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The class of fungal indole alkaloids containing the bicyclo[2.2.2]diazaoc-

tane ring is comprised of diverse molecules that display a range of biologi-

cal activities. While much interest has been garnered due to their

therapeutic potential, this class of molecules also displays unique chemical

functionality, making them intriguing synthetic targets. Many elegant and

intricate total syntheses have been developed to generate these alkaloids,

but the selectivity required to produce them in high yield presents great

barriers. Alternatively, if we can understand the molecular mechanisms

behind how fungi make these complex molecules, we can leverage the

power of nature to perform these chemical transformations. Here, we

describe the various studies regarding the evolutionary development of

enzymes involved in fungal indole alkaloid biosynthesis.

Introduction to fungal indole alkaloids

The fungal indole alkaloid class of natural products

contains molecules with unique structural properties

and a variety of biological activities. In particular,

the subgroup typified by the bicyclo[2.2.2]diazaoctane

ring has been extensively studied within our group.

Initially, feeding studies using isotopically labeled pre-

cursors and biomimetic chemical syntheses provided

insight into the biosynthetic pathways for these mole-

cules. These efforts were later supplemented with gen-

ome sequencing and bioinformatic analyses [1],

greatly advancing our understanding of how these

natural products are generated, yet we have only

recently utilized our capabilities to address the

knowledge gaps with detailed biochemical characteri-

zation. Multiple strategies including molecular and

structural biology have brought our foundational

understanding of these pathways to the forefront of

the field.

Our work has focused on the families of monoke-

topiperazines (MKPs) such as the paraherquamides

(Phq) [2,3] and malbrancheamides (Mal) [4], and dike-

topiperazines (DKP) such as the stephacidins [5],

notoamides (Not) [6-8], and brevianamides (Bvn)

(Figs 1–3) [9]. These molecules display significant bio-

logical activities with potential therapeutic value such

as anthelmintics [10-13], vasodilators [14], and
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anticancer agents [15]. All bear a similar core scaffold,

but vary structurally based on key functionalities

including oxidation, halogenation, and additional ring

systems. Thus, our initial bioinformatic analyses have

enabled us to link the construction of the common

core to the homologous enzymes, while cluster-specific

genes provide the basis for structural differences [1].

There is a clear evolutionary divergence between the

MKP and DKP containing families within this class.

Thus, the installation of similar functional groups may

be accomplished by different types of enzymes. Addi-

tionally, parallel work in pathways that do not contain

the core bicycle reveals compelling biosynthetic branch

points. Extensive characterization of the fumitremorgin

[16,17], spirotryprostatin, [18] and aurachin [19,20]

families by a number of groups has provided insights

into the homologous transformations within these var-

ied bicyclo[2.2.2]diazaoctane ring-containing metabolic

systems.

Distinct nonribosomal peptide
synthetases

The first step in the biosynthesis of these fungal indole

alkaloids is catalyzed by the multidomain nonriboso-

mal peptide synthetases (NRPSs). The architecture of

the NRPS consists of adenylation (A), thiolation (T),

condensation (C), and reductase (R) domains, where

the first A domain in this class of compounds is selec-

tive for proline, distinguishing these systems from

other fungal bimodular NRPS pathways. The domain

construction of the terminal module determines the

oxidation state of the offloaded dipeptide, and subse-

quently the core scaffold. The DKP containing mole-

cules are produced by an NRPS with A-T-C-A-T-C

domain organization, whereas the MKP containing

molecules involve an NRPS with A-T-C-A-T-R orga-

nization. For example, the notoamide (DKP) biosyn-

thetic pathway contains an NRPS with a terminal
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Fig. 1. Malbrancheamide biosynthetic pathway. The pathway includes nonribosomal peptide synthetase (NRPS) MalG, prenyltransferase

MalE, intramolecular Diels–Alderase MalC, and flavin-dependent halogenase MalA. MalG and MalC require nicotinamide adenine

dinucleotide phosphate (NADPH) cofactor for catalysis, while MalA requires the reduced flavin adenine dinucleotide (FADH2) cofactor

provided by a reductase partner. MalE prenylates the indole C2 position with a prenyl group provided by dimethylallyl pyrophosphate

(DMAPP).
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condensation domain (NotE) [21], while the mal-

brancheamide and paraherquamide (MKPs) biosyn-

thetic pathways include NRPSs with terminal

reductase domains [1,22]. The different terminal

domains and the coinciding mono- or diketopiperazine

systems indicate that the NRPSs offload distinct
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Fig. 2. Paraherquamide biosynthetic pathway. The pathway includes nonribosomal peptide synthetase (NRPS) PhqB, prenyltransferase PhqI,

intramolecular Diels–Alderase PhqE, and flavin-dependent monooxygenase PhqK. A putative prenyltransferase and oxidative enzyme are

proposed to be involved in the formation of the pyran and dioxepin rings. PhqB and PhqE require nicotinamide adenine dinucleotide

phosphate (NADPH) cofactor for catalysis, while PhqK requires flavin adenine dinucleotide (FAD) and the reduced nicotinamide adenine

dinucleotide (NADH) cofactor. PhqI prenylates the indole C2 position with a prenyl group provided by dimethylallyl pyrophosphate (DMAPP).
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dipeptide intermediates for the subsequent intramolec-

ular Diels–Alder (IMDA) reaction. Thus, it is now evi-

dent that the mechanism for the IMDA cyclization is

based on the organization of the upstream NRPS [1].

The mechanism for the MKP-producing NRPS has

been identified based on recent investigations of the

Phq and Mal systems by our group [22]. The distin-

guishing terminal reductase domain belongs to the

family of short-chain dehydrogenase reductase (SDR)

nicotinamide adenine dinucleotide phosphate (NAD(P)

H)-dependent oxidoreductases. These enzymes perform

a hydride and proton transfer involving the

!

(+)-Notoamide A (87)

(-)-Notoamide A (86)(+)-Notoamide T (28) (+)-Stephacidin A (10)
A. protuberus

(-)-Notoamide B (12)
A. protuberus

(+)-Notoamide B (14)
A. amoenus

(-)-Stephacidin A (13)
A. amoenus

(-)-Notoamide T (29)

N
H

N

HN

O

O

Brevianamide F (4)

N
H

N

HN

O

O

Deoxybrevianamide E (16)

N
H

N

HN

O

O

HO

N
H

N

HN

O

O

HO

6-OH-deoxybrevianamide E (84)

Notoamide S (5)

NotG/NotG'
NotF/NotF'

DMAPP
NotC/NotC'

DMAPP

N
H

N

HN

O

O

O

Notoamide E (15)

N

N

O

ON
H

O

HO

N
H

N

HN

O

O

O

Notoamide C (19)

O

NotB/NotB'
FAD, NADPH

and

NotE/NotE'
NADPHNH

S
O

A C A C

S O

NH2

NotI/NotI'
FAD, NADH

T T

Notoamide D (20)

Reverse 
Prenylation

1

2
3

1
2

3

Normal
Prenylation

N

H
N

N
HO

OH

O

N

H
N

N
H O

HO

O

N

H
N

N
HO

O

O

N

H
N

N
H O

O

O

N
N
HO

NH

O

O

O

N
N
H O

HN

O

O

O

N
N
HO

N

O

O

O

OH

N
N
H O

N

O

O

O

HO

(+)-6-epi-Notoamide T (33) (+)-6-epi-Stephacidin A (9)
A. amoenus and A. protuberus

(+)-Versicolamide B (8)
A. amoenus and A. protuberus

(-)-Versicolamide B (85)
Not Isolated

(-)-6-epi-Stephacidin A (35)
A. amoenus

(-)-6-epi-Notoamide T (34)

N

H
N

N
HO

OH

O

N

H
N

N
H O

HO

O

N

H
N

N
HO

O

O

N

H
N

N
H O

O

O

N
N
HO

NH

O

O

O

N
N
H O

HN

O

O

O

N
H

6

6

6

6

NotD/
NotD' ?

NotD/
NotD' ?

NotH/NotH' ?
2 e- [ox]
IMDA

NotH/NotH' ?
2 e- [ox]
IMDA

Brevianamide A-like route?

Fig. 3. Notoamide biosynthetic pathway. The pathway includes nonribosomal peptide synthetase (NRPS) NotE, prenyltransferases NotF and
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nicotinamide cofactor and an active site tyrosine,

among other conserved amino acids [23,24]. The

NRPS couples L-proline and L-tryptophan to produce

an L-Pro-L-Trp aldehyde product through cyclization

and dehydration (Figs 1 and 2). Under conditions that

contain the NRPS alone, the linear aldehyde product

spontaneously oxidizes to a cyclic aromatic zwitteri-

onic species [22]. This catalytic mechanism requires the

NADPH cofactor to provide the reducing equivalents,

and both PhqB and MalG R-domains contain the

canonical SDR tyrosine and lysine active site residues

(Fig. 4) [22].

The key difference between the Mal and Phq NRPS

systems is the incorporation of b-methyl proline into

the dipeptide core within the paraherquamide path-

way. Through isotopic feeding studies in Penicillium

fellutanum (ATCC: 20841), it was determined that iso-

leucine is the biosynthetic precursor to b-methyl pro-

line [25] and that this nonproteinogenic amino acid is

directly incorporated into paraherquamide A (1) [26].

The enzyme responsible for this amino acid transfor-

mation is proposed to perform an oxidative cyclization

of the nitrogen atom and Cd aldehyde, followed by a

selective reduction on the same face as the methyl

(Fig. 5) [25-27]. In vitro validation of this reaction

scheme was demonstrated for the biosynthesis of

UCS1025A, a fungal polyketide alkaloid of a different

class [28]. The subsequent hydroxylation observed on

the proline moiety in the paraherquamides occurs later

in the biosynthesis, following bicyclic ring formation

(Fig. 2) [29]. Interestingly, Penicillium sp. IMI 332995

produces another b-methyl proline-containing com-

pound VM55599 (2), which has the opposite stereo-

chemistry of the bicyclic ring and the same

stereochemistry of the methyl group [25,30], indicating

that these Penicillium strains may produce a broad

repertoire of b-methyl proline analogs. Additionally,

the recently discovered mangrovamide A (3) contains a

unique c-methyl proline moiety [31]. We hypothesize

that this functionality is generated by a leucine-selec-

tive enzyme (Fig. 5) involving oxidation, cyclization,

and reduction, similar to the respective transforma-

tions in the biosynthesis of echinocandin [32], grise-

limycin [33], and the nostopeptolides [34].

Redundant prenyltransferases

Prenyltransferases catalyze normal and reverse preny-

lation reactions in natural product biosynthetic path-

ways, where the bond is formed between the substrate

and C1 of the isoprene unit in normal prenylation and

between the substrate and C3 of the isoprene in

reverse prenylation [Fig. 3, deoxybrevianamide E (16)

and notoamide S (5) numbering]. We have found that

most of the bicyclo[2.2.2]diazaoctane fungal indole

alkaloid gene clusters contain an additional prenyl-

transferase relative to the number of prenyl units

incorporated into the molecule. The initial reverse

prenylation occurs at the indole C2 position of the

NRPS dipeptide product [22], while prenylation of the

phenolic portion of the indole to form the pyran and

dioxepin rings can occur before (Fig. 3) or after

(Fig. 2) formation of the [2.2.2] fused bicycle. Precur-

sor incorporation studies have provided insight on the

origin of the prenyl groups. P. fellutanum, P. brevi-

compactum, and Aspergillus ustus all demonstrated

incorporation of [13C2]-acetate into paraherquamide A,

brevianamide A, and austamide, respectively, indicat-

ing a mevalonic acid pathway origin of the prenyl

group. Additionally, the geminal dimethyl group stem-

ming from the indole C2 position was found to be

nonselectively assigned; thus, the facial bias of the

reverse prenylation in the biosynthesis of these mole-

cules varies by pathway [35].

Enzymatic analyses have provided key details for

the prenylation reactions within these systems. Within

notoamide biosynthesis in the marine-derived Aspergil-

lus protuberus (formerly Aspergillus sp. MF297-2),

NotF has been characterized as the reverse prenyl-

transferase or deoxybrevianamide E synthase (Fig. 3)

[21,36,37]. It was hypothesized that brevianamide F (4)

would be the substrate for NotF based on previous

Y2218

K2222 R2070

R2080

Fig. 4. Nonribosomal peptide synthetase (NRPS) PhqB reductase

domain X-ray crystal structure in complex with nicotinamide

adenine dinucleotide phosphate (NADPH) with canonical short-

chain dehydrogenase reductase (SDR) catalytic amino acids

displayed (PDB ID: 6NKI). Model generated using PyMol Molecular

Graphics System.
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work focused on fumitremorgin biosynthesis [16,17],

although in the case of the fumitremorgins, 4 under-

went normal prenylation at the indole C2 position

[17]. The notoamide biosynthetic pathway also con-

tains a normal prenyltransferase (NotC) that is

involved in the formation of notoamide S (5), indicat-

ing its significance in pyran ring formation [21]. Addi-

tionally, the NotF homolog BrePT from the terrestrial

Aspergillus versicolor (NRRL573) has been character-

ized [38]. Although these prenyltransferases have high

sequence identity, BrePT displayed a broader substrate

scope, while maintaining its indole C2 regioselectivity.

Our investigations of the MKP pathways have led

to the characterization of the indole C2-reverse prenyl-

transferases MalE and PhqI (Figs 1 and 2) [22]. We

determined that the free-standing reduced dipeptide

product was the favored substrate (6 and 7), rather

than either the oxidized zwitterion or an NRPS-carrier

protein-tethered substrate. Additionally, free trypto-

phan was not prenylated, refuting the role of an early-

stage modification. A presumed redundant prenyltrans-

ferase, MalB, displayed low activity with the reduced

dipeptide (6) as substrate. Sequence alignments and

structural comparison revealed that MalB is missing

two integral strands of the central b barrel likely

responsible for its attenuated activity (Fig. 6).

Enantioselective Diels–Alderases

Initial proposals for the biosynthesis of the bicyclo

[2.2.2]diazaoctane core involved an IMDA reaction to

form the exo- and endo-products [39]. Early

biosynthetic hypotheses assumed that both the MKP

and DKP systems were formed through a common

DKP intermediate, with the tryptophan carbonyl of

the MKPs derived from a net four-electron reduction

occurring after a putative Diels–Alder construction

[39]. The search for the Diels–Alderase within this

class of molecules was hindered by the inability to

identify candidate enzymes through bioinformatic

analysis. This was due to the unique identities of the

respective Diels–Alderases that result from divergent

evolutionary processes. Recent studies have shown that

Fig. 5. Proposed mechanism for the generation of the methyl proline-containing molecules and examples of molecules generated from

isoleucine and leucine precursors.

Fig. 6. Comparison of MalE (rainbow) and MalB (gray) Phyre2 [82]

models displaying the missing C terminus of MalB (red). Model

generated using PyMol Molecular Graphics System.
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Diels–Alderase enzymes typically lose their original

function and have evolved to control stereoselectivity

for the cycloaddition reaction [22,40-46]. Additionally,

bound cofactors no longer serve a catalytic function

(e.g., methyl transfer, redox), and only play a struc-

tural role in maintaining the proper active site confor-

mation for stereochemical control [40-46]. Moreover,

most Diels–Alderases have no identified catalytic resi-

dues, leading to the conclusion that these biocatalysts

function by constraining the substrate in the proper

orientation [40-46]. Within this class of bicyclo[2.2.2]-

diazaoctane ring-containing molecules, the cycloaddi-

tion is proposed to be stereospecific based on the syn-

or anti-configuration of the bridged bicycle relative to

C6 (Fig. 3, stephacidin A numbering) [39]. The biosyn-

thetic IMDA enzyme is proposed to have strict dia-

stereo- and enantioselectivity, but some organisms

have been found to produce both antipodes [9,47].

Isolation and precursor incorporation studies

Within the notoamide (Not0)-producing organism

A. amoenus, both (-)-stephacidin A (13) and (+)-versi-
colamide B (8) have been isolated (Fig. 3). The pro-

duction of 8 suggests that the putative IMDA reaction

leading to the major metabolites within the producing

organism may suffer from stereochemical leakage with

respect to facial selectivity of cycloaddition involving

the reverse isoprene moiety (dienophile) anchored at

the indole C2 position [48]. Interestingly, the organism

must then produce (+)-6-epi-stephacidin A (9), but not

(+)-stephacidin A (10), indicating the presence of mul-

tiple highly selective IMDAases or one semi-selective

IMDAase.

The marine-derived Aspergillus sp. (Not) also pro-

duces intermediates that may be relevant to the Diels–
Alder reaction in this organism. The isolation of

notoamide M (11), which is hydroxylated at C17,

raised questions regarding the biosynthetic Diels–Alder

reaction within the Not pathway (Fig. 7A) [36]. It was

proposed that 11 would undergo a dehydration to

form the azadiene intermediate for cycloaddition;

alternatively, 11 could be an artifact due to addition

of HO- to the transient azadiene species.

The notoamides and stephacidins are part of the

same family of bicyclo[2.2.2]diazaoctane alkaloids and

are often co-isolated from a single strain. A unique

aspect of these systems is that A. protuberus and

A. amoenus produce antipodal versions of these mole-

cules. While A. protuberus produces exo-products (+)-
stephacidin A (10)/(-)-notoamide B (12) and endo-

products (+)-6-epi-stephacidin A (9)/(+)-versicoloamide

B (8), A. amoenus produces (-)-stephacidin A (13)/(+)-

notoamide B (14), where in both systems the exo-

metabolites are favored (Fig. 3) [49]. After isolation of

notoamide E (15) from the marine-derived Aspergillus

sp., doubly 13C-labeled 15 was prepared for feeding

studies [37]. Surprisingly, it was not incorporated into

the [2.2.2]-bicyclic ring-containing molecules, and no

bicycle-containing structures were generated [37].

These data contrast with the brevianamide system in

P. brevicompactum, where [3H]-deoxybrevianamide E

(16) was incorporated into brevianamides A (17) and

B (18), implying that the bicyclic ring was constructed

from the reverse prenyl group and the DKP ring [50].

Alternatively, notoamide E was observed to be incor-

porated into notoamide C (19), notoamide D (20), and

trace amounts of 3-epi-notoamide C in A. amoenus

(Fig. 3) [51]. To highlight the differences between the

two strains, larger amounts of 3-epi-notoamide C were

produced within the marine strain [37], while the for-

mation of the bicyclo[2.2.2]diazaoctane ring was not

completely abolished in the terrestrial strain as trace

amounts of unlabeled 10 and 12 were produced [51].

The presence of 15 appears to suppress the formation

of stephacidin A (10 and 13) and notoamide B (12 and
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diastereomer brevianamide A (17) and the minor diastereomer

brevianamide B (18).
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14), suggesting that this compound inhibits or diverts

enzymatic machinery responsible for the production of

the bicyclo[2.2.2]-diazaoctane-containing metabolites.

These findings suggested a branch point in the biosyn-

thetic pathway, just prior to the formation of 15, per-

haps after the formation of 5 (Fig. 3) [51].

Enzyme-controlled facial selectivity appears to be

lost within the brevianamide biosynthetic Diels–Alder

reaction in Penicillium brevicompactum [50]. It was

proposed that the semi-pinacol rearrangement occurs

on the 3-hydroxyindolenine, setting the R-absolute

stereochemistry at the indoxyl quaternary center. Oxi-

dation of the DKP subunit forms the azadiene of

which the major rotamer would form 17 and the

minor rotamer would form 18 (Fig. 7B) [50]. There-

fore, the preponderance of 17 over 18 is likely due to

intrinsic energy barriers in the cycloaddition reaction

(nonenzyme catalyzed) [52]. Through the utilization of

frontier molecular orbital theory, it was predicted that,

for the energy levels of a relatively electron-rich diene

(such as that in the DKP) to effectively interact with a

dienophile, powerful electron-withdrawing groups

would need to be present in the dienophile. Since the

prenyl group is an isolated electron-neutral vinyl

group, one would not expect the [4 + 2] cycloaddition

in DKPs to be spontaneous without catalysis, but bio-

mimetic syntheses [53] have shown that the azadiene

undergoes a spontaneous IMDA to generate a mixture

of brevianamides with enantiomorphic bicyclo[2.2.2]

ring systems. While spontaneous, diastereocontrol of

the IMDA may be impacted by upstream transforma-

tions such as the early-stage semi-pinacol rearrange-

ment to generate the 3-spiro-w-indoxyl species [52].

Enzymology

Recent work within our laboratory has provided key

biochemical evidence to support the hypothesis of a

biosynthetic Diels–Alder enzyme within MKP systems

[22]. MalC was found to catalyze enantioselective

cycloaddition as a bifunctional reductase/Diels–Alder-

ase through NADPH-dependent reduction of the

prenylated zwitterion 21 to generate the reactive azadi-

ene 22, followed by an enzyme-controlled enantioselec-

tive cycloaddition reaction to generate exclusively (+)-
premalbrancheamide (23). In the absence of the

enzyme, chemical reduction of the prenylated zwitter-

ion leads to racemic 23; thus, the enzyme-dependent

shift in enantiomeric excess and rate increase led to

the conclusion that this reaction is enzyme-catalyzed

(Figs 1 and 8).

The crystal structures of MalC and the homolog

PhqE (from the paraherquamide pathway) provided

further mechanistic insight. Their closest structural

homologs are canonical SDRs, although the Diels–
Alderases lack the essential catalytic residues for SDR

activity (Tyr, Lys, Asn, Ser) [54]. MalC Asp165 forms

part of a conserved PDPGW motif and was shown to

be required for reduction of the substrate prior to the

Diels–Alder reaction. The structure showed that

Asp165 has moved about 3�A closer to the substrate

than the analogous amino acid in canonical SDRs,

highlighting a larger change in the active site architec-

ture. Based on mutagenesis and computational studies,

a mechanism for the reduction and Diels–Alder selec-

tivity was proposed. An arginine residue and the 20-
OH of the NADPH ribose initiate the reaction with

NADPH acting as the hydride donor and Asp165 sta-

bilizing the positive charge of the prenyl zwitterionic

species 21 (Fig. 1) to facilitate the formation of the

reactive azadiene intermediate. Stereocontrol appears

to be primarily driven by active site shape complemen-

tarity including aromatic amino acids and the cofactor,

which hold the substrate in the proper conformation

(Fig. 8).

The work on the Phq system was consistent with

prior feeding studies and predictions, where the b-
methyl-Pro-Trp dipeptide was formed by the NRPS

[25,29]. Disruption of phqE in Penicillium simplicissi-

mum using the CRISPR-Cas9 system generated a

mutant strain that accumulated the b-methyl-Pro-Trp

prenyl zwitterion intermediate 24 (Fig. 2) [22]. With

the addition of the PhqE crystal structures in complex

with substrate, product, and the NADP+ cofactor, a

more thorough mechanistic understanding was

achieved. Preference for the NADPH cofactor is

explained by an electrostatic interaction between Lys50

and the cofactor 20-phosphate. Additionally, a rela-

tively short distance between the nicotinamide C4

hydride donor and the presumed deoxy C5 acceptor of

the product premalbrancheamide (23) indicated that

reduction and cycloaddition are highly coordinated.

Amino acid sequence comparisons, structural data,

and NADPH cofactor dependence support the hypoth-

esis that the Diels–Alderases catalyzing formation of

the MKP bicyclo[2.2.2]diazaoctane ring system evolved

from an SDR progenitor. The active site pocket in the

MKP systems clearly orients the substrate for proper

enantiocontrol, while the evolution of the active site

for its new function is evident. This spectacular display

of protein evolution has led to an enzyme that main-

tained its reductase function without the canonical cat-

alytic residues, while also providing stereocontrol for

the Diels–Alder [4 + 2] cyclization. Moreover, our

studies have revealed that the MKP and DKP path-

ways have evolved in a convergent manner based on
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the NRPS terminal domain identity, and redox chem-

istry leading to the dipeptide precursor ring system.

An alternative mechanism for the formation of the

bicyclo[2.2.2]diazaoctane ring was discovered for the

biosynthesis of brevianamide A [52]. While the previ-

ously discussed MKP pathways involved formation of

the bicyclic core prior to spirocycle formation, bre-

vianamide production employs a reversed sequence of

biosynthetic steps where the oxidized indole intermedi-

ate is formed prior to a subsequent DKP oxidation

and cyclization. The initial indole oxidation by BvnB

and isomerization by BvnE are similar to the NotB-

catalyzed formation of notoamides C and D (discussed

in detail below). This is followed by a P450-catalyzed

DKP oxidation (by BvnD) to the azadiene and sponta-

neous cyclization to the bicyclo[2.2.2]diazaoctane core.

Flavin monooxygenases and
Spirocycle Formation

The spiro-oxindole center is prevalent within members

of this indole alkaloid family including para-

herquamides [2,3], notoamides [6-8], marcfortines

[55,56], sclerotiamide [57], mangrovamides [31], and

asperparalines [58] (Figs 2, 3, 5, 7B). The stereochem-

istry of the spirocycle is proposed to be controlled by

the facial selectivity of the initial indole 2,3-epoxida-

tion, followed by its collapse to a 2-alkoxyindole inter-

mediate, and a semi-pinacol rearrangement to generate

the final spiro-cyclized product [59].

Paraherquamides

Based on previous data [29], we hypothesized that the

[2.2.2]bicyclic ring is formed with the nonoxidized

tryptophanyl moiety and that oxidations of the indole

ring to form both the dioxepin and the spiro-oxindole

must occur after formation of preparaherquamide (25)

(Fig. 2) [60]. To probe the timing of spirocyclization

and dioxepin ring formation, triply deuterium-labeled

7-hydroxy-25 was introduced to a culture of Penicil-

lium fellutanum; the results indicated that indole C7

oxidation is not the immediate step following the

IMDA reaction, but still may occur prior to spirooxin-

dole formation [60]. Recent gene disruption studies in

Penicillium simplicissimum established that the pyran

A

B C

Spontaneous Oxidation

(+)-Premalbrancheamide (23)

Fig. 8. (A) Reactions performed by MalC. Reduction and stereochemical control are performed by MKP IMDAase MalC which ‘holds’ the

substrate in the proper conformation to generate (+)-premalbrancheamide (23). (B) Active site of PhqE in complex with the prenyl zwitterion

21. c. Proposed mechanism involving donation of a proton from R131 and stabilization of the zwitterion by D166 followed by hydride

transfer from the nicotinamide adenine dinucleotide phosphate (NADPH) cofactor to generate the unstable azadiene. The cofactor and W169

provide diastereo- and enantioselective control of the cycloaddition. Model generated using PyMol Molecular Graphics System.
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and dioxepin rings are both formed prior to spirocy-

clization, elucidating two key intermediates en route to

paraherquamides A (1) and G (83) [61].

The genetic knock-out data in Penicillium simplicissi-

mum have also revealed that the epoxidation and semi-

pinacol rearrangement occur through two parallel

pathways. The biosynthetic pathway diverges after the

formation of 25 to form either a pyran or a dioxepin

ring on the indole (see below for a discussion of the

proposed mechanism for assembly of the heptacyclic

molecules). The PhqK flavin monooxygenase (FMO)

accepts both paraherquamides K (26) and L (27) and

performs a facially selective epoxidation, with a con-

trolled collapse of the epoxide to form the spirooxin-

dole (Fig. 2) [61]. Crystal structures revealed that

substrate orientation in the PhqK active site deter-

mined the facial selectivity of epoxidation. Collapse of

the presumed 2,3-indole epoxide intermediate is

strongly influenced by the pyran/dioxepin oxygen, and

the presence of a catalytic arginine which serves as a

general acid. Based on Michaelis–Menten kinetic

parameters, 27 appears to be the favored substrate,

but both 26 and 27 can undergo semi-pinacol rear-

rangement to the respective spiro-oxindole product.

Notoamides

The oxidative conversion of notoamide E (15) was

investigated through biomimetic oxaziridine-based syn-

theses in which notoamide C (19) [62] (48%), 3-epi-no-

toamide C [62] (28%), and minor amounts of

notoamide D (20) and 2,3-epi-notoamide D were pro-

duced (Fig. 3) [7]. The electronic properties of the

indole ring were found to influence the regiochemistry

of oxidation of the C2–C3 indole bond, resulting in

either the pyrroloindole or the oxindole [7]. While the

synthetic method generated unequal product distribu-

tion, the organism produced almost equal amounts of

19 and 20, implying that the responsible biosynthetic

enzyme can override the inherent reactivity of the

molecule [7].

Enzymatic characterization of the FMO NotB

revealed that both 19 and 20 can be produced from

15, and it was proposed that both can be formed

through b-epoxidation of the C2–C3 indole bond

(Fig. 9) [7]. Ring opening of the b-2,3-epoxyindole
intermediate to the 3-hydroxyindolenine species fol-

lowed by N-C ring closure from the diketopiperazine

NH generates pyrroloindole 20 as the major product.

The minor product 19 is derived from the pseudo-

quinone methide species and subsequent a-face migra-

tion of the prenyl group from C2 to C3. It was also

proposed that an interaction between the indole C2

oxyanion intermediate and DKP N-H determines

whether the pyran ring contributes to the breakdown

of the epoxide (Fig. 9). The N-H can stabilize the neg-

atively charged intermediate, but this interaction does

not occur when the epoxide collapses to the indole C3

position; thus, the hydroxyl is formed immediately,

producing 20 [7]. The products resulting from a-face
epoxidation were not observed in the enzymatic reac-

tion; thus, it was proposed that their isolation in the
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Fig. 9. Proposed mechanism for assembly of notoamides C (19) and D (20) by the flavin-dependent monooxygenase NotB.
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precursor incorporation study was an artifact of the

excessive amounts of 15 within the culture medium

[62].

Because 15 halted production of bicyclo[2.2.2]diaza-

octane ring-containing metabolites, it was proposed that

an enzyme other than NotB was required to catalyze

formation of the spiro-oxindole within this family [7].

Intriguingly, it was reported that A. protuberus pro-

duced (+)-stephacidin A (10) and (-)-notoamide B (12)

[6], while A. amoenus produced the enantiomers (-)-ste-

phacidin A (13) and (+)-notoamide B (14) (Fig. 3) [48].

Due to the antipodal relationship of the metabolites iso-

lated from A. protuberus (marine) and A. amoenus (ter-

restrial), an R-selective monooxygenase was proposed

to exist within the marine strain and an S-selective

monooxygenase within the terrestrial strain [48]. At first,

whether the alternative FMO would act before or after

the IMDA remained unclear. It was considered that the

breakdown of the indole 2,3-epoxide followed by semi-

pinacol rearrangement of the isoprenyl group from C2

to C3 could produce intermediates that undergo oxida-

tion and tautomerization to yield the azadiene interme-

diates for the IMDA [36]. However, the isolation of

notoamide T (28/29) and stephacidin A (10/13) [63], as

well as the precursor incorporation studies, led to the

biosynthetic hypothesis that the IMDA occurs prior to

spirocyclization. Late-stage spiro-oxindole formation

was probed by introducing doubly 13C-labeled racemic

stephacidin A (10/13) to cultures of A. amoenus and

A. protuberus; analysis of the metabolites revealed enan-

tiospecific incorporation of intact 13 into 14 in

A. amoenus and 10 into 12 in A. protuberus, and the

unreacted 10 and 13 were re-isolated from the respective

fungal extracts [63]. These data provided evidence of

divergent flavoenzymes with opposite R/S-substrate

selectivity in each strain.

In feeding studies, racemic D,L-[13C]2-notoamide T (28

and 29) was incorporated into 10 and 14 in A. amoenus

[64], indicating that 28 and 29 are converted to 10 and

13, respectively, and 13 is rapidly converted to 14, while

10 accumulates as a shunt product. In A. protuberus, D,

L-[13C]2-notoamide T (28/29) was incorporated into 10/

13, 12/14, notoamide F (30), notoamide R (31), and

notoamide T2 (32) (all racemic) (Figs 3 and 10A) [64].

This led to a contradictory notion that the gene prod-

ucts in A. protuberus do not discriminate between the

two enantiomers of notoamide T (28/29) or stephacidin

A (10/13) in the oxidative conversion to the final

metabolites [64]. While growth conditions were consis-

tent between the two experiments, it is possible that

small changes such as substrate concentration induced

higher reactivity (broader substrate scope) in the second

incorporation study.

Additionally, the presence of 6-epi-isomers raised

some ambiguity in the selectivity of the IMDAase

(Fig. 3). (+)-Versicolamide B (8) was isolated from

A. amoenus and was the first member of this family

to possess the anti-relative stereochemistry within the

bicyclo[2.2.2]diazaoctane ring system (Fig. 3) [48].

Racemic 6-epi-notoamide T (33/34) was converted to

6-epi-stephacidin A (9/35) and (+)-versicolamide B (8)

in A. protuberus [49]. The isolation and incorporation

of notoamide S (5) into notoamides C (19), D (20),

(-)-stephacidin A (13), (+)-notoamide B (14), and (+)-
versicolamide B (8) in A. amoenus [62,65] indicated

that the FMO can also accept (+)-6-epi-stephacidin A

(9). The observation of an enantiomeric mixture of 6-

epi-stephacidin A (9/35) enriched with the (-)-isomer

from A. amoenus indicated that the enzymes upstream

of the FMO were not selective. While the A. amoenus

FMO transforms 9 to 8, there is not a suitable oxi-

dase for the (-)-6-epi-stephacidin A (35) shunt

metabolite [49]. It is intriguing that the closely related

Aspergillus species have evolved enantiodivergent

pathways to the stephacidins and notoamides, but

converged on the production of (+)-versicolamide B

(8) [49].

In vitro work with NotI (A. protuberus) and NotI0

(A. amoenus) demonstrated the conversion of 10 and

13 to 12 and 14, although a clear preference was

observed for 13 (Fig. 3) [66,67]. Both NotI and NotI0

also converted 9 to 8, but no reaction was observed

with 35. This is consistent with the conversion

observed in A. amoenus where 8 was produced and 35

was determined to be a shunt metabolite [49]. The

ability to convert 10 may be an evolved trait from an

ancestral enzyme previously selective for 13, as high

reactivity for this substrate is retained in both NotI

and NotI0.
The presence of both early-stage and late-stage

FMOs in notoamide biosynthesis indicates that two

routes may be employed to generate the bicyclic moi-

ety within this pathway (Fig. 3). The production of

similar products by NotB and BvnB/BvnE has led us

to believe that a P450 monooxygenase homologous to

BvnD may be present in the notoamide biosynthetic

gene cluster (NotH). In combination with the precur-

sor incorporation studies, this work provides evidence

that this biosynthetic system utilizes two seemingly

divergent routes to converge on the same bicyclo

[2.2.2]diazaoctane-containing notoamides, each with its

own inherent selectivity to furnish the various notoa-

mide natural products. If this prediction is ultimately

determined to be the case, we can hypothesize that the

notoamide producers might be the ancestral strain

from which the other fungal indole alkaloid producers
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diverged to utilize just a single mechanism to generate

the bicyclo[2.2.2]diazaoctane core.

Taichunamides

The isolation of fungal natural products with the anti-

relative stereochemistry of the bicyclic ring generated

questions regarding the driving force for selectivity of

the IMDA reaction in these families. Taichunamide H

(36), isolated from mangrove-derived fungus Aspergil-

lus versicolor HDN11-84, and taichunamides B-G (37-

42), isolated from the fungus Aspergillus taichungensis

(IBT 19404), contain an anti-bicyclo[2.2.2]diazaoctane

core (Fig. 10B) [68,69]. They are proposed to share the

common precursors notoamide S (5), (+)-6-epi-no-
toamide T (33), and (+)-6-epi-stephacidin A (9). Addi-

tionally, A. taichungensis ZHN-7-07 produces 9, N-

hydroxy-6-epi-stephacidin A (43), and 6-epi-avrainvil-

lamide (44), all with anti-relative configuration

(Fig. 10C) [70]. This indicates that the taichunamide

biosynthetic enzymes share some overlap or cross talk

with those from the notoamide biosynthetic pathway

in these producing organisms, but in all cases they

seem to be selective for the anti-form of the bicyclic

ring configuration.

Brevianamides

The anti-relative stereochemistry in the brevianamides

was proposed to be generated from the oxindole inter-

mediate. [3H]-labeled deoxybrevianamide E (16)

(Fig. 3) was shown to be efficiently incorporated into

brevianamides A (17), B (18) (Fig. 7B), and E (45)

(Fig. 10D) in Penicillium brevicompactum. It was pro-

posed that 45 may be a biosynthetic precursor to 17

and 18, but [3H]-labeled 45 was not incorporated into

either, disproving its intermediacy within the pathway

[50]. Thus, it is likely that oxidation of the indole
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occurs at C3 prior to the IMDA. FMO-catalyzed b-
face epoxidation of deoxybrevianamide E (16) would

be followed by the selective formation of the (R)-

OH intermediate at C3. This can either cyclize to form

brevianamide E (45) or undergo a semi-pinacol rear-

rangement to form an indoxyl intermediate. Oxidation

to the azadiene would provide the proper substrate for

the IMDA [50,52]. The semi-pinacol rearrangement is

proposed to proceed through general base catalysis to

generate the indoxyl [52]. In comparison, para-

herquamide biosynthesis utilizes general acid catalysis

to generate an oxindole moiety [61], demonstrating

that these systems have evolved divergent mechanisms

for spirocycle formation.

Effect on the Diels–Alder product

With the knowledge that the spiro-oxindole is differen-

tially installed preceding or following the IMDA reac-

tion in various strains, the implications of this

distinction regarding other reactions within the biosyn-

thetic sequence must be considered. Density functional

theory computational studies have been performed to

elucidate the stereochemical features of the cyclization

step involved in paraherquamide A (1) and VM55599

(2) biosynthesis (Fig. 11) [71]. It was determined that

the nonoxidized indole favors syn-diastereoselectivity,

which agrees well with precursor incorporation experi-

ments by Williams et al. [35,50] concluding that the

syn-cycloaddition could take place via the nonoxidized

tryptophanyl moiety and that the oxidation of the

indole ring occurs after the IMDA cycloaddition in

paraherquamide biosynthesis [71]. In the computa-

tional study, anti-selectivity was found for the cycload-

ditions of the oxindole-based derivatives, indicating

that the FMO reaction could precede the IMDA in

cases where anti-bicyclo[2.2.2]diazaoctane rings are

observed [71]. Contrary to this hypothesis, nonspirocy-

clized anti-stereochemistry MKP members of this fam-

ily have also been isolated [72-74], indicating that there

may be various divergent routes to the syn/anti-bicyclo

[2.2.2]diazaoctane ring. Monooxygenases have evolved

to perform the presumed epoxidation and semi-pinacol

rearrangement at different points within the biosynthe-

sis, affecting the stereochemical outcome of the Diels–
Alder reaction [50]. While this computational study

presents a substrate-controlled mechanism for directing

the IMDA, the enzyme active site conformation may

provide a catalyst-controlled means to overcome the

innate reactivity. With this in mind, IMDA enzymes

may be selective for either the oxidized or nonoxidized

substrate, and the orientation in which they bind may

direct the reaction. If this is the case, there may have

been a parallel evolution of the IMDA enzyme and

the FMO in each of the biosynthetic gene clusters.

Interestingly, in the case of the asperversiamides,

both syn- and anti-products have been isolated from

the same organism, a marine-derived Aspergillus versi-

color. While asperversiamides A-C (46-48) and E (49)

contain the anti-bicyclo[2.2.2]diazaoctane ring, asper-

versiamide D (50) contains the syn-ring (Fig. 12A).

With the isolation of the prenylated precursor asper-

versiamide H (51), one can infer that the Diels–Alder

reaction is the last step in the pathway to 46-49, fol-

lowing the oxindole formation, leading to an anti-con-

figuration [47]. This system is unique in that it may
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contain two different monooxygenases since one would

result in the semi-pinacol rearrangement and the other

would generate a hydroxylated product [47]. Addition-

ally, one FMO would act at an early stage, and the

other at a late stage with various options for the

IMDA. The IMDA enzyme may be nonselective and

accept both substrates, or it may have an evolved

active site that can override the inherent selectivity of

the molecule. Among numerous possibilities, there

may even be two different IMDA enzymes/mecha-

nisms, serving to generate the diastereomeric products.

On the other hand, recent work on the brevianamide

biosynthetic pathway has revealed that the early-stage

semi-pinacol rearrangement to generate the 3-spiro-w-
indoxyl directs the subsequent IMDA reaction in a

substrate-controlled manner [52]. This demonstrates

another example of differentiation within this class of

fungal indole alkaloids, where the pathways have

evolved unique mechanisms to generate molecular

diversity.

FMO evolution

There are a variety of different types of FMOs that have

diverged into two groups defined by whether they

require a reductase partner [75]. For stand-alone

enzymes, such as those involved in spirocyclization, the

reactions with the electron donor and oxygen are cat-

alyzed by a single protein. While some FMOs have two

distinct cofactor-binding domains, others (such as

PhqK) contain a single nucleotide binding domain for

the FAD and have developed a NADPH-binding

groove on the surface of the protein. Over time, the fla-

vin monooxygenases have undergone domain fusion

events, eventually leading to the development of a new

domain for substrate binding which serves to further

differentiate the members of this enzyme class

(Fig. 12B).

Mechanism of spiro-oxindole formation

Mechanistic implications for spiro-oxindole formation

can be gleaned from systems outside the bicyclo[2.2.2]di-

azaoctane ring-containing family. The conversion of

aurachin C (52) to B (53) is proposed to involve the

migration of the prenyl group from position C3 to C4

through a semi-pinacol rearrangement [20], similar to

that proposed for the spirocyclization in the fungal

indole alkaloids (Fig. 13). The proposed mechanism

involves an epoxidation of the quinoline core of 52 by

AuaG followed by AuaH-catalyzed ring opening of the

epoxide and semi-pinacol rearrangement, while the pro-

posed mechanism for the fungal indole alkaloids is initi-

ated with an epoxidation of the indole C2 = C3, and the

breakdown of the epoxide leads to a spontaneous semi-

pinacol rearrangement to generate the spirocycle. In the

aurachin pathway, two enzymes catalyze the semi-pina-

col-type rearrangement where the main product of

A B

Asperversiamide A (46)
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Fig. 12. (A) Asperversiamides A-E (46-49) and H (51) isolated from a marine-derived Aspergillus versicolor. Asperversiamides A-C and E

display anti-relative stereochemistry, and asperversiamide D displays syn-relative stereochemistry. (B) Domains of PhqK flavin-dependent

monooxygenase (PDB ID: 6PVI). PhqK flavin adenine dinucleotide (FAD)-binding domain (cyan) and three insertions that form the substrate-

binding domain (blue, green, and yellow) are highlighted. The substrate is shown in magenta, and the FAD cofactor is shown in orange.

Model generated using PyMol Molecular Graphics System.
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AuaG appears to be an energetically less-favored isomer

that is immediately stabilized by reduction and subse-

quent aromatization catalyzed by AuaH reductase [20].

In contrast, the fungal indole alkaloid systems have

evolved a single dual-function enzyme.

A detailed study of spirocycle formation in

spirotryprostatins derived from the fumitremorgin

biosynthetic pathway has also shed light on this topic

(Fig. 14) [18]. FqzB is an FAD-dependent monooxyge-

nase from the unrelated fumiquinazoline biosynthetic

pathway which catalyzes the spirocycle formation on

fumitremorgin C (54) to generate spirotryprostatin A

(55) via an epoxidation route (Fig. 14) [18]. The con-

version of tryprostatin B (56) to tryprostatin B-indo-

line-2,3-diol (57) and conversion of tryprostatin A (58)

to tryprostatin A-indoline-2,3-diol (59) and trypro-

statin A-2-oxindole (60) indicate that FqzB catalyzes

epoxidation of the C2-C3 olefin of the indole on 56

and 58. The formation of 60 indicates that the mecha-

nism involves a semi-pinacol rearrangement of the

epoxidized intermediate [18].

Within the same organism, a cytochrome P450 FtmG

from the fumitremorgin biosynthetic pathway catalyzes

the spirocycle formation observed in spirotryprostatin B

(61) [18]. FtmG converts demethoxy-fumitremorgin C

(62) into 61 as well as monohydroxyl (63) and diol (64)

forms of demethoxy-fumitremorgin C [18]. Based on the

intermediate structures, a reaction mechanism was pro-

posed involving a P450 heme-catalyzed initial radical

formation and subsequent two rounds of hydroxylation

of 62 [18]. The production of 61 by FtmG is proposed to

occur through radical migration from C8 to C2 and sub-

sequent hydroxylation at C2 can set up the molecule for

a semi-pinacol rearrangement involving a concomitant

spirocycle formation. Additionally, FtmG crosses into

the fumitremorgin biosynthetic pathway to convert

fumitremorgin C to spirotryprostatin G (65) (Fig. 14)

[18].

Aspergillus fumigatus maintains two orthogonal

spirocycle formation systems in its secondary metabo-

lite biosynthetic pathway: an FAD-dependent route

(for the formation of 55) catalyzed by the FMO FqzB,

and a radical route (for the formation of 61 and 65)

catalyzed by the P450 FtmG [18]. This study highlights

the versatile role of oxygenating enzymes in the

biosynthesis of structurally complex natural products

and indicates that cross talk of different biosynthetic

pathways promotes product diversification in natural

product assembly processes [18].

Dioxepin and pyran ring formation

Within P. fellutanum, isoprene units from the meval-

onic acid (mevalonate) pathway were incorporated into
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Fig. 13. Aurachin biosynthesis. AuaG and AuaH perform nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent epoxidation and

semi-pinacol rearrangement like the bifunctional PhqK, and AuaJ and AuaI catalyze epoxidation and cyclization similar to the pyran and

dioxepin ring formation in fungal indole alkaloid biosynthesis. Both AuaG and AuaJ are flavin adenine dinucleotide (FAD)-dependent

enzymes.
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the dioxepin ring of paraherquamide A (1) [35]. It was

proposed that the formation of the dioxepin is due to

a facially selective epoxidation of the olefin followed

by a stereospecific ring opening of the epoxide and

dehydration [35]. Another alternative for the dioxepin

formation would be a face-selective complex with a

transition metalloprotein to the olefinic p-system fol-

lowed by stereospecific intramolecular nucleophilic

addition and reductive elimination to the enol ether

(Fig. 15A) [35]. The hydroxylation and epoxidation

are both proposed to be performed by currently

unidentified oxidative enzymes. This fungal system

contrasts with the nonheme iron-dependent enzyme

deguelin cyclase found in plants [76,77].

Within the notoamide-producing strain A. amoenus,

[13C]2-notoamide T (28/29) was incorporated into (+)-
stephacidin A (10) and (+)-notoamide B (14) (Fig. 3)

[64]. This indicates that both 28 and 29 were accepted
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Fig. 14. Spirotryprostatin and fumitremorgin biosynthetic pathway cross talk involving cytochrome P450 FtmG and flavin-dependent

monooxygenase FqzB.
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Fig. 15. (A) Proposed mechanisms for dioxepin ring formation involving an oxidative enzyme with a metal cofactor (MLn) and a

prenyltransferase. (B) Halogenated malbrancheamides. These molecules are generated by the flavin-dependent halogenases MalA and

MalA0 in Malbranchea aurantiaca and Malbranchea graminicola, respectively.
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by the pyran ring-forming enzyme to generate 10 and

13, respectively. Thus, the enzyme responsible for

pyran formation must have evolved to accept both

enantiomers.

The asperversiamides have a unique connectivity

with the isoprenyl substituent located on the indole C5

to form the pyrano-[3,2-f]indole moiety as opposed to

the angularly fused pyrano[2,3-g]indole (Figs 11 and

12A) [47]. The prenyltransferase responsible for this

transformation must have C5 selectivity as opposed to

typically observed indole C7 prenylation. Conse-

quently, the downstream enzymes, such as those

responsible for catalyzing pyran ring formation, must

have evolved in parallel to perform their function on

the new metabolite.

Mechanism of pyran and dioxepin ring formation

Similar biosynthetic enzymes involved in aurachin pro-

duction in the myxobacterium Stigmatella aurantiaca

Sg a15 have provided insight into the potential mecha-

nism to form the pyran and dioxepin moieties. This

involved the 3,4-migration of the farnesyl chain to pro-

duce A-type aurachins, which was proposed to proceed

via 2,3-indole epoxidation (AuaG) and subsequent

reduction by AuaH as described above (Fig. 13) [19].

AuaJ is proposed to perform an epoxidation that is

followed by AuaI-catalyzed hydrolysis to form aura-

chin A (66), which functions similarly to the pyran

and dioxepin ring-forming enzymes within fungal

indole alkaloid biosynthesis [19]. In this case, two

enzymes (AuaG and AuaH) perform the proposed

function of PhqK and NotI in paraherquamide and

notoamide biosynthesis, respectively. PhqK and NotI

have evolved as dual-function enzymes to perform the

epoxidation and selective semi-pinacol rearrangement

in their respective pathways. It is possible that the

epoxidation and cyclization to form the pyran and

dioxepin rings may also be mediated by a single fungal

enzyme, but the mechanism remains unclear

(Fig. 15A).

Late-stage halogenation

Halogenation of the fungal bicyclo[2.2.2.] indole alka-

loids appears to be fairly specific to the Malbranchea

strains M. aurantiaca [4] and M. graminicola [78]. The

halogenases MalA (M. aurantiaca) and MalA0

(M. graminicola) are responsible for the iterative chlo-

rination to generate the natural product mal-

brancheamide (67) [4,78,79]. These halogenases

catalyze chlorination and bromination reactions to

generate monochlorinated malbrancheamide B (68)

and isomalbrancheamide B (69), monobrominated

malbrancheamide C (70) and isomalbrancheamide C

(71), mixed halogen malbrancheamide D (72) and iso-

malbrancheamide D (73), and the dibrominated mal-

brancheamide E [61] (Fig. 15B). The monobrominated

molecules had previously been isolated from

M. graminicola, and in vitro work with MalA and

MalA0 demonstrated that both strains were capable of

generating the brominated and chlorinated molecules.

The MalA/A0 study included the first computational

analysis of the flavin-dependent halogenase (FDH)

family and demonstrated a modified mechanism for

fungal FDHs. Additionally, it was determined that

MalA is stereospecific, distinguishing a single antipo-

dal natural substrate. Thus, when incubated with race-

mic premalbrancheamide, only (+)-
premalbrancheamide (23) was converted to (+)-mal-

brancheamide (67) [22].

The notoamide family also contains a halogenated

secondary metabolite, notoamide N (88), which con-

tains an indole C5 chlorination (Fig. 7A) [36]. Based

on what we have observed with the production of

spiromalbramide [78], and in reactions with NotI/

PhqK, we can hypothesize that the pyran ring forma-

tion and the halogenation of the [2.2.2] bicyclic pro-

duct would occur prior to the spirocyclization. The

molecule could be halogenated first through a similar

mechanism to MalA, and then, the pyran ring would

be formed, followed by spirocyclization. However, the

Out

In

Fig. 16. Structural comparison of the flavin cofactor in flavin-

dependent monooxygenases (FMO)s. Some FMOs catalyze

oxidation reactions, and others catalyze halogenation reactions.

PhqK (red), PqsL FMO, PDB: 6fho (orange), MalA0 halogenase,

PDB: 5wgr (yellow), PltA halogenase, PDB: 5dbj (green), and

decarboxylative hydroxylase, PDB: 5eow (blue). The discrete

conformations captured in these structures indicate the ancestral

relationship of these flavin-dependent enzymes. Model generated

using PyMol Molecular Graphics System.
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corresponding halogenating enzyme has yet to be iden-

tified.

The spiro-oxindole-forming enzymes and FDHs are

both part of the overarching FMO family. While the

enzymes that catalyze spiro-oxindole formation are

typically discrete proteins, the FDHs require an FAD

reductase partner to initiate catalysis. The stand-alone

enzymes have a highly dynamic FAD cofactor that

moves between ‘in’ and ‘out’ conformations as it is

reduced and oxidized, respectively. After a structure-

based evolutionary analysis of FMOs, it was clear that

the halogenases have evolved to bind the FAD in a

conformation that resembles the ‘in’ conformation of

the stand-alone enzymes. Along this evolutionary tra-

jectory, the enzyme also refashioned the FAD redox

chemistry to produce hypohalous acid and direct this

halogenating agent through the production of a puta-

tive lysine haloamine intermediate [80] (Fig. 16).

Discussion

Fungal indole alkaloids that contain the bicyclo[2.2.2]-

diazaoctane ring system are a unique family of mole-

cules and corresponding biosynthetic enzymes. The

NRPSs bear terminal condensation or reductase

domains, which lead to the formation of DKP or

MKP bicyclic ring systems, respectively. Additionally,

the incorporation of b-methyl proline and c-methyl

proline has been accommodated through enzymes that

have evolved for assembly from isoleucine or leucine.

Following the NRPS reaction, a selective reverse

prenylation of the indole C2 position occurs.

The IMDA enzyme performs a central role to form

the bicyclic core common to this class of molecules.

Initially annotated as SDRs, the MKP IMDAases

MalC and PhqE perform an initial reduction prior to

controlling the selective [4 + 2] cycloaddition reaction.

This is an example of the only characterized Diels–
Alder enzyme that retains its ancestral functionality

[44,81]. Interestingly, DFT calculations suggest that

the syn-/anti-diastereospecificity of the IMDA reaction

can be substrate-driven based on the oxidation state of

the indole ring, where the presence of the FMO-

derived spiro-oxindole moiety reverses the intrinsic

diastereospecificity. Natural examples of pre- and post-

IMDA spirocyclization have been identified in these

pathways. Lastly, halogenation is performed by flavin-

dependent halogenases (MalA/MalA0), which have

only been identified in the mal gene clusters. In each

of the aforementioned diversification mechanisms, a

unique family of molecules with intriguing bioactivities

has been generated. This pool of biosynthetic knowl-

edge forms the basis to explore the utility of these

biocatalysts to generate and diversify small molecules

and expand the potential of this class of broadly

bioactive natural products.
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