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ABSTRACT

In probabilistic databases the data is uncertain and is modeled
by a probability distribution. The central problem in probabilistic
databases is query evaluation, which requires performing not only
traditional data processing such as joins, projections, unions, but
also probabilistic inference in order to compute the probability of
each item in the answer. At their core, probabilistic databases are
a proposal to integrate logic with probability theory. This paper
accompanies a talk given as part of the Gems of PODS series, and
describes several results in probabilistic databases, explaining their
significance in the broader context of model counting, probabilistic
inference, and Statistical Relational Models.
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1 INTRODUCTION

In probabilistic databases the data items are probabilistic events: a
tuple is present only with some probability, or the value of an at-
tribute is a random variable. Conceptually, this defines a probability
distribution over possible database instances, called possible worlds.
Probabilistic databases are motivated by a variety of applications
such as modeling uncertain data [72], missing values [73], data
cleaning [70], database repair [67], deduplication [10], knowledge
base construction [81], and approximate query processing [80].
The central problem is query evaluation: given a query Q and
probabilistic database D, compute the answer of Q on D. The prob-
lem is denoted PQE, for probabilistic query evaluation. In addition
to standard data processing, like joining tables, or removing dupli-
cates, PQE also requires probabilistic inference, in order to compute
the probability of each item in the answer. The latter has been
the key focus of the research in probabilistic databases, leading to
several interesting findings. This short survey paper accompanies
a talk on Probabilistic Databases given as part of the Gems of PODS
series, and is a high level overview of the most interesting results
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and findings in this space.! The significance of these results is best
understood in the broader context of probabilistic graphical models,
weighted model counting, and statistical relational learning.

Background Probabilistic Graphical Models (PGM) study mul-
tivariate probability distributions by describing their independence
relationships using a graph. PGMs have a long history, predating
Computer Science, and have been successful in many applications;
see e.g. the historical notes in [52]. In a PGM, a distribution is rep-
resented as a product of factors, and probabilistic inference exploits
the independence relations captured by the factorized expression,
for example through the belief propagation algorithm. The com-
plexity of the inference problem in PGMs is exponential in the
tree-width [13, 20, 62].

Closer in spirit to probabilistic databases than inference in PGMs
is the model counting problem. Here we are given a Boolean formula
and want to compute the number of satisfying assignments. Equiv-
alently, we are asking for the probability of the Boolean formula,
when each Boolean variable is set to true randomly and indepen-
dently, with probability 1/2. In the weighted model counting variant,
each Boolean variable may have a different probability, not neces-
sarily 1/2. Valiant proved that model counting is #P-complete [78].
PQE is precisely a weighted model counting problem, where the
Boolean formula is the lineage of the query on the database. Gen-
eral inference techniques for PGMs are known to be too weak for
weighted model counting, and instead, new approaches have been
proposed in the literature. One approach consists of extensions
of the Davis-Putnam-Logemann-Loveland (DPLL) family of algo-
rithms [22, 23], originally designed for the SAT problem; a survey
of DPLL-style model counting algorithms can be found in [35]. A
second major approach, known as knowledge compilation, is to con-
vert the input formula into a circuit, from which the model count
can be computed efficiently [18, 19, 42, 59]. These two are tightly
related, in the sense that the trace of a DPLL-style algorithm is
a circuit [41, 42], hence both approaches have similar asymptotic
complexities. As we shall see, probabilistic databases highlight a
new limitations of these approaches, and offer a solution.

At a conceptual level, probabilistic databases represent an in-
tegration of logic and probability theory. The quest to integrate
logic and probability theory has a long history. Nowhere is this
more imperative than in Al where the need to integrate formal
reasoning on one hand, with statistical relational learning and sta-
tistical inference on the other hand, has been long recognized as a
major goal and challenge. Today, it remains one of the top priorities
in Al research, see for example [47, 65]. One line of research that
aimed explicitly at addressing this challenge are Statistical Rela-
tional Models, SRM [26, 33, 66, 69]. Here a (large) statistical model,
such as a PGM, is represented through a concise Knowledge Base,
consisting of a small number of first order sentences. The actual
model is obtained by grounding the formulas in the knowledge
base with all constants in some given domain. The main vision of

!Biased, by necessity, by the author’s own taste and preferences.
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SRMs is that traditional tasks, such as parameter learning and prob-
abilistic inference, should be performed on the concise, first order
representation, and not on the much larger grounded model. This
approach is called lifted inference in SRMs [49, 63], to be contrasted
with grounded inference where the statistical model is computed
first, then followed by the application of some standard inference
method. While initial work on probabilistic databases evolved inde-
pendently of that in SRMs, they share the same goals and informed
each other.

Probabilistic Databases: A New Angle Probabilistic databases
bring a new, sometimes surprising perspective, to this rich back-
ground. The simplest probabilistic data model is one where each
tuple is an independent probabilistic event; this is called a tuple-
independent database, TID. While several alternatives have also
been studied, like block-disjoint-independent [16] or attributes as
random variables [4], TIDs are the best understood to date. TIDs
are already used in some interesting applications, like relational em-
beddings [29], and correlations can still be added to TIDs, namely
by conditioning on a database constraint, as we review in Sec. 3.

A first major finding in probabilistic databases is that the data
complexity [79] of the query evaluation problem over TIDs admits
a dichotomy into polynomial time and #P-hard. In other words,
for every fixed query, one can either compute its probability in
polynomial time in the size of the input database, or this problem
is #P-hard. No query has some intermediate complexity between
polynomial time and #P-hard. This result is known to hold only
for some classes of queries, which include Unions of Conjunctive
Queries (UCQs) and some restricted classes of queries with nega-
tion; it is currently open whether this dichotomy holds for all first
order queries. Viewed through the angle of the model counting
problem, this result is a statement about the complexity of families
of Boolean functions defined by a query. For each fixed query Q,
consider the set of all lineages of Q, over all finite databases: then
weighted model counting for this class of Boolean formulas is either
in polynomial time, or is #P-hard. We review this result in Sec. 4.

A second surprising finding is the apparent need for the inclu-
sion/exclusion rule in lifted inference. As we explained, the term
lifted inference originates in statistical relational models, and refers
to any algorithm that performs inference directly on structure of the
first order sentence. Lifted inference always runs in polynomial time
in the size of the database, thus we have a complete lifted inference
if we can compute all queries that are in polynomial time. It turns
out that, for completeness, we need to add the inclusion/exclusion
rule to more basic lifted inference rules. Inclusion/exclusion is never
needed in either PGM or weighted model counting, hence its key
role in lifted inference comes as a surprise. We describe lifted in-
ference and the role of the inclusion/exclusion rule in Sec. 5. An
open question to date is whether the disjointness rule could replace
inclusion/exclusion and still be able to compute all polynomial time
queries [58].

In addition to probabilistic inference, PQE also needs to perform
standard data processing, such as computing joins or unions or du-
plicate elimination. Data processing in modern SQL engines is done
by first converting the query into a query plan, optimizing the plan,
and finally executing it. Given any plan, it is possible to modify each
of its operators to compute the probabilities of the output tuples, by
performing simple operations (multiplication, addition, subtraction)
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over the input tuples’ probabilities. The question is whether the
final probability returned by the plan has any relationship with the
correct probability required by PQE. Somewhat surprisingly, for a
conjunctive query without self-joins, each such plan computes an
upper bound of the correct probability, and can also be modified to
compute a lower bound. This means that it is possible to compute,
inside the SQL engine, upper and lower bounds on the query’s
probability, even when the corresponding PQE problem is #P-hard.
We describe this in Sec. 6.

Probabilistic databases also gave an answer to the question
whether lifted inference is more efficient than grounded inference:
the answer is yes, at least when grounded inference is performed
using a DPLL-style algorithm. More precisely, there exists an infi-
nite set of UCQs such that (a) each such query can be computed
using lifted inference (and, thus, its complexity is in polynomial
time), and (b) every decision-DNNF for its lineage has size that is
exponential in the size of the database. The decision-DNNF is the
type of circuit that represents the trace of any DPLL-style algo-
rithm, hence this implies that DPLL-style algorithms will run in
exponential time. We describe this result in Sec. 7.

Finally, probabilistic databases shed some important light on the
question whether symmetries in the data can help speed up proba-
bilistic inference. Statistical Relational Models define a probability
distribution that is invariant under any permutation of the domain,
and, thus, are partially exchangeable according to an appropriately
chosen set of statistics [49, 60]. A symmetric probabilistic database
is any probabilistic database that is invariant under permutations
of the domain; equivalently, for any relation name, all tuples of that
relation have the same probability. The question is whether PQE
becomes easier on symmetric databases. In fact, early work on lifted
inference almost identified “lifted” with “exploiting symmetries”.
A major result? in this space is that, for every query in FO?, the
PQE problem over symmetric databases is in polynomial time [24].
Recall that FO? denotes first order logic with two variables [54].
However, it turns out that the good news stops at 2 variables: with
three variables one can already construct a query that is hard even
on symmetric databases. We describe symmetric databases in Sec. 8.

Terminology In one of the early works on probabilistic databases,
Fuhr and Rolleke [30] extended the operators of the relational al-
gebra with simple formulas to manipulate the tuple probabilities,
and called this process extensional semantics; they also called inten-
sional semantics the algebra modified to compute event expressions
rather than probabilities. These two terms were used in many early
papers on probabilistic database, including the survey [74]. They
are completely equivalent to lifted inference and grounded inference
respectively, which are standard terms in use today, and will also
be used in this paper.

2 THE BASICS

Fix a relational vocabulary, in other words, fix a database schema.
If DOM is a finite domain, then we denote by Tup(DOM), or simply
Tup when the domain is clear from the context, the set of all pos-
sible tuples over the given schema whose constants are in DOM. A
traditional database instance is any subset of Tup. In the context of

2This result came from the SRM community, but intellectually it is in perfect alignment
with the goals of probabilistic databases.
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probabilistic databases, we call such a subset W C Tup a possible
world. A probabilistic database is a probability distribution over all
possible worlds with a given domain DOM. More precisely, a prob-
abilistic database is D = (DOM, pp), where pp : 2T _ 0, 1] and
Y wcTup PD(W) = 1. Consider a Boolean Query Q, and recall that
we write W |= Q if Q is true in a world W. The marginal probability
of Q is:

pp(Q) = pp(W) ey
W CTup:W=Q
Given a tuple t € Tup, its marginal probability is:
@)= > pp(W) &)
W CTup:teW

In general Tup is very large, for example it may have millions or
billions of tuples, and the number of possible worlds is exponential
in this number. This makes it impossible to represent explicitly the
probability distribution pp. The most common approach in prob-
abilistic databases is to assume that the tuples t are independent
probabilistic events; then, the database is called a tuple independent
datbase, or TID. In a TID a possible world W is generated by includ-
ing in W randomly and independently each tuple t € Tup, and its
probability is:

powW)=[]row)x [] @-pp)

tew teTup—-W

®)

In order to represent the TID, we only need to list the marginal
probability of each tuple, pp(¢). It is common to represent these
probabilities in a standard relational database, where each relation

R has one additional attribute P, such that, for every tuple t € R,

def

its probability is pp (t) = t.P, and for every tuple t ¢ R, pp(t) = 0.

Example 2.1. Fig. 1 shows a simple TID with 9 tuples. Strictly
speaking there are more than 2° possible worlds, because the set
of possible tuples Tup includes tuples not shown in the database,
for example R(b3) or S(b1, b1), but any possible world that includes
such tuples has probability 0, hence, w.l.o.g. we may consider only
the 2° possible worlds obtained by taking subsets of the database
in the Figure. Consider now the sentence:

Q =YxYy(S(x, y) = R(x)) 4

Once can think of Q as an inclusion constraint, stating that every
value x that occurs in S also occurs in R. We want to compute the
probability that Q holds, when the world W is chosen at random.
Since the tuples are independent, we can derive a simple formula
for this probability. Consider every value of x, for example x = ay.
A possible world that satisfies Q must either contain the tuple
R(a1), an event with probability p1, or not contain any of the tuples
S(ai, b1), S(a1, ba), an event with probability (1 — g1)(1 — g2); the
same applies to the other values x = az, x = a3, leading to:

pp(Q) =(p1 + (1 = p1)(1 = q1)(1 = g2))
X(p2 + (1= p2)(1 - g3)(1 - 94)(1 - g5))
x(1 - gs)
The Probabilistic Query Evaluation Problem, PQE The key
problem in probabilistic databases is query evaluation: given a

query Q and a probabilistic database D, compute pp (Q). We denote
this problem by PQE. The query is usually assumed to be in some
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logic, for example in some restriction of First Order Logic [15], or
a logic program like ProbLog [51], or a datalog program [6], or a
query in monadic second order logic [1], or some tree pattern [50].
The probabilistic database is most often assumed to be a TID, where
all probabilities are given as rational numbers. Not surprisingly,
query evaluation is hard:

THEOREM 2.2. Fix the query Hy = VxVy(R(x) V S(x,y) V T(y)).
Then, computing pp (Hy) is #P-hard in the size of the database D.

The proof is by a reduction from the Positive, Partitioned, 2CNF
counting problem, which was proven to be #P-complete by Provan
and Ball [64].

The Dual Query Fix any FO sentence Q, and assume it contains
only the connectives A, V, =, 3,V (in other words it does not contain
=). We define the dual of Q to be the sentence obtained by switching
the quantifiers 3 and V, and switching the connectives A and V. It
is not hard to check that the query evaluation problems for a query
and its dual are polynomial time equivalent. For example, the dual of
the query VxVy(R(x) VS(x, y) VT (y)) is IxAy(R(x) AS(x, y) AT (y))
and therefore both have the same complexity, namely #P-hard by
Theorem 2.2.

3 CORRELATIONS THROUGH CONSTRAINTS

The Al literature has described numerous applications where logic
and probability theory are naturally combined [26, 33, 66, 69]. In all
these applications it is important to represent correlations between
atomic events, and this is usually done using Graphical Models, such
as Bayesian Networks or Markov Networks [20, 52]. In contrast,
most of the work on probabilistic databases has focused on tuple-
independent databases (TIDs). Thus, we are led naturally to this
question:

Question 3.1. How can we represent complex correlations be-
tween tuples in a probabilistic database?

It turns out that correlations can be naturally represented using
database constraints. Constraints in probabilistic databases play the
same role as factors in graphical models, and allow us to represent
arbitrarily complex correlations by using TIDs and constraints.
We will illustrate the basic ideas by showing how a Markov Logic
Network (MLN) [26] can be represented in this way.

An MLN consists of a set of soft constraints. Each soft constraint
is a pair (w, A), where w > 0 is a real number called the weight
of the soft constraint, and A is a First Order formula. Intuitively,
the soft constraint asserts that the formula A typically holds in the
data, but is it not a hard requirement, and the weight w represents
the degree to which A holds. For a simple illustration, consider the
following soft constraint.’

3.9 Manager(M, E) = HighlyCompensated(M) (5)

Here M, E are free variables, representing a manager and an em-
ployee respectively. The soft constraint says that, typically, man-
agers are highly compensated. The weight w = 3.9 represents our
confidence in this soft constraint: in general w > 1 means that we
believe the constraint is more likely than not, and w = oo is a hard
constraint. As a guiding intuition, a weight w can be converted into

30ur presentation follows [25] and is a slight departure from the original definition,
for reasons discussed in [25].
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Figure 1: (a) A simple Tuple Independent Database (TID) D with 9 tuples. The values p1, p2, p3, q1, - - -
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S
R x|y
D e Zl =p1(1 - p2)p3q1(1 — q2)(1 — q3)q49596
ap || az | bs
as || a2 | bs
aq b6

(b)

, Q6 are probabilities in [0, 1].

A possible world is obtained by randomly sampling each tuple with that probability. There are 2° possible worlds, and one is

shown in (b).

a probability by the formula p = w/(1 + w), thus w = p/(1 — p)
represents the “odds” of p, but this correspondence is only a guiding
intuition and does not hold for MLN’s; see the Appendix, and also
the discussion in [25].

The semantics of an MLN is given by a traditional Markov Net-
work [52]. The random variables are all possible tuples, Tup, and
each soft constraint defines a set of factors, as follows. A grounding
of the soft constraint (w, A) is a pair (w, F) where F is a sentence
obtained by substituting the free variables in A with constants in
the domain. Let ground(MLN) denote the set of all groundings of the
MLN. Each grounding represents one factor of the Markov Network.
If a possible world satisfies the sentence F, then it contributes a
factor w; otherwise it contributes a factor 1. Formally, the weight of
a possible world W C Tup is defined as the product of the weights
of all factors that hold in W:

weight(W) =
(w, F)eground(MLN):-W |=F

w

Finally, the probability of a world is pyrpn (W) def weight(W)/Z,

where Z is the normalizing factor, Z def >w weight(W).

In our example (5), the weight of a world W is (3.9)", where n is
the number of pairs (m, e) € DOMXDOM such W |= =Manager(m, e) v
HighlyCompensated(m). Its probability is this weight divided by the
normalization factor Z. The MLN represents complex correlations
between tuples, for example, if m is a manager of some employee e,
then the probability that m is highly compensated increases and,
in fact, the more employees m manages the higher the probability
of her/him being highly compensated. In general, MLN’s are as
expressive as standard Markov Networks (see the Appendix), yet
can be significantly more concise.

We explain now how an MLN can be represented using a TID and
a constraint, by illustrating on the MLN in (5); for the general case
we refer to [25, 37, 45]. Let R be a fresh relational symbol. We define
the TID D, over the vocabulary R, Manager, HighlyCompensated,
and with the following probabilities. For every two constants m, e €
DOM:

pp(Manager(m, e)) =1/2
pp(R(m,e)) =1/(w - 1)

In other words, all possible tuples in Managerand HighlyCompensated
have probabilities 1/2, and all possible tuples in R have probability

pp (HighlyCompensated(m)) =1/2

22

1/2.9 =~ 0.345. We invite the reader to check the following state-
ment:

PROPOSITION 3.1. [25, 37, 45] Consider the MLN in (5), D be the
probabilistic database above, and denote by T' the following sentence:

T =¥YmVYe(R(m, e) V ~Manager(m, e) V HighlyCompensated(m))

Then, for any Boolean query, Q, over the vocabulary consisting of

Manager and HighlyCompensated, it holds: pprpn(Q) = pp(QIT).
The latter is the conditional probability, pp (Q|T') def pp(QAT) /pp (D).

As a consequence, lifted inference evaluation techniques devel-
oped for probabilistic databases can be carried over to inference in
MLN’s [37]. When coupled with constraints, TIDs have the same
representation power as MLN’s, and, thus, are not confined to in-
dependence only, as suggested occasionally in the literature [69];
they simply replace traditional factors used in graphical models,
with constraints.

4 DATA COMPLEXITY AND A DICHOTOMY
THEOREM

One of the important findings of probabilistic databases is a di-
chotomy of the complexity of the PQE problem, which we discuss
here. Probabilistic inference in graphical models is #P-hard in gen-
eral.* Since probabilistic databases can represent graphical models,
one doesn’t expect the probabilistic query evaluation problem, PQE,
to be any easier. However, the database perspective brings a new and
powerful tool, through the notion of data complexity. Introduced
by Vardi [79] for traditional databases, data complexity defines
the evaluation problem by fixing the query Q and considering as
input only the database D. In this light, each query Q defines a new
problem, denoted PQE(Q), raising the following question.

Question 4.1 (Data Complexity). Given a query Q, what is the
complexity of the problem: given D, compute pp(Q)? We denote
this problem by PQE(Q).

4This follows from the fact that model counting for 2CNF is #P-hard, and the fact
that any 2CNF (and in Boolean formula in general) can be represented as a Bayesian
Network.
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If Q is a first order sentence, then PQE(Q) is in® #P, and for
some queries it may be lower. The question is whether we can
establish the complexity of PQE(Q) for any query Q. The answer,
of course, depends on the logic £ from which Q is drawn and,
for some logics we do have a complete characterization of the
complexity PQE(Q) of all queries in that logic. We will describe here
the complexity of Unions of Conjunctive Queries (UCQ), where
the complexity of PQE(Q) is either polynomial time or #P-hard,
thus forms a dichotomy. We refer the reader to [16, 27, 36, 58] for
dichotomies in other settings.

The dichotomy result for UCQs immediately generalizes to a
richer logic, which we describe here. Recall that a FO sentence
is in prenex normal form if it is written as a string of quantifiers,
called the prefix, followed by quantifier-free formula, called the
matrix. We call an FO sentence unate if it is in prenex normal form
and for every relational symbol R; in the vocabulary, either all its
occurrences are in positive positions, or all its occurrences are in
negated positions. For example, Yx(R(x) = S(x)) A (R(x) = T(x))
is a unate sentence, because both occurrences of R are in negated
positions. In contrast, Yx(R(x) = S(x)) A (S(x) = T(x)) is not
unate, because S occurs both in a positive and a negated position.
In particular, every monotone FO sentence is unate. The term “unate”
comes from the study of read-once Boolean formulas [34].

THEOREM 4.1 (DicHOTOMY THEOREM). [17] Let L be the set of
unate FO sentence whose quantifier prefix isV*, or 3*. Then, for every
Q € L, the probabilistic query evaluation problem, PQE(Q), is either
in polynomial time, or is #P-complete.

For example, if Q is the query in Example 2.1, then PQE(Q) is
in polynomial time, while PQE(Hy) is #P-hard where Hy is the
query defined in Theorem 2.2. Notice that any UCQ query is, in
particular, a monotone FO sentence with quantifier prefix 3*, hence
the theorem holds for all UCQ queries. In fact the result in [17]
is stated only for UCQ queries, but it is not hard to see that this
implies the more general result in Theorem 4.1. Indeed, any unate
FO query can be transformed into a monotone query: replace all
negated symbols —=R(x, y, . . .) with fresh symbols R’ (x,y, .. .), and
define the probabilities of the new tuplest’ € R" ast’.P =1 —t.P,
where t is the same tuple in R. The reader may check that the
probability pp (Q) remains unchanged. Thus, every query satisfying
the assumptions of Theorem 4.1 is equivalent to either a monotone
FO sentence with quantifier prefix 3%, which is equivalent to a UCQ,
or to a monotone FO sentence with quantifier prefix YV*, whose dual
is equivalent to a UCQ; thus the dichotomy theorem for UCQ’s
in [17] implies Theorem 4.1.

Ladner [53] has proven the existence of decision problems that
are in NP, but are neither NP-hard nor in polynomial time. This
opens up the possibility that some query might exist such that
PQE(Q) is neither in polynomial time nor #P-hard: the theorem
rules out this possibility for the restricted logic L of the theorem.

Naturally, at this point we would like to study decision prob-
lem for the complexity of PQE(Q): “given Q, find the complexity of
the PQE(Q) problem”. This problem depends on the choice of the
language £ from which Q is drawn, leading us to the next question:
5This claim requires some clarification, because #P is a class of counting problems [77],
while pp (Q) is a rational number. Denoting by N the least common denominator of

all probability values in the input database D, then N - pp(Q) is a natural number,
and computing it is in #P [16].
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Question 4.2 (Deciding the Complexity). Fix a query language L.
Find a decision procedure that, for each query Q € L, decides the
complexity of PQE(Q).

For the logic £ defined in Theorem 4.1, we only know that it is
decidable whether PQE(Q) is in polynomial time or is #P-hard; the
exact complexity is unknown. The same applies to UCQs: while we
can decide whether a query is in polynomial time or #P-hard, we
don’t know the complexity of this decision problem. However, we
have a surprisingly simple answer for a restricted language, namely
that of Conjunctive Queries without self-joins. We briefly review
this class of queries here. A Conjunctive Query is a formula of the
form:

Q =3x (Ry(x1) A -+ A Rm(xm)) (6)

where each expression R; (x;) is called a atom. As usual, the bold-
face notations x, x1, x2, . . . denote sets of variables. We say that
Q is without self-joins if the symbols Ri, Ry, . .. are distinct. We
are concerned here only with Boolean queries, hence we assume
that all variables are existentially quantified. Fix a single variable x
of the query, and denote by at(x) the set of atoms that contain x:
formally, at(x) = {Ri(x;) | x € x;}.

Definition 4.2. A conjunctive query Q is called hierarchical if,
for any two variables x, y, one of the following conditions hold:
at(x) C at(y) or at(x) 2 at(y) or at(x) Nat(y) = 0.

The following provides a simple characterization of the complex-
ity of conjunctive queries without self-joins.

THEOREM 4.3. [16] Let Q be a conjunctive query without self-joins.
(1) If Q is hierarchical then PQE(Q) is in polynomial time. (2) If Q
is not hierarchical then PQE(Q) is #P-hard. Moreover, the decision
problem “given Q, decide the complexity of PQE(Q)” is in AC®.

We illustrate with two simple examples: IxJy(R(x) A S(x,y))
is hierarchical, hence it is in polynomial time, while IxJy(R(x) A
S(x,y) A T(y)) is non-hierarchical, because at(x) = {R,S} and
at(y) = {S, T}, and thus is #P-hard. For membership in AC® we refer
to [16]. Recently, Amarilli and Kimelfeld [3] have strengthened case
(2) of the theorem by proving that the query remains #P-hard even
if all probabilities in the database are 1/2.

If Q has self-joins, then the criterion in Theorem 4.3 no longer
holds. A simple counterexample is IxJyIz(R(x, y) AR(y, z)), which
is hierarchical, yet is #P-hard [17].

Dichotomy results for other logics Fink and Olteanu [27]
considered a language that includes conjunctive queries without
self-joins, and also has set difference (a form of negation) and
showed, somewhat surprisingly, that being hierarchical is again a
necessary and sufficient condition for its complexity to be in poly-
nomial time. Another restricted subclass of queries with negation
is considered by Gribkoff et al. [36]. In contrast, no non-trivial di-
chotomy results are known for logics that allow sentences with
both ¥ and 3.

Deciding the Complexity FO For every query in First Order
Logic, PQE(Q) is in #P [16], however, we do not know if FO admits
a dichotomy into polynomial time and #P-hard. However, we can
prove that it is not possible to separate these two classes:

THEOREM 4.4. Assuming FP # #P, the following problem is unde-
cidable: “given Q in FO, decide whether PQE(Q) is #P-hard”.
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The theorem implies that, if FO had a dichotomy into polynomial
time and #P-hard, then we will not be able to decided between these
two classes, unless FP=#P. The proof follows by reduction from
the satisfiability problem for finite models, “given a sentenceT in
FO, check whether it admits a finite model”, which was proven by
Trakhtenbrot to be undecidable [76]. The reduction is the following.
Given a sentence T', let R, S, T be three relation symbols that do not
occur in I', and let Hy = VxVy(R(x) V S(x,y) V T(y)). Then T is

finitely satisfiable iff the query Q =8 Hy is #P-hard.

5 THE INCLUSION/EXCLUSION FORMULA

An interesting aspect of the probabilistic query evaluation problem
(PQE) for probabilistic databases is the central role played by the
inclusion/exclusion formula. We explain it here.

Our question here is an algorithmic question: how do we com-
pute pp(Q)? Our focus here will be only on queries where PQE(Q)
is in polynomial time, and we naturally expect our algorithm to
also run in polynomial time. In this setting the query Q is fixed, and
the complexity is measured in the size of the input database. One
possibility is to ground the query on the database, to obtain a large
Boolean formula called lineage, then perform probabilistic inference
on the lineage. However, this approach may run in exponential time,
even if the query Q is in polynomial time, as we explain later. The
alternative is to compute pp(Q) by inspecting only the First Order
syntax of the query expression, an approach that is called lifted
inference [25]. Much of the research in probabilistic databases, and
also in Statistical Relational Learning (SRL) [33, 66] has focused on
lifted inference.

In general, probabilistic inference is based on simple inference
primitives, like conditional independence, p(X, Y|Z) = p(X|Z)p(Y|Z)
implicitly used by the belief propagation algorithm, or the Shannon
expansion, p(F) = p(F[X = 0])p(=X) + p(F[X = 1])p(X) used in
weighted model counting. Similarly, lifted inference is also based
on simple rules, which can be applied recursively on the structure
of the first order sentence Q:

Pp(Q1 A Q2) = pp(Q1) - pp(Q2)

po(¥xQ) = [ po(Qla/x])
a€eDOM

Pp(Q A=Q) = pp(Q) - pp(Q A Q) ©)

The side condition “Qj, Q, are independent” checks if Q; and
Q> have disjoint sets of relational symbols, which ensures that
they are independent events, since D is a TID. Similarly, the con-
dition “x is a separator variable” checks whether x occurs in all
atoms, and, moreover, for every relational symbol R;, x occurs
on the same position in all atoms using the symbol R;; this en-
sures that the events Q[ai1/x], Q[az/x], . .. are independent. Let’s
call the three rules above, plus their dual rules ¢ the basic rules.
Lifted inference is the algorithm that, given Q and D computes
pp(Q) by repeated applications of these rules. It always runs in
polynomial time in the size of the database D, however it may
fail on some queries, namely when the syntactic conditions re-
quired by the rules do not apply. A simple example of lifted in-
ference is pp (VxVy(R(x) A S(y))) = pp(VxR(x))pp(VyS(y)) =

The dual rules are: pp(Q; V Q2) =1 (1 - pp(Q1))(1 - pp(Q2)),
pp(3xQ) =1 - [laepon(1 - pp(Qla/x])), and
pp(QV-Q") =pp(Q)+(1-pp(QVQ)).

if "Q1, Qo are inependent” (7)

if "x is separator variable" (8)
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[Taeoompp (R(a)) - [1pepom PD (S(P)); this takes linear time in the
size of relations R, S. A simple example where they fail is Hy in
Theorem 2.2.

If lifted inference succeeds on a query Q, then PQE(Q) is in
polynomial time. What about the converse? Are the basic rules
sufficient to compute any query whose complexity is in polyno-
mial time? Of course, the answer depends on the language £ from
where the query Q is drawn. For example, the basic rules turn out
to be complete for the set of Conjunctive Queries without self-
joins, yet are incomplete for Conjunctive Queries: we invite the
reader to check that the basic rules fail to apply to the query”’
Qs def AxFyFuIo(R(x) A S(x,y) A T(u) A S(u,v)), yet, we will
prove below that this query is in polynomial time. This leads to a
natural question:

Question 5.1 (Probabilistic Inference Rules). Consider a logic £
that admits a dichotomy into polynomial time and #P-hard. Find a
set of probabilistic inference rules that is complete for £, meaning
that, for any Q € £, if PQE(Q) is in polynomial time, then we
should be able to compute pp(Q) using the lifted inference rules.

It turns out that we need to add the inclusion/exclusion formula
to the basic rules for completeness. In its simplest form, the inclu-
sion/exclusion formula is:

pp(01V Q2) =pp(Q1) + pp(Q2) — pp(01 A Q2) (10)

As before, we need to add the dual formula, which, in this case,
expresses A in terms of V. For a simple illustration, we show how
to use this rule to compute the dual of Q;:

pp (VxVy(R(x) V S(x,y)) V VuVo(T(u) V S(u,v))) =
pp (VxVy(R(x) vV S(x,1))) + pp (Yu¥o(T(u) vV S(u, v)))
—pp (VxVy(R(x) V S(x,y)) A YuVo(T (u) V S(u,v)))

The first two expressions can be computed in similar way to Ex-
ample 2.1, while for the third expression we notice that the query
is equivalent to YxVy((R(x) V S(x,y)) A (T(x) V S(x,y))) and x is
now a separator variable, allowing us to apply Rule (8).

The basic rules plus the dual of (10) were proven in [17] to be
complete for the class of Unions of Conjunctive Queries. In our
setting that result becomes:

THEOREM 5.1 (COMPLETE SET OF INFERENCE RULES). Let L be
the set of unate FO sentences whose quantifier prefix is either V* or
3* (same as in Theorem 4.1). Then, the basic rules plus the inclu-
sion/exclusion rule are complete for L. In other words, if Q € L and
PQE(Q) is in polynomial time, then we can compute pp(Q) by using
lifted inference.

To keep the presentation at a high level, we have omitted several
technical details, like the need to perform shattering and ranking
on a query before applying the rules, and the important role of
cancellations; we refer the reader to [74] for a detailed exposition.

Discussion We end this section with a discussion about the sur-
prising need to use the inclusion/exclusion formula. This formula
is never used in other settings of probabilistic inference, but instead
it is replaced by the disjointness rule: p(U vV V) = p(U) + p(V), if the

"The subscript J stands for “join”. Qj is the first in a progression of queries that
illustrate the applicability of various lifted inference rules, see [74].
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events U, V are disjoint, meaning U A V = false. Indeed, by using
the disjointness rule one can derive p(AV B) = p(AV (mA A B)) =
p(A)+p(=AAB) = p(A)+p(B)—p(AAB), making inclusion/exclusion
unnecessary. For that reason inclusion/exclusion is not used in ei-
ther graphical models or weighted model counting. This leads to
the question whether we can replace inclusion/exclusion with the
disjointness rule and still have a complete set of lifted inference
rules. The answer is currently unknown. The difficulty lies in the
fact that the inclusion/exclusion rule exposes the possibility to can-
cel terms, and cancellation is a critical step in lifted inference. For a
high level illustration, consider a query of the form AB Vv BC v CD,
where A, B, . .. are sentences, and AB abbreviates A A B. The inclu-
sion/exclusion formula expands into 7 terms, but two of them are
equal to pp(ABCD) and cancel out, and we obtain: pp(AB V BC V
CD) = pp(AB) + pp(BC) + pp(CD) — pp(ABC) - pp(BCD). If the
query ABCD is #P-hard and all others are in polynomial time, then
the cancellation is absolutely necessary in order to avoid trying to
compute pp (ABCD). It remains open whether any application of
the inclusion/exclusion formula followed by cancellations can be
expressed as a sequence of applications of the disjointness rule.’
An important progress was made recently by Monet [58], who has
answered this question in the affirmative for a significant special
case; the general case still remains open.

6 QUERY PLANS

An important aspect of probabilistic databases is the need to per-
form both probabilistic inference and traditional query processing.
Modern database engines perform query processing by first con-
verting the query into a query plan, optimizing it, then executing
that plan. Probabilistic inference can be performed on top of that
plan, by modifying each operator to also compute the probabilities
of their output tuples. Every lifted inference rule corresponds to
some query operator that performs simple operations on the prob-
abilities; we refer the reader to [31, 32] for details. Therefore, if the
query is “liftable”, in particular PQE(Q) is in polynomial time, then,
with the right plan, the query’s probability can be computed during
standard query processing of the plan.

What if the query is not liftable, e.g. because PQE(Q) is #P-hard?
We can still use any query plan for Q and modify its operators to
compute some probabilities, but does the resulting probability have
any meaning at all? Surprisingly, for a conjunctive query without
self-joins, this probability is guaranteed to be an upper bound of
pp(Q). This means that we can always compute an upper bound
on pp(Q) during standard query processing, thus benefiting from
the performance of modern database engines. A lower bound can
also be computed in similar ways. We will describe here the main
intuition and refer the reader to [31, 32] for details.

We consider only Conjunctive Queries without self-joins and
assume that the probabilistic database is represented in a standard
relational database, where each relation has an additional proba-
bility attribute P. Thus, a relation R(x, y) becomes R(x, y, P) where

8When using the disjointness rule we must also ensure that the canceled terms do not
show up again when we eliminate negation. Continuing our example, a wrong way
to apply disjointness is ABV BCV CD = ABV ABC V ABCD vV ABCD because
to in order to compute pp (ABCD) we need again the term ABCD. To avoid this
term, we can write ABV BCV CD = ABC V BC V BCD, and now we can compute
PD (ABC) =pD (AB) — pp(ABC) etc.
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P stores the probability of the tuple. We need two operators. (1)
Natural join >4, modified to multiply the probabilities of two argu-
ments, and (2) Group-by/aggregate y, where the aggregate operator

isud®v def 1 - (1—-u)(1 - v). We illustrate the result of both
operators on the database shown in Figure 1(a):

Ry S =
Yx,0(S) =
x|y |P
ay b] P191 X P
ai | by | p1gz ar | 1-(1-q1)(1 - q2)
az | by | p2g3 az | 1= (1-¢q3)(1-qa)(1-gs)
az | by | p2qa as | ge
az | bs | pags

A conjunctive query typically admits several such plans. How-
ever, not all plans lead to correct probability computations. For
example, consider the query JxJy(R(x) A S(x,y)) and the two
plans below:

Plan; = yg Plany =  yg
\ \
NX ><1.7('
P PR
R S R }/x’@
\
S

If we ignored the probability field, then these two plans are equiva-
lent, as they both simply check if the join R > S is non-empty, but
they return different probabilities, and only the second plan returns
the correct ° probability pp (Q).

A query plan that returns the correct probability of pp(Q) is
called a safe query plan. In general, a query may admit zero or more
safe plans, and several unsafe plans, and simple criteria exists for
checking if a plan is safe [32].

It turns out that the result of any plan, safe or unsafe, is an upper
bound on pp(Q) [32]:

THEOREM 6.1. Let Q be a Boolean conjunctive query without self-
joins, and Plan be a query plan for Q. Let Planp denote the result
of the plan when executed on a database D. (When Q is a Boolean
query then this is a single number representing the probability field
P.) Then, for every TID D, Planp is an upper bound of pp(Q) [32].
Moreover, there exists a simple modification of the probabilities in the
database D, such that, denoting D; the resulting database, the plan
executed on D1 is a lower bound of pp(Q) [31]. In summary:

Planp, < pp(Q) < Planp

This leads to the following strategy for computing an upper
bound of pp(Q): generate all plans, compute their probabilities,
return the minimum value. This is a guaranteed upper bound of
pp(Q). Naively computing all query plans leads to significant per-
formance degradation (two orders of magnitude) but several op-
timizations, such as pruning some plans that are dominated by
others, and reusing common subexpressions among plans, brings
the performance close to that of standard query processing [32].
As stated in the theorem, one can also compute a lower bound of

°Plan; = 1= (1= p1q1)(1 = p1g2)(1 = p2q3)(1 = p2qa) (1 = p29s).
Plany = 1= (1= p1(1 = (1= q1)(1 = q2)))(1 = p2(1 = (1 = g3)(1 — q4)(1 = g5)))-
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pp(Q), however this requires that we modify the probability ¢.P of
each tuple t to 1 — (1 — t.P)l/k, where k is the number of times ¢
occurs in the lineage DNF of Q on the database [31]. Computing
the counts k could be done using a group-by-count(*) query in SQL
(at additional performance cost).

We note that all results discussed in this section are limited to
conjunctive queries without self-joins. It is open how to extend
these results beyond this class of queries.

7 QUERY COMPILATION

One important finding in probabilistic databases is that lifted infer-
ence is provably more efficient than grounded inference. We have
seen that lifted inference refers to solving PQE(Q) by reasoning
only on the first order syntax of the query. In contrast, in grounded
inference we first compute its lineage, then apply some weighted
model counting algorithm to the lineage. It turns out that there ex-
ists queries for which lifted inference is in polynomial time, and any
grounded inference method takes exponential time. We describe
this result here, after a brief review of the necessary background.

In model counting we are given a Boolean formula F over vari-
ables X1, ..., Xy, and ask for the number of truth assignments of F,
denoted by #F. This is one of classic #P-hard problems introduced
by Valiant [78], who proved that the problem remains #P-hard even
if the formula is restricted to positive 2CNF (or positive 2DNF, by
duality). In the weighted model counting version, each variable X;
is associated with a weight w;. This is equivalent to the following
formulation (see the Appendix): given a probability p; € [0, 1] for
each Boolean variable Xj, i = 1, n, compute the probability that F
is true, p(F), when each variable X; is set to true independently,
with probability p;. This problem has been studied extensively in
the literature, see [35] for a survey.

The lineage of a query Q over a domain DOM is defined as follows.
Associate to each tuple ¢; € Tup(DOM) a Boolean variable X;. Then,
each truth assignment 6 : {X1,...,X,} — {0,1} corresponds to
a possible world W C Tup(DOM), consisting of those tuples t; for
which the corresponding variable X; is set to true. The lineage of
Q is the Boolean function Fg pov defined as follows: Fg poy is true
on an assignment 6 iff the possible world W corresponding to 0
satisfies the query: Fo pou[0] = 1iff W |= Q. If Q is a first order
query, then the lineage can be computed inductively on its structure
and its size is polynomial in the size of the domain; we review this
in the appendix.

Grounded inference first computes the lineage Fo,pov, then uses
some weighted model counting algorithm, call it A, to compute the
probability of the lineage. On one hand, this works for any query
and any database, while lifted inference works only on queries
where PQE(Q) is in polynomial time. On the other hand, lifted
inference always runs in polynomial time, hence, naturally, we
would like A to also run in polynomial time on the lineage Fp pom
whenever Q is liftable. This leads to a natural question.

Question 7.1. Fix a weighted model counting algorithm A. Does
A run in polynomial time for every liftable query Q?

If PQE(Q) is #P-hard, then, of course, we don’t expect A to
run in polynomial time. The question only asks whether A runs
in polynomial time for liftable queries, hence when PQE(Q) is in
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polynomial time. The answer, of course, depends on the algorithm
A, and on the language from which Q is drawn.

Modern exact model counting algorithms such as Cachet [71] and
sharpSAT [75] are based on full backtracking search using the DPLL
family of algorithms ([22, 23]), extended with caching [5, 57] and
components (Relsat [7]). A survey can be found in [35]. All model
counting algorithms and knowledge representations (discussed
below), are based on three simple probabilistic inference primitives:

p(F) = p(F[X =0D)(1—p(X)) +p(FIX = 1])p(X) (11)
p(F1 AFy) = p(F)p(F2) if "Fy, Fy are independent" (12)
p(F1V F2) = p(Fp) + p(F2) if "Fy, Fy are disjoint events" (13)

A DPLL-style algorithm for computing p(F) maintains a cache of pre-
viously computed probabilities, and computes the probability p(F)
of a Boolean expression F by applying one of the rules (11) or (12).
Rule (11) is called a Shannon expansion. The choice of the Boolean
variable X does not affect correctness, but affects performance dra-
matically. Some DPLL-style algorithm also apply Rule (12), which
is called components. For that they need to write the formula as
F = F; A F; such that Fy, F» do not share any common Boolean
variables. If F is a CNF expression, then this can be done by com-
puting the connected components of the primal graph, hence the
name of the rule.

Rule (13) is applied only when Fi, F are disjoint events, meaning
F1 A Fy = false. Testing disjointness is co-NP hard, and therefore
DPLL-style algorithm do not use this rule. We mention it here only
briefly, because it appears in d-DNNFs described below.

An alternative approach to DPLL-style algorithms is knowledge
compilation, which converts the input Boolean formula into a rep-
resentation (usually a circuit) from which the model count can be
computed efficiently in the size of the representation [18, 19, 42, 59].
We describe here three such representations. A Free Binary Decision
Diagram, FBDD, is a rooted DAG with two leaf nodes labeled 0
and 1 respectively, such that, every internal node is labeled with a
Boolean variables X;, has two outgoing edges, labeled 0 and 1, and
every path from the root to a leaf node contains every variable X;
at most once. An Ordered Binary Decision Diagram, OBDD, is an
FBDD such that every path visits the variables in the same order. A
decision-DNNF is an FBDD extended with independent-A nodes, i.e.
restricted to have subtrees with disjoint sets of variables. Figure 2 il-
lustrates a simple FBDD and decision-DNNF; see also the discussion
in [9]. Finally, a d-DNNF (disjoint-Deterministic-Negation-Normal-
Form!%) is a circuit whose leaf nodes are labeled with variables and
whose internal nodes are labeled with V nodes whose children are
disjoint events, A nodes whose children are independent events,
and — nodes are applied only directly to variables.

Huang and Darwiche noted the following strong connection be-
tween knowledge compilation and DPLL-style algorithms: the trace
of any DPLL-based algorithm is a type of knowledge representa-
tion [19, 21]. More precisely: (a) The trace of a DPLL-style algorithm

10The terminology used in d-DNNF is this: A-nodes are called “disjoint” and V-nodes
are called “deterministic”. We prefer to use the terms “independent” and “disjoint”
instead, which are common in probability theory. Also, in d-DNNF the — operator
is only allowed to occur above a leaf nodes, raising the question whether F and —=F
admit d-DNNF’s whose sizes are polynomially related (this question is open). This
restriction on - is removed when studying the circuit complexity; Monet [58] coined
the term d-D for a d-DNNF with this restriction removed.
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(b)

Figure 2: Illustration of an FBDD and a decision-DNNF from [9]. (a) An FBDD representing the Boolean formula (-X)YZ v
XY Vv XZ. (b) A decision-DNNF representing the Boolean formula (-X)YZU v XYZ v XZU.

with caching and with a fixed variable order is an OBDD. (b) The
trace of a DPLL-style algorithm with caching (without restriction
on the variable order) is an FBDD. (c) The trace of a DPLL-style
algorithm with caching and components is a decision-DNNF.
Results on Query Compilation With this background in mind,
Question 7.1 can be restated by asking for the performance of DPLL-
style algorithms, with or without components, on a query’s lineage.

THEOREM 7.1. Let DOM be a domain of size n.

(i) Let Q be a conjunctive query without self-joins. (a) If Q is
hierarchical, then the lineage Fg pov admits an OBDD whose
size is linear in n [46, 61]. (b) If Q is non-hierarchical, then
every OBDD has size > (2" - 1)/n [9].

(ii) There exists an infinite set of Unions of Conjunctive Queries
Q such that PQE(Q) is in polynomial time, but every decision-

DNNF of the lineage Fg pom has size 2Q(Vn) [9].

The first part of the theorem strengthens the dichotomy for
conjunctive queries without self-joins. In one class queries are hi-
erarchical, their OBDD have linear size, and their complexity is in
polynomial time. In the other class queries are non-hierarchical,
their OBDD is exponentially large, and their complexity is #P-hard.
This result extends to the following dichotomy for Unions of Con-
junctive Queries [9, 46]: in one class all UCQs queries are inversion-
free (a syntactic notion) and admit OBDDs of linear size, and in the
other class all queries have inversions, and their OBDD’s have size
> (2" — 1)/n. However, this dichotomy is no longer the same as
the dichotomy into polynomial-time and #P-hard: there exists UCQ
queries for which PQE(Q) is in polynomial time, yet their smallest
OBDD is exponentially large.

The second part of the theorem implies that lifted inference is
strictly more efficient than any grounded inference using a DPLL-
style algorithm. This is independent of what heuristics is used
to choose the variable order, or the caching policy, or whether it
implements components or not. Indeed, if we ran such an algorithm
on a database instance with a domain of size n, then its runtime
is given by the size of the trace which, by the theorem, is 20(n),
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In contrast, lifted inference computes these queries in polynomial
time.

8 SYMMETRIC DATABASES

The vision of lifted inference in Statistical Relational Models [66] is
to exploit symmetries in the graphical model obtained after ground-
ing a knowledge base. In fact, the term “lifted inference” is some-
times used to mean only exploiting symmetries, and not to refer
to the inference rules discussed in Sec. 5. A symmetric probabilistic
database is a database where, for every relation symbol R in the
vocabulary, all R-tuples in Tup have the same probability, pg. A
natural question to ask is how does the complexity of PQE change
if we assume that the input database is symmetric.

Notice that a symmetric database is very restrictive, since every
possible tuple of a given relation must have the same probability,
it is not sufficient to assign the same probability to all tuples in a
database. For example, even assuming all probabilities in Fig.1 are
equal, p1 = py = - -+ = g, the database is not symmetric, because
the possible tuples that are not in the database have probability zero.
Symmetric databases are motivated by Markov Logic Networks,
since their translation to a probabilistic database is symmetric, e.g.
the database over the vocabulary Manager, HighlyCompensated, R
defined in Sec. 3 is symmetric, because every tuple in Manager has
probability 1/2, every tuple in HighlyCompensated has probability
1/2, and every tuple in R has probability 1/2.9.

Surprisingly, symmetric databases can lower the complexity of
query evaluation, as observed in [44]. For example, consider the
query Hy = VxVy(R(x) V S(x,y) V T(y)), and assume that the input
is a symmetric database over a domain of size n. Fix two numbers
0 < k,{ < n, and condition on the event |R| = k and |T| = ¢: the
probability that Hy is true is pg‘z_k" because all n® tuples (i, ) in
S must be present, except the k¢ tuples where i € Rand j € T.
This leads to the following expression, which is computable in
polynomial time in n:

n\(n\ k -k, —, n?—k¢
pD(Ho):k;) (k)([)PR(l_PR)n ph(1-pr)"Cpt
,t=0,n
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Here pg, ps, pr are numbers in [0, 1] representing the probability
of tuples in the relations R, S, T respectively.
Van den Broeck et al. proved the following surprising result:
THEOREM 8.1. [24] For every query Q in FO?, the complexity of
PQE(Q) over symmetric databases is in PTIME

This is an important step towards realizing the original vision of
lifted inference in statistical relational models: exploit symmetries
of lifted models in order to speed up probabilistic inference. The next
natural question is whether we can generalize this result beyond
FO?. The answer is, mostly no:

THEOREM 8.2. [8] (a) There exists a sentence Q € FO? such that
PQE(Q) over symmetric databases is #P1-hard. (b) There exists a
conjunctive query Q such that PQE(Q) over symmetric databases is
#P1-hard. (c) For every y-acyclic conjunctive query without self-joins,
PQE(Q) is in polynomial time.

The class #P; consists of #P problems where the input is given
in unary. When the database is symmetric, then PQE(Q) is in #P;,
because the input consists only of the number n representing the
size of the domain,!? which is given as 111 - - - 1. Very little is known
about the class #P, in particular no natural complete problems
are known for this calss. The #P;-complete queries mentioned in
the theorem are not “natural”, i.e. the theorem proves that they
exists (and could be constructed), without giving their expression
explicitly.

9 OTHER RELATED WORK

The challenge of query evaluation on probabilistic databases has
lead to many innovative ideas that broaden our understanding of
probabilistic inference in general. We briefly mention here some of
them.

Amarilli et al. [1] study the PQE problem by restricting the data-
base to have a bounded tree-width. While most of the work on
probabilistic databases has fixed the query and allowed the data-
base to be arbitrary, this work takes the opposite view, by restricting
only the database. They show that, for every query in Monadic Sec-
ond Order logic, PQE(Q) is in polynomial time, when the input
database is restricted to have a tree width < k, for some fixed k.
This is a very powerful result, which should be followed up by
efforts to identify applications where the database has bounded
tree width.

Several probabilistic database systems have been built in the last
decade or so. The most successful system built on top of an existing
RDBMS is MayBMS [40], which implements a form of weighted
model counting inside postgres’ query plans. When the query is
liftable, then MayBMS ensures an execution plan that is in polyno-
mial time, otherwise it does a full DPLL-style search. ProbLog [51]
supports a datalog-style query language with probabilistic prim-
itive, and has found numerous applications in machine learning.
ProbLog is developed from scratch (i.e. it is not extending a data-
base system); during query execution it first grounds the query,
then compiles the lineage into an OBDD or an SDD, then performs
probabilistic inference on the compiled representation.

Many extensions of the basic tuple independent databases have
been considered in the literature. Ceylan et al. [12] study open

"'We assume here that the relation probabilities pg,, pr,. - - . are known and fixed.
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world probabilistic databases, where each tuple not explicitly listed
in the database is associated with some small probability of being
present, while Friedman and van den Broeck [28] add constraints
over the missing tuples. Also motivated by open world databases,
Grohe and Lindner study TIDs over infinite probabilistic databases,
where the set of possible tuples is infinite [38, 39], leading to subtle
and difficult semantic questions.

Recursive queries and infinitary logics over probabilistic databases
are studied in [6] and [2] respectively.

A closely related area is that of incomplete databases. An incom-
plete database is simply a collection of possible worlds, without
probabilities. In other words it is a probabilistic database without
the probabilities. Incomplete databases were originally motivated by
the need to model correctly the treatment of NULLs in SQL [43], but
today they find numerous applications in query answering using
views, data integration and exchange, inconsistency management,
see the survey by Libkin [55]. Since they lack probabilities, the
query answering is defined in terms of certain answers: an answer
is certain if it is an answer in any possible world of the incomplete
database. In other words an answer is certain if, for any probabil-
ity distribution on the possible worlds of the incomplete database,
its probability is 1. Sometimes requiring certainty is too stringent,
since it will reject many answers just because they are missing
from one or a few possible worlds. One approach to relax this strict
requirement is to return answers whose asymptotic probability is
equal to 1 [14, 56]: more precisely, we endow the possible worlds
with some uniform distribution, similar to symmetric databases,
then let the domain size tend to oo, and return those answer whose
limit probability is 1.

10 CONCLUSIONS

Research on probabilistic database was conducted on a rich back-
ground of probabilistic graphical models, weighted model counting,
and statistical relational models. They bring a new perspective to
these areas, by adopting tools specific in databases and database
theory: the separation of query and data in data complexity, the
use of constraints, the translation of a query into a query plan. At
a conceptual level, probabilistic databases represent one approach
to the integration of logic and probability theory, putting most
emphasis on the complexity of query answering.

Despite the collection of theoretical results on the tractable
queries, probabilistic databases have yet to lead to commercial
systems. The major limitation is the lack of techniques for comput-
ing “the other” queries, namely those whose complexity is #P-hard.
This limitation becomes particularly severe when modeling cor-
relations through database constraints, because constraints are
typically universally quantified first order sentences for which even
approximating the output probability is NP-hard in general [25, 68].
A new approach is needed for progress in this space, one that is
likely to use special properties of both queries and data. With the
notable exception of [1], most of the work on probabilistic databases
has imposed restrictions only the query, and assumed the worst
case for the database. Recent work creates hope for this direction
by identifying restrictions on the structure of the Boolean expres-
sions that are sufficient for model counting to be in polynomial
time [11, 48].
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Further reading This paper is not meant as a comprehensive
survey and omits many results on probabilistic databases (including
by the author!), as well as many technical details. Readers interested
in detailed surveys are referred to [25, 74].
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WEIGHTED MODEL COUNTING

We review here the connection between weights, probabilities, and
factors. Our running example is the Boolean formula

F=(X1VX2)A(X1VX3)A(X2V X3) (14)
and Figure 3.

Let X1, ...,Xpn be Boolean variables. A truth assignment or a
model is a function 0 : {X3,...,Xp} — {0, 1}, or, equivalently, 6 €
{0, 1}"*. Given a Boolean formula F, a model of F is an assignment 0
that satisfies F.

Let p1,...,pn € R. We interpret these numbers as the probabili-
ties of X1, ..., X, being set to 1, and define:

p@E ] a-po- [] #

1:0(X;)=0 i:0(X;)=1

(15)

When p; takes standard values, p; € [0, 1], then this is precisely
the probability of the assignment 6 if we assign each variable X;
independently the value 1, with probability p;.

Alternatively, let w; be a number € R U {co}, called the weight
of the Boolean variable X;, and define the weight of a model:

def

weight(6) = (16)

wi
i:0(X;)=1
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0:
Xy | X2 | X3 || Formula F | p(6) weight(0) || Feature G | weight’(6)
0] 0710 0 1-p)A—p2)(1—p3) | 1 1 Wy
0 0 1 0 (1=p1)(1 = p2)ps3 w3 1 W3 Wy
0] 1]0 0 (1=p1)p2(1—p3) ) 1 Wowy
0| 1] 1 1 (1 =p1)p2ps Wow3 1 Wow3 Wy
1 0 0 0 p1(1—=p2)(1—p3) w1 0 w1
1 0 1 1 p1(1 = p2)p3 wiw3 0 w1 w3
1|10 1 pip2(1 —p3) Wiws 1 W1 Wy
1 1 1 1 pip2ps W1 WaW3 1 W1 W2 W3Wyg

Figure 3: Probabilities and weights

Denote Z the sum of the weights of all models. It is easy to verify
that Z has a simple closed form:

Z € weight(9) = [ ] +wi)
] i

We define:

2(0) Srveight(8) /2 (17)

It is easy to check that, when p; = w;/(1 + w;), or, equivalently
wi = pi/(1 — p;) for all i = 1,n, then the formulas (15) and (17)
are equal. Standard probability values p; € [0, 1] are mapped to
standard weights w; € [0, co], but the equivalence of (15) and (17)
holds even for non-standard values.!?

The weight, and the probability of a Boolean formula F are:

weight(F) def Z weight(0)
0:01=F
def .
p(F) = weight(F)/Z
For our running example Eq.(14), Figure 3 shows the eight as-
signments, four of which are models of F and we derive:
weight(F) =waws + wiws + waws + wiwaws

A Markov Network (NN) defines a multivariate probability dis-
tribution as a product of factors [52]. In our setting, we define a
factor as either a single-variable factor (w;, X;), or as a pair (w, G),
where w € R and G is a Boolean formula. The value of the factor
is w when G is true, and 1 otherwise. The factorized probability
distribution, p’, defined by a set of factors ¥ is:

[T wx

:0(X;)=1

7' € weight' (6)
0

weight' (6) def

w
(w,G)eF0=G

2/(8) weight (8) /2’

Continuing our running example in Figure 3, suppose we add
the factor (wy, (X1 = X3)). This modifies the weight to weight’ ()
shown in the last column in Figure 3, and the new weight of F is:

weight' (F) =wawswg + wiws + wawswg + Wi waw3w
g 2W3 w4 1w3 2W3W4 1W2wW3wq

20ne has to require w; # —1, to ensure that pi € (—00, 00) and that Z # 0.
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Thus, in an MN the normalization factor Z’ no longer has a simple
closed form expression, and there is no longer a simple mapping
from weights to probabilities.

Readers familiar with MN’s may notice that in our setting the
factor (w, G) takes only values 1 and w, while, in a general MN, a
factor over k variables make take 2% values, wi, . .., wyr. However,
this can be converted into a product of 2k factors, where each takes
only values 1 and w; respectively, hence our definition is w.l.o.g.

Finally, we show now how to convert an MN into an independent
model conditioned on a constraint, by replacing the factor (w4, G)
with a new independent variable X4 and a constraint I'. We show

two approaches. In the first, weight(Xy) def wy and T’ def Xy &
G). Let p”” denote the probability distribution defined by the 4
independent random variables X3, . .., X4. Then p’(0) = p”’ (6]T);
indeed, while p”’ is a distribution over 16 outcomes (since we have
4 variables), only 8 of them satisfy the constraint I', hence our claim
is an easily verified identity about two distributions over eight
outcomes.

The second approach defines weight(Xs) = 1/(ws — 1) and T’ def
X4 V G. We claim that here, too, p’(0) = p”’(0|T). The main idea
in the proof is the following observation. In the distribution p’
the factor G contributes either a weight 1 or wy, depending on
whether G is false or true under the assignment 6: importantly,
their ratio is 1 : wy. Consider now the weights contributed by X4
in the new distribution conditioned on I'. When G is false, then X4
must be true and it contributes the weight 1/(w4 — 1). When G is
true, then Xy can be either false or true, and the sum of the two
weights is 1 + 1/(wg — 1) = ws/(wg — 1). The ratio of these two
factors is also 1 : wg. We invite the reader to complete the proof
of p’(8) = p”’(0IT'). Finally, we notice that, when ws < 1, then
weight(X4) < 0.In particular, the probability of X4 is a non-standard
value, either < 0 or > 1. However, any conditional probability
p”/(F|T) is still a standard value in [0, 1].

LINEAGE OF AN FO SENTENCE

We briefly review the standard, inductive definition of the lineage
of an FO sentence Q:

Fo,n0,,00M =F0,,00M A FQ,.00M  FO,vQ,,00M =FQ,,00M V FQ,, poM

Fax0,pom = \/ Fola/x],00M
a€DoM

Fyx0,pom = A Fola/x1,pom
a€DOM

F_0,p0m =—FQ, pom Ft;,pom =X
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