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The class of fungal indole alkaloids containing the bicyclo[2.2.2]diazaoc-
tane ring is comprised of diverse molecules that display a range of biologi-
cal activities. While much interest has been garnered due to their
therapeutic potential, this class of molecules also displays unique chemical
functionality, making them intriguing synthetic targets. Many elegant and
intricate total syntheses have been developed to generate these alkaloids,
but the selectivity required to produce them in high yield presents great
barriers. Alternatively, if we can understand the molecular mechanisms
behind how fungi make these complex molecules, we can leverage the
power of nature to perform these chemical transformations. Here, we
describe the various studies regarding the evolutionary development of
enzymes involved in fungal indole alkaloid biosynthesis.

2020)

doi:10.1111/febs. 16270

Introduction to fungal indole alkaloids

The fungal indole alkaloid class of natural products
contains molecules with unique structural properties
and a variety of biological activities. In particular,
the subgroup typified by the bicyclo[2.2.2]diazaoctane
ring has been extensively studied within our group.
Initially, feeding studies using isotopically labeled pre-
cursors and biomimetic chemical syntheses provided
insight into the biosynthetic pathways for these mole-
cules. These efforts were later supplemented with gen-
ome sequencing and Dbioinformatic analyses [l1],
greatly advancing our understanding of how these
natural products are generated, yet we have only
recently utilized our capabilities to address the

Abbreviations

knowledge gaps with detailed biochemical characteri-
zation. Multiple strategies including molecular and
structural biology have brought our foundational
understanding of these pathways to the forefront of
the field.

Our work has focused on the families of monoke-
topiperazines (MKPs) such as the paraherquamides
(Phq) [2,3] and malbrancheamides (Mal) [4], and dike-
topiperazines (DKP) such as the stephacidins [5],
notoamides (Not) [6-8], and brevianamides (Bvn)
(Figs 1-3) [9]. These molecules display significant bio-
logical activities with potential therapeutic value such
as anthelmintics [10-13], vasodilators [14], and

A, adenylation domain; Asn, asparagine,; C, condensation domain; DKP, diketopiperazine; FAD, flavin adenine dinucleotide; FDH, flavin-
dependent halogenase; FMO, flavin-dependent monooxygenase; IMDA, intramolecular Diels—-Alder; Lys, lysine; MKP, monoketopiperazine;
NADPH, nicotinamide adenine dinucleotide phosphate; NRPS, nonribosomal peptide synthetase; Pro, proline; R, reductase domain; SDR,
short-chain dehydrogenase; Ser, serine; T, thiolation domain; Trp, tryptophan; Tyr, tyrosine.
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Fig. 1. Malbrancheamide biosynthetic pathway. The pathway includes nonribosomal peptide synthetase (NRPS) MalG, prenyltransferase
MalE, intramolecular Diels-Alderase MalC, and flavin-dependent halogenase MalA. MalG and MalC require nicotinamide adenine
dinucleotide phosphate (NADPH) cofactor for catalysis, while MalA requires the reduced flavin adenine dinucleotide (FADH,) cofactor
provided by a reductase partner. MalE prenylates the indole C2 position with a prenyl group provided by dimethylallyl pyrophosphate

(DMAPP).

anticancer agents [15]. All bear a similar core scaffold,
but vary structurally based on key functionalities
including oxidation, halogenation, and additional ring
systems. Thus, our initial bioinformatic analyses have
enabled us to link the construction of the common
core to the homologous enzymes, while cluster-specific
genes provide the basis for structural differences [1].
There is a clear evolutionary divergence between the
MKP and DKP containing families within this class.
Thus, the installation of similar functional groups may
be accomplished by different types of enzymes. Addi-
tionally, parallel work in pathways that do not contain
the core bicycle reveals compelling biosynthetic branch
points. Extensive characterization of the fumitremorgin
[16,17], spirotryprostatin, [18] and aurachin [19,20]
families by a number of groups has provided insights
into the homologous transformations within these var-
ied bicyclo[2.2.2]diazaoctane ring-containing metabolic
systems.
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Distinct nonribosomal peptide
synthetases

The first step in the biosynthesis of these fungal indole
alkaloids is catalyzed by the multidomain nonriboso-
mal peptide synthetases (NRPSs). The architecture of
the NRPS consists of adenylation (A), thiolation (T),
condensation (C), and reductase (R) domains, where
the first A domain in this class of compounds is selec-
tive for proline, distinguishing these systems from
other fungal bimodular NRPS pathways. The domain
construction of the terminal module determines the
oxidation state of the offloaded dipeptide, and subse-
quently the core scaffold. The DKP containing mole-
cules are produced by an NRPS with A-T-C-A-T-C
domain organization, whereas the MKP containing
molecules involve an NRPS with A-T-C-A-T-R orga-
nization. For example, the notoamide (DKP) biosyn-
thetic pathway contains an NRPS with a terminal

The FEBS Journal 287 (2020) 1381-1402 © 2020 Federation of European Biochemical Societies
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Fig. 2. Paraherquamide biosynthetic pathway. The pathway includes nonribosomal peptide synthetase (NRPS) PhgB, prenyltransferase Phql,
intramolecular Diels-Alderase PhgE, and flavin-dependent monooxygenase PhgK. A putative prenyltransferase and oxidative enzyme are
proposed to be involved in the formation of the pyran and dioxepin rings. PhgB and PhgE require nicotinamide adenine dinucleotide
phosphate (NADPH) cofactor for catalysis, while PhgK requires flavin adenine dinucleotide (FAD) and the reduced nicotinamide adenine
dinucleotide (NADH) cofactor. Phqgl prenylates the indole C2 position with a prenyl group provided by dimethylallyl pyrophosphate (DMAPP).

condensation domain (NotE) [21], while the mal- reductase domains [1,22]. The different terminal
brancheamide and paraherquamide (MKPs) biosyn- domains and the coinciding mono- or diketopiperazine
thetic pathways include NRPSs with terminal systems indicate that the NRPSs offload distinct
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Fig. 3. Notoamide biosynthetic pathway. The pathway includes nonribosomal peptide synthetase (NRPS) NotE, prenyltransferases NotF and
NotC, putative hydroxylase NotG, a proposed but unidentified intramolecular Diels—Alderase, and flavin-dependent monooxygenases NotB

and Notl. Prenyl group numbering distinguishes the reverse and no
phosphate (NADPH) cofactor for catalysis, while NotB and Notl req
NotF catalyzes reverse prenylation of the indole C2 position and
dimethylallyl pyrophosphate (DMAPP).

dipeptide intermediates for the subsequent intramolec-
ular Diels—Alder (IMDA) reaction. Thus, it is now evi-
dent that the mechanism for the IMDA cyclization is
based on the organization of the upstream NRPS [1].
The mechanism for the MKP-producing NRPS has
been identified based on recent investigations of the
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rmal prenyltransferases. NotE requires nicotinamide adenine dinucleotide
uire flavin adenine dinucleotide (FAD) and the reduced NAD(P)H cofactor.
NotG normal prenylates the indole ring with prenyl groups provided by

Phq and Mal systems by our group [22]. The distin-
guishing terminal reductase domain belongs to the
family of short-chain dehydrogenase reductase (SDR)
nicotinamide adenine dinucleotide phosphate (NAD(P)
H)-dependent oxidoreductases. These enzymes perform
a hydride and proton transfer involving the

The FEBS Journal 287 (2020) 1381-1402 © 2020 Federation of European Biochemical Societies
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nicotinamide cofactor and an active site tyrosine,
among other conserved amino acids [23,24]. The
NRPS couples L-proline and L-tryptophan to produce
an L-Pro-L-Trp aldehyde product through cyclization
and dehydration (Figs 1 and 2). Under conditions that
contain the NRPS alone, the linear aldehyde product
spontaneously oxidizes to a cyclic aromatic zwitteri-
onic species [22]. This catalytic mechanism requires the
NADPH cofactor to provide the reducing equivalents,
and both PhgB and MalG R-domains contain the
canonical SDR tyrosine and lysine active site residues
(Fig. 4) [22].

The key difference between the Mal and Phq NRPS
systems is the incorporation of B-methyl proline into
the dipeptide core within the paraherquamide path-
way. Through isotopic feeding studies in Penicillium
fellutanum (ATCC: 20841), it was determined that iso-
leucine is the biosynthetic precursor to B-methyl pro-
line [25] and that this nonproteinogenic amino acid is
directly incorporated into paraherquamide A (1) [26].
The enzyme responsible for this amino acid transfor-
mation is proposed to perform an oxidative cyclization
of the nitrogen atom and C9d aldehyde, followed by a
selective reduction on the same face as the methyl
(Fig. 5) [25-27]. In vitro validation of this reaction
scheme was demonstrated for the biosynthesis of
UCS1025A, a fungal polyketide alkaloid of a different
class [28]. The subsequent hydroxylation observed on
the proline moiety in the paraherquamides occurs later

Fig. 4. Nonribosomal peptide synthetase (NRPS) PhqgB reductase
domain X-ray crystal structure in complex with nicotinamide
adenine dinucleotide phosphate (NADPH) with canonical short-
chain dehydrogenase reductase (SDR) catalytic amino acids
displayed (PDB ID: 6NKI). Model generated using PyMol Molecular
Graphics System.

Enzyme evolution in fungal indole alkaloid biosynthesis

in the biosynthesis, following bicyclic ring formation
(Fig. 2) [29]. Interestingly, Penicillium sp. IMI 332995
produces another B-methyl proline-containing com-
pound VM55599 (2), which has the opposite sterco-
chemistry of the bicyclic ring and the same
stereochemistry of the methyl group [25,30], indicating
that these Penicillium strains may produce a broad
repertoire of B-methyl proline analogs. Additionally,
the recently discovered mangrovamide A (3) contains a
unique y-methyl proline moiety [31]. We hypothesize
that this functionality is generated by a leucine-selec-
tive enzyme (Fig. 5) involving oxidation, cyclization,
and reduction, similar to the respective transforma-
tions in the biosynthesis of echinocandin [32], grise-
limycin [33], and the nostopeptolides [34].

Redundant prenyltransferases

Prenyltransferases catalyze normal and reverse preny-
lation reactions in natural product biosynthetic path-
ways, where the bond is formed between the substrate
and CI of the isoprene unit in normal prenylation and
between the substrate and C3 of the isoprene in
reverse prenylation [Fig. 3, deoxybrevianamide E (16)
and notoamide S (5) numbering]. We have found that
most of the bicyclo[2.2.2]diazaoctane fungal indole
alkaloid gene clusters contain an additional prenyl-
transferase relative to the number of prenyl units
incorporated into the molecule. The initial reverse
prenylation occurs at the indole C2 position of the
NRPS dipeptide product [22], while prenylation of the
phenolic portion of the indole to form the pyran and
dioxepin rings can occur before (Fig. 3) or after
(Fig. 2) formation of the [2.2.2] fused bicycle. Precur-
sor incorporation studies have provided insight on the
origin of the prenyl groups. P. fellutanum, P. brevi-
compactum, and Aspergillus ustus all demonstrated
incorporation of ['3C,]-acetate into paraherquamide A,
brevianamide A, and austamide, respectively, indicat-
ing a mevalonic acid pathway origin of the prenyl
group. Additionally, the geminal dimethyl group stem-
ming from the indole C2 position was found to be
nonselectively assigned; thus, the facial bias of the
reverse prenylation in the biosynthesis of these mole-
cules varies by pathway [35].

Enzymatic analyses have provided key details for
the prenylation reactions within these systems. Within
notoamide biosynthesis in the marine-derived Aspergil-
lus protuberus (formerly Aspergillus sp. MF297-2),
NotF has been characterized as the reverse prenyl-
transferase or deoxybrevianamide E synthase (Fig. 3)
[21,36,37]. It was hypothesized that brevianamide F (4)
would be the substrate for NotF based on previous

The FEBS Journal 287 (2020) 1381-1402 © 2020 Federation of European Biochemical Societies 1385
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Fig. 5. Proposed mechanism for the generation of the methyl proline-containing molecules and examples of molecules generated from

isoleucine and leucine precursors.

work focused on fumitremorgin biosynthesis [16,17],
although in the case of the fumitremorgins, 4 under-
went normal prenylation at the indole C2 position
[17]. The notoamide biosynthetic pathway also con-
tains a normal prenyltransferase (NotC) that is
involved in the formation of notoamide S (5), indicat-
ing its significance in pyran ring formation [21]. Addi-
tionally, the NotF homolog BrePT from the terrestrial
Aspergillus versicolor (NRRL573) has been character-
ized [38]. Although these prenyltransferases have high
sequence identity, BrePT displayed a broader substrate
scope, while maintaining its indole C2 regioselectivity.
Our investigations of the MKP pathways have led
to the characterization of the indole C2-reverse prenyl-
transferases MalE and Phql (Figs 1 and 2) [22]. We
determined that the free-standing reduced dipeptide
product was the favored substrate (6 and 7), rather
than either the oxidized zwitterion or an NRPS-carrier
protein-tethered substrate. Additionally, free trypto-
phan was not prenylated, refuting the role of an early-
stage modification. A presumed redundant prenyltrans-
ferase, MalB, displayed low activity with the reduced
dipeptide (6) as substrate. Sequence alignments and
structural comparison revealed that MalB is missing
two integral strands of the central B barrel likely
responsible for its attenuated activity (Fig. 6).

Enantioselective Diels-Alderases

Initial proposals for the biosynthesis of the bicyclo
[2.2.2]diazaoctane core involved an IMDA reaction to
form the exo- and endo-products [39]. Early

Fig. 6. Comparison of MalE (rainbow) and MalB (gray) Phyre2 [82]
models displaying the missing C terminus of MalB (red). Model
generated using PyMol Molecular Graphics System.

biosynthetic hypotheses assumed that both the MKP
and DKP systems were formed through a common
DKP intermediate, with the tryptophan carbonyl of
the MKPs derived from a net four-electron reduction
occurring after a putative Diels—Alder construction
[39]. The search for the Diels—Alderase within this
class of molecules was hindered by the inability to
identify candidate enzymes through bioinformatic
analysis. This was due to the unique identities of the
respective Diels—Alderases that result from divergent
evolutionary processes. Recent studies have shown that

1386 The FEBS Journal 287 (2020) 1381-1402 © 2020 Federation of European Biochemical Societies
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Diels—Alderase enzymes typically lose their original
function and have evolved to control stereoselectivity
for the cycloaddition reaction [22,40-46]. Additionally,
bound cofactors no longer serve a catalytic function
(e.g., methyl transfer, redox), and only play a struc-
tural role in maintaining the proper active site confor-
mation for stereochemical control [40-46]. Moreover,
most Diels—Alderases have no identified catalytic resi-
dues, leading to the conclusion that these biocatalysts
function by constraining the substrate in the proper
orientation [40-46]. Within this class of bicyclo[2.2.2]-
diazaoctane ring-containing molecules, the cycloaddi-
tion is proposed to be stereospecific based on the syn-
or anti-configuration of the bridged bicycle relative to
C6 (Fig. 3, stephacidin A numbering) [39]. The biosyn-
thetic IMDA enzyme is proposed to have strict dia-
stereo- and enantioselectivity, but some organisms
have been found to produce both antipodes [9,47].

Isolation and precursor incorporation studies

Within the notoamide (Not')-producing organism
A. amoenus, both (-)-stephacidin A (13) and (+)-versi-
colamide B (8) have been isolated (Fig. 3). The pro-
duction of 8 suggests that the putative IMDA reaction
leading to the major metabolites within the producing
organism may suffer from stereochemical leakage with
respect to facial selectivity of cycloaddition involving
the reverse isoprene moiety (dienophile) anchored at
the indole C2 position [48]. Interestingly, the organism
must then produce (+)-6-epi-stephacidin A (9), but not
(+)-stephacidin A (10), indicating the presence of mul-
tiple highly selective IMDAases or one semi-selective
IMDAase.

The marine-derived Aspergillus sp. (Not) also pro-
duces intermediates that may be relevant to the Diels—
Alder reaction in this organism. The isolation of
notoamide M (11), which is hydroxylated at Cl17,
raised questions regarding the biosynthetic Diels—Alder
reaction within the Not pathway (Fig. 7A) [36]. It was
proposed that 11 would undergo a dehydration to
form the azadiene intermediate for cycloaddition;
alternatively, 11 could be an artifact due to addition
of HO" to the transient azadiene species.

The notoamides and stephacidins are part of the
same family of bicyclo[2.2.2]diazaoctane alkaloids and
are often co-isolated from a single strain. A unique
aspect of these systems is that A. protuberus and
A. amoenus produce antipodal versions of these mole-
cules. While A. protuberus produces exo-products (+)-
stephacidin A (10)/(-)-notoamide B (12) and endo-
products (+)-6-epi-stephacidin A (9)/(+)-versicoloamide
B (8), A. amoenus produces (-)-stephacidin A (13)/(+)-

Enzyme evolution in fungal indole alkaloid biosynthesis

Brevianamide B (18)

Fig. 7. (A) Hydroxylated notoamide M (11) and halogenated
notoamide N (88). These molecules exemplify some of the unique
secondary metabolites in the notoamide family of natural products.
(B) Conformations of the azadiene en route to the major
diastereomer brevianamide A (17) and the minor diastereomer
brevianamide B (18).

notoamide B (14), where in both systems the exo-
metabolites are favored (Fig. 3) [49]. After isolation of
notoamide E (15) from the marine-derived Aspergillus
sp., doubly '*C-labeled 15 was prepared for feeding
studies [37]. Surprisingly, it was not incorporated into
the [2.2.2]-bicyclic ring-containing molecules, and no
bicycle-containing structures were generated [37].
These data contrast with the brevianamide system in
P. brevicompactum, where [*H]-deoxybrevianamide E
(16) was incorporated into brevianamides A (17) and
B (18), implying that the bicyclic ring was constructed
from the reverse prenyl group and the DKP ring [50].
Alternatively, notoamide E was observed to be incor-
porated into notoamide C (19), notoamide D (20), and
trace amounts of 3-epi-notoamide C in A. amoenus
(Fig. 3) [51]. To highlight the differences between the
two strains, larger amounts of 3-epi-notoamide C were
produced within the marine strain [37], while the for-
mation of the bicyclo[2.2.2]diazaoctane ring was not
completely abolished in the terrestrial strain as trace
amounts of unlabeled 10 and 12 were produced [51].
The presence of 15 appears to suppress the formation
of stephacidin A (10 and 13) and notoamide B (12 and

The FEBS Journal 287 (2020) 1381-1402 © 2020 Federation of European Biochemical Societies 1387
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14), suggesting that this compound inhibits or diverts
enzymatic machinery responsible for the production of
the bicyclo[2.2.2]-diazaoctane-containing metabolites.
These findings suggested a branch point in the biosyn-
thetic pathway, just prior to the formation of 15, per-
haps after the formation of 5 (Fig. 3) [51].
Enzyme-controlled facial selectivity appears to be
lost within the brevianamide biosynthetic Diels—Alder
reaction in Penicillium brevicompactum [50]. It was
proposed that the semi-pinacol rearrangement occurs
on the 3-hydroxyindolenine, setting the R-absolute
stereochemistry at the indoxyl quaternary center. Oxi-
dation of the DKP subunit forms the azadiene of
which the major rotamer would form 17 and the
minor rotamer would form 18 (Fig. 7B) [50]. There-
fore, the preponderance of 17 over 18 is likely due to
intrinsic energy barriers in the cycloaddition reaction
(nonenzyme catalyzed) [52]. Through the utilization of
frontier molecular orbital theory, it was predicted that,
for the energy levels of a relatively electron-rich diene
(such as that in the DKP) to effectively interact with a
dienophile, powerful electron-withdrawing groups
would need to be present in the dienophile. Since the
prenyl group is an isolated electron-neutral vinyl
group, one would not expect the [4 + 2] cycloaddition
in DKPs to be spontaneous without catalysis, but bio-
mimetic syntheses [53] have shown that the azadiene
undergoes a spontanecous IMDA to generate a mixture
of brevianamides with enantiomorphic bicyclo[2.2.2]
ring systems. While spontaneous, diastereocontrol of
the IMDA may be impacted by upstream transforma-
tions such as the early-stage semi-pinacol rearrange-
ment to generate the 3-spiro-y-indoxyl species [52].

Enzymology

Recent work within our laboratory has provided key
biochemical evidence to support the hypothesis of a
biosynthetic Diels—Alder enzyme within MKP systems
[22]. MalC was found to catalyze enantioselective
cycloaddition as a bifunctional reductase/Diels—Alder-
ase through NADPH-dependent reduction of the
prenylated zwitterion 21 to generate the reactive azadi-
ene 22, followed by an enzyme-controlled enantioselec-
tive cycloaddition reaction to generate exclusively (+)-
premalbrancheamide (23). In the absence of the
enzyme, chemical reduction of the prenylated zwitter-
ion leads to racemic 23; thus, the enzyme-dependent
shift in enantiomeric excess and rate increase led to
the conclusion that this reaction is enzyme-catalyzed
(Figs 1 and 8).

The crystal structures of MalC and the homolog
PhqE (from the paraherquamide pathway) provided

A. E. Fraley and D. H. Sherman

further mechanistic insight. Their closest structural
homologs are canonical SDRs, although the Diels—
Alderases lack the essential catalytic residues for SDR
activity (Tyr, Lys, Asn, Ser) [54]. MalC Aspl165 forms
part of a conserved PDPGW motif and was shown to
be required for reduction of the substrate prior to the
Diels—Alder reaction. The structure showed that
Aspl165 has moved about 3A closer to the substrate
than the analogous amino acid in canonical SDRs,
highlighting a larger change in the active site architec-
ture. Based on mutagenesis and computational studies,
a mechanism for the reduction and Diels—Alder selec-
tivity was proposed. An arginine residue and the 2'-
OH of the NADPH ribose initiate the reaction with
NADPH acting as the hydride donor and Aspl65 sta-
bilizing the positive charge of the prenyl zwitterionic
species 21 (Fig. 1) to facilitate the formation of the
reactive azadiene intermediate. Stereocontrol appears
to be primarily driven by active site shape complemen-
tarity including aromatic amino acids and the cofactor,
which hold the substrate in the proper conformation
(Fig. 8).

The work on the Phq system was consistent with
prior feeding studies and predictions, where the p-
methyl-Pro-Trp dipeptide was formed by the NRPS
[25,29]. Disruption of phqE in Penicillium simplicissi-
mum using the CRISPR-Cas9 system generated a
mutant strain that accumulated the B-methyl-Pro-Trp
prenyl zwitterion intermediate 24 (Fig. 2) [22]. With
the addition of the PhqE crystal structures in complex
with substrate, product, and the NADP" cofactor, a
more thorough mechanistic understanding was
achieved. Preference for the NADPH cofactor is
explained by an electrostatic interaction between Lys50
and the cofactor 2’-phosphate. Additionally, a rela-
tively short distance between the nicotinamide C4
hydride donor and the presumed deoxy C5 acceptor of
the product premalbrancheamide (23) indicated that
reduction and cycloaddition are highly coordinated.

Amino acid sequence comparisons, structural data,
and NADPH cofactor dependence support the hypoth-
esis that the Diels—Alderases catalyzing formation of
the MKP bicyclo[2.2.2]diazaoctane ring system evolved
from an SDR progenitor. The active site pocket in the
MKP systems clearly orients the substrate for proper
enantiocontrol, while the evolution of the active site
for its new function is evident. This spectacular display
of protein evolution has led to an enzyme that main-
tained its reductase function without the canonical cat-
alytic residues, while also providing stereocontrol for
the Diels—Alder [4 + 2] cyclization. Moreover, our
studies have revealed that the MKP and DKP path-
ways have evolved in a convergent manner based on
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Fig. 8. (A) Reactions performed by MalC. Reduction and stereochemical control are performed by MKP IMDAase MalC which ‘holds’ the
substrate in the proper conformation to generate (+)-premalbrancheamide (23). (B) Active site of PhgE in complex with the prenyl zwitterion
21. c. Proposed mechanism involving donation of a proton from R131 and stabilization of the zwitterion by D166 followed by hydride
transfer from the nicotinamide adenine dinucleotide phosphate (NADPH) cofactor to generate the unstable azadiene. The cofactor and W169
provide diastereo- and enantioselective control of the cycloaddition. Model generated using PyMol Molecular Graphics System.

the NRPS terminal domain identity, and redox chem-
istry leading to the dipeptide precursor ring system.

An alternative mechanism for the formation of the
bicyclo[2.2.2]diazaoctane ring was discovered for the
biosynthesis of brevianamide A [52]. While the previ-
ously discussed MKP pathways involved formation of
the bicyclic core prior to spirocycle formation, bre-
vianamide production employs a reversed sequence of
biosynthetic steps where the oxidized indole intermedi-
ate is formed prior to a subsequent DKP oxidation
and cyclization. The initial indole oxidation by BvnB
and isomerization by BvnE are similar to the NotB-
catalyzed formation of notoamides C and D (discussed
in detail below). This is followed by a P450-catalyzed
DKP oxidation (by BvnD) to the azadiene and sponta-
neous cyclization to the bicyclo[2.2.2]diazaoctane core.

Flavin monooxygenases and
Spirocycle Formation

The spiro-oxindole center is prevalent within members
of this indole alkaloid family including para-
herquamides [2,3], notoamides [6-8], marcfortines
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[55,56], sclerotiamide [57], mangrovamides [31], and
asperparalines [58] (Figs 2, 3, 5, 7B). The stereochem-
istry of the spirocycle is proposed to be controlled by
the facial selectivity of the initial indole 2,3-epoxida-
tion, followed by its collapse to a 2-alkoxyindole inter-
mediate, and a semi-pinacol rearrangement to generate
the final spiro-cyclized product [59].

Paraherquamides

Based on previous data [29], we hypothesized that the
[2.2.2]bicyclic ring is formed with the nonoxidized
tryptophanyl moiety and that oxidations of the indole
ring to form both the dioxepin and the spiro-oxindole
must occur after formation of preparaherquamide (25)
(Fig. 2) [60]. To probe the timing of spirocyclization
and dioxepin ring formation, triply deuterium-labeled
7-hydroxy-25 was introduced to a culture of Penicil-
lium fellutanum, the results indicated that indole C7
oxidation is not the immediate step following the
IMDA reaction, but still may occur prior to spirooxin-
dole formation [60]. Recent gene disruption studies in
Penicillium simplicissimum established that the pyran
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and dioxepin rings are both formed prior to spirocy-
clization, elucidating two key intermediates en route to
paraherquamides A (1) and G (83) [61].

The genetic knock-out data in Penicillium simplicissi-
mum have also revealed that the epoxidation and semi-
pinacol rearrangement occur through two parallel
pathways. The biosynthetic pathway diverges after the
formation of 25 to form either a pyran or a dioxepin
ring on the indole (see below for a discussion of the
proposed mechanism for assembly of the heptacyclic
molecules). The PhgK flavin monooxygenase (FMO)
accepts both paraherquamides K (26) and L (27) and
performs a facially selective epoxidation, with a con-
trolled collapse of the epoxide to form the spirooxin-
dole (Fig. 2) [61]. Crystal structures revealed that
substrate orientation in the PhqK active site deter-
mined the facial selectivity of epoxidation. Collapse of
the presumed 2,3-indole epoxide intermediate is
strongly influenced by the pyran/dioxepin oxygen, and
the presence of a catalytic arginine which serves as a
general acid. Based on Michaelis—Menten kinetic
parameters, 27 appears to be the favored substrate,
but both 26 and 27 can undergo semi-pinacol rear-
rangement to the respective spiro-oxindole product.

Notoamides

The oxidative conversion of notoamide E (15) was
investigated through biomimetic oxaziridine-based syn-
theses in which notoamide C (19) [62] (48%), 3-epi-no-
toamide C [62] (28%), and minor amounts of
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notoamide D (20) and 2,3-epi-notoamide D were pro-
duced (Fig. 3) [7]. The electronic properties of the
indole ring were found to influence the regiochemistry
of oxidation of the C2-C3 indole bond, resulting in
either the pyrroloindole or the oxindole [7]. While the
synthetic method generated unequal product distribu-
tion, the organism produced almost equal amounts of
19 and 20, implying that the responsible biosynthetic
enzyme can override the inherent reactivity of the
molecule [7].

Enzymatic characterization of the FMO NotB
revealed that both 19 and 20 can be produced from
15, and it was proposed that both can be formed
through pB-epoxidation of the C2-C3 indole bond
(Fig. 9) [7]. Ring opening of the pB-2,3-epoxyindole
intermediate to the 3-hydroxyindolenine species fol-
lowed by N-C ring closure from the diketopiperazine
NH generates pyrroloindole 20 as the major product.
The minor product 19 is derived from the pseudo-
quinone methide species and subsequent a-face migra-
tion of the prenyl group from C2 to C3. It was also
proposed that an interaction between the indole C2
oxyanion intermediate and DKP N-H determines
whether the pyran ring contributes to the breakdown
of the epoxide (Fig. 9). The N-H can stabilize the neg-
atively charged intermediate, but this interaction does
not occur when the epoxide collapses to the indole C3
position; thus, the hydroxyl is formed immediately,
producing 20 [7]. The products resulting from o-face
epoxidation were not observed in the enzymatic reac-
tion; thus, it was proposed that their isolation in the

Pseudo-p-quinone methide

Notoamide C (19)

Fig. 9. Proposed mechanism for assembly of notoamides C (19) and D (20) by the flavin-dependent monooxygenase NotB.
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precursor incorporation study was an artifact of the
excessive amounts of 15 within the culture medium
[62].

Because 15 halted production of bicyclo[2.2.2]diaza-
octane ring-containing metabolites, it was proposed that
an enzyme other than NotB was required to catalyze
formation of the spiro-oxindole within this family [7].
Intriguingly, it was reported that A. protuberus pro-
duced (+)-stephacidin A (10) and (-)-notoamide B (12)
[6], while A. amoenus produced the enantiomers (-)-ste-
phacidin A (13) and (+)-notoamide B (14) (Fig. 3) [48].
Due to the antipodal relationship of the metabolites iso-
lated from A. protuberus (marine) and A. amoenus (ter-
restrial), an R-selective monooxygenase was proposed
to exist within the marine strain and an S-selective
monooxygenase within the terrestrial strain [48]. At first,
whether the alternative FMO would act before or after
the IMDA remained unclear. It was considered that the
breakdown of the indole 2,3-epoxide followed by semi-
pinacol rearrangement of the isoprenyl group from C2
to C3 could produce intermediates that undergo oxida-
tion and tautomerization to yield the azadiene interme-
diates for the IMDA [36]. However, the isolation of
notoamide T (28/29) and stephacidin A (10/13) [63], as
well as the precursor incorporation studies, led to the
biosynthetic hypothesis that the IMDA occurs prior to
spirocyclization. Late-stage spiro-oxindole formation
was probed by introducing doubly '*C-labeled racemic
stephacidin A (10/13) to cultures of A4. amoenus and
A. protuberus; analysis of the metabolites revealed enan-
tiospecific incorporation of intact 13 into 14 in
A. amoenus and 10 into 12 in A. protuberus, and the
unreacted 10 and 13 were re-isolated from the respective
fungal extracts [63]. These data provided evidence of
divergent flavoenzymes with opposite R/S-substrate
selectivity in each strain.

In feeding studies, racemic p,L-['*C],-notoamide T (28
and 29) was incorporated into 10 and 14 in 4. amoenus
[64], indicating that 28 and 29 are converted to 10 and
13, respectively, and 13 is rapidly converted to 14, while
10 accumulates as a shunt product. In 4. protuberus, D,
L-["*C],-notoamide T (28/29) was incorporated into 10/
13, 12/14, notoamide F (30), notoamide R (31), and
notoamide T2 (32) (all racemic) (Figs 3 and 10A) [64].
This led to a contradictory notion that the gene prod-
ucts in A. protuberus do not discriminate between the
two enantiomers of notoamide T (28/29) or stephacidin
A (10/13) in the oxidative conversion to the final
metabolites [64]. While growth conditions were consis-
tent between the two experiments, it is possible that
small changes such as substrate concentration induced
higher reactivity (broader substrate scope) in the second
incorporation study.

Enzyme evolution in fungal indole alkaloid biosynthesis

Additionally, the presence of 6-epi-isomers raised
some ambiguity in the selectivity of the IMDAase
(Fig. 3). (+)-Versicolamide B (8) was isolated from
A. amoenus and was the first member of this family
to possess the anti-relative stereochemistry within the
bicyclo[2.2.2]diazaoctane ring system (Fig. 3) [48].
Racemic 6-epi-notoamide T (33/34) was converted to
6-epi-stephacidin A (9/35) and (+)-versicolamide B (8)
in A. protuberus [49]. The isolation and incorporation
of notoamide S (5) into notoamides C (19), D (20),
(-)-stephacidin A (13), (+)-notoamide B (14), and (+)-
versicolamide B (8) in A. amoenus [62,65] indicated
that the FMO can also accept (+)-6-epi-stephacidin A
(9). The observation of an enantiomeric mixture of 6-
epi-stephacidin A (9/35) enriched with the (-)-isomer
from A. amoenus indicated that the enzymes upstream
of the FMO were not selective. While the A. amoenus
FMO transforms 9 to 8, there is not a suitable oxi-
dase for the (-)-6-epi-stephacidin A (35) shunt
metabolite [49]. It is intriguing that the closely related
Aspergillus  species have evolved enantiodivergent
pathways to the stephacidins and notoamides, but
converged on the production of (+)-versicolamide B
(8) [49].

In vitro work with Notl (4. protuberus) and Notl’
(A. amoenus) demonstrated the conversion of 10 and
13 to 12 and 14, although a clear preference was
observed for 13 (Fig. 3) [66,67]. Both Notl and Notl’
also converted 9 to 8, but no reaction was observed
with 35. This is consistent with the conversion
observed in 4. amoenus where 8 was produced and 35
was determined to be a shunt metabolite [49]. The
ability to convert 10 may be an evolved trait from an
ancestral enzyme previously selective for 13, as high
reactivity for this substrate is retained in both Notl
and Notl’.

The presence of both early-stage and late-stage
FMOs in notoamide biosynthesis indicates that two
routes may be employed to generate the bicyclic moi-
ety within this pathway (Fig. 3). The production of
similar products by NotB and BvnB/BvnE has led us
to believe that a P450 monooxygenase homologous to
BvnD may be present in the notoamide biosynthetic
gene cluster (NotH). In combination with the precur-
sor incorporation studies, this work provides evidence
that this biosynthetic system utilizes two seemingly
divergent routes to converge on the same bicyclo
[2.2.2]diazaoctane-containing notoamides, each with its
own inherent selectivity to furnish the various notoa-
mide natural products. If this prediction is ultimately
determined to be the case, we can hypothesize that the
notoamide producers might be the ancestral strain
from which the other fungal indole alkaloid producers
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Fig. 10. (A) Secondary metabolites with anti- and syn-configuration. The syn-products (30-32) are all generated from notoamide T in vivo. (B)
Taichunamides H (Aspergillus versicolor HDN11-84) and B-G (Aspergillus taichungensis (IBT 19404) with anti-relative stereochemistry of the
bicyclic ring. (C) Anti-bridged bicycles produced by Aspergillus taichungensis ZHN-7-07. d. Brevianamide E (45), which is generated from

deoxybrevianamide E (16).

diverged to utilize just a single mechanism to generate
the bicyclo[2.2.2]diazaoctane core.

Taichunamides

The isolation of fungal natural products with the anti-
relative stereochemistry of the bicyclic ring generated
questions regarding the driving force for selectivity of
the IMDA reaction in these families. Taichunamide H
(36), isolated from mangrove-derived fungus Aspergil-
lus versicolor HDN11-84, and taichunamides B-G (37-
42), isolated from the fungus Aspergillus taichungensis
(IBT 19404), contain an anti-bicyclo[2.2.2]diazaoctane
core (Fig. 10B) [68,69]. They are proposed to share the
common precursors notoamide S (5), (+)-6-epi-no-
toamide T (33), and (+)-6-epi-stephacidin A (9). Addi-
tionally, A. taichungensis ZHN-7-07 produces 9, N-
hydroxy-6-epi-stephacidin A (43), and 6-epi-avrainvil-
lamide (44), all with anti-relative configuration

1392

(Fig. 10C) [70]. This indicates that the taichunamide
biosynthetic enzymes share some overlap or cross talk
with those from the notoamide biosynthetic pathway
in these producing organisms, but in all cases they
seem to be selective for the anti-form of the bicyclic
ring configuration.

Brevianamides

The anti-relative stereochemistry in the brevianamides
was proposed to be generated from the oxindole inter-
mediate. [*H]-labeled deoxybrevianamide E (16)
(Fig. 3) was shown to be efficiently incorporated into
brevianamides A (17), B (18) (Fig. 7B), and E (45)
(Fig. 10D) in Penicillium brevicompactum. It was pro-
posed that 45 may be a biosynthetic precursor to 17
and 18, but [*H]-labeled 45 was not incorporated into
either, disproving its intermediacy within the pathway
[50]. Thus, it is likely that oxidation of the indole
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occurs at C3 prior to the IMDA. FMO-catalyzed -
face epoxidation of deoxybrevianamide E (16) would
be followed by the selective formation of the (R)-
OH intermediate at C3. This can either cyclize to form
brevianamide E (45) or undergo a semi-pinacol rear-
rangement to form an indoxyl intermediate. Oxidation
to the azadiene would provide the proper substrate for
the IMDA [50,52]. The semi-pinacol rearrangement is
proposed to proceed through general base catalysis to
generate the indoxyl [52]. In comparison, para-
herquamide biosynthesis utilizes general acid catalysis
to generate an oxindole moiety [61], demonstrating
that these systems have evolved divergent mechanisms
for spirocycle formation.

Effect on the Diels-Alder product

With the knowledge that the spiro-oxindole is differen-
tially installed preceding or following the IMDA reac-
tion in various strains, the implications of this
distinction regarding other reactions within the biosyn-
thetic sequence must be considered. Density functional
theory computational studies have been performed to
elucidate the stereochemical features of the cyclization
step involved in paraherquamide A (1) and VM55599
(2) biosynthesis (Fig. 11) [71]. It was determined that
the nonoxidized indole favors syn-diastereoselectivity,
which agrees well with precursor incorporation experi-
ments by Williams et al. [35,50] concluding that the
syn-cycloaddition could take place via the nonoxidized
tryptophanyl moiety and that the oxidation of the
indole ring occurs after the IMDA cycloaddition in
paraherquamide biosynthesis [71]. In the computa-
tional study, anti-selectivity was found for the cycload-
ditions of the oxindole-based derivatives, indicating
that the FMO reaction could precede the IMDA in
cases where anti-bicyclo[2.2.2]diazaoctane rings are
observed [71]. Contrary to this hypothesis, nonspirocy-
clized anti-stereochemistry MKP members of this fam-
ily have also been isolated [72-74], indicating that there
may be various divergent routes to the syn/anti-bicyclo
[2.2.2]diazaoctane ring. Monooxygenases have evolved
to perform the presumed epoxidation and semi-pinacol
rearrangement at different points within the biosynthe-
sis, affecting the stereochemical outcome of the Diels—
Alder reaction [50]. While this computational study
presents a substrate-controlled mechanism for directing
the IMDA, the enzyme active site conformation may
provide a catalyst-controlled means to overcome the
innate reactivity. With this in mind, IMDA enzymes
may be selective for either the oxidized or nonoxidized
substrate, and the orientation in which they bind may
direct the reaction. If this is the case, there may have

Enzyme evolution in fungal indole alkaloid biosynthesis

been a parallel evolution of the IMDA enzyme and
the FMO in each of the biosynthetic gene clusters.
Interestingly, in the case of the asperversiamides,
both syn- and anti-products have been isolated from
the same organism, a marine-derived Aspergillus versi-
color. While asperversiamides A-C (46-48) and E (49)
contain the anti-bicyclo[2.2.2]diazaoctane ring, asper-
versiamide D (50) contains the syn-ring (Fig. 12A).
With the isolation of the prenylated precursor asper-
versiamide H (51), one can infer that the Diels—Alder
reaction is the last step in the pathway to 46-49, fol-
lowing the oxindole formation, leading to an anti-con-
figuration [47]. This system is unique in that it may

Paraherquamide A (1)

VM55599 (2)

Fig. 11. Conformations conducive to syn- or antibicyclic ring
formation. Examples from each subgroup of the fungal indole
alkaloids are shown.
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Fig. 12. (A) Asperversiamides A-E (46-49) and H (51) isolated from a marine-derived Aspergillus versicolor. Asperversiamides A-C and E
display anti-relative stereochemistry, and asperversiamide D displays syn-relative stereochemistry. (B) Domains of PhgK flavin-dependent
monooxygenase (PDB ID: 6PVI). PhgK flavin adenine dinucleotide (FAD)-binding domain (cyan) and three insertions that form the substrate-
binding domain (blue, green, and yellow) are highlighted. The substrate is shown in magenta, and the FAD cofactor is shown in orange.

Model generated using PyMol Molecular Graphics System.

contain two different monooxygenases since one would
result in the semi-pinacol rearrangement and the other
would generate a hydroxylated product [47]. Addition-
ally, one FMO would act at an early stage, and the
other at a late stage with various options for the
IMDA. The IMDA enzyme may be nonselective and
accept both substrates, or it may have an evolved
active site that can override the inherent selectivity of
the molecule. Among numerous possibilities, there
may even be two different IMDA enzymes/mecha-
nisms, serving to generate the diastereomeric products.
On the other hand, recent work on the brevianamide
biosynthetic pathway has revealed that the early-stage
semi-pinacol rearrangement to generate the 3-spiro-\-
indoxyl directs the subsequent IMDA reaction in a
substrate-controlled manner [52]. This demonstrates
another example of differentiation within this class of
fungal indole alkaloids, where the pathways have
evolved unique mechanisms to generate molecular
diversity.

FMO evolution

There are a variety of different types of FMOs that have
diverged into two groups defined by whether they
require a reductase partner [75]. For stand-alone
enzymes, such as those involved in spirocyclization, the
reactions with the electron donor and oxygen are cat-
alyzed by a single protein. While some FMOs have two

distinct cofactor-binding domains, others (such as
PhgK) contain a single nucleotide binding domain for
the FAD and have developed a NADPH-binding
groove on the surface of the protein. Over time, the fla-
vin monooxygenases have undergone domain fusion
events, eventually leading to the development of a new
domain for substrate binding which serves to further
differentiate the members of this enzyme class
(Fig. 12B).

Mechanism of spiro-oxindole formation

Mechanistic implications for spiro-oxindole formation
can be gleaned from systems outside the bicyclo[2.2.2]di-
azaoctane ring-containing family. The conversion of
aurachin C (52) to B (53) is proposed to involve the
migration of the prenyl group from position C3 to C4
through a semi-pinacol rearrangement [20], similar to
that proposed for the spirocyclization in the fungal
indole alkaloids (Fig. 13). The proposed mechanism
involves an epoxidation of the quinoline core of 52 by
AuaG followed by AuaH-catalyzed ring opening of the
epoxide and semi-pinacol rearrangement, while the pro-
posed mechanism for the fungal indole alkaloids is initi-
ated with an epoxidation of the indole C2 = C3, and the
breakdown of the epoxide leads to a spontaneous semi-
pinacol rearrangement to generate the spirocycle. In the
aurachin pathway, two enzymes catalyze the semi-pina-
col-type rearrangement where the main product of
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Fig. 13. Aurachin biosynthesis. AuaG and AuaH perform nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent epoxidation and
semi-pinacol rearrangement like the bifunctional PhqgK, and Auad and Aual catalyze epoxidation and cyclization similar to the pyran and
dioxepin ring formation in fungal indole alkaloid biosynthesis. Both AuaG and AuaJ are flavin adenine dinucleotide (FAD)-dependent

enzymes.

AuaG appears to be an energetically less-favored isomer
that is immediately stabilized by reduction and subse-
quent aromatization catalyzed by AuaH reductase [20].
In contrast, the fungal indole alkaloid systems have
evolved a single dual-function enzyme.

A detailed study of spirocycle formation in
spirotryprostatins derived from the fumitremorgin
biosynthetic pathway has also shed light on this topic
(Fig. 14) [18]. FqzB is an FAD-dependent monooxyge-
nase from the unrelated fumiquinazoline biosynthetic
pathway which catalyzes the spirocycle formation on
fumitremorgin C (54) to generate spirotryprostatin A
(55) via an epoxidation route (Fig. 14) [18]. The con-
version of tryprostatin B (56) to tryprostatin B-indo-
line-2,3-diol (57) and conversion of tryprostatin A (58)
to tryprostatin A-indoline-2,3-diol (59) and trypro-
statin A-2-oxindole (60) indicate that FqzB catalyzes
epoxidation of the C2-C3 olefin of the indole on 56
and 58. The formation of 60 indicates that the mecha-
nism involves a semi-pinacol rearrangement of the
epoxidized intermediate [18].

Within the same organism, a cytochrome P450 FtmG
from the fumitremorgin biosynthetic pathway catalyzes
the spirocycle formation observed in spirotryprostatin B
(61) [18]. FtmG converts demethoxy-fumitremorgin C
(62) into 61 as well as monohydroxyl (63) and diol (64)
forms of demethoxy-fumitremorgin C [18]. Based on the
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intermediate structures, a reaction mechanism was pro-
posed involving a P450 heme-catalyzed initial radical
formation and subsequent two rounds of hydroxylation
of 62 [18]. The production of 61 by FtmG is proposed to
occur through radical migration from C8 to C2 and sub-
sequent hydroxylation at C2 can set up the molecule for
a semi-pinacol rearrangement involving a concomitant
spirocycle formation. Additionally, FtmG crosses into
the fumitremorgin biosynthetic pathway to convert
fumitremorgin C to spirotryprostatin G (65) (Fig. 14)
[18].

Aspergillus  fumigatus maintains two orthogonal
spirocycle formation systems in its secondary metabo-
lite biosynthetic pathway: an FAD-dependent route
(for the formation of 55) catalyzed by the FMO FqzB,
and a radical route (for the formation of 61 and 65)
catalyzed by the P450 FtmG [18]. This study highlights
the versatile role of oxygenating enzymes in the
biosynthesis of structurally complex natural products
and indicates that cross talk of different biosynthetic
pathways promotes product diversification in natural
product assembly processes [18].

Dioxepin and pyran ring formation

Within P. fellutanum, isoprene units from the meval-
onic acid (mevalonate) pathway were incorporated into
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Fig. 14. Spirotryprostatin and fumitremorgin biosynthetic pathway cross talk involving cytochrome P450 FtmG and flavin-dependent

monooxygenase FqgzB.

the dioxepin ring of paraherquamide A (1) [35]. It was
proposed that the formation of the dioxepin is due to
a facially selective epoxidation of the olefin followed
by a stereospecific ring opening of the epoxide and
dehydration [35]. Another alternative for the dioxepin
formation would be a face-selective complex with a
transition metalloprotein to the olefinic m-system fol-
lowed by stereospecific intramolecular nucleophilic
addition and reductive elimination to the enol ether

(Fig. 15A) [35]. The hydroxylation and epoxidation
are both proposed to be performed by currently
unidentified oxidative enzymes. This fungal system
contrasts with the nonheme iron-dependent enzyme
deguelin cyclase found in plants [76,77].

Within the notoamide-producing strain 4. amoenus,
[*Cl,-notoamide T (28/29) was incorporated into (+)-
stephacidin A (10) and (+)-notoamide B (14) (Fig. 3)
[64]. This indicates that both 28 and 29 were accepted
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Fig. 15. (A) Proposed mechanisms for dioxepin ring formation

involving an oxidative enzyme with a metal cofactor (ML, and a

prenyltransferase. (B) Halogenated malbrancheamides. These molecules are generated by the flavin-dependent halogenases MalA and

MalA” in Malbranchea aurantiaca and Malbranchea graminicola, respectively.
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by the pyran ring-forming enzyme to generate 10 and
13, respectively. Thus, the enzyme responsible for
pyran formation must have evolved to accept both
enantiomers.

The asperversiamides have a unique connectivity
with the isoprenyl substituent located on the indole C5
to form the pyrano-[3,2-flindole moiety as opposed to
the angularly fused pyrano[2,3-glindole (Figs 11 and
12A) [47]. The prenyltransferase responsible for this
transformation must have C5 selectivity as opposed to
typically observed indole C7 prenylation. Conse-
quently, the downstream enzymes, such as those
responsible for catalyzing pyran ring formation, must
have evolved in parallel to perform their function on
the new metabolite.

Mechanism of pyran and dioxepin ring formation

Similar biosynthetic enzymes involved in aurachin pro-
duction in the myxobacterium Stigmatella aurantiaca
Sg al5 have provided insight into the potential mecha-
nism to form the pyran and dioxepin moieties. This
involved the 3,4-migration of the farnesyl chain to pro-
duce A-type aurachins, which was proposed to proceed
via 2,3-indole epoxidation (AuaG) and subsequent
reduction by AuaH as described above (Fig. 13) [19].
Aual is proposed to perform an epoxidation that is
followed by Aual-catalyzed hydrolysis to form aura-
chin A (66), which functions similarly to the pyran

Fig. 16. Structural comparison of the flavin cofactor in flavin-
dependent monooxygenases (FMO)s. Some FMOs catalyze
oxidation reactions, and others catalyze halogenation reactions.
PhgK (red), PgsL FMO, PDB: 6fho (orange), MalA’ halogenase,
PDB: 5wgr (yellow), PItA halogenase, PDB: 5dbj (green), and
decarboxylative hydroxylase, PDB: b5eow (blue). The discrete
conformations captured in these structures indicate the ancestral
relationship of these flavin-dependent enzymes. Model generated
using PyMol Molecular Graphics System.
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and dioxepin ring-forming enzymes within fungal
indole alkaloid biosynthesis [19]. In this case, two
enzymes (AuaG and AuaH) perform the proposed
function of PhgK and Notl in paraherquamide and
notoamide biosynthesis, respectively. PhgK and Notl
have evolved as dual-function enzymes to perform the
epoxidation and selective semi-pinacol rearrangement
in their respective pathways. It is possible that the
epoxidation and cyclization to form the pyran and
dioxepin rings may also be mediated by a single fungal
enzyme, but the mechanism remains unclear
(Fig. 15A).

Late-stage halogenation

Halogenation of the fungal bicyclo[2.2.2.] indole alka-
loids appears to be fairly specific to the Malbranchea
strains M. aurantiaca [4] and M. graminicola [78]. The
halogenases MalA (M. aurantiaca) and MalA’
(M. graminicola) are responsible for the iterative chlo-
rination to generate the natural product mal-
brancheamide (67) [4,78,79]. These halogenases
catalyze chlorination and bromination reactions to
generate monochlorinated malbrancheamide B (68)
and isomalbrancheamide B (69), monobrominated
malbrancheamide C (70) and isomalbrancheamide C
(71), mixed halogen malbrancheamide D (72) and iso-
malbrancheamide D (73), and the dibrominated mal-
brancheamide E [61] (Fig. 15B). The monobrominated
molecules had previously been isolated from
M. graminicola, and in vitro work with MalA and
MalA’ demonstrated that both strains were capable of
generating the brominated and chlorinated molecules.
The MalA/A’ study included the first computational
analysis of the flavin-dependent halogenase (FDH)
family and demonstrated a modified mechanism for
fungal FDHs. Additionally, it was determined that
MalA is stereospecific, distinguishing a single antipo-
dal natural substrate. Thus, when incubated with race-
mic premalbrancheamide, only (+)-
premalbrancheamide (23) was converted to (+)-mal-
brancheamide (67) [22].

The notoamide family also contains a halogenated
secondary metabolite, notoamide N (88), which con-
tains an indole CS5 chlorination (Fig. 7A) [36]. Based
on what we have observed with the production of
spiromalbramide [78], and in reactions with Notl/
PhqgK, we can hypothesize that the pyran ring forma-
tion and the halogenation of the [2.2.2] bicyclic pro-
duct would occur prior to the spirocyclization. The
molecule could be halogenated first through a similar
mechanism to MalA, and then, the pyran ring would
be formed, followed by spirocyclization. However, the

The FEBS Journal 287 (2020) 1381-1402 © 2020 Federation of European Biochemical Societies 1397



Enzyme evolution in fungal indole alkaloid biosynthesis

corresponding halogenating enzyme has yet to be iden-
tified.

The spiro-oxindole-forming enzymes and FDHs are
both part of the overarching FMO family. While the
enzymes that catalyze spiro-oxindole formation are
typically discrete proteins, the FDHs require an FAD
reductase partner to initiate catalysis. The stand-alone
enzymes have a highly dynamic FAD cofactor that
moves between ‘in’ and ‘out’ conformations as it is
reduced and oxidized, respectively. After a structure-
based evolutionary analysis of FMOs, it was clear that
the halogenases have evolved to bind the FAD in a
conformation that resembles the ‘in’ conformation of
the stand-alone enzymes. Along this evolutionary tra-
jectory, the enzyme also refashioned the FAD redox
chemistry to produce hypohalous acid and direct this
halogenating agent through the production of a puta-
tive lysine haloamine intermediate [80] (Fig. 16).

Discussion

Fungal indole alkaloids that contain the bicyclo[2.2.2]-
diazaoctane ring system are a unique family of mole-
cules and corresponding biosynthetic enzymes. The
NRPSs bear terminal condensation or reductase
domains, which lead to the formation of DKP or
MKP bicyclic ring systems, respectively. Additionally,
the incorporation of B-methyl proline and y-methyl
proline has been accommodated through enzymes that
have evolved for assembly from isoleucine or leucine.
Following the NRPS reaction, a selective reverse
prenylation of the indole C2 position occurs.

The IMDA enzyme performs a central role to form
the bicyclic core common to this class of molecules.
Initially annotated as SDRs, the MKP IMDAases
MalC and PhqE perform an initial reduction prior to
controlling the selective [4 + 2] cycloaddition reaction.
This is an example of the only characterized Diels—
Alder enzyme that retains its ancestral functionality
[44,81]. Interestingly, DFT calculations suggest that
the syn-/anti-diastereospecificity of the IMDA reaction
can be substrate-driven based on the oxidation state of
the indole ring, where the presence of the FMO-
derived spiro-oxindole moiety reverses the intrinsic
diastereospecificity. Natural examples of pre- and post-
IMDA spirocyclization have been identified in these
pathways. Lastly, halogenation is performed by flavin-
dependent halogenases (MalA/MalA’), which have
only been identified in the mal gene clusters. In each
of the aforementioned diversification mechanisms, a
unique family of molecules with intriguing bioactivities
has been generated. This pool of biosynthetic knowl-
edge forms the basis to explore the utility of these

A. E. Fraley and D. H. Sherman

biocatalysts to generate and diversify small molecules
and expand the potential of this class of broadly
bioactive natural products.
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