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Abstract

Motivation: Deep learning has become the dominant technology for protein contact prediction. However, the factors
that affect the performance of deep learning in contact prediction have not been systematically investigated.

Results: We analyzed the results of our three deep learning-based contact prediction methods (MULTICOM-
CLUSTER, MULTICOM-CONSTRUCT and MULTICOM-NOVEL) in the CASP13 experiment and identified several key
factors [i.e. deep learning technique, multiple sequence alignment (MSA), distance distribution prediction and
domain-based contact integration] that influenced the contact prediction accuracy. We compared our convolutional
neural network (CNN)-based contact prediction methods with three coevolution-based methods on 75 CASP13 tar-
gets consisting of 108 domains. We demonstrated that the CNN-based multi-distance approach was able to leverage
global coevolutionary coupling patterns comprised of multiple correlated contacts for more accurate contact predic-
tion than the local coevolution-based methods, leading to a substantial increase of precision by 19.2 percentage
points. We also tested different alignment methods and domain-based contact prediction with the deep learning
contact predictors. The comparison of the three methods showed deeper sequence alignments and the integration
of domain-based contact prediction with the full-length contact prediction improved the performance of contact pre-
diction. Moreover, we demonstrated that the domain-based contact prediction based on a novel ab initio approach
of parsing domains from MSAs alone without using known protein structures was a simple, fast approach to im-
prove contact prediction. Finally, we showed that predicting the distribution of inter-residue distances in multiple
distance intervals could capture more structural information and improve binary contact prediction.
Availability and implementation: https://github.com/multicom-toolbox/DNCON2/.
Contact: chengji@missouri.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Evolutionary variation in protein sequences is constrained by pro-
tein function and structure. Observed correlated mutation patterns
in the sequences of a protein family indicate the direct physical con-
tact between residue pairs in its 3D structure (Altschuh et al., 1988),
which can be used for inter-residue contact prediction (Gobel et al.,
1994). An approximate 3D protein structure can be built with good
accuracy if a sufficient amount of accurately predicted residue–resi-
due contacts are available (Marks et al., 2011; Monastyrskyy et al.,
2014). Therefore, the contact distance-based ab initio 3D protein
structure modeling calls for the development of more precise and
sensitive contact prediction (Adhikari and Cheng, 2018; Brunger
et al., 1998; Hou et al., 2019; Michel et al., 2017; Pollastri and
Baldi, 2002).

One of the key factors determining the quality of the correlated
mutation information for contact prediction is the number of

effective sequences (Neff) in a multiple sequence alignment (MSA).
Due to the advancement in the DNA/RNA sequencing technology
(Meyer et al., 2008; Wilke et al., 2016), a large number of sequences
are available in public databases, making it possible for characteriz-
ing correlations between residue pairs of many proteins more accur-
ately for contact prediction than before. However, correlated
residue pairs within a protein are not necessarily close in its 3D
structure. Some of them may reflect the functional constraints with-
out structural implication and some of them may be accidental indir-
ect correlated mutations due to transitive effects (Weigt et al.,
2009). In order to disentangle the directly correlated couplings from
the indirect ones, several direct-coupling analysis methods were
developed, such as plmDCA (Ekeberg et al., 2013), GREMLIN
(Kamisetty et al., 2013) and CCMpred (Seemayer et al., 2014), and
the sparse inverse covariance estimation method PSICOV (Jones
et al., 2012). The residue–residue coevolutionary scores generated
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by these methods were also used as features with neural networks to
predict contacts (Jones et al., 2015).

Apart from the direct correlated mutation (or coevolutionary)
analysis, deep learning is a major technological innovation to im-
prove contact prediction. After deep learning contact prediction was
first introduced in 2012 (Di Lena et al., 2012; Eickholt and Cheng,
2012), different deep learning architectures have been designed to
integrate traditional sequence features with residue–residue coevolu-
tionary scores to substantially improve the accuracy of contact pre-
diction (Adhikari et al., 2018; Hanson et al., 2018; Jones and
Kandathil, 2018; Skwark et al., 2014; Wang et al., 2017). However,
except for deep learning architecture itself, other factors that affect
the performance of deep learning-based contact prediction methods
directly or indirectly have not been systematically studied.

In this work, we analyzed the results of our three deep learning-
based contact prediction methods in the CASP13 experiment and
explained why they significantly outperformed the coevolution-
based methods (e.g. CCMpred). We demonstrated how the contact
distance distribution prediction helped improve the performance of
contact prediction and investigated how the Neff in MSAs, MSA
generation protocols and domain parsing method contributed to the
contact prediction improvement.

2 Materials and methods

2.1 Deep network architecture for protein inter-residue

contact prediction
Our MULTICOM contact predictors were based on the same deep
learning architecture of DNCON2 trained on the same dataset (see
details in Adhikari et al., 2018) but used different approaches to
generate input and process output during prediction, which was a
good setting for studying the external factors influencing the accur-
acy of deep learning-based contact prediction. The common deep
learning architecture consists of six convolutional neural networks
(CNNs), which are used at the two stages. Each CNN network
model contains 6 hidden convolutional layers with 16 5�5 filters
and an output layer with one 5�5 filter to predict a contact
probability map at any distance threshold. At the first stage, the 27
features including scalar features (e.g. protein length), 1D features
(e.g. secondary structure prediction) and 2D features [e.g. residue–
residue coevolutionary scores calculated by coevolution-based meth-
ods CCMpred, FreeContact (in EVfold-mfDCA mode) (Kajan et al.,
2014) and PSICOV] are transformed into 56 2D features (see details
in Adhikari et al., 2018). Using these 56 2D features as input, five of
the six CNN models are used to predict contact maps at five dis-
tance thresholds: 6 Å, 7.5 Å, 8 Å, 8.5 Å and 10 Å, resulting in the
predicted distance distribution of residue pairs. At the second stage,
the sixth CNN model takes the predicted distance distributions and
the original features as input to make final short-range, medium-
range and long-range contact predictions in one contact map at the
distance threshold of 8.0 Å.

2.2 MSA generation, template-based domain parsing,

full-length and domain-based contact prediction
The coevolutionary feature calculated from MSA is one of the most
important features for the contact prediction. In CASP13, we
applied different alignment combination strategies to the three
MULTICOM server predictors. MULTICOM-NOVEL used
Jackhmmer (Johnson et al., 2010) to search sequences against
Uniref90 with four E-value thresholds (from E�20, E�10, E�4 to 1).
If some alignment contains �5L sequences (L: target sequence
length), the one at the lowest E-value threshold was used; otherwise,
the alignment at E-value of 1 was used. MULTICOM-
CONSTRUCT first ran HHblits (Remmert et al., 2011) with the
coverage threshold of 60% to search against Uniclust30. If the num-
ber of sequences is less than 2000, it further ran Jackhmmer on
Uniref90 to collect more sequences. After comparing the alignment
from HHblits search, Jackhmmer search and their combination, it
selected the alignment with the highest Neff to generate coevolution

features. MULTICOM-CLUSTER applied a similar strategy as
MULTICOM-CONSTRUCT, except that it added one extra step of
filtering out redundant sequences at 90% sequence identity thresh-
old using the MMseqs2 linear time clustering algorithm (Steinegger
and Soding, 2017).

MULTICOM-CONSTRUCT and MULTICOM-CLUSTER also
predicted domain boundaries by searching a target against the non-
redundant protein template sequences from the Protein Data Bank.
The region mapped to homologous templates was considered as
template-based modeling (TBM) domain, otherwise template-free
modeling (FM) domain. For each FM domain, the two predictors
searched the domain sequence against the databases to generate
MSA for the domain as they did for the full-length target sequence.
The full-length MSA was used to predict full-length contact maps
and the domain-based MSA was used for predicting the domain-
based contact maps. The predicted contact probabilities in the full-
length contact map were replaced by their counterparts in the
domain-based contact map if the latter were larger than the former.
We also implemented the same domain splitting approach on
DNCON3 that applied PSIBLAST and Jackhmmer to generate
alignments. Our human contact predictor MULTICOM averaged
contact predictions from our four server predictors. However, be-
cause DNCON3 and MULTICOM missed some CASP13 targets,
they were not discussed in this work.

2.3 Ab initio domain parsing based on the plot of the

number of sequences in MSA
The template-based domain parsing is time consuming and compli-
cated. During the CASP13 experiment, we tested a simple method to
directly detect domains or more strictly regions that have a signifi-
cantly lower number of sequences than other regions in an MSA,
aiming to search the individual domain/region against the sequence
database again to collect more homologous sequences in order to
generate better coevolutionary features for them. Specifically, we
computed the number of sequences covering each residue position of
a target sequence in an MSA. Using the median of the numbers as a
cutoff, we defined a consecutive sequence fragment (with the length
at least 30 residues) in the full-length sequence as a hard domain if
the number of sequences of all the residue positions in the fragment
was less than the cutoff value. The contact prediction of a domain
was integrated with the full-length contact predictions by
MULTICOM-CLUSTER and MULTICOM-CONSTRUCT as in
Section 2.2.

2.4 Dataset and evaluation metrics
We evaluated our contact predictors on all these 108 structural
domains of 75 official CASP13 targets, including 43 FM and FM/
TBM domains. To be consistent with the CASP convention, contact
predictions were evaluated at domain-level. We used ConEVA
(Adhikari et al., 2016) to analyze contact prediction results and also
referred to the assessments published at the CASP website (https://
predictioncenter.org/). The emphasis of the evaluation was placed
on the precision of long-range contacts with sequence separation
�24 residues.

We used the Neff (e.g. non-redundant sequences), Neff, to esti-
mate the quality of alignments. It was calculated as the following
function:

Neff ¼
XN

i¼1

1

weighti

(1)

where N was the number of sequences in an MSA. Assuming
weightij was the sequence identity between any two homologous
sequences i and j in the MSA. It was equal to the maximum value 1
if and only if the sequence identity between i and j is �62%.
For each sequence i in the MSA, weighti was the sum of weightij

over all the sequences (including itself) in the MSA. Neff was the

sum of 1
weighti

over all the sequences in the MSA. Higher weighti,

smaller the Neff. To calculate the Neff at the domain level, we first
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extracted the sequence alignment of a domain from a full-length se-
quence alignment of the whole target and then calculated the Neff
of the domain according to Equation (1).

3 Results

3.1 Impact of deep learning on improving

coevolutionary input for contact prediction
We follow the CASP definition that a pair of residues are in contact
if the distance between their Cb atoms in the native structure is
below 8.0 Å. A contact is considered long-range if the sequence sep-
aration between the two residues of the contact is at least 24 resi-
dues away in the protein sequence. A contact with sequence
separation between 12 and 23 residues is at medium range and be-
tween 6 and 11 residues at short range. We focus on evaluating the
precision of top L/5, L/2 and L predicted long-range contacts ranked
by contact probability scores. L is sequence length. We compare our
deep learning predictors with three coevolution methods, including
CCMpred (based on pseudo-likelihood maximization), Freecontact
(based on direct coupling analysis) and PSICOV (sparse inverse co-
variance estimation). The results are shown in Table 1. The input
for those three coevolution methods is the sequence alignment gen-
erated by MULTICOM-NOVEL alignment pipeline.

It shows that the deep learning-based methods outperformed the
coevolution-based methods on all ranges (short, medium or long)
for top L/5, top L/2 and top L predicted contacts. For instance, for
top L/5 long-range predicted contacts, the precision of the best per-
forming predictor—MULTICOM-CLUSTER was 70.7%, substan-
tially higher than 43.4% of CCMpred, 36.2% of Freecontact and
38.1% of PSICOV. Figure 1a illustrates the ROC curves of
MULTICOM-NOVEL (a full-length deep learning contact predictor
without domain combination) and CCMpred on 43 CASP13 FM
and FM/TBM targets. The AUC score (the area under the ROC
curve) of MULTICOM-NOVEL was 0.84, much higher than 0.61
of CCMpred. Figure 1b plots the average real distances of false posi-
tive (fp) contact predictions of CCMpred against those of
MULTICOM-NOVEL for each of 43 FM and FM/TBM targets,
indicating the fps of CCMpred had larger average distances than
those of MULTICOM-NOVEL for most targets.

One reason that the deep learning predictors perform much bet-
ter is that the CNN is able to detect the correlation between contacts
within a certain region in the input matrices (e.g. a group of contacts
between two beta strands). The size of the region depends on the
size of the total receptive field captured by convolutions (Jones and
Kandathil, 2018). For instance, the total receptive field of one CNN
with seven convolutional layers and 5�5 filters in MULTICOM-
NOVEL is 29�29 (i.e. 5þ4 * 6). The whole deep network of the
two stages has the total receptive field with size of 53�53 (i.e.
5þ4 * 12). The more convolution layers we have, the larger the re-
ceptive field sizes are, and the more global the method is. Therefore,
the deep learning predictors are global machine learning methods
like early 2D recurrent neural network methods for contact predic-
tion (Pollastri and Baldi, 2002; Tegge et al., 2009). In contrast, local
coevolution methods only use the coevolutionary scores of each pair
of residues to predict contact, ignoring other correlated contacts.
Leveraging the correlation between contacts by the global deep

learning methods can filter out dangling false contacts without
forming clusters with other contacts or recall some missing contacts
in a cluster of contacts. Figure 2a compares a contact map predicted
by CCMpred and that predicted by MULTICOM-NOVEL illustrat-
ing such an effect. A lot of noises (fps) in the contact map of
CCMpred were removed in the contact map of MULTICOM-
NOVEL, leading to a cleaner map. And some missing contacts in
the contact map of CCMpred were recalled in the contact map of
MULTICOM-NOVEL, leading to denser contact clusters.
Figure 2(b–d) shows that the contact predictions of this target made
by MULTICOM-NOVEL have higher AUC score, coverage and pre-
cision than CCMpred.

3.2 Impact of Neff and alignment quality on precision
The coevolution-based feature is the most important input feature
for contact prediction. The reliable calculation of coevolutionary
scores requires a large number of diverse homologous sequences in
an MSA. We found that deeper alignment with more diverse hom-
ologous sequences (higher Neff) usually resulted in higher contact
prediction precision for the deep learning predictors, which is
expected because higher Neff generally leads to better coevolution-
ary input features for them. Figure 3a is the plot of the precisions of
top long-range contact predictions made by MULTICOM-NOVEL
against Neff on 108 CASP13 domains (see the plot at logarithm
scale in Supplementary Figure S1). Based on the results from
MULTICOM-NOVEL, the minimum number of sequences in the
MSA that led to a top L/5 long-range contact prediction precision
larger than 50% was 13 and the minimum Neff is only 8. The fitting
curve in Figure 3a shows that the precision increases as Neff
increases until it largely saturates when Neff is higher than 550. The
Pearson’s coefficient between the logarithm of Neff and the preci-
sion of top L/5 long-range contact precisions is 0.53 and P-value is
6.5E-8 under the hypothesis that the correlation coefficient is 0,

Table 1. Contact prediction precision on 108 CASP13 domains

Method Short-range (%) Medium-range (%) Long-range (%)

Top-L/5 Top-L/2 Top-L Top-L/5 Top-L/2 Top-L Top-L/5 Top-L/2 Top-L

MULTICOM-CLUSTER 65.8 45.3 28.5 69.0 52.7 35.9 70.7 58.3 45.3

MULTICOM-CONSTRUCT 66.2 45.1 28.2 67.6 51.5 35.1 68.2 57.3 44.3

MULTICOM-NOVEL 61.6 42.8 27.1 64.1 47.8 32.7 62.6 52.2 41.0

CCMpred 31.1 20.7 14.7 38.3 25.0 17.5 43.4 33.9 24.9

Freecontact 25.7 17.9 12.9 32.0 22.6 15.6 36.2 27.0 20.1

PSICOV 27.8 18.8 14.2 32.3 21.5 16.0 38.1 29.2 21.3

Fig. 1. Contact prediction performance of MULTICOM-NOVEL and CCMpred.

(a) ROC curve of CCMpred on the long-range predicted contacts of 43 CASP13 FM

and FM/TBM targets are shown in green and MULTICOM-NOVEL in red. Deep

learning-based method, MULTICOM-NOVEL, greatly improves the AUC score

from 0.61 to 0.84. (b) The plot of the average distance of false positive contact pre-

dictions made by MULTICOM-NOVEL versus CCMpred for each CASP13 FM

and FM/TBM target (denoted by a dot in the plot). The average distance of false

positive contacts over all the targets for MULTICOM-NOVEL is 14.1 Å, smaller

than that for CCMpred (17.8 Å)
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indicating the correlation between Neff and contact precision is
significant.

Neff of MSAs depends on the alignment methods used with the
deep learning predictors. To compare the quality of MSAs generated
by the three predictors, we ran CCMpred, Freecontact and PSICOV
on their alignments to generate coevolution-based contact predictions
and evaluated the precision of top L/5 long-range predicted contacts.
Supplementary Table S1 shows the contact prediction results of the
three methods on 43 CASP13 FM and FM/TBM targets. For all three
predictors (CCMpred, Freecontact and PSICOV), the average precision
of MULTICOM-CLUSTER alignment was higher than MULTICOM-
CONSTRUCT and MULTICOM-NOVEL. The better quality of
MULTICOM-CLUSTER alignment than that of MULTICOM-
CONSTRUCT indicated the filtering out redundant sequences in
MSAs improved the alignment quality and therefore the direct coevo-
lutionary input for the deep learning contact predictor. The difference
in the input could largely explain why the final precision (70.7%) of
MULTICOM-CLUSTER was higher than that (68.2%) of
MULTICOM-CONSTRUCT and that (62.6%) of MULTICOM-
NOVEL for top L/5 long-range contact predictions (Table 1).

3.3 Impact of domain-based contact prediction
It has been shown that integrating domain-level contact predictions
with full-length contacts can improve contact prediction precision,
especially when domain boundaries can be accurately identified
(Buchan and Jones, 2018). The reason is that the full-length se-
quence search may be dominated by the domain that has a lot of
similar homologous sequences, causing other domains, particularly
hard domains to have much fewer sequences to be found. Therefore,
it is necessary to search the sequence of under-represented domains
against the sequence database to collect more sequences for them.

We used the two domain parsing methods (a template-based
method and an ab initio method) to split the full-length sequence of
a target into domains. We evaluated the performance of two
domain-parsing methods with MULTICOM-CLUSTER along with
its full-length contact prediction on the domains of all 65 CASP13
FM, FM/TBM and TBM-hard domains (Table 2). The precision of
top L/5 long-range predicted contacts of using the template-based
domain parsing, the ab initio domain parsing and the full-length
alignments without domain parsing was 58.4%, 54.9% and 52.5%.

Using domain parsing clearly improved the contact prediction by
improving the coevolution input features of some domains. The
detailed changes of precision on those targets are shown in the
Supplementary Table S6. On average, most improvement caused by
the domain parsing occurred on TBM-hard targets rather than on
FM and FM/TBM targets. The template-based domain parsing
helped substantially improve the precision on seven domains
[T0989-D2 (FM), T0964-D1 (TBM-hard), T0981-D1 (TBM-hard),
T0981-D4 (TBM-hard), T0981-D4 (TBM-hard), T0981-D5 (TBM-
hard) and T0999-D2 (TBM-hard)]. The precision of the ab initio do-
main parsing was 2.4 percentage point on average better than not
using domain parsing for top L/5 contact predictions but was worse
than the template-based domain parsing probably because its bound-
ary prediction was less accurate (Table 2). However, unlike the
template-based domain parsing that required known structural tem-
plates as input and was much more complicated, the ab initio domain
parsing was purely sequence-based and much easier to implement.

The only input needed for ab initio domain parsing was the
MSA. It detected potential domain boundaries directly based on
the distribution of number of sequences at each residue position in
the MSA. Figure 4 is one example (target T0989) to demonstrate

Fig. 2. Contact prediction results of CCMpred and MULTICOM-NOVEL for target

T0953s2. (a) Top 2L long-range contacts predicted by the two methods (red) versus

true contacts (blue); (b) ROC curves of the two methods (red: MULTICOM-

NOVEL, AUC¼0.95; green: CCMpred, AUC¼0.81); (c) The coverage (i.e.

100 * TP/N, where, TP is number of true positive contacts and N is number of native

contacts) of top 5 to top 2L long-range contacts predicted by the two methods. (d)

The plot of precision of predicted top 5, top L/10, top L/5, top L/2, top L and top

2L long-range contacts of the two methods. (Color version of this figure is available

at Bioinformatics online.)

Fig. 3. (a) Plot of contact prediction precision against Neff of multiple sequence

alignments for 108 CASP13 domains for MULTICOM-NOVEL. Dots with differ-

ent colors represent precisions of different numbers of long-range contact predic-

tions (top L/5, top L/2 and top L). The curve is the LOESS line fitting the dots. The

plot in Neff range [1, 2500] is zoomed in. (b) Scatterplot of the precision of top L

long-range contact predictions versus log (Neff) with the marginal histograms of the

precision and log (Neff) shown on the top and on the right, respectively. The curve

is the LOESS line fitting the dots. (Color version of this figure is available at

Bioinformatics online.)
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how the ab initio domain parsing used the positional information
obtained from the MSA to identify potential domain boundaries.
T0989 is split into two real domains. Its first domain goes from
Residue 1 to Residue 134. The second domain goes from Residue
135 to Residue 246. We calculated the number of sequences at each
residue position in the MSA and plotted the numbers against their
positions (Fig. 4a). This target was split into two sequential domains
(1–70 and 70–246). The full-length alignment had a low number of
sequences for the second predicted domain (70–246), which covered
the range of the second domain in the true structure. For compari-
son, we compared the contact prediction results for domain T0989-
D2 (135–246 in true structure), with and without domain parsing
and integration of domain-based contact prediction (Fig. 4b). The
precision with the domain-based contact prediction for top L/5 pre-
dicted contacts was 50.0%, much higher than 9.1% without
domain-based contact prediction.

3.4 Impact of contact distance distribution prediction
The two-stage CNN architecture used in our deep learning methods
predicted the distribution of inter-residue distance in the range (0 Å,
6 Å, 7.5 Å, 8 Å, 8.5 Å, 10 Å, þ1) at the first stage, which was used
as input together with the original input features to predict the final
contact map at the second stage. On the 108 domains of 75 CASP13
targets, we compared the contact prediction precision of using or
not using the predicted contact distance distribution as the extra in-
put (Table 3).

The result shown in Table 3 exhibits a significant increase (from
58.3% to 63.7%) in precision of top L/5 predicted contacts at 8 Å
threshold by applying two-level CNN model methods in compari-
son. The results demonstrated that predicting the distribution of
inter-residue distance provided the valuable information to improve
the precision of contact prediction.

Figure 5 illustrates the impact of the predicted distance distribu-
tion on the final contacts prediction of the domain T0963-D3.
Figure 5a shows the predicted contact maps at several different
thresholds at Stage 1 without using the distance distribution as in-
put, which capture slightly different structural patterns. Figure 5b is
a comparison between the contact map at 8 Å of Stage 1 and that of
Stage 2. Figure 5c shows a side-by-side comparison of the top L/5
predicted long-range contacts visualized in the true tertiary structure
between Stage 1 and Stage 2 at the distance threshold of 8 Å. The fp
contacts, whose distance is greater than 8 Å in true tertiary structure,
are labeled as red line segments, while the black ones denote correct-
ly predicted contacts. By adding the predicted contact distance dis-
tribution as input at Stage 2, more true positive contacts were
recalled in the true structure as shown in Figure 6c. The final preci-
sion was increased from 36.8% to 68.4% for top L/5 predicted

long-range contacts and from 23.4% to 42.6% for top L/2 predicted
long-range contacts. This example confirms that it is useful to pre-
dict the detailed inter-residue distance distribution in multiple dis-
tance intervals, which is more informative than using binary contact
maps at one threshold (e.g. 8 Å) as previously demonstrated in
(Adhikari et al., 2018).

3.5 Impact of protein sequence database on contact

prediction—a post-CASP13 analysis
The size of protein sequence databases affects how many homolo-
gous sequences may be found for a target. After the CASP13 experi-
ment, we noticed that some groups used the metagenomics sequence
database not used with our predictors to find more homologous
sequences for some CASP13 targets than our methods. After
CASP13, we updated the alignment generation pipeline
MULTICOM-CLUSTER to include an extra search on a large meta-
genomic protein sequence database Metaclust50 that was built from
1.6 billion metagenomic sequence fragments with �50% sequence
identity (Steinegger and Soding, 2018). MULTICOM-CLUSTER
first searched HHblits against Uniclust30 sequence database, and
then ran Jackhmmer on Uniref90 sequence database to collect more
homologous sequences. The alignment generated by HHblits and
Jackhmmer was used to build an HMM model profile. Then, it
applied HMMER-3.1b2 hmmsearch program to search the profile
against Metaclust50 for more homologous sequences. Finally, it
combined the MSAs from HHblits/Jackhmmer searches and
hmmsearch search and removed duplicates in them. The combined
MSA was used to predict contacts. We compare the contact predic-
tion performance of MULTICOM-CLUSTER with the alignment
generation pipeline before and after adding an extra dataset,
Metaclust50. The precisions shown in Table 4 are the average top L/
5, top L/2 and top L long-range contact precision of 43 CASP13 FM
and FM/TBM domains, which indicates that enlarging the sequence

Table 2. Precisions of top L/5, L/2, L long-range contacts of the two

domain parsing methods and full-length method in MULTICOM-

CLUSTER on 65 CASP13 domains

Precision Template-based

domain parsing (%)

Ab initio domain

parsing (%)

Full

length (%)

Top L/5 58.4 54.9 52.5

Top L/2 46.4 44.3 43.1

Top L 35.9 34.1 33.4

Fig. 4. Domain parsing and domain-based contact prediction of target T0989. (a)

Plot of number of sequences in the MSA of T0989 against residue positions, true do-

main boundaries and the boundaries predicted by the ab initio domain parsing

method. (b) The contact prediction precision for the second domain of T0989 by

MULTICOM-CLUSTER with/without the domain parsing and integration of do-

main-based contact prediction

Table 3. Top L/5 long-range contact precision of two stages by

MULTICOM-CLUSTER full-length prediction for 108 CASP13 domains

Precision Stage 1 Stage 1 Stage 1 Stage 1 Stage 1 Stage 2

6.0 Å (%) 7.5 Å (%) 8.0 Å (%) 8.5 Å (%) 10.0 Å (%) 8.0 Å (%)

Top L/5 52.4 56.7 58.3 56.9 54.4 63.7

Top L/2 43.3 47.6 47.2 47.6 45.7 52.4

Top L 33.5 36.7 36.1 36.7 35.5 40.6

Analysis of several key factors 1095

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/4/1091/5556814 by U
niversity of M

issouri-C
olum

bia user on 22 June 2020



database is helpful for increasing contact prediction precision as ini-
tially demonstrated in (Ovchinnikov et al., 2017).

3.6 When does deep learning work or not work?
The deep learning predictors generally tend to work well if there is a
sufficient number of diversely related homologous sequences avail-
able. However, the sufficiency is target-specific. When there are
fewer homologous sequences available for a target, they can still le-
verage weak signals in shallow alignments and perform well in some
cases. Table 5 shows the performance of MULTICOM-NOVEL on
CASP13 domains with shallow alignments (e.g. the number of
sequences in the alignment<200 or Neff<100). On 7 out of 13 tar-
gets, the precision for top L/5 contact predictions was �75%, while
it did not perform well on the remaining 6 cases. If no diverse hom-
ologous sequence can be found at all (Neff¼1), alignment-related
features as coevolutionary scores are certainly not reliable. The deep
learning methods largely rely on other features as secondary struc-
ture and solvent accessibility to make prediction. For instance, two
targets T0991 and T1008 only had one sequence in their alignment.
Therefore, their alignment-related features as MSA statistics
(Shannon entropy sum, mean and mutual information) and
coevolution-based features did not contain useful information. In
those two extreme cases, the accuracy of secondary structure predic-
tion may play an important role on contact prediction. For T0991-
D1, the predicted secondary structure accuracy was only 41% and
the accuracy of top L/5 long-range contact prediction was 0. In

contrast, T1008-D1 had the secondary structure prediction accuracy
of 75% and the top L/5 long-range contact precision was 43.75%.
However, in our post-CASP13 experiment, by using the metagenom-
ics database, the Neff of the MSA for T0991 was increased from 1
to 3. This small change improved the precision of ResPRE (Li et al.,
2019) that uses only alignments as input from 0% to 36.6%, sug-
gesting adding just a few diverse homologous sequences can drastic-
ally improve the prediction accuracy.

Moreover, a larger Neff in the alignment does not always lead to the
increase of prediction accuracy with our deep learning predictors. For ex-
ample, MULTICOM-NOVEL overperformed MUTICOM-CLUSTER
by 22 percentage points (94.44% versus 72.22%) on T1015s1-D1
according to the precision of top L/5 contact predictions (Table 6), while
the Neff from the former (146) was less than the latter (165).

We further applied two external methods, CCMpred and
ResPRE (Li et al., 2019) with the alignments from MULTICOM-
CLUSTER and MULTICOM-NOVEL as the only input to make

(a) (b)

(c)

Fig. 5. Top L/2 long-range predicted contacts for T0963-D3 at Stage 1 without the inter-residue distance distribution as input and at Stage 2 with the inter-residue distance dis-

tribution as input. (a) Top L/2 long-range predicted contacts (red) versus true contracts (blue) for T0963-D3 at Stage 1 at distance thresholds of 6, 7.5, 8.5 and 10 Å. (b) Top

L/2 long-range contacts versus true contacts at the distance threshold of 8.0 Å at Stage 1 and Stage 2. (c) The predicted top L/5 long-range contacts at the distance threshold of

8.0 Å at Stage 1 and Stage 2 are visualized on the native structure of target T0963-D3. The red lines in the structure are the false positive contacts and the black lines are true

positive contacts. (Color version of this figure is available at Bioinformatics online.)

Table 4. Comparison of contact prediction precision by

MULTICOM-CLUSTER before and after adding Metaclust50 on

CASP13 43 FM and FM/TBM domains

Precision Top-L/5 (%) Top-L/2 (%) Top-L (%)

MULTICOM-CLUSTER

(adding Metaclust50)

55.0 42.5 33.1

MULTICOM-CLUSTER 51.0 40.9 31.6

Table 5. Precision of MULTICOM-NOVEL on CASP13 targets with

shallow alignments (N� 200 or Neff< 100)

Targets N Neff Top L/5 Prec. (%) Top L/2 Prec. (%)

T0957s2-D1 80 45 48.39 29.49

T0958-D1 46 17 25 28.21

T0987-D1 200 26 75.68 48.39

T0987-D2 200 27 75 41.84

T0990-D1 67 30 25 15.79

T0990-D3 67 36 30.23 17.76

T0991-D1 1 1 0 0

T0999-D2 121 25 94.51 87.67

T0999-D3 121 81 86.11 80

T0999-D4 121 67 97.96 82.79

T0999-D5 121 91 98.28 93.06

T1001-D1 13 8 75 37.14

T1008-D1 1 1 43.75 33.33
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contact predictions for T1015s1. For both contact predictors, the
precision of long-range top L/5 contact predictions from the align-
ments of MULTICOM-CLUSTER was higher than or equal to
MULTICOM-NOVEL (Table 6), which indicated that alignment
from MUTICOM-CLUSTER might contain more coevolutionary
signals than MULITCOM-NOVEL. But the deep learning network
used by MULTICOM-CLUSTER cannot leverage the information
well, suggesting there is still a significant room of improving the
training and design of deep learning models.

4 Conclusion and future work

We evaluated the performance of our three CASP13 deep learning-
based contact prediction methods (MULTICOM-CLUSTER,
MULTICOM-CONSTRUCT and MULTICOM-NOVEL) and
investigated the key factors that affected their performance. We
showed that leveraging residue–residue interactions and contact cor-
relations within an area (i.e. the total receptive field) in the input
matrices captured by multi-layers of convolutions was a key reason
that the deep learning methods substantially outperformed the local
contact prediction methods that treated each pair of residues inde-
pendently. Through multiple layers of convolutional feature extrac-
tion, the deep learning methods could capture the long-range
interactions between residues and correlations between contacts to
improve contact prediction. Our experiment also demonstrated that
predicting the distance distribution of inter-residue distance in mul-
tiple distance intervals was able to capture more structural informa-
tion than a binary contact map at a single distance threshold.
Leveraging the distance distribution can improve contact prediction.

The accuracy of contact prediction also depends on the number
of effective (true) homologous sequences. Therefore, the sensitive se-
quence search protocol is important for further improving contact
prediction. The Neff is also related to the size of protein sequence
database. We confirmed that the metagenomics sequence database
contained some sequences not in widely used Uniref90 and
Uniclust30 databases and should be used if necessary.

Domain parsing is also important to improve contact prediction,
which is especially useful for domains for which few homologous
sequences are found during the full-length sequence search. We dem-
onstrated that a fast, simple domain-based contact prediction meth-
ods based on MSAs alone could consistently improve contact
prediction accuracy over the full-length contact prediction, even
though it was less accurate than the domain-based contact predic-
tion based on the template-based domain parsing.

It is worth noting that another key factor that affects the accuracy
of inter-residue contact prediction is the architecture of deep learning
models and how they are trained, which are not investigated in this
work. In the CASP13 experiment, some external deep learning meth-
ods performed better than our predictors, partially due to the difference
in the architecture design and training strategy (Kandathil et al., 2019;
Li et al., 2019; Xu and Wang, 2019). The selection of training and test
data may have a significant impact on contact prediction accuracy.
Currently, the redundancy of training and test data is controlled by se-
quence identity rather than structural similarity. The protein structural
classification information can be useful in preparing training and test
datasets. Besides, the metric used to select our best deep learning model
is based on the precision of top L/5 long-range contact predictions,

which may not be the best metric for evaluating the whole contact
map. In some cases, the top L/5 predicted contacts can be concentrated
in a certain region. They may have high precision, but do not contain
distance information in other regions. One useful way to reduce the re-
dundancy in contact prediction evaluation is to select only one contact
per residue (e.g. the evaluation results in Supplementary Table S3).
However, since some residue may be involved in contacts in multiple
contact clusters, this criterion can exclude important contacts as well.
One complimentary approach to remedy the problem is to evaluate the
coverage of prediction of contact clusters (Gao et al., 2019).

Moreover, in the future, we will design more advanced deep
learning architectures to predict more detailed inter-residue distance
relationships (e.g. the distance distribution in finer distance intervals
and even the real-number distance) and apply them to build protein
structures from scratch, and rank protein structural models (Hou
et al., 2019).
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