biologically relevant information. This case thus
illustrates once again the challenge of assigning the biologically rele-
vant association mode from the crystal structure, especially when the
latter corresponds to a protein assembly representing a component of

a larger complex.

Finally, the most challenging target of Round 46 was indisputably
T159/H1021, the 18-mer cryo-EM heterocomplex. This complex is
composed of three different polypeptides denoted here as A, B, and C
comprising 148, 351, and 295 residues, respectively. Each polypeptide
is present in six identical copies that form three concentric hexameric
rings, stacked on top of each another to form a hat-like structure, with
the smallest subunits forming the apical ring (Figure 3). The subunits
make extensive contacts within and between rings. These contacts
feature an important degree of intertwining, fostered by long
extended segments featured primarily by protein C and to a lesser
extent by proteins A and B. Whereas good templates were available
for protein A, those for proteins B and C were of poorer quality
(Figure 3). Protein C, which adopted the least globular fold, had an
NMR structure available as template only for its more structured N-
terminal domain. The full complex features a total of seven distinct
protein-protein interfaces that had to be modeled, of which three
were between identical protein subunits. Considering the quality of
the templates, the pairwise homo- and hetero-association modes
between proteins A and B (interfaces 1, 6, 7 of T159) could, in princi-
ple, be predicted at some level of accuracy. This was not the case for
the remaining four interfaces, involving the least globular protein C.

Prediction results confirmed these expectations (see Table S3).
Good prediction performance was obtained for the homomeric inter-
faces involving two copies of protein A (interface 1 of T159), and two
copies of protein B (interface 6 of T159), respectively. All of the
10 best-performing groups submitted as many as 5 medium-quality
models for interface 1, and 5 additional groups each submitted
5 acceptable-quality models for this interface. The 10 best performers

counted 8 groups (Weng, Venclovas, Kihara, Shen, Seok, Kozakov,

FIGURE 3 lllustration of the
modeling challenge for the
multiprotein heterocomplex
(T159/H1021). A, Shows ribbon
diagrams of the three different
polypeptide chains A, B, and C,
forming the complex. Each
polypeptide is present in six
identical copies that form three
concentric hexameric rings,

stacked on top of each another to

form a hat-like structure, with the
smallest subunits forming the
apical ring, B. C, lllustrates the
quality of the templates available
for each of the three subunits
(identified by their PDB-RCSB
codes), which was particularly
poor for subunit C as it only
partially covered the structure
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Fernandez-Recio and Huang) as well as two servers, LZerD and
HDock. The performance for interface 6 was likewise good with 5 out
of the 10 top performing groups (including the servers LZerD and
HDock), each submitting 5 medium quality models. The performance
for the heterodimeric interfaces between protein A and B (interface
7 of T159), was significantly lower, with only seven groups (including
the CLUSPRO server) submitting at least one acceptable quality model
for this interface, and only one group (Seok) submitting a medium
quality model.

As expected, only incorrect models were submitted for four asso-
ciation modes involving protein C. Considering the highly intertwined
interactions formed by this protein with neighboring subunits in the
assembly, these interactions probably form through strong coupling of
folding and association. Different modeling techniques, such as those
recently developed for modeling interactions with proteins featuring

0

large intrinsically disordered segments,®® are probably needed to

improve the prediction performance of complexes involving
nonglobular and more flexible proteins, such as the C subunit of

T159/H1021.

5.1.2 | Scorer results

Scoring Rounds were held for 19 of the 20 targets or Round 46, with
close to 2000 uploaded models offered to scorers per target and the
participation of about 17 CAPRI scorer groups (Table S1). Like for the
predictor submissions, the performance of scorers was evaluated con-
sidering only the top five submitted models. Detailed per target
results are provided in Table S2 (easy targets) and Table S3 (difficult
targets).

Easy targets: T139, T140, T142,T143,T144,T147, T152,
T153,T158
In general, the scorer performance followed the trend of predictor
groups for the nine easy targets. But unlike in previous CASP-CAPRI
challenges, the performance of scorer groups was more uneven (see
Tables S2 and S3 for details). For the five easiest homomer targets,
uploaded models contained the largest proportion of high-quality
models. But in general scorers identified only a subset of these
models. It was also not uncommon to see scorer groups failing to
identify some of their own high-quality models submitted as predic-
tors. For example, only three scorer groups produced two or three
high-quality models each for target T152/T1003, whereas as many as
four predictor groups and three docking servers produced between
3 and 5 high-quality models for this target. A similar lower perfor-
mance was observed for targets T153/T1006 and T139/T0961.
Interestingly, although the scorer performance for T143/T0983
was overall lower than that of predictors (with only four scorer groups
producing high quality models compared with eight predictor groups),
the best performing scorer group for this target produced five high-
quality models, whereas this number was at most four for the best-
performing predictors. For the three somewhat less easy targets, and
for the less well-predicted interfaces 1 and 2 of the helical assembly

T147/T0995, where top-ranking predictor groups produced only

medium quality models, the scorer performance was only marginally
lower than that of predictor groups.

Several servers were also among the top-performing scorer groups
for these easy targets, although not as prominently and consistently
as among predictor groups. LZerD, HDock, and MDockPP were the
servers that ranked more consistently among the top-performing

scorer groups.

Difficult targets: T137, T138, T141, T146, T148, T149 (T150,
T151), T154,T155, T156, T157, T159

For the 11 difficult targets, the paucity of models of acceptable qual-
ity or higher among the 100 models submitted by predictors was in
general the main reason for the inability or difficulty of scorer groups
to identify such models in the combined set of uploaded models.
Hence, with a few exceptions, scorer results were poorer than those
of predictors (Table S3).

For the five difficult homodimer targets for which scoring rounds
were organized, scorers submitted only incorrect models for targets
T138/T0966, T148/T0997, and T154/T1009, since predictors sub-
mitted mostly incorrect models for these targets. For T141/T0976,
scorer groups performed reasonably well, with seven groups identify-
ing at least one of the acceptable models submitted by only five pre-
dictor groups. For T149/T0999, and the two data-driven variants of
this target (T150/50999, T151/X0999), scoring results were com-
bined for all three targets. This increased the size of the total set of
models offered to scorers, but likely affected only marginally the frac-
tion of correct models included in the set, as most participants either
did not use the SAXS or crosslinking data and submitted very similar
models, or participated in at most two of the three targets.

Results for the heteromeric targets depended on the interfaces
involved. For T155/H1015, scorers did not identify the single accept-
able model submitted by predictors. One acceptable model was sub-
mitted for T156/H1017 by the Venclovas team (albeit not among
their top five models). Likewise, a single scorer team (Bonvin) identi-
fied only one of the few acceptable-quality predictor models submit-
ted for T157/H1019. The results were not better for the three
interfaces of T146/H0993. Scorers failed to identify the 23 medium-
quality models submitted by predictors (in fact only two predictor
groups: Venclovas and Eisenstein) for the dimer interface of this tar-
get (interface 1). Instead, only two servers, HDOCK and MDOCKPP,
produced a total of three acceptable quality models in their top-5 sub-
mission. But for the smaller heteromeric interface of this target (inter-
face 3), scorers were able to pick out the few acceptable models
submitted by predictors.

Finally, the performance of scorers was surprisingly good for the
three interfaces of T159/H1021, for which predictors submitted
models of acceptable quality or better (Table S3). Scorers out-
performed predictors groups for interface 1 of T159 (between the
two copies of protein A), with all 15 participating groups submitting at
least 1 medium quality model, and 10 of these groups each submitting
5 medium quality models. Scorers also significantly outperformed pre-
dictors for interface 7 of this target (between proteins A and B). Three

groups and the LZerD server each produced five correct models of
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TABLE 2 Overall CAPRI performance ranking for top-1, top-5, and top-10 submissions
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TABLE 2 (Continued)

Rank Scorers® # Rank Top-1
Huang 19 8 8/ 2Kk [ 5ok

10 LZERD 19 4 10/8%#*
Bates 19 12 8/6%

12 Bonvin 18 13 8/5%*

13 Carbone 19 8 8/ stk [Tk

14 Weng 19 14 6/5%*

15 Seok 17 16 4/ Lok [ Zk

16 Grudinin 18 15 5otk

17 HAWKDOCK 13 16 4/ | Bk

18 QASDOM 13 18 g

Rank Top-5 Rank Top-10

7 11/3ksk/ Gk 7 12/ 4%k ) 3%
10 10/ 3t/ G 10 11/ 5k 4ok
10 11/ 2k 743 12 11/ 25k [ gk
12 12/ Lok 755 11 12/ 3k ) Gk
13 9/ 3k [ 5k 12 11/3sk ) Gk
14 Oy (6 12 12/ 1k /Qk
15 8/ 1k Gk 15 10/ 27k [ 5
16 6/ 1k [ 5k 16 8/ 2%k [ 5k
17 5/ 2%k [ Bk 17 6/ 2%k [ fek
18 Gl 17 7+%

Note: Server groups are listed in all-caps. Target performance shows the number of targets for which an acceptable model or better was submitted,
followed by the number of these that were of high (***) or medium (**) quality. For any multi-interface target, the best performance over the interfaces

was taken; T149, T150, and T151 are grouped together.
®Target participation, out of 20 (for predictors) or 19 (for scorers).
PHuman and server together.

which 1-2 per group were of medium quality, while only two predic-
tors groups featured the same performance level. Interface 6 (between
the two copies of protein B) was also well predicted by scorers.
Whereas only three scorer groups and the LZerD server produced 3-4
medium quality models, the number of scorer groups submitting

acceptable models or better was higher than for predictors (Table S3).

5.1.3 | Performance across CAPRI predictors,
servers and scorers

Groups (predictors, servers, and scorers) were ranked according to
their prediction performance for the 20 assembly targets of Round
46. In addition, we ranked participants according to their performance
for the easy and difficult targets, respectively. The idea of providing
separate performance ranking for different target categories, was
repeatedly raised in previous CASP-CAPRI challenges and CAPRI
rounds, but was not implemented owing to the fact that the number
of targets, notable of difficult targets, was too small to enable a useful
assessment. With roughly the same number of targets in the two cat-
egories (11 difficult vs 9 easy targets) in Round 46, it seemed worth-
while to also evaluate the performance on the basis of target difficulty
as this may help better detect strength and potential weaknesses of
the modeling methods used.

All the rankings presented here consider, as usual, the best
model submitted by each group among the five top ranking models
for each target. The group rankings across targets were performed
using the revised ranking protocol, which uses a more balanced
weighting scheme for models of different accuracy levels, as
detailed in the section on the assessment and ranking procedures.
The present rankings differ somewhat from those presented for
Round 46 at the CASP13 meeting in Cancun, since they include the

assessment results of target T137/T0956, which were missing from
those presented at the meeting. Other small differences with the
“Cancun rankings” were introduced by the revised ranking protocol,
which corrected consequential inconsistencies in the scorer rank-
ings, without significantly affecting the rankings of the 10-15 best
performing predictor and server groups.

5.1.4 | Performance across all targets

The ranking of participating groups (predictors, scorers, and server)
based on their performance across all targets is provided in Table 2.

The five top ranking predictor groups in Round 46 are
Venclovas, Fernandez-Recio, Seok, Kihara, Weng, Kozakov, with
Weng and Kozakov both ranking fifth. Venclovas ranked first, with
a total of 13 out of 20 targets for which this group submitted
6 high-quality, 6 medium-quality, and 1 acceptable model, respec-
tively. The runner-up, Fernandez-Recio submitted correct models
for a total of 12 targets, of which 5 were of high-quality, 6 of
medium quality and 1 acceptable model. The Seok team submitted
correct models for 11 targets, all of which all were of medium (7) or
high quality (4), whereas the group of Kihara did nearly as well as
the Seok team, by submitting the same number of correct models,
but one less medium quality model. The fifth rank position of
Kozakov and Weng rewards somewhat differently the achievement
by the two groups. Like Venclovas, Kozakov submitted correct
models for a total of 13 targets, including 11 medium-quality
models and 2 acceptable ones, but no high-quality models. Weng,
on the other hand submitted correct models for only 10 targets,
but of these 10, five are of high quality and four of medium quality.
The higher weight assigned to the higher quality models leads to

ranking these two groups equally.
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The performance of the Vakser, Huang, Zou, Bates and Chang
groups, further down the rank of Table 2 should also be noted. For
example, Vakser submitted correct predictions for 11 targets, with a
total of 10 models of medium quality or higher, and Zou submitted
correct models for 13 targets, of which a smaller number of models
(8) where of medium or high quality.

It was rather satisfying to see that the group ranking based on the
best 10 submitted models (top-10 in Table 2) differs only marginally
from that based on the best 5 models (top-5, Table 2), as this suggests
that predictors have improved their ability to rank models in compari-
son to earlier prediction rounds.

A total of eight servers participated in CAPRI Round 46, four of
which did not participate in the CASP12-CAPRI challenge (HDock,
MDockPP, GalaxyPPDock, and HawkDock). Six of the servers submit-
ted predictions for all 20 targets. Overall, the server performance was
lower than that of “human” predictor groups, likely reflecting the
lower performance for the 11 difficult targets, as will be discussed
below. The four top-ranking servers were HDock (new, this round),
SwarmDock, ClusPro, and LZerD, who submitted correct models for
9 to 12 targets, including as many as 9 to 10 medium quality and 3 to
5 high quality models, each.

The performance of the scorer groups was also lower than that of
predictors. The total of 18 scorer groups (including servers) participated
in the scoring challenge, which was offered for 19 of the 20 targets. The
scoring experiment was not run for T137/T0956, and a single scoring
experiment was run for all the models submitted for T149/T0999 and its
data driven versions T150/50999 and T151/X0999.

The five top-performing human scorer groups were Fernandez-
Recio, Oliva, Zou, and Chang, followed by Venclovas, Kihara, and
Huang, with the latter three groups occupying a shared seventh posi-
tion in the rank. The groups of Fernandez-Recio, Oliva, and Zou sub-
mitted correct models of 12 targets; the models of Fernandez-Recio
included 6 and 5 medium and high quality models, respectively,
whereas those of Oliva and Zou included a somewhat different mix of
medium and high quality models each. Chang, Venclovas, Kihara, and
Huang each submitted 11 correct models, which included a different
proportion of medium and high quality models.

In all, only five servers participated in the scoring experiments,
with three of these, MDockPP, HDock, and LZerD performing rather
well. MDockPP and HDock performed on par or better than several
of the top human performers, with MDockPP producing correct
models for no less than 13 targets (more than other scorer groups),
including 10 of medium and high quality. HDock scored correct
models for 12 targets no less than 11 of these of medium or high
quality. LZerD ranked third, with 9 medium or higher quality models,
and 1 or better submitted for 10 targets.

5.1.5 | Performance across easy and difficult targets

Dividing the 20 targets of Round 46 into easy and difficult targets
was done mainly in order to identify trends in how human predictors
and servers deal with different type of assembly prediction problems.

For the majority of the easy targets, high-quality templates were

available for the assembly as a whole. The prediction exercise was
therefore essentially reduced to the optimization of the homology-
built model. For the more difficult targets, predictors and servers were
faced with the more standard CAPRI challenge, where an adequate
template for the subunit(s) (often only distantly related) must be iden-
tified, a homology model built, and the association modes predicted
using mainly docking calculations. For both the easy and difficult tar-
gets, most CAPRI groups relied on third party software for template
identification and homology modeling as will be seen in the next sec-
tion. For scorers the difference between easy and difficult targets was
mainly the level of enrichment in acceptable or higher accuracy
models in the combined anonymized set of models to be evaluated, as
the latter is directly proportional to the probability of identifying cor-
rect models by chance.

The separate performance ranking of predictors for the easy and
difficult targets is listed in Tables S4 and S5. The top 10 performing
groups for the easy targets are virtually the same as for all targets
(Table 2), with however negligible differences in the exact rank posi-
tion. The exception are the performances of Weng and Kozakov, who
rank fifth when all targets are considered, but ninth on the ranking for
the easy targets. Unsurprisingly, this indicates that the performance
over all targets is, in general, dominated by the performance for the
easy targets. Exceptions such as that of the groups of Weng and
Kozakov are quite interesting. Both rank ninth as predictors of easy
targets, but move up to second position in the rank for difficult tar-
gets, which propels them to the fifth position in the rank for all tar-
gets. Such cases suggest that the corresponding groups have better
methods for dealing with difficult targets where the performance of
docking algorithms is more important, than when mostly template-
based modeling needs to be mastered.

It is also noteworthy that a number of CAPRI predictor groups
seem to be at relative ease with both types of approaches. The group
of Venclovas ranked first for the predictions of both the easy and dif-
ficult targets, and thus for all targets combined, with several other
groups (Fernandez-Recio, Seok, Kozakov, Kihara, and Zou) likewise
performing well in both target categories and therefore also overall.

The analysis of the scorer performance (human and servers) for
the two target categories is also informative (Tables S4 and S5). How-
ever, since most scorer groups successfully predicted the same limited
subset of difficult targets, multiple groups were ranked at the same
level for these targets, making it more difficult to identify trends.
Nonetheless, we see for example that the three best-performing
scorer groups (Fernandez-Recio, Oliva, Zou) in the global ranking, also
rank among the best performers for both the easy and difficult tar-
gets. A number of other scorer groups performed differently between
the two target categories, with some groups, such as Seok, Kihara,
Bonvin, and Bates, ranking higher for the difficult targets than for the
easy ones. This seems to suggest that their scoring functions are bet-
ter at singling out correct models (binders) from incorrect alternatives
(nonbinders) than discriminating between correct models displaying
different accuracy levels (acceptable vs medium or high accuracy).

Lastly, we confirm that the global performance of servers was domi-

nated by the ability to predict the easy targets, as indeed the rankings
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of prediction servers for the easy targets (Table S4) and for all the tar-
gets (Table 2) were very similar. The server performance for the difficult
targets therefore played only a marginal role, but we do note that none
of the top three servers in either list (HDock, SwarmDock, Haddock for
the easy targets; GalaxyPPDock, LZerD, ClusPro for the difficult targets)
occupies a top three position in both lists.

As far as scoring servers are concerned, the best performing
servers overall (in order: MDockPP, HDock, LZerD; Table 2) owe their
high rank relative to other scorer groups to their good performance
for the difficult targets (Table S4).

5.2 | Prediction of binding interfaces

Interface predictions were evaluated for 47 binary association modes
in the top 5 scoring models submitted for 22 targets by CAPRI predic-
tors groups (human and servers), as well as for 36 binary association
modes in the top 5 models submitted by CAPRI scorer groups (human
and server) for 19 targets. The correspondence between the residues
defining the interfaces of the individual protein components of each
binary association mode in the predicted models and those in the tar-
get structure was evaluated using the Recall and Precision measures

(see section 4).

5.2.1 | Global trends

Figure 4 presents scatter plots of the recall and precision values of

predicted interfaces for components (receptor and ligand,
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respectively) of the top 5 models submitted for each of the 47 evalu-
ated association modes by predictor and scorer groups. Individual
points represent values averaged separately over interfaces of associ-
ation modes in each of the four categories (incorrect, acceptable,
medium, and high) submitted by a given group for a given target.
Inspection of the scatter plots reveals that predicted interfaces in the
models submitted by both predictors (Figure 4A) and scorers (Figure 4B)
span a wide range of recall and precision values. Confirming our

previous reports**¥

we observe that a sizable fraction of the points
corresponding to interfaces of incorrect models cluster loosely along the
diagonal at very low values, whereas the vast majority of acceptable and
higher quality models feature interfaces with recall and precision values
>50% (upper-right quadrant of the scatter plots in Figure 4), which we
designate here as correct interface predictions. In addition, a sizable frac-
tion of the points in Figure 4 is spread widely above and below the diag-
onal. Like in previous analyses, a higher fraction of interfaces in scorer
models (all quality levels) tend to have higher recall (55% of the inter-
faces) than precision values (27% of the interfaces, Figure 4B). On the
other hand, interfaces of predictor models show little preference
(Figure 4A). Among the latter interfaces about 37% feature higher recall
than precision, ~35% feature higher precision than recall, and ~28% have
equal recall and precision values.

We likewise confirm that, (a) a fraction of incorrect models fea-
ture in fact correctly predicted interfaces and (b) a fraction of cor-
rectly predicted interfaces corresponds to incorrect models.4**”
Intriguingly however, in Round 46, the fraction of correctly
predicted interfaces in incorrect models has gone down to

(B) Scorers
1.0 T T | :
© i
- Y *kk i
. *k EO 3
* 0(9
08 | ° ¢
° incorrect o © ¢
® ¢
60 o | .
o &* o )
8 |
06 o0 0 % ¥
g oo ?% & :O &
) 0.3 6!
ks - o R o) B§O Qog¥-ef-mmon-_
) ©8 8000 P &5 00
= oo, g © 050 % ©0
o ° o % L 9 o8
04 o 00 © @%g o, ®o O%Q)%
o
O 09 09% 9%02 B o
X N A
° o OC%aO(?’ @%)80 88)%0 o
o £L BE®L oTo B O
0.2 o o% 0 % .8 ¢ °©
9 SopeOy, Qoo o & o ° e
Lo > D, |
o > ® o
N 0098@0%3 ©
1 1 1 1 1
0 | | | |
%.0 0.2 0.4 0.6 0.8 1.0
Recall

FIGURE 4 Global landscape of the interface prediction performance. Scatter plot showing the average Recall and Precision values (see main
text for definition) of the interfaces in models submitted by all Predictors (A) and Scorers (B) for the 22 targets of Round 46. Each point
represents average values for the interfaces of individual protein components in models submitted by individual participants for one association
mode. Averaging was performed separately over models in the four CAPRI accuracy categories (incorrect, acceptable, medium, and high).
Individual points are color-coded by the CAPRI model quality category (as indicated in the legend displayed in the upper left corner of each
graph). The upper right hand quadrant of the graph, with Recall and Precision values above 0.5, contains all points corresponding to “correct”

interface predictions
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~11-12% (11.35 for predictors and 11.9% for scorers) from 16%, in
the CASP12-CAPRI challenge*! and 24% in the initial CAPRI evalu-
ation of 2010.*” In parallel, the fraction of incorrect assembly
models in the submissions with correctly predicted interfaces
decreased to 19%, from 27.2% in the CASP12-CAPRI challenge.
These trends reflect a more general decline in interface prediction
performance. Indeed, the fractions of acceptable and higher quality
models featuring correctly predicted interfaces are now 70% and
92%, respectively, down from 87% and 98%,** and from 92% and
100%, respectively, in the 2010 evaluation.*” Thus, acceptable
models and, surprisingly, also models of medium quality or better
submitted in Round 46 feature a significantly larger fraction of
incorrectly predicted interfaces than previously documented.

Insights into the origins of these trends can be obtained from the
scatter plots of Figure 4. These plots show indeed that a significant
fraction of the correct assembly models correspond to points located
above and below the diagonal. Points above the diagonal, which fea-
ture higher precision than recall values, correspond to predicted inter-
faces of smaller size that capture only a fraction of the native
interfaces, but little else, and may hence be of predictive value. Inter-
faces with lower precision than recall values, corresponding to points
located below the diagonal, and more particularly the points in the
lower left quadrant of the plots in Figure 4 are problematic. Strikingly,
a number of these latter points correspond to medium- and high-
quality assembly models with interfaces featuring high recall values
between 0.6 and 1.0, but nonetheless very low precision (less than
40%). While such predicted interfaces capture rather well the native
interface, they also include a large fraction (0.6-0.8) of “false-
positives,” for example, residues incorrectly predicted to be part of
the target interface, which drastically reduces the predictive value of
the corresponding assembly models.

Closer examination of some of major outliers in the plots of
Figure 4, primarily those corresponding to very low precision and high
recall values, revealed that the corresponding assembly models were
for targets where more drastic adjustments of the template conforma-
tion were required in order to correctly model the assembly. Examples
of such cases include the high and medium quality models submitted
for T149/T0999 and T151/X0999, both corresponding to the same
difficult multidomain homodimer of the pentafunctional AROM poly-
peptide (Table 1B). Other cases are the medium quality models for the
heterodimer T146/H0993, another difficult target for which only dis-
tant templates were available for individual protein subunits, but also
for T147/T0995 and T158/T1020, two targets with higher-order
assembly modes, that were classified as easy targets since adequate
templates were available (Table 1). Analysis of several of these models
indicates that the predicted interfaces tend to include portions of the
modeled subunits that did not belong to the native interface, likely
due to an effort to maximize the interface size. None of these models
exceeded the allowed level of atomic clashes, which is closely moni-
tored in the evaluated models and may be cause for disqualifying the

submission.*344

5.2.2 | Performance of predictor server and scorer
groups

The ranking of groups based on the interface prediction performance
is listed in Table S6. Group performance was ranked based on the
fraction of correctly predicted interfaces (interfaces with both recall
and precision 20.5), in the top five submitted models for each target.
Nine human predictor groups (Venclovas, Eisenstein, Seok, Bates,
Fernandez-Recio, Chang, Zou, Kozakov and Kihara) and four predic-
tion servers (Haddock, SwarmDock, HDOCK, MDockPP) submitted
correct predictions for at least 30% of the interfaces. The best per-
forming predictor groups were Venclovas with correct predictions for
44.6% of the evaluated interfaces and Eisenstein with correct predic-
tions for 43.3% of the predicted interfaces. The best-performing pre-
diction servers Haddock and SwarmDock performed less well, with
correct predictions for 35.4% and 33.5% of the interfaces, respec-
tively. The winners of the interfaces prediction challenge were the
scorers, both human and servers. Ten human scorer groups submitted
correct predictions for at least 30% of the interfaces. Of these, four
groups (Oliva, Venclovas, Huang, Zou) achieved correct predictions
for at least 40% of the interfaces, with the groups of Oliva and
Venclovas topping the rank with 47.3% and 43.5% of the interfaces
correctly predicted, respectively. A total of four scoring servers sub-
mitted correct predictions for at least 30% of the interfaces, of which
MDockPP and LZerD performed best, both with about 40% of cor-
rectly predicted interfaces.

The last four columns of Table Sé list the average recall and preci-
sion values for interfaces of individual models (top 5) submitted by
each group, as well as the corresponding standard deviations. It is
noteworthy that the average recall and precision values achieved by
the best performing groups or servers rarely exceed 50%, compared
to 60% in the CASP12-CAPRI challenge.*! The standard deviations
are also larger, routinely exceeding 30%, compared to previous values
of about 25%. These results indicate that models for individual targets
(even those by the best performing groups) tend to vary substantially
in terms of the interface prediction accuracy, and that the interface
prediction accuracy has in general declined, relative to achievements
in previous CAPRI Rounds.

Lastly, it should be noted that most published interface prediction
methods reach average recall and precision levels of ~50% and ~25%,
respectively, when applied to transient complexes (see Reference 61
for review). The best-performing groups of Round 46 achieve similar
recall levels but significantly higher precision (45-56%) (Table Sé), still
suggesting that interface prediction methods which model the associ-
ation modes with the cognate binding partner retain an advantage
over most extant interface prediction methods, which do not use such

information.

5.3 | Factors influencing the prediction performance

Round 46 comprised 20 targets and these targets spanned a wide
range of modeling difficulties. By the CAPRI management choice, the

majority of the targets had some templates available in the PDB. The



LENSINK ET AL.

PROTEINS Wl LEY 1217

majority of the targets were homo-oligomers—mostly homodimers.
For a significant fraction of these targets (the easy targets) the assem-
bly prediction task boiled down to template-based modeling of the
entire complex and model refinement. The prediction of the more dif-
ficult targets required modeling the structures of individual subunits,
followed by docking calculations and usually some form of model
refinement.

Critical factors influencing the prediction performance were there-
fore (a) the ability to identify templates whose 3D structure and asso-
ciation modes were close enough to those of the target, to enable
building an accurate model of the target assembly, and (b) the extent
to which these models were adequately optimized.

The influence that model accuracy of individual subunits had on
the assembly prediction performance can be gleaned from Figure 5,
which displays the M-rms values (the backbone rms values of the indi-
vidual subunits of the submitted models vs those of the target). For
the majority of the easy targets, these values rarely exceed 2.3-3 A,
whereas the models for the difficult targets feature much higher M-
rms values. For the more poorly predicted heterocomplexes T155,
T156, and T157, M-rms values for a least one of the subunits displays
a significant spread into higher values (10-12 A), culminating at values
as high as 25 A for the partially unstructured subunit C of T159. High
M-rms values (10-15 A) are also displayed for domain B of the multi-
domain AROM polypeptide (T149/T0999), for which only poor tem-
plates were available, although a few predictors nonetheless
succeeded in generating acceptable models for the interface involving
this domain.

Clearly, identifying the most adequate template is often not an
easy task, as multiple templates are often available either for the full
complex or for the independent subunits, requiring adequate strate-

gies for exploiting these data. As can be seen from the summaries by

Easy targets

the individual CAPRI groups co-authoring this paper (see Supplemen-
tary Material), a variety of approaches were used to tackle this impor-
tant step. A number or groups successfully exploited homology
models generated by the best performing CASP13 servers and made
available during the prediction Rounds, or used third party tools such
as Modeller.®? Successful approaches involved searching a database
of known structures, clustered on the basis of sequence and structure
similarity, and relying on various scoring schemes to select the most
suitable templates, or a reduced set of templates, for further refine-
ment. Querying the PPI3D web server®® for suitable subsets of tem-
plates by the group of Venclovas, or running HHblits*> against a
sequence profile database of known structures clustered at 70%
sequence identity, as done by the Bates group, are good examples of
such approaches.

Further filtering and refining models built from identified tem-
plates is likewise important, and here too, different approaches were
rather successful (see supplementary section on Individual Group
Summaries). For example, the group of Bates used fragments from dif-
ferent templates coupled with optimization techniques employing bio-
physical force fields and information on residue contacts, whereas
fragment-guided molecular dynamics was used by Venclovas. For
some targets, close integration of classical template-based modeling
with docking calculation, as done by the group of Fernandez-Recio,
was likewise quite effective.

Several of the best-performing CAPRI groups also highlighted the
importance of specialized, often custom-developed, functions for scoring
and ranking protein-protein interfaces for the entire modeled assembly.
But the type of functions differed substantially between participants.
Examples are the VoroMQA score developed by the Venclovas group,**
the combined use of three scoring functions, GOAP,%> Dfire,®® and

ITScore®” by the Kihara group, or the multiterm scoring function of the

Difficult targets

30

FIGURE 5 Model quality of individual -
protein subunits in assembly models of
Round 46. Shown are whisker plots
(displaying the median, 1st and 3rd L
quartile, and 9th and 91st percentile)
representing the distributions of M-rms
values of individual protein subunits in
models submitted for each of the targets
of Round 46. Targets are labeled by their
CAPRI target number; distributions for the
easy targets are shown on the left side of
the graph, and those for the difficult 10—
targets are shown on the right side. For all
homomeric targets only one subunit was
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FIGURE 6 Global overview of the prediction performance for targets of Round 46. Shown are the distributions of the DockQ values
computed for the top-five models submitted by all predictor groups for individual targets of Round 46. The targets are labeled by their CAPRI
target number and interface rank. Distributions for the easy targets are shown on the left side of the graph, and those for the difficult targets are
shown on the right side. Individual points are color-coded according to the CAPRI model quality category; yellow: incorrect; blue: acceptable;
green: medium; red: high. For each target, a baseline-level prediction, represented by the best model of the top-performing automatic server
(HDock, see Table 2), is represented by black triangles. The boxplot distributions (whiskers at 9th and 91st percentiles) of each target and
prediction category are shown on the lower panel; color-coding is as for the upper panel, but with a lighter shade of blue for better visibility

Vakser group, additionally complemented with sequence-based mea-
sures for individual subunits®® and with functional annotations. The quite
successful scoring performance of the Oliva group relied on their
CONSRANK:-based methods to score and rank multiple models, based
on the most frequent interface residue contacts observed in these
models.4’

For the more difficult targets (Table 1), the full assembly was
predicted using models of the individual subunit, built on the basis of
more distantly related templates and performing “pure” (ab-initio) dock-
ing calculations. Interestingly, a number of groups relied on reputable
CAPRI docking servers such as CLUSPRO®” and/or algorithms such
ZDOCK,% or HEX,”® developed by other groups, to generate their dock-
ing poses. Some teams, like that of Grudinin/Laine/Carbone, exploited
the fast sampling speed of the HEX and SAM”? docking programs to per-
form cross-docking calculations, whereby sets of models are docked to
one another, yielding a large set of assembly models that are then scored
and optimized. Increasing use was also made of docking algorithms that
incorporate symmetry operations (eg, HSYMDOCK-lite’?), or of algo-
rithms that handle multiple chains (eg, Multi-LZerD”3) or better account
for conformational flexibility. But ultimately the performance crucially
depended on how similar the homology-built independent subunits were
to those of the target.

For the difficult homodimer targets, failures were mainly attributable
to the availability of very poor and often incomplete templates. A combi-

nation of factors contributed to the poor prediction performance for

T159/H1020, the large 18-mer heterocomplex (Figure 3): the partial
template available for the nonglobular subunit (C), the intertwined associ-
ation modes formed by this subunit with its neighbors in the complex,
and the large number of interfaces that all needed to be accurately
modeled. The latter problem also hampered the accurate modeling of
the multidomain homodimer of T149/T0999, despite the availability of
good quality templates for three of the four independent structural
domains of the protein. These results indicate yet again that modeling
large-order protein assemblies in absence of adequate templates for the
full assembly remains a major challenge, especially when symmetry oper-
ations cannot be applied to all the components, as for the intersubunit
multidomain association of T149/T0999.

6 | CONCLUDING REMARKS

This report presented an assessment of the assembly prediction
results for CAPRI Round 46, the CASP13-CAPRI challenges held dur-
ing the summer of 2018. The 20 targets of Round 46 included 6 het-
erocomplexes, a larger number than previously, in addition to
14 homo-oligomers, still representing the majority.

The CAPRI management selected these targets as those with
structural templates in the PDB, which therefore represented tracta-
ble modeling problems for the CAPRI community. But the selection

criteria were somewhat relaxed this time, allowing the inclusion of a
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significant number of more challenging targets than in previous joint
experiments. These comprised some large complex assemblies and
those with significantly poorer templates. Nevertheless, the larger
total number of targets, of which a significant fraction was more diffi-
cult to model, allowed us to evaluate not only the prediction perfor-
mance across all targets, as done previously, but also to measure how
groups performed on the roughly similar number of easy (9/20) and
more difficult (11/20) targets, respectively.

A global overview of the quality of models submitted by predictor
groups for the two targets categories is presented in Figure 6. The top
panel of Figure 6 displays the DockQ scores, color-coded by the CAPRI
model quality categories for all the interfaces in individual models sub-
mitted for the 22 targets of Round 46 (including the 2 data-assisted ver-
sions of T149/T0999). These scores are contrasted with those obtained
for the best of the five models submitted by HDock, the top performing
automatic server in this evaluation, which we use as the baseline perfor-
mance, analogous to that produced by the “naive” predictions considered
previously.** The lower panel of Figure 6 represents the same data using
box plots, illustrating the score distributions per model quality and target
interface. Not too surprisingly, the prediction performance, as measured
by the fraction of models of acceptable quality or higher submitted
across the ~30 human predictor and server groups, was very good to
excellent for the nine easy targets, comprising mostly homomers for
which templates were available for the entire assembly For this category
of targets the baseline predictions produced by the HDock automatic
server were in general on par with the best performing manual predic-
tors. On the other hand, a much lower performance was achieved for
the 11 difficult targets. For example, whereas top predictor groups sub-
mitted quite accurate models (medium and high quality) for all of the
9 easy targets, only 3 of the 11 difficult targets were predicted at a simi-
lar level of accuracy by top performers and only for one of their inter-
faces (see also Table S3). For four of the 11 difficult targets, only
incorrect models were submitted for either interface. The automatic
server produced incorrect models for 10 out of the 11 difficult targets,
including the primary interface of T149/T0999, for which high quality
models were produced by the top manual predictors (Figure é). It suc-
cessfully predicted interfaces 1 and 6 of T159, two of the easier inter-
faces of this target, submitting medium quality models of similar quality
to that obtained by the manual predictions, while failing to predict the
third “easy” interface of T159.

This prediction “gap” for easy vs difficult targets was also apparent
in the performance of scorers, the ~17 groups participating in the
scoring experiments. Scorers performed very well and on par with
predictor groups for the easy targets. But their performance was weak
for the difficult targets, likely due to the much lower fraction of cor-
rect models in the uploaded set.

Thus, the performance of predictors and scorer groups on the set
of easy targets weighed heavily on their ranking for the full set of tar-
gets in Round 46. But ranking separately the performance of predic-
tor, server and scorer groups on the easy and difficult targets
(Tables S4 and S5), respectively, led to interesting observations.
Although the lists of top 5 to 10 performing groups for the two target

categories overlapped significantly, several groups such as those of

Shen, Weng, Kozakov, or Huang, performed better than their col-
leagues on the difficult targets, but ranked lower on the easy ones.
Since most of the difficult targets involved ab-initio docking of homol-
ogy built models, the expertise in ab-initio docking and scoring of
these groups was probably a determining factor. A number of scorer
groups also performed differently between the two target categories,
providing useful insights into the strength and weaknesses of their
scoring functions. For more detailed information on factors potentially
influencing the performance of individual groups see Supplementary
Material (Individual Group Summaries).

Analyzing how well predictor and scorer groups were able to identify
the residues on each of the interacting subunits that contribute to the rec-
ognition interfaces also led to useful observations. Overall the average
interface prediction performance achieved in Round 46 was significantly
lower than previously (eg, in the CASP12-CAPRI challenge). This might be
due to the larger number of poor models submitted for the difficult targets.
However, a significant number of submitted medium and high quality
models had poorly predicted interfaces nonetheless. In particular, some of
these interfaces were extensively “overpredicted” and included a large
fraction of “false positives”; residues not belonging to the target interface.
Although this surprisingly high degree of interface “over prediction”
occurred most frequently for models of difficult targets, it indicates that
the criteria used by many predictors to score and rank models remain sub-
optimal. It likewise suggests that the CAPRI evaluation criteria should rou-
tinely incorporate f.onnat, the fraction of non-native contacts in the
predicted interface, in addition to the f,,.;, the fraction of native contacts.
This option is currently under discussion with the CAPRI community.

Finally, the following main general conclusions can be drawn from
the present evaluation. Modeling of homo-oligomers, especially
homodimers, when templates for the full assembly are available, is a
problem that can be tackled by many groups, but highly accurate
models are an exception rather than the rule, indicating that further
efforts should be devoted to better model refinement. The prediction
of targets for which good templates for individual subunits are avail-
able is increasingly successful, thanks to more efficient docking algo-
rithms and better exploitation of template data, although, here too,
model refinement remains suboptimal.

On the other hand, generating accurate 3D structures of assem-
blies for which only distantly available templates are available, remains
out of reach for modeling tools such as those currently available to
the CAPRI community. To tackle the very challenging problem of
predicting protein assemblies from sequence information and limited
prior information on the structures of the individual subunits, novel
tools are needed. These tools must closely integrate sequence infor-
mation with 3D as well as quaternary structure prediction, a very valid
justification to continue bringing the CASP and CAPRI communities
together in the future. Likewise, the protocol for scoring and ranking
models of higher order assemblies, which currently takes into account
only the best-predicted interface of the assembly, is clearly sub-
optimal as it does not reflect the quality of the full predicted complex.
A possible approach might be to combine the scores for individual
interfaces with those that measure the relative displacements of the

interacting subunits.
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