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ABSTRACT: Palladium-catalyzed meta-selective C−H deutera-
tion of a series of substrates, including phenylacetic acids,
hydrocinnamic acid, benzylphosphonate, benzylsulfonate, and
benzyl and phenyl ethyl alcohol ester, is developed by using a
pyridine-based directing template. The template is installed into
the substrate through a practical ester linkage. Under mild
reaction conditions, a variety of phenylacetic acids containing
alkyl, methoxyl, and halo substituents are compatible in the
reaction, resulting in high levels of D-incorporation at the meta
position.

Incorporation of deuterium atoms to generate valuable
deuterium-labeled compounds is of high importance for

their utility in mass spectrometry and mechanistic and
metabolic studies.1 Especially, in the pharmaceutical industry,
incorporation of deuterium paves a way to alter and explore
the ADME properties of existing drug candidates.2 In 2017, the
FDA approved the first deuterated drug Austedo (deute-
trabenazine).2g The wide applications of deuterium-labeled
compounds in these areas demand a suite of synthetic methods
to install the deuterium atoms in specific positions. However,
how to regioselectively introduce deuterium atoms remains a
challenging synthetic problem. Metal-catalyzed C−H activa-
tion has allowed for the direct hydrogen isotope exchange
(HIE) in the molecular substrate, thus circumventing the need
for the multistep synthetic processes. In contrast with a
heterogeneous metal catalyst, homogeneous metal-catalyzed
HIE methods are typically more site selective.1a,b Assisted by a
directing group, Ir,3 Rh,4 Pd,5 and Ru6 catalysts have been
adopted in deuteration of ortho-C−H of aromatic compounds
(Scheme 1a). Complementary to the directing group approach,
Chirik and co-workers reported the Fe-catalyzed C−H bond
deuteration and tritiation at sterically unencumbered posi-
tions.7 However, the realization of the regioselective meta-C−
H deuteration still remains a challenge.8

Compared to ortho-C−H activation of arene, directed
remote C−H activation has drawn more and more attention
in recent years.9 The distance and geometry of a directing
group are key recognition parameters to activate remote C−H
bonds. In 2012, we first reported template-directed Pd-

catalyzed meta-C−H activation of toluene derivatives and
hydrocinnamic acids through a cyclophane-like pretransition
state.9m This approach made it possible to recruit a metal
catalyst to the remote position and override the governance of
electronic properties and steric biases of the substituents. Since
then, we and others have developed many templates that can
direct remote meta- and even para-C−H activation, including
olefination,9a,b,e,g−j arylation,9a acetoxylation,9b,h silylation,9f

germanylation,9f cyanation,9b,d and iodination.9a,g Prompted
by our recently developed palladium-catalyzed ortho-deutera-
tion of phenylacetic acids, benzoic acid, and benzamide
substrates through protonolysis of weakly coordinated unstable
palladacycles,5c we envisioned that assisted by a directing
template we could install deuterium at the meta-positions of
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Scheme 1. Directed C−H Deuteration
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phenylacetic acids through protonolysis of cyclophane-like
palladacycles (Scheme 1b).
A pyridine-containing template has been utilized to realize

meta-C−H activation in recent years by taking advantage of the
σ-coordinating property of the nitrogen atom.9a,b,d,g From a
practical perspective, the directing group should be easily
installed and readily removed for late-stage modification of
pharmaceuticals and bioactive compounds. Thus, we began our
initial studies by installing different pyridine-containing
templates into phenylacetic acids through an ester linkage.9f,d,i,k

As shown in Table 1, when the template containing a simple

pyridyl moiety in substrate 1 was subjected to meta-C−H
deuteration, no D-incorporation was observed in the reaction
(entries 1 and 2). It is possible that the strong coordination of
pyridine with Pd(II) deactivates the catalyst in the reaction. To
modulate the coordination ability, we introduced an electron-
withdrawing fluoro group into the pyridine ring, which has
been shown to be an efficient method to improve the yield and
selectivity in Pd-catalyzed meta-C−H activation.9a,g To our
delight, the fluoro-substituted pyridine templates improved the
D-incorporation (entries 4−6). The template containing 2-
fluoro-3-pyridyl (T6) was the most efficient and gave the
desired product in 75% yields with 94% deuterium
incorporation. Both nitrile-containing template and the
pyrimidine-based auxiliary have been shown to be efficient
directing groups in Pd-catalyzed meta-C−H activation of
arenes;9 however, they did not work in meta-C−H deuteration
under the standard reaction conditions (entries 3 and 7). No

D-incorporation is observed in the absence of Pd(OAc)2,
indicating the Pd catalyst is indispensable in the reaction
(entry 6). Different deuterium-containing solvents (D2O,
[D4]-methanol, and CDCl3) were also investigated, but no
deuterated product was found under these conditions (entries
8−10). When [D1]-acetic acid was used in the reaction, the
deuterated product could be obatained in 75% yield with 88%
meta-deuterium incorporation (entry 11). Decreasing the
reaction temperature, lowering the catalyst loading, or
shortening the reaction time led to a lower degree of
deuteration (entries 6 and 12−15).
The established template was then attached to a variety of

phenylacetic acids to test meta-C−H deuteration (Scheme 2).

Regardless of the steric hindrance and electronic properties of
the substituents, methyl-, methoxy-, fluoro-, and chloro-
substituted phenylacetic acids were compatible in the reaction
to give the corresponding meta-C−H deuterated products with
>90% deuterium incorporation (2a−2k). Under the mild
reaction conditions, the benzylic positions of phenylacetic
acids were not deuterated according to the 1H NMR
spectroscopic analysis.5c The halide groups in products provide
a useful handle for further structural elaborations. Substrates
with alkyl substitution at benzylic positions afforded the
deuterated product with high regioselectivity and deuterium
incorporation (2l−2n). Notably, the meta-deuterated ibupro-
fen derivative could be obtained in 71% yields with >98%
meta-deuterium incorporation (2o). The regioselectivity of
product 2o was determined by NOE analysis. The template
can also be effectively implemented to the hydrocinnamic acid
ester scaffold, giving the meta-deuterated product 2p.
Phosphonate and sulfonate are useful synthons in the

synthetic chemistry and could be converted to the alkenyl
product by Horner−Wadsworth−Emmons reactions10 and
Julia olefination.9f,i,11 To demonstrate the great flexibility of

Table 1. Optimization of the Reaction Conditions for meta-
C−H Deuterationa

aReaction conditions: 1 (0.1 mmol), Pd(OAc)2 (10 mol %), solvent
(1 mL), 80 °C, 24 h. bDeuterium incorporation was determined by
1H NMR spectroscopic analysis. cIsolated yield. dWithout Pd(OAc)2.
e5 mol % Pd(OAc)2.

Scheme 2. Scope of Phenylacetic Acids Derivatives for meta-
C−H Deuterationa,b

aReaction conditions: 1 (0.1 mmol), Pd(OAc)2 (10 mol %),
[D4]acetic acid (1 mL), 80 °C, 24 h. bDeuterium incorporation
determined by 1H NMR spectroscopic analysis is shown in square
brackets. c2 h. d3 h.
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this template, we subjected the benzylphosphonate and
benzylsulfonate substrates to meta-C−H deuteration condi-
tions. Gratifyingly, the template T6 could overcome the
limitation of ortho-C−H activation directed by P(O)(OEt)
and to effectively realize the meta-C−H deuteration (Scheme
3).10b,12

Alcohols are prevalent in the in natural products and drug
molecules. Previously, our group first adapted the strong
coordination of pyridine template (T8) to realize the meta-C−
H bond olefination and iodination of benzyl and phenyl ethyl
alcohols.9g We wondered whether this pyridine template could
be used in the meta-C−H bond deuteration of alcohols. To our
delight, methyl-, methoxy-, and fluoro-substituted benzyl
alcohols could be smoothly deuterated at the meta-position.
As shown in Scheme 4, substrates with electron-donating
groups showed better reactivity with higher meta-deuterium
incorporation (4a−4d). Steric hindrance has little effect in the
reaction (4e, 4f). Deuteration of secondary benzyl alcohols 3g

provided similar results to that of primary benzyl alcohols. By
increasing the chain length from benzyl alcohols to phenylethyl
alcohols, the template also showed high selectivity with >92%
meta-C−H deuteration (4h−4l).
Finally, the template could be easily removed by hydrolysis

of 2e under basic conditions, giving the meta-deuterated
phenylacetic acids 5 and the directing group in good yields
(Scheme 5).

In conclusion, we have developed Pd-catalyzed template-
assisted meta-selective C−H deuteration of phenylacetic acid
scaffolds. The pyridine-based template was anchored to the
substrate via a practical ester linkage. A variety of phenylacetic
acids containing electron-donating and -withdrawing substitu-
ents are compatible in the reaction. Assisted by the pyridine
template, other substrate types, including benzylphosphonate,
benzylsulfonate, and benzyl and phenyl ethyl alcohol ester,
could also be meta-C−H deuterated.
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