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ABSTRACT

The query containment problem is a fundamental algorithmic prob-
lem in data management. While this problem is well understood
under set semantics, it is by far less understood under bag semantics.
In particular, it is a long-standing open question whether or not
the conjunctive query containment problem under bag semantics is
decidable. We unveil tight connections between information theory
and the conjunctive query containment under bag semantics. These
connections are established using information inequalities, which
are considered to be the laws of information theory. Our first main
result asserts that deciding the validity of a generalization of infor-
mation inequalities is many-one equivalent to the restricted case
of conjunctive query containment in which the containing query is
acyclic; thus, either both these problems are decidable or both are
undecidable. Our second main result identifies a new decidable case
of the conjunctive query containment problem under bag semantics.
Specifically, we give an exponential time algorithm for conjunctive
query containment under bag semantics, provided the containing
query is chordal and admits a simple junction tree.
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1 INTRODUCTION

Since the early days of relational databases, the query containment
problem has been recognized as a fundamental algorithmic problem
in data management. This problem asks: given two queries Q7 and
Q2, is it true that Q1 (D) € Q2(D), for every database D? Here,
Qi (D) is the result of evaluating the query Q; on the database D.
Thus, the query containment problem has several different vari-
ants, depending on whether the evaluation uses set semantics or
bag semantics, and whether D is a set database or a bag database.
Query containment under set semantics on set databases is the
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most extensively studied and well understood such variant. In par-
ticular, Chandra and Merlin [8] showed that, for this variant, the
containment problem for conjunctive queries is NP-complete.

Chaudhuri and Vardi [9] were the first to raise the importance
of studying the query containment problem under bag semantics.
In particular, they raised the question of the decidability of the
containment problem for conjunctive queries under bag semantics.
There are two variants of this problem: in the bag-bag variant, the
evaluation uses bag semantics and the input database is a bag, while
in the bag-set variant, the evaluation uses bag semantics and the
input database is a set. It is known that for conjunctive queries,
the bag-bag variant and the bag-set variant are polynomial-time
reducible to each other (see, e.g., [17]); in particular, either both
variants are decidable or both are undecidable. Which of the two is
the case, however, remains an outstanding open question to date.

During the past twenty five years, the research on the query
containment problem under bag semantics has produced a number
of results about extensions of conjunctive queries and also about
restricted classes of conjunctive queries. Specifically, using differ-
ent reductions from Hilbert’s 10th Problem, it has been shown that
the containment problem under bag semantics is undecidable for
both the class of unions of conjunctive queries [16] and the class
of conjunctive queries with inequalities[17]. It should be noted
that, under set semantics, the containment problem for these two
classes of queries is decidable; in fact, it is NP-complete for unions
of conjunctive queries [27], and it is Hg-complete for conjunctive
queries with inequalities [20, 28]. As regards to restricted classes of
conjunctive queries, several decidable cases of the bag-bag variant
were identified in [2], including the case where both Q7 and Q, are
projection-free conjunctive queries, i.e., no variable is existentially
quantified. Quite recently, this decidability result was extended to
the case where Qj is a projection-free conjunctive query and Qo is
an arbitrary conjunctive query [21]; the proof is via a reduction to
a decidable class of Diophantine inequalities. In a different direc-
tion, information-theoretic methods were used in [22] to study the
homomorphism domination exponent problem, which generalizes
the conjunctive query containment problem under bag semantics
on graphs. In particular, it was shown in [22] that the conjunctive
query containment problem under bag semantics is decidable when
Q1 is a series-parallel graph and Q, is a chordal graph. This was
the first time that notions and techniques from information theory
were applied to the study of the containment problem under bag
semantics.

Notions and techniques from information theory have found
a number of uses in other areas of database theory. For example,
entropy and mutual information have been used to characterize
database dependencies [23, 24] and normal forms in relational and
XML databases [3]. More recently, information inequalities were
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used with much success to obtain tight bounds on the size of the
output of a query on a given database [4, 14, 15, 18, 19], and to
devise query plans for worst-case optimal join algorithms [18, 19].

This paper unveils deeper connections between information the-
ory and the query containment problem under bag semantics. These
connections are established through the systematic use of informa-
tion inequalities, which have been called the “laws of information
theory” [26] as they express constraints on the entropy and thus
“govern the impossibilities in information theory" [31].

An information inequality is an inequality of the form

0< Z exh(X),

Xcv

1

where V is a set of n random variables over finite domains, each
coefficient cx is a real number, ie. ¢ = (cx)x cv is a 2" -dimensional
real vector, h is the entropy function of a joint distribution over V
(V-distribution henceforth). In particular, A(X) denotes the marginal
entropy of the variables in the set X C V.

An information inequality may hold for the entropy function
of some V-distribution, but may not hold for all V-distributions.
Following [5], we say that an information inequality is valid if it
holds for the entropy function of every V-distribution. This notion
gives rise to the following natural decision problem, which we
denote as IIP: given integer coefficients cx € Z forall X C V, is
the information inequality (1) valid?!

In this paper, we will also study a generalization of this problem
that involves taking maxima of linear combinations of entropies. A
max-information inequality is an expression of the form

0< max Z ce.xh(X), ®)
M v

where V, X, h(X) are as before, and for each ¢ € [k], ¢, := (c¢,x)x cv
is a 2"-dimensional real vector. We say that a max information
inequality is valid if it holds for the entropy function of every V-
distribution. We write Max-IIP to denote the following decision
problem: given k integer vectors ¢, of dimension 2", is the max
information inequality (2) valid? Clearly, IIP is the special case of
Max-IIP in which k = 1.

Our first main result asserts that Max-1IP is many-one equivalent
to the restricted case of the conjunctive query containment prob-
lem under bag semantics in which Q; is an arbitrary conjunctive
query and Q- is an acyclic conjunctive query. In fact, we show that
these two problems are reducible to each other via exponential-
time many-one reductions. This result establishes a new and tight
connection between information theory and database theory, show-
ing that Max-IIP and the conjunctive query containment problem
under bag semantics with acyclic Qy are equally hard.

To the best of our knowledge, it is not known whether Max-IIP
is decidable. In fact, even IIP is not known to be decidable; in
other words, it is not known if there is an algorithm for telling
whether a given information inequality with integer coefficients is
valid. Even though the decidability question about IIP and about
Max-IIP does not seem to have been raised explicitly by researchers
in information theory, we note that there is a growing body of
research aiming to “characterize” all valid information inequalities;
moreover, finding such a “characterization” is regarded as a central

Equivalently, one can allow the input coefficients to be rational numbers.
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problem in modern information theory (see, e.g., the survey [5]).
It is reasonable to expect that a “good characterization" of valid
information inequalities will also give an algorithmic criterion for
the validity of information inequalities. Thus, showing that IIP is
undecidable would imply that no “good characterization" of valid
information inequalities exists.

Our second main result identifies a new decidable case of the con-
junctive query containment problem under bag semantics. Specif-
ically, we show that there is an exponential-time algorithm for
testing whether Q1 is contained in Q2 under bag semantics, where
Q1 is an arbitrary conjunctive query and Qz is a conjunctive query
that is chordal and admits a junction tree that is simple. Here, a query
is chordal if its Gaifman graph G is chordal, i.e., G admits a tree
decomposition whose bags induce (maximal) cliques of G; such a
tree decomposition is called a junction tree. A tree decomposition is
simple if every pair of adjacent bags in the tree decomposition share
at most one common variable. The result follows from a new class of
decidable Max-IIP problems. Note that this result is incomparable
to the aforementioned decidability result about series-parallel and
chordal graphs in [22], in two ways. First, the result in [22] applies
only to graphs (i.e., databases with a single binary relation symbol),
while our result applies to arbitrary relational schemas. Second, our
result imposes more restrictions on Qz, but no restrictions on Qj.

The work reported here reveals that the conjunctive query con-
tainment problem under bag semantics is tightly intertwined with
the validity problem for information inequalities. Thus, our work
sheds new light on both these problems and, in particular, implies
that any progress made in one of these problems will translate to
similar progress in the other.

2 DEFINITIONS

We describe here the two problems whose connection forms the
main result of this paper.

2.1 Query Containment Under Bag Semantics

Homomorphisms between relational structures. We fix a relational
vocabulary, which is a tuple R = (Ry,...,Rp), where each sym-
bol R; has an associated arity a;. A relational structure is A =
(A, RA, ... ,R‘,‘}l), where A is a finite set (called domain) and each
R? is a relation of arity a; over the domain A. Given two relational
structures A and B with domains A and B respectively, a homo-
morphism from B to A is a function f : B — A such that for
all i, we have f(R?) c R?. We write hom(8B, A) for the set of
all homomorphisms from 8 to A, and denote by |hom(8, A)| its
cardinality.

Bag-Set Semantics. A conjunctive query Q with variables vars(Q)
and atom set atoms(Q) = {A1, ..., Ag} is a conjunction:

Q(x)=A1 ANA2 A+ AN Apg.
Foreach j € [k], the atom Aj is of the form R;; (x;), where rel(A;) de
Rj; is a relation name, and vars(4;) def x; is a function,

vars(Aj) : [arity(rel(Aj))] — vars(Q)
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associating a variable to each attribute position of rel(A4;). We al-
low repeated variables in an atom. The variables x are called head
variables, and must occur in the body.

A database instance is a structure D with domain D. The an-

swer of a query (3) with head variables x is a set of x-tuples with

multiplicities. Formally, for each d € DX, denote Q(D)[d] def

{f € hom(Q, D) | f(x) = d}. The answer to Q on D under the bag-
set semantics is the mapping d — |Q(D)[d]|. The bag-set semantics
corresponds to a count (*)-groupby query in SQL.

Given two queries Q1, Q2 with the same number of head vari-
ables, we say that Q1 is contained in Qz under bag-set semantics,
and denote with Q1 < Qo, if for every D, we have Q1(D) <
02(D), where < compares functions point-wise, ¥d, |01 (D)[d]| <
|Q2(D)[d].

Problem 2.1 (Query containment problem under bag-set seman-
tics). Given Q1, Q2, check whether Q; < Q2.

A query Q is called a Boolean query if it has no head variables,
|x|] = 0. It is known that the query containment problem under
bag semantics can be reduced to that of Boolean queries under bag
semantics. For completeness, we provide the proof in Appendix A,
and only mention here that the reduction preserves all special prop-
erties discussed later in this paper: acyclicity, chordality, simplicity.
For that reason, in this paper we only consider Boolean queries,
and denote Problem 2.1 by BagCQC.

Bag-bag Semantics. In our setting the input database D is a
set, only the query’s output is a bag. This semantics is known
under the term bag-set semantics. Query containment has also
been studied under the bag-bag semantics, where the database may
also have duplicates. This problem is known to be reducible to the
containment problem under bag-set semantics [17], by adding a new
attribute to each relation, and for that reason we do not consider it
further in this paper. One aspect of the bag-bag semantics is that
repeated atoms change the meaning of the query, while repeated
atoms can be eliminated under bag-set semantics. For example
R(x) AR(x) A S(x,y) and R(x) A S(x,y) are different queries under
bag-bag semantics, but represent the same query under bag-set
semantics. Since we restrict to bag-set semantics we assume no
repeated atoms in the query.

The Domination Problem. We briefly review two related problems
that are equivalent to BagCQC. Given two relational structures A
and B, we say that B8 dominates A, and write A < B, if VD,
lhom(A, D)| < |hom(B, D).

Problem 2.2 (The domination problem, DOM). Given a vocabulary
R, and two structures A, B, check if B dominates A: A < B.

DOM and BagCQC are essentially the same problem. Kopparty and
Rossman [22] considered the following generalization:

Problem 2.3 (The exponent-domination problem). Given a ra-
tional number ¢ > 0 and two structures A, B, check whether
lhom(A, D)|¢ < |hom(B, D)| for all structures D.

This problem is equivalent to DOM, because it can be reduced to
DOM by observing that |hom(n - A, D)| = |hom(A, D)|", where
n- A represents n disjoint copies of A [22, Lemma 2.2]. Conversely,
DOM is the special case ¢ = 1.
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2.2 Information Inequality Problems

In this paper all logarithms are in base 2. For a random variable
X with values that are in a finite domain D, its (binary) entropy is
defined by

H(X) = - Z PrX = x] - log Pr[X = x]
xeD

®)

Note that in the above definition, X can be a tuple of random
variables, in which case H(X) is their joint entropy. The entropy
H(X) is a non-negative real number.

Let V = {Xj,...,Xn} be a set of n random variables jointly
distributed over finite domains. For each @ C [n], the joint distri-
bution induces a marginal distribution for the tuple of variables
Xa = (X; : i € a). One can also equivalently think of X, as a
vector-valued random variable. Either way, the marginal entropy

on X is defined by (5) too, where we replace X by X, . Define the

function & : 2" 5 R, as h(a) def H(Xg), for all @ C [n]. We call

h an entropic function (associated with the joint distribution on V)
and identify it with a vector h € R%".

The set of all entropic functions is denoted? by I} C Rin. With
some abuse, we blur the distinction between the set [n] and the set
of variables V = {Xj, ..., Xy}, and write h(X,) instead of h(a).

An information inequality, or 1T, defined by a vector ¢ = (cx)xcv
€ R2v, is an inequality of the form

0< > exh(X)

Xcv

(6)

The information inequality is valid if it holds for all & € T} [5].

Problem 2.4 (II-Problem). Given a set V and a collection of inte-
gers cx, for X C V, check whether the information inequality (6)
is valid.

A max-information inequality, or Max-11, is defined by k vectors
\4
cp = (ce,x)xcv € R?", ¢ € [k], and is written as:

D cexh()

Xcv

(7)

0 < max
le(k]

The Max-11I is valid if it holds for all entropic functions h € T},.

Problem 2.5 (Max-II Problem). Given a set V and integers c, x,
for ¢ € [k] and X C V, check whether the Max-I1I (7) is valid.

We denote the II- and Max-II problems by IIP and Max-IIP
respectively. Both are co-recursively enumerable and it is open if
any of them is decidable.

3 MAIN RESULTS
3.1 Connecting BagCQC to Information Theory

We state our first main result, and defer its proofs to Sec. 4 and 5.
Recall that a many-one reduction of a decision problem A to another
decision problem B, denoted by A <, B, is a computable function
f such that for every input X, the yes/no answer to problem A on
X is the same as the yes/no answer to the problem B on f(X). This
is a special case of a Turing reduction, A <t B, which means an
algorithm that solves A given access to an oracle that solves B. Two

2Most texts drop the component h(0), which is always 0, and define I}, C Rin’y We
prefer to keep the 0-coordinate to simplify notations.
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problems are many-one equivalent, denoted by A=, B,if A<, B
and B <, A.

Our main result is that the Max-IIP is many-one equivalent to
the query containment problem under bag semantics, when the
containing query is restricted to be acyclic. We briefly review acyclic
queries here (we only consider a-acyclicity in this paper [11]):

Definition 3.1. A tree decomposition of a query Q is a pair (T, y)
where T is an undirected forest® and y : nodes(T) — 2'2'5(Q) satis-
fies (a) the running intersection property: Vx € vars(Q),
{t € nodes(T) | x € y(t)} is connected in T, and (b) the cover-
age property: for every A € atoms(Q), there exists t € nodes(T)
s.t. vars(A) C x(t). The sets y(t) are called the bags* of the tree
decomposition. A query Q is acyclic if there exists a tree decom-
position (T, y) such that, for all ¢ € nodes(T), y(t) = vars(A) for
some A € atoms(Q).

Theorem 3.2. Let BagCQC-A denote the BagCQC problem Q1 <
Q2, where Q3 is restricted to acyclic queries. Then Max-IIP =,
BagCQC-A.

The proof of the theorem consists of three steps. First, we de-
scribe in Sec. 4.1 a Max-IIP inequality that is sufficient for con-
tainment, which is quite similar to, and inspired by an inequal-
ity by Kopparty and Rossman [22]. Second, we prove in Sec. 4.2
that, when Q is acyclic, then this inequality is also necessary,
thus solving the conjecture in [22, Sec.3]; our proof is based on
Chan-Yeung’s group-characterizable entropic functions [6, 7]. In
particular, BagCQC-A <,, Max-IIP. We do not know if this can be
strengthened to BagCQC and/or IIP respectively. Finally, we give
the many-one reduction Max-IIP <., BagCQC-A in Sec. 5.

3.2 Novel Decidable Class of BagCQC

Our next two results consist of a novel decidable class of query
containment under bag semantics, and, correspondingly, a novel
decidable class of max-information inequalities. We state here the
results, and defer their proofs to Appendix D.

We show that containment is decidable when Q3 is chordal and
admits a simple junction tree (decomposition); to formally state the
result, we define chordality, simplicity, and junction tree next.

A query Q is said to be chordal if its Gaifman graph G is chordal,
i.e., there is a tree decomposition of G in which every bag induces
a clique of G. A tree decomposition of G (and thus of Q) where all
bags induce maximal cliques of G is called a junction tree in the
graphical models literature (see Def. 2.1 in [29]).

Fix a tree decomposition of a query Q, and let t € nodes(T). A
tree decomposition is called simpleif ¥ (t1, t2) € edges(T), | x(t1) N
x(t2)] < 1,and s called totally disconnected if® ¥(t1, t2) € edges(T),
x(t) N x(2) = 0.

Note that every acyclic query is chordal, but not necessarily
simple; for example, the query Q() « R(a, b, ¢c),S(b, c, e) is a non-
simple acyclic query. Conversely a chordal query is not necessarily
acyclic; for example, any k-clique query with k > 3 is chordal.

3We allow Q to be disconnected, in which case T can be a forest, but we continue to
call it a tree decomposition.

4Not to be confused with the bag semantics.

SEquivalently, edges(T) = 0, because any edge s.t. y (£) N y(£;) = 0 can be removed.
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Theorem 3.3. Checking Q1 < Q2 is decidable in exponential time
when Qo is chordal and admits a simple junction tree.

Next, we complement Theorem 3.3 by showing that, if Q1 £ Qo
then there exists a “witness” with a simple structure. This result
is similar in spirit to other results where a decision problem can
be restricted to special databases: for example, query containment
under set semantics holds iff it holds on the canonical database of
Q1 [8], and implication between functional dependencies holds iff
it holds on all relations with two tuples.

Let Q) be a query and V = vars(Q;). A relation P C DV is called
a V-relation. A V-relation P and Q; induce a database instance

Mg, (P) def (D,RP,...,RD) where,
D def

VYt € [m] : R{ Hvars(A) (P) (8)

Aeatoms(Qq):rel(A)=R,

In other words, we project P on each atom, and define R? as the
union of projections on atoms with relation name R,.

The notation ITy,.5(4)(P) requires some explanation, because
the atom A may have repeated variables, thus vars(A) is a function
(described in (4)). Given a set of integer indices Y and a function ¢ :

Y — V, the generalized projection is I1,, (P) def {(fop|feDV})A
tuple f € DV isa function V — D, hence f o just denotes function
composition. For example, if Q1 = R(x, x,y) and P = {(a, b)}, then
RP =TI(y x 4)(P) = {(a.a,b)}. Obviously P € hom(Q1,TIp, (P)),
which means |P| € |hom(Q1, I, (P))l, and this implies:

Fact 3.4 (Witness). If there exists a vars(Qj)-relation P such that
[P| > [hom(Q2,T1g, (P))I, then Q1 # Qs, in which case P is said to
be a witness (for the fact that Q1 £ Q2).

We next define two special types of relations (and witnesses).
Let W be a set of integer indices. Fix ¢y : W — 2" and a tuple
f € DV For any index y € W, we view f(i/(y)) as an atomic value

in the domain DY(¥). Define the W-tuple y - £ €' (F(y(1)))yews

its components may belong to different domains.

Definition 3.5 (Product and normal relations). A V-relation P
is a product relation if P = []y ¢y Sx, where each Sy is a unary
relation. A W-relation is called a normal relation if it is of the form
{ - f | f € P)where Pis some product V-relationand ¢ : W — 2V
is some function.

One can verify that every product relation is a normal relation.
For a simple illustration, consider the case when V = {Xj, X2}
A product relation on V is {(u,v) | u,v € [N]} = [N] X [N]. A
normal relation with four attributes is {(uv,u,v,v) | u,v € [N]},
where uv denotes the concatenation of u and v. This normal rela-
tion corresponds to the map ¢ : [4] — 2V where (1) = {X1, X2},
¥(2) = {X1}, and ¥(3) = ¥(4) = {X2}. In a product relation all
attributes are independent, while a normal relation may have de-
pendencies: in our example the first attribute uv is a key, and the
last two attributes are equal.

Theorem 3.6. Let Q2 be chordal,
(i) IfQ2 admits a totally disconnected junction tree, then Q1 £ Q2
if and only if there is a product witness.
(ii) If Q2 admits a simple junction tree, then Q1 # Q2 if and only
if there exists a normal witness.
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We prove both theorems in Appendix D, using the novel results
on information-theoretic inequalities described next, in Sec. 3.3.

Example 3.7. We illustrate with the following queries:
Q1 =A(x1, x2) A B(x1, x2) A C(x1, x3) A A(x, x3) A B(x7, x3) A C(x1, x3)
Q2 =A(y1, y2) A B(y1, ys) A Clys, y2)

Q> is acyclic with a simple junction tree: {y1, y3} —{y1, y2} —{y2, ya}.
We prove that Q; £ Q2 has a normal witness:

def

P ={(u,u,v,v) |u € [n],v e [n]} C plxixzx,x;)

P induces the database I1g, (P) = ([n], AP, BP, cP), where AP =
BP =CP ={(u,u) | u € [n]},and |P| = n? > |hom(Q,, T, (P))| =
n when n > 1, proving Q; £ Q2.

On the other hand, there is no product relation P that can wit-
ness Q1 £ Q2. Indeed, if P = S; X Sy X S3 X S4 where Sp,...,54
are unary relations, then the associated database I1g, (P) has re-

lations AP = BP = P def (S1 X S2) U (S3 X S4), and therefore
lhom(Q2, I, (P))| > max(|S1 X Sz|%,1S3 X S4|%) > [Sy X Sz X S3 X
Sal = |PI.

3.3 Novel Class of Shannon-Inequalities

Our decidability results are based on a new result on information-
theoretic inequalities, proving that certain max-linear inequalities
are essentially Shannon inequalities. To present it, we need to re-
view some known facts about entropic functions. We refer to Ap-
pendix B and to [30] for additional information. Recall that the set
of entropic functions over n variables is denoted T} € R?", and
that we blur the distinction between a set V of n variables and [n].

We begin by discussing closure properties of entropic functions
and then introduce certain special classes of entropic functions. For
the benefit of the readers familiar with database theory, we give
in Table 1 the mapping between some of the database concepts
used in this paper and their information-theoretic counterparts. For
our discussion, it is useful to define the notion of the entropy of a
relation. Given a V-relation P, its entropy is the entropy of the joint
distribution on V, uniform on the support of P (i.e., tuples in P).

First, the sum of two entropic functions is also an entropic func-
tion, that is, if h1, hy € I, then hy + hp € T;. It follows that if k is
a positive integer and h is an entropic function, then the function
h’ = kh is also entropic. However, if ¢ > 0 is a positive real number
and h is an entropic function, then the function h’ = ch need not
be entropic, in general. In contrast, the function h’ = ch is entropic,
if ¢ > 0 is a positive real number and h is a step function, defined as
follows. Let W C V be a proper subset of V. The step function at W,
denoted by hyy, is the function

0 fXCWwW

1 otherwise.

hw (X) ={

Every step function hy is entropic. To see this, consider the re-

lation Py = {f1, f2} C {1,2}V, where fi = (1,1,...,1) and
fa=1(2,...,2,1,...,1), that is, f> has 1’s on the positions W and
—_——— ———
V-w w

2’s on all other positions. It is not hard to verify that hyy is the
entropy of the relation Py, and thus the step function hyy is indeed
entropic.
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As mentioned above, if ¢ > 0 is a positive real number and Ay,
is a step function, then the function 4’ = chyy is entropic; the proof
of this fact is given in Appendix B. A normal entropic function, or
simply normal function, is a non-negative linear combination of step
functions, i.e., Y ywcy cwhw, for cyy > 0. We write NV, to denote
the set of all normal functions. Since, as mentioned earlier, the sum
of two entropic functions is entropic, it follows that every normal
function is entropic; thus, we have that N, C I;. In Appendix B, we
show that the normal functions are precisely the entropic functions
with a non-negative I-measure (defined by Yeung [30]). The term
“normal” was introduced in [18]. One can check that the entropy of
every normal relation (Def. 3.5) is a normal function.

Example 3.8. The parity function is the entropy of the following re-

lation with 3 variables: P = {(X,Y,Z) | X,Y,Z € {0,1}, X ® Y ® Z = 0}.

More precisely, the entropy is h(X) = h(Y) = h(Z) = 1, i(XY) =
h(XZ) = h(YZ) = h(XYZ) = 2. We show in Sec. 6 that h is not
normal.

A function h : 2V — R, is called modular if it satisfies A(X U
Y)+h(XNY) = h(X)+h(Y)forall X,Y C V,and h(0) = 0. It
is easy to show that h is modular iff h(Xy) = Y ieq h(X;) for all
a C V. It is immediate to check that the entropy of any product
relation (Def. 3.5) is modular. We write M, to denote the set of all
modular functions. Every modular function is normal, hence it is
also entropic. To see this, given a modular function h, for each i < n,
define W; = V' \ {X;} and let hyy, be the associated step function at
W;. 1t is now easy to verify that h = 3% | h(X;) - by, thus his a
normal function. In summary, we have M, C N,, C T;.

All entropic functions satisfy Shannon’s basic inequalities, called
monotonicity and submodularity,

h(X) < h(XUY) h(XUY)+h(XNY)<hX)+hY) (9

for all X,Y C V. (Since h(0) = 0, monotonicity implies non-
negativity too.) A function h : 2V — Ry, h(0) = 0, that satisfies
Eq.(9) is called a polymatroid, and the set of all polymatroids is
denoted by I},. Thus, I}, € I},. Zhang and Yeung [32] showed that
I is properly contained in I}, for every n > 4. Any inequality
derived by taking a non-negative linear combination of inequalities
(9) is called a Shannon inequality. In a follow-up paper [33], Zhang
and Yeung gave the first example of a 4-variable valid information
inequality which is non-Shannon.

In summary, we have considered the chain of the following four
sets: My € Ny € Iy C Iy, Except for I, each of these sets is a
polyhedral cone. Using basic linear programming, one can show
that it is decidable whether a max-linear inequality holds on a
polyhedral set. In contrast, (even) the topological closure of T}, is
not polyhedral [25]; in fact, it is conjectured to not even be semi-
algebraic [13], and it is an open question whether linear inequalities
or max-linear inequalities on f; are decidable.

For a given vector (cx)xcy C RZ" where ¢y = 0, we asso-

. . . . . . . def
ciate a linear expression E which is the linear function E(h) <

Yxcv exh(X). As stated earlier, a linear inequality E(h) > 0 that is
valid for all h € T}; is called an information inequality; furthermore,
a max information inequality is one of the form max, E¢(h) > 0,
where V¢, E¢ is a linear expression.

In this paper, for any variable sets X,Y C V, we write h(XY)
as a shorthand for h(X U Y), and define the conditional entropy
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Database Theory Information Theory
pcDY heT;
A relation P over a set of n variables V, each of which has An entropic function h : 2¥ — R, over a set of n variables V.
domain D h is defined by a uniform probability distribution p over P.

P=S x---xS, cDV
A product relation P (Definition 3.5)

h(X) = Yiex h(i), foralX CcV
A modular functionh € My,

The set of product relations

The set of modular functions M,

P=P ®P, wherePy CD/,P,CD),PC(DyxDz)"
A domain product P of two relations Pj, Py, all of which are
over the same variable set V (Definition B.1)

h=hy +hy, whereh, hi,hy €T},
A sum h of two entropic functions hy, hy, all of which are over
n variables

Py def {fi, f2} € DV, for some W C V, where

def
i = 1L1...,0),
def
f = @....21,....1),
A A
V-w w

Given W C V, the relation Py has two tuples fi, f2 differing
only in positions V — W. (See Section 3.3)

0 ifXcw
hw<X)d§f{ '

1 otherwise
Given W C V, a step function hyy.

P =Py, ® Py, ® --- ® Py,
A normal relation P over variable set V is a domain product of
m (not necessarily distinct) relations Py, for W; C V
(Another way to phrase Definition 3.5)

h= Z cwhw, wherecy >0
wcv
A normal entropy h € Ny, is a non-negative weighted sum of

step functions Ay,

The set of normal relations

The set of normal functions N, =
the cone closure of step functions

Py, when |V — W| = 1, becomes a product relation

hw, when |V — W| = 1, becomes a modular function

Product relations are a proper subclass of normal relations

Modular functions are a proper subclass of normal functions
Mpn © Nn

A group-characterizable relation [6]

P def {(aGi,...,aGp) | a € G}, where G is a group and
G, . ..,Gp are subgroups

An entropic function h € T};

The set of group-characterizable relations

L

L,-T;
Polymatroids that are not entropic have no analog in databases

Table 1: Translation between the database world and the information theory world.

to be h(Y|X) def h(XY) — h(X). Despite its name, the mapping

Y = h(Y|X) is not always an entropic function (Appendix B), but
it is always a limit of entropic functions. The submodularity law (9)
can be written using conditional entropies as

h(XY]X) < h(Y]X N Y) (10)

We call the term h(Y|X) simple if | X| < 1. A simple term h(Y|X)
is unconditioned if X = (. A conditional linear expression is a linear
expression E of the form E(h) = Y xcycv dy|x - M(Y]X), where
dy)x are non-negative coefficients. A conditional linear expression
is said to be simple (respectively, unconditioned) if dy|x > 0 implies
h(Y]X) is simple (respectively, unconditioned).

Let 7 be a class of max-linear inequalities. We say that 7 is
essentially Shannon if, for every inequality I in 7, I holds for every
h € T if and only if I holds for every h € I},. Any essentially
Shannon class is decidable, because I}, is polyhedral.
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Theorem 3.9. Consider a max-linear inequality of the following
form, where q > 0, and E¢ are conditional linear expressions:

q-h(V) < foax E¢(h) (11)

(i) Suppose that Ep is unconditioned, ¥{ € [k]; then inequal-
ity (11) holds Yh € My, if and only if it holds Vh € Tj,.

(i) Suppose that Ep is simple, V¢ € [k]; then, inequality (11) holds
Vh € Ny if and only if it holds Vh € Tp,.

In particular, the class of inequalities (11), where each E; is simple, is
essentially Shannon and decidable.

The proof of the theorem follows from a technical lemma, which
is of independent interest:

Lemma 3.10. Let h: 2" — R, be any polymatroid. Then there
exists a normal polymatroid h’ € Ny, with the following properties:

(1) h'(X) < h(X), forall X C [n],
(2) K ([n]) = h([n]),
@) W' ({i}) = h({i}), foralli € [n].
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In addition, there exists a modular function h’’ € M,, that satisfies
conditions (1) and (2).

This lemma says that every polymatroid h can be decreased
to become a normal polymatroid h’, while preserving the values
at [n] (all variables) and at all singletons {i}. If we drop the last
condition, then the existence of a modular function A’/ follows
from the modularization lemma [19], which is based on Lovasz’s
monotonization of submodular functions:

def T
R(X) E Y h({i[i - 1))
ieX
The proof that one can also satisfy condition (3), by relaxing from a
modular function to a normal one, is non-trivial and given in Sec. 6.

ProOF oF THEOREM 3.9. We prove the second item. Let E(h) def

maxy Ep(h) — q - h(V), where each E; has the form }}; h(Y;|X;)
with |Xj| < 1. Let h € I}, and let A’ € N, be the normal polyma-
troid in Lemma 3.10. For every ¢, we have E¢(h’) = Y; k' (X;Y;) —
SR (Xi) £ X h(XiYi) = 3 h(X;) = Eg(h), because |X;| < 1 and
therefore h’(X;) = h(X;). Since E(h’) > 0, we obtain q - h(V) =
q-h (V) < maxp Ep(h') < maxy Eg(h) completing the proof. The
first item of the theorem is proven similarly, and omitted. m]

Example 3.11. We illustrate here with an inequality needed later
in Ex. 4.3. Consider h(X1X2X3) < max(Eq, E2, E3), where:

E1 = h(X1X3) + h(X2|X1)
Ez = h(X2X3) + h(X31X2)
E3 = h(X1X3) + h(X1]|X3)

(Notice that all three expressions are simple, hence the theorem
applies.) Using Shannon’s submodularity law (10), we infer E; =
h(X]Xz) + h(X2 |X1) > h(X1X2) + h(Xz |X1X3) and, similarly for
E,, E3; therefore,

1 1
max(Eq, Ez, E3) > g[El +E; +E3] > g[h(X1X2) + h(X2|X1X3)
+h(X2X3)+h(X31X1X2) +h(X1X3) +h(X1 |X2X3)] = h(X1X2X3)

4 REDUCING BagCQC-A TO Max-IIP

This section proves that BagCQC-A <, Max-IIP, showing half of
the equivalence claimed in Theorem 3.2. We start by associating
to each query containment problem a max-information inequality.
We then prove, two results: the inequality is always a sufficient
condition for containment, and it is also necessary when the con-
taining query is acyclic. From now on, we will use only upper case
to denote variables, both random variables and query variables.
Before we begin, we need to introduce some notations. Fix a
relation P C DY and a probability distribution with mass function
p:P—[0,1]. If X C Visa set of variables,and ¢ : Y —» Visa
function, then recall that ITx (P) and II,(P) denote the standard,
and the generalized projections respectively. We write ITx (p) for the
standard X-marginal of p, and write I1,, (p) for the @-pullback®. The
latter is a probability distribution on IT, (P) defined as follows. Start
from the standard marginal I1,(y) (p) on I1,(y)(P), then apply the
isomorphism Iy, (P) — Il (y)(P) defined as Iy (f) = L, (v)(f),
Vf € P.Finally, if E = }; c;h(Y;) is a linear expression of entropic

SThis is a generalization of the pullback in [22, Sec.4].
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terms, where each Y; C Y, then we denote by Eog def >icih(p(Y))
the result of applying the substitution ¢ to each term in E.

Example 4.1. Let V = {X1, X3, X3}, P € DY, (Y1) = X1, p(Y3) =
¢(Y3) = X. The generalized projection is I1,(P) = {(a,b,D) |
(a,b,c) € P} ¢ DYuY2 Y3} [is tuples are in 1-1 correspondence
with the standard projection I, y)(P) = Ilx,x,(P) = {(a,b) |
(a,b,c) € P}. If p is a distribution on P, then the ¢-pullback is

M, (p) (Y1 Y2Ys = abb) € p(XiXz = ab) = ¥, p(X1X2X3 = abo).
Notice that we do not need to define the pullback for (a,b,c)
where b # ¢, because (a,b,c) ¢ Hq;(P). Consider now the lin-
ear expression E = 3h(Y;) + 4h(Y2Y3) — 6h(Y3). Then Eo ¢ =
3h(X1) + 4h(X2) — 6h(X2) = 3h(X1) — 2h(X2).

We will introduce now a fundamental expression, E7, that con-
nects query containment to information inequalities; we discuss its
history in Sec. 7. Fix a tree decomposition (T, y) of some query Q,
and recall that T may be a forest. Choose a root node in each con-
nected component, thus giving an orientation of T’s edges, where
each node t has a unique parent(t). We associate to T the following
linear expression of entropic terms:

def Z

E, b)) = (12)
tenodes(T)

h(x(®)1x () N x(parent(r)))
where y(parent(t)) = 0 when t is a root node. We abbreviate
E(1, y) with ET when y is clear from the context. Expression (12) is
independent of the choice of the root nodes, because one can check

that ET = Ztenodes(T) h(x () - Z(tl,tz)eedges(T) h(x(t1) N x(t2)).

4.1 A Sufficient Condition

Henceforth, let TD(Q) denote the set of all tree decompositions of
a given query Q.

Theorem 4.2. Let Q1, Q2 be two conjunctive queries, n = |vars(Q1)|.
If the following Max-11 inequality holdsVh € T}, :

h(vars(Q1)) < (ET 0 @)(h)

then Q1 < Qs.

The theorem is inspired by, and is similar to Theorem 3.1 by
Kopparty and Rossman [22], with three differences. First, the result
in [22] applies only to graphs (i.e., databases with a single binary
relation symbol), while our result applies to arbitrary relational
schemas. Second, we do not restrict Qy to be chordal. Finally, [22] re-
strict h to entropies satisfying the independence constraints defined
by Q1; while this restriction is not needed to prove Theorem 4.2, it
was needed in [22] to prove necessity in a special case (Theorem
3.3 in [22]). We will prove necessity in the next section without
needing this restriction. Our proof is an extension of the proof
in [22], and deferred to Appendix C. The proof of both Theorem 4.2
and 4.4 below use the following notation. Give a node ¢ € nodes(T)
of tree decomposition of Q, we denote by Q; the “subquery at ¢”,
consisting of all atoms A € atoms(Q) s.t. vars(A) C y(t). We can
assume w.l.o.g. (Appendix A) that vars(Q;) = y(¢). We end this
section with an example, also from [22].

max max (13)
(T, x) €TD(Q2) @ €hom(Q;, Q1)

Example 4.3. This example is attributed to Eric Vee in [22]:
Q1 = R(X1,X2) A R(X2, X3) AR(X3,X1) Q2 = R(Y1, Y2) A R(Y1, Y3)
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We show that Q; < Q2. Query Q- is acyclic, and its tree decompo-
sition T is {Y7, Yo} — {Y1, Y3}, therefore:

Er = h(Y1Y2) + h(Y3]Y1) = h(Y1Y2) + h(Y1Y3) — h(Y1)

There are three homomorphisms ¢ : Q2 — Q1, hence inequality
(13) becomes:

h(X1X2X3) < max(Eq, E2, E3) (14)

where Eq, Eg, E3 are the linear expressions in Example 3.11, where
we have shown that the inequality holds forall entropic h. The-
orem 4.2 implies Q1 < Q2. In lieu of a general proof, we prove
the theorem on this particular example. Consider any database
D, let P; = hom(Q1, D), p1 the uniform probability space on P,
and hj its entropy. Since hy satisfies inequality (14), one of the
three terms on the right is larger than the left, assume w.l.o.g. that
this term corresponds to the homomorphism ¢ (Y1) = X1, ¢(Y2) =
¢(X3) = Xy. Thus, h1 (X1X2X3) < h1(X1X2) + h1(X2]X1). Let Py =
hom(Qz2, D). This is a relation with attributes Y7, Y2, Y3. We define a
probability distribution py on Py as follows: the marginal p2 (Y1, Y2)
is the same as p;(Xj,X2), and the conditional pp(Y3|Y7) is the
same as p1(X2/X1). In particular, its entropy h; satisfies log |P2| >
ha(Y1Y2Y3) = ha(N1Y2) + ha(Y31Y1) = hi(XiX2) + hi(X2lX1) 2
h1(X1, X2, X3) = log|P1| proving Q1 < Qa.

4.2 A Necessary Condition

Next we prove that inequality (13) is also a necessary condition
for containment Q1 < Qg, when Q is acyclic. Our result answers
positively the conjecture by Kopparty and Rossman [22, Sect.3,
Discussion 1], in the case when Qs is acyclic. To prove the theorem,
we consider some entropy h on which Eq.(13) fails, and prove that
the support of its probability distribution, P, is a witness for Q1 %
Q2. The key idea is to use Chan-Yeung’s group-characterizable
entropic functions [6, 7], and show that P can be chosen to be
“totally uniform”. This allows us to relate |hom(Q2, D)| to the right-
hand-side of Eq.(13). More precisely, we prove the following.

Theorem 4.4. Let Qy be acyclic. If there exists an entropic function
h such that (13) does not hold, namely,

h(vars(Q1)) > max max

ET o h 15
0 0 pehomis, oy ETCONR) - (19)

then there exists a database D such that |lhom(Q1, D)| > |hom(Q2, D).

Together, Theorems 4.2 and 4.4 prove that BagCQC-A <, Max-IIP.
To prove Theorem 4.4, we need some definitions and lemmas,

where we fix a relation P € DV, for some set of variables V, let

p : P — [0,1] be its uniform distribution (p(f) def 1/|P|, for all

feP),and h: 2V — Ry its entropy.

Definition 4.5. We call P totally uniform if every marginal of p is
also uniform.

For any two sets X, Y C V, and any tuple fy € IIx(P), define the
def
Y-degree of fy as degp (Y|X = fo) = HOy(f) | f € P,IIx(f) = fo}l.

Lemma 4.6. Let P be totally uniform. Then, for any two sets X,Y C
V, the following hold:
(1) degp(YIX = fo) is independent of the choice of fy, and we
denote it by degp(Y|X).

(2) degp(YIX) = |TLxy (P)I/IIIx (P)| and h(Y|X) = log(degp (Y|X)).
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Proor. Item 1 follows from the fact that the X-marginal of p is
uniform and, therefore, p(X = fy) = deg(Y|X = fo)/|IlIxy(P)| is
independent of fy. For item 2, [Ilxy (P)| = X g erny(p) degp(YIX =

fo) = x (P)|-degp(Y1X),and h(Y|X) = h(XY)-h(X) =log [TLxy (P)|

—log [TIx (P)| = log(degp(Y|X)). |

Lemma 4.7. IfP; C DX,P, ¢ DY and P, is totally uniform, then
|P1 54 Py| < |Py| - degp, (YIX NY).

PROOF. |P1 ™ P3| < Yirep, degPZ(YlXﬂ Y = IIxny(f)) =
|P1|degp, (YIX NY). O

Lemma 4.8. Suppose theMax-11 max;=1 ¢ E;(h) > 0 fails for some
entropic function h. Then, for every A > 0, there exists a totally
uniform relation P such that its entropy h satisfies max;=1,q E;(h) +
A < 0. In other words, we can find a totally uniform witness that fails
the inequality with an arbitrary large gap A.

Proor. We use the following result on group-characterizable
entropic functions [7]. Fix a group G. For every subgroup G; C G,

denote aGy def {ab | b € G1}. An entropic function h € T}, is
called group-characterizable if there exists a group G and subgroups
G, ...,Gp such that h is the entropy of the uniform probability

distribution on P def {(aGi,...,aGy) | a € G}. Chan and Yeung [7]
proved that the set of group-characterizable entropic functions is
dense in I};; in other words, every h € I is the limit of group-
characterizable entropic functions. In particular, if a max-linear
inequality is valid for all group-characterizable entropic functions,
then it is also valid for all entropic functions.

We show that, if max; E;(h) > 0 fails, then it fails with a gap
> A on a group-characterizable entropy. Let hy be any entropic
function witnessing the failure: max;=1,4 E;(ho) < 0. Choose any

6 > 0s.t. max;=1,¢4 Ei(ho) +J < 0, and define k def [A/67+ 1. Since

1% Kk = ho+ho+- - -+ho is also entropic and E; (k-ho) = k-E: (ho)

for all i, we have that max;=1 4 Ej(h) + k - § < 0, and therefore
max;=1,4 E;(h) + A < 0. By Chan-Yeung’s density result, we can
assume that h is group-characterizable.

Finally, we prove that the set P defining a group-characterizable
entropy is totally uniform. This follows immediately from the fact
that, under the uniform distribution, every tuple (aGj,...,aGy) €
P has probability [G; N --- N Gpl/|Gl, and the marginal probability
of any tuple (aGi,,...,aGj,) € II;...;, (P) has probability |G;, N
-+ N Gj |/IG]. (See Theorem 1 from [6].) ]

Proor oF THEOREM 4.4. Let (T, y) be a junction tree (decom-
position) of Qy, which exists because acyclic queries are chordal.
Then,

h(vars > max max E7r o @)(h 16
(vars(Q1)) (T/,X)eTD(QZ)(pehom(QZ’Ql)( T op)(h)  (16)

> max ET o ¢)(h). 17

<pehom(Qz,Q1)( ) (h) (17)

Fix A such that A > log |hom(Q2,Q1)|, and let P C DYars(Q1) pe

the totally uniform relation given by Lemma 4.8, whose entropy h
satisfies:

log |P| = h(vars(Q1)) > A + max

Et o ¢)(h 18
¢€h0m(Qz,Q1)( Top)(h)  (18)
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P’s columns are in 1-1 correspondence with vars(Q1) = {Xj, ..
We annotate each value with the column name, thus a tuple f =
(Cl, C2,..
the annotated P is isomorphic with the original P, hence still totally
uniform. Let D = Ig, (P) be the database obtained by projecting
the annotated P on the atoms of Q; (Eq.(8)). We have seen that
lhom(Q1, g, (P))| > |P|. We will show that |P| > [hom(Qz, D),
thus P is a witness for Q1 £ Q2. To do this we need to upper bound
[hom(Q2, D)I.

Let e : D — Q1 be the homomorphism mapping every value
(’X”, ¢) to the variable X: this is a homomorphism’ because, by the
definition of D, Eq.(8), each tuple fo = R; (("Xj,”, c1), " Xj,”, c2),...)
in D is the projection of some f € P on the variables vars(A) of
some A € atoms(Q1); then e maps fy to A. If we view a tuple f € P
as a function vars(Q;) — D, where D is the domain, then e o f is
the identity function on vars(Q1). Fix ¢ € hom(Q2, Q1) and denote:

hom,(Qz, D) ' {g € hom(Qz, D) | e 0 g = g}

We have
hom(Q2, D)= | ] homy(Qz, D)
@<hom(Qz,Q1)
lhom(Q2, D)= > |homy(Qz, D)l (19)

@€hom(Q2,01)

We will compute an upper bound for [hom, (Q2, D)|, for each ho-
momorphism ¢. We claim:

hom (Q2, D) C™yenodes(T) H(,/JIX(,) (P)
where ¢ ;) is the restriction of ¢ to y(t), and II

(20)

@l (P) is the gen-
eralized projection (Sec. 3.2), i.e. it is a relation with attributes y(t).
The reason for partitioning hom(Qz, D) into subsets hom, (Q2, D)
is so we can apply inequality (20) to each set: notice that the right-
hand-side depends on ¢. To prove the claim (20), we first observe:

h0m<p(Q27Z)) S Myenodes(T) hom(p|X(z) (Q:, D) (21)

This is a standard property of any join decomposition (not nec-
essarily acyclic): every tuple g € hom(Qg, D) is the join of its
fragments IT (;(g) € hom(Q¢, D), as long as the fragments cover
all attributes of g. Next we prove the following locality property:

hom?"x(ﬂ Q1. D) < Hf/’l)((z) (P) (22)

It says that every answer of Q; on D can be found in a single row of
P. Here we use the fact that Qs is acyclic therefore there exists some
B € atoms(Q>) s.t. vars(B) = y(t). Then, any homomorphism go €
hommx(,) (Qr, D) maps B to some tuple fy € D. By construction
of D, there exists some A € atoms(Q1) such that fo € I arg04) (P)s
in particular, fo = Ilya54)(f) for some f € P. Thus go, when
viewed as a tuple over variables y(t), can be found in a single row
f € P, more precisely® gy = ITy (f), from some function ¢ : x(t) —

"For example, let Q; = R(X,X),R(X,Y),S(X,Y) and let P have a
single tuple (a, a). First annotate P to ((X, a), (Y, a)). Then RP =
(X, a), (X, a)), (X, a), (Y,a)}, SP = {((X,a),(Y,a)}. Without the
annotation, these relations would be R = SP = {(a, a)}, and there is no
homomorphsims to Q, since the tuple in SP cannot be mapped anywhere.

8We include here the rigorous, but rather tedious argument. Since gy is a homo-
morphism it “maps” the atom B to the tuple f;, meaning (go o vars(B)) = fo =
(f o vars(A)) (all are functions [arity(B)] — D, where D is the domain). Since
vars(B) : [arity(B)] — yx(t) is surjective, it has a right inverse, which implies
go = f o Y for some ¢.

L Xn}

.,¢n) € Pbecomes f = (("X1”,¢1), CX2”,¢2), ..., CXn" cn));

103

PODS ’20, June 14-19, 2020, Portland, OR, USA

vars(Q1). Noticed that we have used in an essential way the fact
that y(t) is covered by a single atom B: we will need to remove
this restriction later when we prove Theorem 3.3 (Lemma D.1 in
Appendix D). From here it is immediate to show that § = ¢l (), by
composing with e: ¢|, ;) =eogo =eo f oy =y because eo f is
the identity on vars(Q1). This completes the proof of Eq.(22), which,
together with Eq.(21), proves the claim Eq.(20).

Finally, we will upper bound the size of the join in (20), by apply-
ing repeatedly Lemma 4.7. This is possible because each projection
H‘Pb(( " (P) is totally uniform. Formally, fix an order of nodes(T),
t1,t2, . .., tm, such that every child occurs after its parent, and com-
pute the join (20) inductively, applying Lemma 4.7 to each step. If
S; dgquj:l,,- me([j) (P), then the lemma implies |S;| = [Si—1 >
1y (P < ISicildeg,, oy (e(en)lx(ti) 0 x(parent(t))],

and this proves:

| ™t enodes(T) H(p‘X(l‘) (Pl <

[ degrr,, O (t)lx(t) N x(parent(t:)))

i=l,m

(23)

Let p’ def L1 YR (p) be the ¢l (;,)-pullback of p. Its entropy sat-

isfies h'(Z) = h(p(Z)) = (ho ¢)(Z) for all Z C x(t;), implying

log degnw ( )(P)(YlZ) = (h o ¢)(Y|Z). This observation, together
x(tj

with (20) and (23) allow us to relate hom(Qz, D) to (ET o ¢)(h):

log |homy (Q2, D)

< 21} logdegn, () (x(t)lx(t:) O x(parent(t;)))
= D (o o) ((x(t)lx(t:) N x(parent(t:))) = (E o ¢)(h)
i=l,m

< h(vars(Q1)) — A =log|P|-A By Eq.(18)

Equivalently, [hom, (Q2, D)| < |P|/22. We sum up (19):

lhom(Qz. D)| < |hom<Qz,Q1)|§ < 1P

completing the proof. O

We remark that inequality (15) is slightly stronger than neces-
sary to prove containment. In the proof, we only need the inequality
to hold for some junction tree. Conversely, Theorem 4.2 can also
be stated such that we only consider non-redundant tree decompo-
sitions, of which junction trees are a special case.

5 REDUCING Max-IIP TO BagCQC-A

The results of the previous section imply BagCQC-A <, Max-IIP.
We now prove the converse, Max-IIP <,, BagCQC-A;in other words
we show that Max-IIP can be reduced to the containment problem
Q1 < Qo, with acyclic Qs.

Theorem 5.1. Max-IIP <,, BagCQC-A.

The proof has two parts. First, we convert the Max-IIP in Eq. (7)
into a form that resembles Eq.(13), then we construct Q7 and Q.
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Example 5.2. We will illustrate the main idea on an IIP rather
than a Max-IIP. Consider’:

0 < h(X1) + 2h(X2) + h(X3) — h(X1X2) — h(X2X3)  (24)
We start by rewriting the inequality as:
3h(X1X2X3) < h(X1) + h(X2) + h(X2) + h(X3)
+h(X1X2X3) + h(X3|X1X2) + A(X11X2X3)  (25)

From the right-hand-side we derive two queries Q1, Q2. Query Q1
has 9 variables, le, i=1,3,¢=1,3, while Qs has 13 variables:
1 2 3
01=0{" r 0P n oY

e=13: 0 = 51X\ A s (x{?) A 83Xy A s4(x$D)

AR KO, X0, XO) 5 Ryl X1 (0 X0 x{0)

() 3 (O) 5o(£) 5-(£) 5-(£)
ARs(Xy 7, X5, X1, X5 X )
Q2 = 51(U1) A S2(Uz) A S3(Us) A S4(Us)
ARI(YD, Y9, Y9) AR (YD, Y], YL, Yy, Y3)
AR3(Yy, Yy, Y1, Y3, Y3)
We apply Eq.(13) to Q1, Q2. TD(Q2) has a single tree because Q; is
acyclic (see the comment at the end of Sec. 4.1). Q1 has 3 connected

components, and Q3 has 5, therefore there are 3° homomorphisms
Q2 — Q1. Eq.(13) becomes:

rxMx W x P x @ x B x B x O x B x () <

h(Xl(fs)Xéfs)Xs(fs)) +h(X§€5)|X1([5)X2(€5)) +h(X£€5)|X§(5)X3([5)))

We will prove in Lemma 5.4 that this Max-1I1 is equivalent to the IT
in Eq.(25), completing the reduction. Our example only illustrated
the reduction from IIP; Lemma 5.3 below addresses the challenges
introduced by Max-IIP.

5.1 Max-IIP <,, Uniform-Max-IIP
Consider a general Max-IIP (Eq.(7)), which we repeat here:

0 < max Ep(h 26
ma E¢ (1) (26)
where Ep(h) def 2xcv ce,xh(X). In order to reduce it to a query

containment problem, we start by making the expressions E, uni-
form. More precisely, for fixed natural numbers n, p, g, we say that
an expression E is (n, p, q)-uniform if:

E(h) =n-h(U)+ > h(YjI1X;) = q-h(V)
J=0p

(27)

where V is the set of all variables, U is a single variable called the

distinguished variable, and X, Y}, for j = 0, p, are (not necessarily

distinct) sets of variables, satisfying the following conditions:
Chain condition Xo =0 and X; C Y;—1 N Y;j forj =1,p.
Connectedness U € Xj for j = 1,p

This TIP holds, but our goal is not to check it, but to reduce it to BagCQC-A.
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A Uniform-Max-IIP is a Max-IIP, Eq.(26), such that there exist
numbers n, p, ¢ and a variable U s.t. all expressions E, in Eq.(26)
are (n, p, q)-uniform, and have U as a distinguished variable. Notice
that n,p,q and U are the same in all expressions E,. Clearly, a
Uniform-Max-IIP is a special case of a Max-IIP. We prove:

Lemma 5.3. Max-IIP <,, Uniform-Max-IIP. Moreover, the reduc-
tion can be done in polynomial time.

Proor. Every E; in Eq.(26) has the form } xcy ¢, xh(X). By
expanding each positive coefficient as ¢y x =1+ 1+ --- and each
negative coefficient as cp x = -1 -1~ ---, we can write:

1

me ne me ne

Ee(h) = )" h(Y)) = > k(X)) = D h(Yy) + )" h(VIX;) = ng - h(V)
i=1 Jj=1 i= Jj=1

Define Xj def 0 and add h(V|Xy) — h(V) (= 0) to E,:

me ne
Ee(h) = ) h(Yi) + D h(VIX)) = (g +1) -h(V)  (28)
i=1 j=0

The second sum is a chain, because Xy = () and every X is contained

inV.Letn def maxy ng. We add n — nyg terms h(V) — h(V) to the
expression Eg, resulting in two changes to the expression (28): the
term —(ng + 1) - h(V) is replaced by —(n + 1) - h(V), and the sum
Yi=1,m, h(Y;) becomes 3;—1 1, +n—n, h(Yi) where the n — n; new
terms are Y; def V. We combine the two sums 3.; h(Y;)+3; h(VIX})
into a single sum by writing h(Y;) as h(Y;|0), and thus E; becomes:

pe
Ee(h) = ) h(YjIX;) = (n+ 1) - h(V)
Jj=0

(29)

Notice that Eq.(29) still satisfies the chain condition: Xy = 0, and
Xj € Yj_1 NYjforj = 1,pp. Our next step is to enforce the con-
nectedness condition.

Let U be a fresh variable. We will denote by h an entropic func-
tion over the variables V, and by A’ an entropic function over the
variables UV. For ¢ € [k], denote by E}, the following expression:

Pe
Ej(h) = (n+1) - h'(U) + Z K (UY;IUX;) = (n+1) - k' (UV) (30)
j=0

We claim: Vh, 0 < maxg E¢(h) iff Vh’, 0 < max, E,(h"). For the &
direction, assume Vh" : 0 < maxy E (h’) and let h be any entropic
function over the variables V. We extended it to an entropic function

h’ over the variables UV, by defining U to be a constant random

variable. In other words, h’(X) def h(X — {U}) forall X € UV; in

particular A’(U) = 0. Then Ez,(h’) = Eg(h), forall £ € [k], and
the claim follows from 0 < max, Ez,(h’) = maxy E¢(h). For the =

direction, let A’ be any entropic function over the variables UV, and

denote h(-) def h’(=|U) the conditional entropy. The conditional

entropy h is not necessarily entropic, but it is the limit of entropic
functions (see Appendix B), hence it satisfies 0 < maxy Ey(h). Then,
Ej(h') = T8, W (UY;IUX)) = (n+1) -1 (UVIU) = P20 h(Y;1X)) -
(n+1)-h(V) = Eg(h), and the claim follows from 0 < max, Ep(h) =
maxg EZ, ().
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To enforce Xy = 0 in the chain condition, we write Ez, as:

Pe

Ej(') =n-h'U)+ (K(U)+ Z W (UY;IUX;))) = (n+1) - h'(UV)
=0

Finally, we need to ensure that all numbers p; are equal, and, for

that, we set p def 1 + maxyp pg and add p — pg — 1 terms b’ (U|U)
to Ej (h’). Comparing it with Eq.(27), the new E} is an (n,p,n + 1)-
uniform expression, proving the lemma. O

5.2 A Technical Lemma

The Uniform-Max-IIP hassome arbitrary g, while Eq.(13) hasq = 1.
We prove here a technical lemma showing that an (n, p, ¢)-uniform
Max-IIP is equivalent to some Uniform-Max-IIP with ¢ = 1. We
do this by introducing new random variables.

Let V be a set of variables. For each variable Z € V, we create q
fresh copies zZO r=1... g, called adornments of Z. If X is a set
of variables, then X (©) is the set where all variables are adorned
with . We will denote by h an entropic function over the original
variables V, and by h’ an entropic function over the adorned vari-

ables VD ...v(@ IfF =7, cl-h’(X;fi)) is a linear expression over
adorned variables, then its erasure, ¢(F) def > cih(X;), is defined
as the expression obtained by erasing every adornment; we also say
that F is an adornment of e(F). Conversely, if E = }; ¢;h(X;) is an
expression over the original variables, then a constant adornment
is an expression of the form EO = i c,-h’(Xl.([)), i.e. all terms are
adorned by the same ¢; clearly e(E()) = E.

Lemma 5.4. LetEq,..
andFy, ..
for some q > 1, such that (a) each Fj is an adornment of some E;,
i.e. €(Fj) = E;, and (b) all constant adornments are included, i.e for

., Ei. be linear expressions over variables V,

every E; and every { there exists Fj = El(.[). Then the following two
statements are equivalent:

Yh: q-h(V) < max E;(h) (31)
i€[k]

vH h'(V(l) ... V(q)) < max Fj(h) (32)
Jj=1lm

Proor. (31) = (32) follows from:

oD . y@y < w (v < g max (v
( ) g:zl,q (v q max '(V1%)

< max max E([)(h') Eq.(31) applied to V(©)

t=1,q ic[k]
< max Fj(h) Assumption (b)

j=1m
(32) = (31) Let h be an entropic function over variables V. That
means that there exists a joint distribution over random variables V'
whose entropy is given by h. For each random variable Z, create q
i.i.d. copies Z ) fort =1, g, and denote by h’ the entropy function
of the new random variables V(l), e V@), Thus, for any adorned
set X, /(X)) = h(X), and, if E; = €(F), then E;(h) = F;(h’).
The claim follows from:
q-h(V) =R VD) 4.+ (V@) ByhV)=hn V), forall ¢

=p' v ...v@) Independence

., Fm be linear expressions over adorned variables V(l), R v(9)
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< Fi(h

< o )

< Ei(h
lnelﬁiﬁ i(h)

Eq.(32)

Assumption (a)

5.3 Uniform-Max-IIP <,, BagCQC-A
Given an (n, p, g)-uniform Max-IIP problem (31), g-h(V) < max; E;,

where

Ei=n-hU)+ ) h(YylXy),
J=0p

(33)

we will construct two queries Q1, Q2 such that Q1 < Qs iff condition
(32) holds, which we have proven is equivalent to (31). Recall that
the distinguished variable U occurs everywhere, except in the sets
Xio which, by definition, are (. We first substitute everywhere the
single variable U with two variables, U = Uy Up. This does not affect
the Max-I1IP, since we can simply treat U;U; as a joint variable.
The query Q2 will have one atom for each term of the expression
E; in (33), which is possible because, by uniformity, all expressions
E; have the same number of terms. In particular, there will be an
atom R; corresponding to the term h(Y;;|X;;), however, the number
of variables Y;; depends on i. For that reason, we consider their
disjoint union, as follows. For each variable V' € V and each i, j, let

VU be a fresh copy of V;if W = {V1, Vs, ...} is a set, then we denote
by Wi def {Vlij,VZij, ...}. We define f/] def Uielk Yii]j, forj=0,p,

and )~(j dgf Uie[k] Xii]g_l), for j = 1,p, and )20 déf (. We notice that
|1~/j| = i 1Yijl, the sets Yo,..., f/p are disjoint, and, since the chain
condition X;j C Y;(;_q) holds in (33), we also have X; C Yj_g; of
course, Xj is disjoint from Y;. We define Q> as:

Q2 =S1(T1) A+ ASp(Un) ARy(XoYoZ) A -+ ARy(XpYpZ)

All relation symbols are distinct. The relations S, ...,S, are bi-
nary, and Ul, e, Un are disjoint sets of two fresh variables each,
and Z is a fresh set of k variables. Thus, each relation R j has arity
(Zi(IXijl + 1Yij1)) + k. All variables occurring in R; are distinct
(since X;j C Yj_1, which is disjoint from Y;) and they occur in the
order that corresponds to the order Xj; ... X;Yj...Y; of the
original variables, followed by the k variables Z. Any two consecu-
tive atoms R;j_1, R; share the variables X ' and zZ , and therefore the
tree decomposition of Q, consists of n isolated components plus a
chain:

T: {U1} {Un} (34)

RS O 2D O SN W/
{Xo0,Y0,Z} - {X1,11.Z} - {XoYe,Z}--- -

{Xp. Yp. 2}
The query Q; consists of g isomorphic sub-queries:
1
Q1 = i)/\.../\Qiq)

which have disjoint sets of variables. We describe now the subquery

(

lf). Its variables consist of adorned copies V() of the variables V,
and the query is in turn a conjunction of k sub-queries (which are
no longer disjoint):

()

O _ o)
1 1,k

I,IA.../\Q
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To define its atoms, we need some notations. Recall that the dis-
tinguished variables U; Uz occur everywhere (except X;o which is
empty). Then, for every i, we define the the following sequences of
variables:

)A{l(jf) = Ul(f) . Ul(f) . Xi(f) ...Ul(f) . -~U1({)
| —— —_—— [ —
[X151 1Xi;1 [ Xk

R
| —
| Y

o(6) _ r1(6) (6) (6)
Yij =U;" U, ...yij ..
N—

——
|Y1j| |Yij|

5(6) _ 1;(0) @) 70 170 ()
z0=u" vy -y

That is, the length of )A(I(J{)) is the same as that of the concatenation

X1jXoj ... Xk s and has the distinguished variables Ul(f) on all posi-

tions except the positions of Xj;, where it has the adornment Xl.(f).
(As a special case, X l(g ) = 0.) Note that the length of X l(f) is inde-
pendent of i, and X l(f) | =X ;| (the variables from Qz). Similarly for

lA/i(j[). The sequence Z; has length k and contains Ul([) everywhere
except for position i where it has UZ(Z). Then, query Qi? is:
4
Q) = 51U D) A+ A Su(UO)A
5(6) o (€) 5(€ 5(6) o (€) 5(€ >(€) o (€) 5(€
Ro(ROFOZ0) 5 Ry (SOTOZO) p .5 Ry (KOO 510

Notice that the variables of the atom R; are just Yl.(f) (which contains

Ul(f), Uz( f), and X g)), and some variables are repeated several times.

We start by noticing that every homomorphism ¢ : Q2 — Q3
must map all atoms in the chain Ry - - - R to the same sub-query

Qif): this is because the chain is connected and, if one atom is
mapped to an atom whose variables are adorned with ¢, then all
atoms must be mapped to atoms adorned similarly with £. We claim
something stronger, that ¢ maps the entire chain to the same sub-

£
query ()

mapped to the sub-query Qii.), then ¢(Z;) = Uz(f) and ¢(Zy) = Ulw)
forall i’ # i, implying that all other atoms are mapped to the same
sub-query.

By Theorems 4.2 and 4.4, we have:

01 <Q, iff VR K (vars(Q;)) <

. This is enforced by the variables Z of Qy: if one atoms is

max
@chom(Q2, Q1

We claim that the following are equivalent:

Yh', k' (vars(Q1)) < )(ET o p)(h)

)(ET o p)(h') (35)

max iff
@chom(Q;, Q1

Vh,q - h(V) <maxE;(h), (36)

where E; is given by (33). The claim implies the theorem: Q1 < Qy iff
Vh, h(V) < max; E;(h). To prove the claim, we will use Lemma 5.4,
and, for that, we need to verify the conditions of the lemma. We
start by applying the definition of E7 (Eq. (12)), where T is the tree
decomposition of Q,, Eq.(34), and obtain (recall that Xo = 0):

J=Lp
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Consider a homomorphism ¢ € hom(Qs, Q1). By the previous
discussion, it maps all atoms in the chain to the same subquery

Qifi) for some ¢ and i. We illustrate it by showing Q2 and ¢(Qz)
next to each other:
Q2 =S1(T1) A+ ASp(Un) ARo(XoYoZ) A -+ A Rp(XpYpZ)
0(Q2) = 51U W) A+ A8y (UIH)
(0) v () 5(8) (0) () 5(8)
ARo(X;,' Y,y Z; )/\~-~/\Rp(Xl.p Yl.p z;7)

Next, we apply the substitution ¢ to ET to obtain Et o ¢. Since
each of the original expressions E; in Eq.(33) was (n, p, q)-uniform,
U occurs in every set Y;; and X;; (except for Xjo). By construction,

Z 55) is a sequence consisting only of the variables Ul(f) Uz(f)’
thus the following set inclusions hold (except for ZAL@ c )21(5 )):
Zl@ cX l(f) C Yi(f), and we obtain:

and

Erog=hU) +-- 4+ h(U) + (7O 20)+
5 (€) - (€) 5(€) - (€) 5(€
D REOTO21%0 29
J=Lp
=hU D)+ -+ hU D)+ ry ) + T RO
J=Lp

Clearly its erasure is precisely e(ET o ¢) = E; from Eq. (33) (recall
that X;o = 0), proving condition (a) of the lemma. Conversely, for

(6)

each adornment E;* there exists a homomorphism ¢ : Q2 — Q1

such that ET o ¢ = EEK), which proves condition (b), completing
the proof of Th. 5.1.

6 PROOF OF LEMMA 3.10

Recall that we blurred the distinction between a set of n variables
V and the set [n]. In this section we will use only [n]. Let L def 2]
be the lattice of subsets of [n]. Given a function h : L — R4, we
define its dual g : L — Ry as its Mobious inverse [18]:

VX h() = Y (), ()= > ()" XIK(y) (37)
Y:YOX Y:Y2OX
For any set S C L we define:
9(5) € 3" g0x) (38)

XeS
Notice that g(L) = h(0).
Fact 6.1. Let h: L — Ry be any function. Then h is a polymatroid

(i.e. h € Ny) iff its Mobius inverse g satisfies: g(L) = 0, g([n]) > 0
and g(X) < 0 forall X # [n].

ProoFr. First we check that the Mobius inverse of a step function
hyy satisfies the required properties, for W ¢ V:
1 iftX=V
gw(X)=4-1 ifX=wW

0 otherwise

0 ifXCw
1 otherwise

hw (X) ={

The converse follows by observing that every g with the required
properties is a non-negative linear combination of the gy/’s: g =

2wcin](=9(W)) - gw, therefore h = Yy c(n(-9(W)) -hw. O
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Fact 6.1 can be used, for example, to show that the parity function
h (Example 3.8) is not normal. Indeed, it’s Mobius inverse given
by Eq.(37) at 0 is g(@) = 1, which implies that A is not normal.
Fact. 6.1 will be our key ingredient to prove Lemma 3.10: in order
to construct the required normal polymatroid #’, we will instead
construct its dual ¢’ and check that it satisfies the conditions in
Fact. 6.1. We also need a technical lemma:

Lemma 6.2. Letay,...,an > 0 ben non-negative numbers. Define:
h(X) =max{a; | i € X} (39)

Then h is a normal polymatroid.

ProoF. Assume w.lo.g. a; < az < -+ < ap and define §; =
ai+1 —ajfori=0,1,...,n—1, where ap = 0. Define g : 2ln] R
ap ifX =[n]
def
g9(Xx) = =8 ifX=1[i],(={1,2,...,i}),for somei<n
0 otherwise

We check that g is the dual of h by verifying:

h(X) =Amax(X) = _5max(X) - 5max(X)+1 - =bp1tan= Z g(Y)
Y:XCY
We assumed above that max(0) = 0. m

Finally, we need to recall the definitions of the conditional entropy
and the conditional mutual information:

h(ilX) =h({i} U X) — h(X)
1(1X) =h({it U X) + h({jl U Y) = h(X) = h({i,j} U X)  (40)

def

and observe that, denoting [X,Y] = {Z | X € Z C Y}, we have:
h(X) =g([X, [n]]) (41)
h(ilX) = = g([X, [n] - {i}]) (42)
1(51X) = — g([X, [n] — {i,j}]) (43)

We can now prove Lemma 3.10, and will proceed by induction
on n. Split the lattice L = 2[] into two disjoint sets L = L1 U Lg
where:

Ly =[0,[n - 1]] Ly = [{n}, [n]]

In other words, L1 contains all subsets without n, while L, contains
all subsets that include n. Then:

e g(L2) = h({n}). It follows g(L1) = —h({n}).

e Subtract h({n}) from g([n]) and add it to g([n — 1]), and call
g1, g2 the new functions on Ly, Ly respectively. Formally:
700 :{g([n— )+ b)) X = [n=1]

9(Xx) ifX c[n-1]
g([n]) —h({n}) X =[n-1]

XU {n)) ={g(XU{n}) i£X  [n—1]

Notice that g1 (L1) = 0 and g2(L2) = 0.
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e One can check that the dual'® of g, is the conditional poly-
matroid!!, defined as hy : Ly — R:

VX € Ly : ho(X) hx{n))

e We apply induction to hy and obtain a normal polymatroid
hy : Ly — R satisfying (1), (2), (3):
hy(X) < ha(X) =h(X|{n})

hy([n]) = ha([n]) =h([n]l{n})

hy({i,n}) = ha({i,n}) =h({i}|{n})  since {i,n} is an atom in Ly

Notice that h}({n}) = 0, since {n} is the bottom of L. Let g;
be the dual of 7, thus g;(X) < 0 forall X # [n] (because h,
is normal).

e One can check that the dual of g; is the function!?

hy (X) “€1(X; {n))

This is no longer a polymatroid. Instead, here we use Lemma 6.2
and define the normal polymatroid ] : L — R:

1,(X) dif:;gm({i}) = max I({i}: {n)

Letg] : L1 — Rbeits dual. Thus, g; (X) < 0forall X # [n-1],
and g/ ([n — 1]) = max;c(n_y) I(1); (n).

e We combine g7, g; into a single function g’ : L(= L1 ULp) —
R as follows. g” agrees with g on L1 and with g, on L except
that we subtract a mass of h({n}) from g; ([n - 1]) and add it
to g5 ([n]). Formally:

95([n]) + h({n}) if X = [n]

def | g1([n = 1]) = h({n})) if X =[n-1]
g1(X) ifX el,X#[n-1]
g5(X) if X € Ly, X # [n]

e We claim that for every X # [n], ¢’(X) < 0. This is ob-
vious for all cases above (since g7, g; are normal), except
when X = [n — 1]. Here we check: ¢’([n - 1]) = g{([n -
1]) = h({n}) = max;ep—1) I({i}; (n}) — h({n}) < 0 because
I({ik; {n}) < h({n}).

e Denote b’ : L(= L1 U L) — R the dual of ¢g’; we have
established that b is a normal polymatroid. The following
hold:

g9'(X

V¥x € L : h'(X) = g’ (Y)
Y:XCYC[n]
= > Jdm+ D Jrum)
Y:XCYC[n-1] Y:XCYC[n-1]

O8trictly speaking we cannot talk about the dual of g, because we defined the dual

only for functions g : 2lm] 5 R, However, with some abuse, we identify the lattice
L, with 2[7~1] and in that sense the dual of g» : L, = Risafunction hy : L, — R.
UProof: h2(X) = Yy:xcycin] 92(Y) = Zyixcyem 9(Y) — h({n})) = h(X) -
h({n}) = h(X|{n}).

12Proof:

mX)= Y @M =hnh+ > g(¥)

Y:XCYC[n-1] Y:XCYC[n-1]
=h(lnh+ D, 9= > g(Yu(n)
Y:XCYC[n] Y:XCYC[n-1]

=h({n}) + h(X) - h(X U {n}) = I(X; {n})
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= > dm+ Y gyl
Y:XCYC[n-1] Y:XCYC[n-1]
=h{(X) + hy(X U {n}) (44)
VX el K (X) = > g()
Y:XCYC[n]
=h(fm})+ D g5(Y) = h({n}) + B5(X)
Y:XCYcln]
(45)
e We check that h’ satisfies properties (1), (2), (3).
VX € Ly 1 h(X) =h|(X) + h,(X U {n}) by Eq.(44)
<hi(X) + ha(X U {n})
=I(X;{n}) + h(X|{n}) = h(X)
VX € Ly - W(X) =h({n}) + K,(X) by Eq.(45)
<h({n}) + h2(X)
=h({n}) + h(X|{n}) = h(X)
h'([n]) =h({n}) + hy([n]) by Eq.(45)
=h({n}) + hz([n])
=h({n}) + h([n]|{n}) = h([n])
Vie [n—1]:h'({i}) =h{({i}) + hy({i,n}) by Eq.(44)
=h1({i}) + h2({i, n})
=I({i};{n}) + h({i}l{n}) = h({i})
B’ ({n}) =h({n}) + h5({n}) = h({n}) +0 by Eq.(45)

This completes the proof. We illustrate with an extensive exam-
ple in the full version of the paper [1].

7 CONCLUSION AND DISCUSSION

In this paper we established a fundamental connection between
information inequalities and query containment under bag seman-
tics. In particular, we proved that the max-information-inequality
problem is many-one equivalent to the query containment where
the containing query is acyclic. It is open whether these problems
are decidable. Our results help in the sense that, progress on one of
these open questions will immediately carry over to the other. We
end with a discussion of our results and a list of open problems.

Beyond Chordal Our results showed that the query contain-
ment problem Q1 < Q3 is equivalent to a Max-IIP when Q is
either acyclic, or when it is chordal and has a simple junction tree.
In all other cases, condition (13) is only sufficient, and we do not
know if it is also necessary.

Repeated Variables, Unbounded Arities Our reduction form
Max-IIP to query containment constructs two queries Q1, Q2 where
the atoms have repeated variables, and the arities of some of the
relation names depend on the size of the Max-IIP. We leave open
the question whether the reduction can be strengthened to atoms
without repeated variables, and/or queries over vocabularies of
bounded arity.

Max-Linear Information Inequalities Linear information in-
equalities have been studied extensively in the literature, while
Max-linear ones much less. Our result proves the equivalence of
BagCQC-A and Max-I1IP, and this raises the question of whether IIP
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and Max-1IP are different. In the full version of the paper [1], we
provide some evidence suggesting that they might be the same.

The remarkable formula E7 (Eq.(12)) The first to introduce
the expression ET was Tony Lee [23]. This early paper established
several fundamental connections between the entropy h of the
uniform distribution of a relation P, and constraints on P: it showed
that an FD X — Y holds iff A(Y|X) = 0, that an MVD X — Y holds
iff I(Y; V- (XUY)|X) = 0, and, finally, that P admits an acyclic join
decomposition given by a tree T iff ET(h) = h(V). It also proved
that ET is equivalent to an inclusion-exclusion expression, which,
in our notation becomes:

E; = (-)*ee(r ns) - h(x(9))
ScCnodes(T)

(46)

where y(S) def N¢es x(t), and CC(T N S) denotes the number of
connected components of the subgraph of T consisting of the nodes
(| t € nodes(T), x(t) N Upes x(t') # 0).

Discussion of Kopparty and Rossman [22] We now re-state
the results in [22] using the notions introduced in this paper in order
to describe their connection. Theorem 3.1 in [22] essentially states
that Eq.(13) is sufficient for containment, thus it is a special case of
our Theorem 4.2 for graph queries; they use an inclusion-exclusion
formula for ET, similar to (46), but given for chordal queries only.
Theorem 3.2 in [22] essentially states that, if Eq.(13) fails on a
normal polymatroid, then there exists a database 9 witnessing
Q1 £ Qo, thus it is a special case of our Lemma D.1 for the case
when the queries are graphs; they use a different expression for E,
based on the Mébious inversion of h. This inversion is precisely the
I-measure of h, as we explain in Appendix B. Finally, Theorem 3.3
in [22] proves essentially that Eq.(13) is necessary and sufficient
when Qj is series-parallel and Q is chordal. This differs from our
Theorem 3.3 in that it imposes more restrictions on Q; and fewer
on Q. The proof of our Theorem 3.3 relies on the fact that any
counterexample of Eq.(13) is a normal entropic function, but this
does not hold in the setting of Theorem 3.3 [22]; however, the
only exception is given by the parity function (Appendix B), a case
that [22] handles directly.
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A BACKGROUND ON CQ’S
We prove the following in the full version of the paper [1]:

Lemma A.1. The containment problem under bag-set semantics
Q1 < Qg is reducible in polynomial time to the containment problem
under bag-set semantics for Boolean queries, Q] < Q. Moreover, this
reduction preserves any property of queries discussed in this paper:
acyclicity, chordality, simplicity.
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We prove now a claim that we made in Sec 4.1, namely that, for
any node t of a tree decomposition, we can assume vars(Q;) = y(t),
where Q; is the query obtained by taking the conjunction of all
atoms with vars(A) C y(t).

Fact A.2. (Informal) Let (T, y) be a tree decomposition of some
query Q, and, forall ¢+ € nodes(T), let Q; denote the conjunction
of A € atoms(Q) s.t. vars(A) € x(t). Then, for the purpose of
query containment, we can assume that vars(Q;) = y(t), for every
t € nodes(T). More specifically, we can assume that for every
t € nodes(T) and every A € atoms(Q) such that vars(A) N y(t) # 0,
there exists A’ € atoms(Q) such that vars(A”) = vars(A) N x(¢),
hence A’ € atoms(Q;).

Proor. To see an example where this property fails, consider
Q = R(x,y,u) AS(y,z) AR(x,z,v). Let T be the tree decomposition
{x,y,u} — {x,y,z} — {x,z,v}, and let ¢ be the middle node, y(t) =
{x,y,z}. Then Q; = S(y, z) and its variables do not cover y(t).

We prove that the property can be satisfied w.l.o.g. We first mod-
ify the vocabulary, by adding for each relation name R of arity a
and for each S C [a], a new relation name Rg of arity |S|. Similarly,
we modify a query Q by adding, for each atom R(X1,...,X,) and

for each S C [a], a new atom Rg(xs), where xg def (Xi)ies- Denote
by O the modified query. Obviously O satisfies the desired prop-
erty. We claim that this change does not affect query containment,
more precisely Q1 < Q2 & 01 < 0. The < direction follows by
expanding an input database D for Q1, Q2 with extra predicates

R? def II5(RP) for every relation symbol R and every S c [a]
where a is the arity of R. The = direction follows from modifying
an input database D for Q1, Q2 by replacing every (a-ary) relation
RP by RP s (s45cpq) RD). o

B BACKGROUND ON INFORMATION
THEORY

Next, we review some additional background in information theory
used in this paper, continuing the brief introduction in Sec. 3.3.
Before we start, we review a basic concept, which we call “domain-
product”, first introduced by Fagin [10] to prove the existence of
an Armstrong relation for constraints defined by Horn clauses,
and later used by Geiger and Pearl [12] to prove that Conditional
Independence constraints on probability distributions also admit
an Armstrong relation. The same construction appears under the
name “fibered product” in [22].

Definition B.1. Fix two domains D1, D,. For any two tuples f €
DY, g€ D;’ we define f ® g € (D x D)V as the function (f ®
g)(x) def (f(x),g(x)) for all x € V. The domain product of two
relations Py C DY, P, DY is Py@ P, & (fag| fePpgeP).
If p1, p2 are probability distributions on Pj, P, respectively, then
their product py - p2 is the probability distribution (p1 - p2)(f, g) &«
p1(f) - p2(g) on P1 ® P;.

We start with a basic fact: if hq, hp are two entropic functions,
then hj + hy is also entropic. Indeed, if h; is the entropy of p; : P; —

[0, 1], then hy + hy is the entropy of p; - p2 : Py ® P, — [0, 1], where
P; ® P, is the domain product.
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Fact B.2. If n = 1 (i.e. there is a single random variable) and A is
entropic, then c - h is also entropic for every ¢ > 0.

ProOF. Start with a distribution p whose entropy is [¢] - h. Let n
be the number of outcomes, and p1, . . ., pn their probabilities. For
each A € [0, 1] define p!) to be the distribution p\") = p; + (1 -

p1)(1 —A),pl(.A) =pi-Afori>1,and A ts entropy. Then h) = o,

hW = [c] - h, and, by continuity, there exists A s.t. M =c.h o

Corollary B.3. For every W C V and every ¢ > 0, the function
c - hyy is entropic, where hyy is the step function. It follows that every
normal function is entropic (because it is a sum Y,y cywh(W) and
cwh(W) is entropic).

Proor. By the previous fact, there exists a random variable Z
whose entropy is ho(Z) = c. Let h be the entropy of the following

n random variables: forall U € V — W, define U def Z (hence, forall
X CV-W,h(X) = ho(Z) = c), and for every U € W, define U
to be a constant (hence for every X € W, h(X) = 0). Therefore,
h=c-hy. ]

However, when n > 3, then Zhang and Yeung [32] proved that
c - h is not necessarily entropic. Their proof is based on the parity
function, introduced in Example 3.8.

Fact B.4. I is not convex.

PRrRoOF. Zhang and Yeung [32] prove this fact as follows. Let h be
the entropy of the parity function in Example 3.8. For every ¢ > 0,
consider the function h’ = ¢ - h. They prove that h’ is entropic
iff ¢ = log M, for some integer M, which implies that I} is not
convex. We include here their proof for completeness. Assuming h’
is entropic let p” be its probability distribution, then the following
independence constraints hold: X L Y, because h'(XY) = h/(X) +
h’(Y), and similarly X L Z and Y L Z. The following functional
dependencies also hold: XY — Z (because h’/(XY) = h/(XYZ))
and similarly XZ — Y, YZ — X. Let x, y, z be any three values s.t.
p'(x,y,z) > 0. Then p’(x,y,2) = p’(x,y) = p’(x)p’(y). Similarly
P (x,y,2) = p’(y)p’ (z), which implies p’(x) = p’(z). Therefore, for
any other value x’, p’(x”) = p’(z). This means that the variable X
is uniformly distributed, because p’(x) = p’(x’) forall x, x”, hence
p’(x) = 1/M where M is the size of the domain of X. It follows that
k' (X) = log M, proving the claim. o

Yeung [30] proves that the topological closure T is a convex set,
for every n. Thus, Iy C T;; and the inclusion is strict for n > 3. The
elements of T;; are called almost entropic functions. We note that if a
linear information inequality, or a max-linear information inequal-
ity is valid forall entropic functions h € I};, then, by continuity, it
is also valid forall almost entropic functions h € T;..

Let h be an entropic function, and X, Y C V two sets of variables.
For every outcome X = x, we denote by A(Y|X = x) the entropy
of Y conditioned on X = x. The function Y — A(Y|X = x) is

an entropic function (by definition). Recall that we have defined

h(Y|X) def h(XY) — h(X). It can be shown by direct calculation

that A(Y|X) = X, h(YIX = x) - p(X = x), in other words it is
a convex combination of entropic functions. Thus, hA(Y|X) is the
expectation, over the outcomes x, of h(Y|X = x), justifying the
name “conditional entropy”.
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Fact B.5. In general, the mapping Y — h(Y|X) is not entropic.

Proor. To see an example, consider two probability spaces on
X,Y,Z, with probabilities p, p’ and entropies h, b’ such that h is
the entropy of the parity (Example 3.8) and A’ = 2h. Consider
a 4’th variable U, whose outcomes are U = 0 or U = 1 with
probabilities 1/2, and consider the mixture model: if U = 0 then
sample X, Y, Z using p, if U = 1 then sample X, Y, Z using p’. Let "’/
be the entropy over the variables X, Y, Z, U. Then the conditional
entropy h”/(W|U) = 3/2h(W), for all W C {X, Y, Z}, and thus it is
not entropic. m]

Yeung [30] defines the I-measure as follows. Fix a set of variables
V, which we identify with [n]. Let Q = 2[n] _ (0}. An I-measure
is any function p : 29 — R such that (X U Y) = p(X) + u(Y)
whenever X N'Y = (. Notice that y is not necessarily positive. For

each variable V; € V we denote by V; def {weQ|iewl CQ, and

. . . s def A
extend this notation to sets X C V by setting X = Uvex V. For
. ~1 def -~ ~o def ~
each variable V; denote Vi1 = V; and Vi0 < the complement of V;.
. . . def A Ej

An atomic cell is an intersection C = Nj=1,n \/;’, where ¢; € {0,1}
forall j, where at least one ¢; = 1. Obviously,  is uniquely defined
by its values on the atomic cells.

Given h € R?" (not necessarily entropic), the I-measure associ-
ated to h is the unique y satisfying the following, forall X C V:

Z p(C)

c:ccX

h(X) = (47)

The normal entropic functions N, are precisely those with a
non-negative [-measure. This can be seen immediately by observing
that, for any step function hyy, it’s I-measure pyy assigns the value
1 to the cell (Nygw VHNn(Nyvew V°), and 0 to everything else. In
fact, there is a tight connection between the I-measure y and the
Mobious inverse function g (Eq.(37) in Sec. 6), which we explain
next. First, we notice that Equation (37) implies:

hX) == > ()

Y:Y2X

(48)

The connection between p and g follows by a careful inspection
of Eq. (47) and Eq (48). Each atomic cell C in Eq. (47) is uniquely
defined by the set of its negatively occurring variables, denote
this by neg(C). Then, C C X iff X ¢ neg(C). Define the function

g:2" = Ras g(neg(C)) & —4(C) and g(V) = h(V) (recall that
neg(C) # V). Then Eq.(47) becomes h(X) = ¥ c.x¢neg(c) H(C) =

- Xy:xgy 9(Y) which is precisely Eq.(48).

C PROOF OF THEOREM 4.2

We give here the proof of Theorem 4.2. This generalizes the proof
of Theorem 3.1 by Kopparty and Rossman [22], whose main idea is
illustrated in Example 4.3. Recall the theorem:

Theorem 4.2 (A sufficient condition). Let Q1, Q2 be two conjunctive
queries, n = |vars(Q1)|, and let TD(Q2) denote the set of tree decom-
positions of Qy. If the following Max-11 inequality holds¥h € T}, :

h(vars(Q1)) < (Erog)(h)  (49)

max max
(T, x)€TD(Q2) ¢ €hom(Qz, Q1)
then Q1 < Qs.
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To prove the theorem we need three lemmas. The first lemma is
folklore, and represents the main property of tree decomposition
used for query evaluation. If f € DX, g € DY agree on X N'Y, then
f 4 g is the unique tuple € DXYY that extends both f and g. If
PLcDX,P,c DY then Py Py ={f »g| f€Pi,gePy).

Lemma C.1. Let (T, y) be a tree decomposition for Q and recall
that Q = Ayenodes(t) Qt Where Q; is a conjunction of atoms A
s.t. vars(A) C x(t). Then, for every D, hom(Q, D) =;enodes(t)
hom(Qy¢, D).

Lemma C.2. Fix a homomorphism ¢ : Q2 — Q1, let (T, x) be a tree
decomposition of Q2, D be a database instance, and P = hom(Q1, D).
Then, for every node t € nodes(T), denoting Py def (P) we
have:

@l

P{ Chom(Q;, D) (50)

Proor. Every tuple inII,|, , (P) is the composition f o ¢l ()
for some f € P. The lemma follows from the fact that both ¢| ;) :
Qr = Q1 and f : Q1 — D are homomorphism. O

Lemma C.3. (1) Letp : P(C DY) — [0,1] be a probability distri-
bution, and h : 2V — Ry be its entropy. If¢ : Y — V and Z C Y,
then the ¢|z-pullback of p, 11, (p), is equal to the Z-marginal of
Iy (p). In particular, if b’ 2Y = Ry is the entropy of Tl (p), then,
VZ C Y, (Z) = heZ). @) Ifp : V' - VandYy,Y2 C V/,
then the pull-back distributionsI1,, (p) and Iy, (p) agree on the
common variables Y1 N Ys.

Proor. (1) The g-pullback I, (p) is defined to be the same as the
¢(Y)-marginal of p. Therefore its Z-marginal is the ¢(Z)-marginal
of p. By definition, I1,, |, (p) is also the ¢(Z)-marginal of p, hence
they are equal. Formally, given f € P:

Iy (p)(Z =Tz (I (f))) = p(f")
frT1z(ILy (F)=11z (e (f)

= >, P(f") =Ty, (P)(Z = Ty, ()
f’:H4J<Z) (f’):H(p(z) ()
because I1z oIl = I1,,|,,. This discussion immediately implies that
h'(Z) = h(p(Z)), forall Z.
(2) Let Z = Y1 N Y. By claim (1), the Z-marginal of Mgy, (p) is
IT,|, (p) and similarly for the Z-marginal of Il |, (p), hence they
are equal. O

ProoF. (Of Theorem 4.2) Let D be any database with domain
D, and let P = hom(Q1, D). Consider the uniform probability dis-
tribution p : P — [0,1], defined as p(f) = 1/|P| for all tuples
f € P, and let h be its entropy. We have h = log |P| because p is uni-
form. By assumption of the theorem, there exists a homomorphism
¢ : Q2 = Qp and a tree decomposition (T, y) of Qy such that:

log [P| = h(vars(Q1)) <(Et © ¢)(h) (51)
For each t € nodes(T), consider the projections of P and p on y(t):

def. def
Pl" =H(p|)((t)(P)’ p; = H(pl)(([)(p)

Lemma C.1 and Lemma C.2 imply:

,  def

!
P" = Mycnodes(t) Pr €

Mt enodes(T) hom(Qt, D)
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= hom(Q2, D) (52)

We will construct a probability distribution p’ : P’ — [0, 1], with
entropy function h’ : 2¥2"5(Q2) — R, such that the following hold:

h'(vars(Qz)) =Er(h") (53)
Er(h') =(ET © ¢)(h) (54

We will construct p’ by stitching together the pull-back distributions
p;. for t € nodes(T); this is possible because, by Lemma C.3 (2), any
two induced probabilities p;l , p;z agree on the common variables
x () N x(t2).

Formally, we start by listing nodes(T) in some order, t1, ta, . . ., tm,
such that each child is listed after its parent. Let Plf diflxl =1,
Pt’j, let T; be the subtree induced by the nodes {t1,...,¢;}, and
vars(Ti) = (Uj=1,; x(ti) its variables. We construct by induction
on i a probability distribution p] : P; — [0, 1] such it agrees with
Prs- Py, on x(t1), ..., x(ti) respectively, and it’s entropy func-

tion A} : gvars(Ti) _, R, satisfies:
h}(vars(T;)) =Er, (h})

Et,(h}) =(ET, © ¢)(h)
To define p], we need to extend p;_; to the variables vars(T;) —
vars(T;-1) = x(t;) — x(parent(t;)). We define p to satisfy the fol-
lowing: (1) p; agrees with p;. on (), (2) p; agrees with p{ ; on
the vars(Tj—1), and (3) y(t;) is independent of vars(T;—1) given
x(ti) N y(parent(t;)). Notice that (1) and (2) are not conflicting
because p;i agrees with any other pJ'. on their common variables.

(55)
(56)

Formally, we define p; through a sequence of three equations:

P Ge(t) () 0 y(parent(t:))) '

pr, () 1y (ti) 0 x(parent(t;)))  (57)

p;i(x(ti)lvars(Ti-1)) &« pi(x(t)lx(t:) N x(parent(t;)))  (58)
pivars(ry)) <
We check Eq.(55):
hi(vars(T;)) =h;(x(ti)lvars(Ti-1)) + hj_ (vars(Ti-1))
(by Eq.(59))
=h;(x(ti)lvars(Ti-1)) + E1,_, (h}_;)
(Induction)
—h](x(t)vars(Ti—y)) + Er,_, ()
(h; is identical to h]_, on vars(T;-1))
=h;(x(t:)|x(t:) N x(parent(t;))) + Et,_, (h})
(by Eq.(58))
=Er, (k") (Definition of ET)
We check Eq.(56).
Ex, (h}) =hj(x(t:)|x(t:) N x(parent(t;))) + Et,_, ()
(Definition of ET)
(
(

Pi(x(t:)lvars(Ti—1))pi_q (vars(Ti—1))  (59)

=h;(x ()| x(t:) N x(parent(t)))) + (E7,_, © ¢)(h)
Induction)
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=hy, () x(ti) N x(parent(t;)) + (E1,_, © ¢)(h)
(by Eq.(57))
=h(e(x (t:)le(x(t:) N x(parent(t;)))) + (E1,_, © ¢)(h)
(Lemma C.3 (1))
=(ET, o ¢)(h) (Definition of ET)
This completes the inductive proof.
By setting i = m (the number of nodes in T) in Eq.(55) and (56)
we derive Eq.(53) and (54). The proof of the theorem follows from:

log |hom(Q1, D)| = log |P|

= h(vars(Q1)) < (ET © ¢)(h) (by Eq. (51))
= Er(h') (by Eq.(54))
= h'(vars(Q2)) (by Eq.(53))
< log|P’| (Since P’ is the support of h’)
< log [hom(Q2, D)| (By Eq (52))
|

D PROOF OF THEOREM 3.3 AND 3.6

In Th.4.4 we proved that, when Q is acyclic and Eq.(13) fails, then
Q1 £ Q2. We prove here a variation of that result: when Q is
chordal and Eq.(13) fails on a normal entropic function, then Q; %
Q2. Recall that a junction tree is a special tree decomposition.

Lemma D.1. Let Qy be chordal and admit a simple junction tree T,
and let ET be its linear expression, Eq.(12). If there exists a normal
entropic function h (i.e. with a non-negative I-measure) such that:

h(vars(Q1)) >  max )(ET o ¢)(h) (60)

@chom(Q;, Q1
then there exists a database instance D such that |hom(Q1, D)| >
lhom(Q2, D)|.

We first show how to use the lemma and the essentially-Shannon
inequalities in Th 3.9 to prove Theorems 3.3 and 3.6. Assume Q3
is chordal and has a simple junction tree T. We prove: Q1 < Qo iff
Eq.(13) holds. It suffices to prove that Eq.(13) is necessary, because
sufficiency follows from Th. 4.2. Suppose Eq.(13) fails. Then there
exists an entropic function h such that (60) holds where T in (60) is
a simple junction tree of Q5. Since T is simple, the conditional linear
expressions on the right-hand-side of (60) are also simple. By Th 3.9,
there exists a normal entropic function h such that (60) holds. Then,
by Lemma D.1, Q1 £ Q2. This proves that Eq.(13) is necessary and
sufficient for containment. Furthermore, Eq.(13) is decidable, since
it is an essentially-Shannon inequality, and this completes the proof
of Theorems 3.3. The proof of Theorem 3.6 follows immediately
from the fact that the set of normal entropic functions N, is the
cone generated by the entropies of normal relations, and the set of
modular functions My, is the cone generated by the entropies of
product relations.

It remains to prove Lemma D.1; the lemma generalizes Theorem
3.2 of [22] to arbitrary vocabularies (beyond graphs). To prove the
theorem, we will update the proof of Theorem 4.4, where we used
acyclicity of Q2: more precisely we need to re-prove the locality
property, Eq.(22). We repeat it here:

hom(p‘xm (Qt, .Z)) QHWX(Z) (P)
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We start by observing that this property fails in general.

Example D.2. Let Q1 = R(X1,X2),S5(X2,X3), T(X3,X1) and Q2 =
R(Y1,Y2),S(Y2,Y3), T (Y3, Y1) (they are identical). Consider the par-
ity function in Example 3.8; more precisely, this is the entropy of the
relation P = {(X1, X2, X3) | X1,X2,X3 € {0,1}, X1 & X2 & X3 = 0},
which we show here for clarity:

0[0]0
P=]0|1]|1
1101
111]0

Recall that the entropy of P is not a normal entropic function (Sec. 6).
This relation is perfectly uniform (in fact it is a group character-
ization). Computing D = Ilg, (P) we obtain RD =D = 71D =
{(0,0), (0,1),(1,0), (1,1)}. Q2 is a clique, with a bag Q; = Q2, and
hom(Q¢, D) contains one extra triangle, (1,1, 1), which is in no
single row of P.

The example shows that we need to use in a critical way the fact
that the counterexample h is a normal entropic function, h € N,,.
To use this fact, we will describe a class of relations whose entropic
functions generate precisely the cone Ny, and prove that these are
precisely the normal relations (Def. 3.5).

Consider the normal entropic function h given by Lemma D.1. We
can assume w.l.o.g. that h is a sum of step functions', h = 3'; hw,,
where each hyy, is a step function (not necessarily distinct). Recall
from Section 3.3 that Py, is the 2-tuple relation whose entropy
is hy,; to reduce clutter we denote here Py, by P;. Then h is the
entropy of their domain-product (Def B.1),P = P @ P2 ® --- ®
Ppn. One can check that P is totally uniform (it is even a group
realization). We now prove the locality property, Eq.(22), using the
fact that P is a domain product, which allows us to rewrite Eq.(22)
as:

hom(p|X(,) (06, D1®---® D) QH(NX([) (P1®---®Py)

It suffices prove that homqomt) (01, D;) € HW}((ﬂ (P;) for each i.
Recall that P; has two tuples, P; = { fi, f2}, where fi = (1,1,...,1)
and f7 has values 1 on positions € W and values 2 on positions ¢ W,
for some set of attributes W. Fix a tuple g € hommxm (Qr, Di); we
must prove that either g € Iy, , (f1) org € Iy, (f2). If g maps
every variable in vars(Q;) to 1, then the first condition holds, so
assume that g maps some variable Y € vars(Q;) to 2; in particular,
@(Y) ¢ W. We must prove that, for every variable Y’, if p(Y’) ¢ W
then g(Y’) = 2. Here we use the fact that Q is chordal, hence Q; is
a clique, thanks to Fact A.2. Therefore, there exists B € atoms(Q;)
that contains both Y and Y’. Since g is a homomorphism, it maps
B to some tuple in IT(yars(By) (P); since both ¢(Y), o(Y’') ¢ W, this
tuple must have the value 2 on both positions (they can be identical:
@(Y) = p(Y")). It follows that all variables Y’ s.t. p(Y") ¢ W are
mapped to 2, proving that g € Il , (f2). This proves the local
property, Eq.(22). The rest of the proof of Theorem 4.4 remains
unchanged, and this completes the proof of Lemma D.1.

BSuppose the contrary, that the inequality holds for all functions k that are sums of
step functions. Then it holds for all linear combinations Y’y cw hw where cyy > 0
are integer coefficients. If an inequality holds for h, then it also holds for A - h for
any constant A > 0; it follows that the inequality holds for all linear combinations

Y w cw hw where ¢y > 0 are rationals. The topological closure of these expressions
is Ny, contradicting the fact that the inequality fails on some h € N;,.
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