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ABSTRACT: Isoprene hydroxy hydroperoxides (ISOPOOH) formed
by the photooxidation of isoprene under low-NO conditions play an
important role in the formation and evolution of secondary organic OH
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OH= R-

aerosols, yet multiphase processes of ISOPOOH are poorly under- oxalate EFenton-/ike
stood. By applying electron paramagnetic resonance spectroscopy, we reactions
observe that ISOPOOH undergoes aqueous-phase decomposition ISOPOOH

upon interacting with Fe(II) ions to form OH and organic radicals at OOH Fe[ll]

room temperature. To reproduce the measured dependence of OH
formation on the Fe concentrations by kinetic modeling, we postulate
that Fe(II) ions react with ISOPOOH via Fenton-like reactions to
form OH radicals with a rate constant of 7.3 X 107'® cm® s™'. At low
concentrations, oxalate forms monocomplexes with Fe(II) ions, which
can promote OH formation by ISOPOOH. However, at high
concentrations, oxalate scavenges OH radicals, thereby lowering aqueous OH concentrations. These findings provide new insight
for the atmospheric fate of ISOPOOH and reactive oxygen species generation in the aqueous phase.
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1. INTRODUCTION

Reactive oxygen species (ROS) trigger chemical reactions in

222 . . .
formation.””~*> Previous studies have shown that isoprene-

derived SOA can cause the formation of OH radicals upon

the atmosphere, playing a central role in aerosol effects on
climate, air quality, and public health." OH radicals, the most
reactive form of ROS, are of particular importance as they play
a key role in chemical transformations of inorganic and organic
compounds. Sources of OH in the aqueous phase include
uptake from the gas phase,” H,0, photolysis,”* Fenton and
photo-Fenton reactions,” * and reactions with iron ions and
peracids.” Recent studies have shown that the decomposition
of secondary organic aerosols (SOA) in water can be a
significant source of OH radicals under light'® and dark''~"*
conditions. Organic hydroperoxides contained in SOA can
decompose to release ROS upon interacting with transition-
metal ions as well as quinones contained in humic-like
substances.'*">'® Sources, sinks, and concentrations of OH
radicals in atmospheric waters are very important because they
control radical aqueous chemistry but are not quantified
rigorously.”' ™"

One of the most abundant and important SOA precursors is
isoprene (2-methyl-1,3-butadiene, C;Hg), which is emitted
from plants.”” Isoprene undergoes atmospheric oxidation by
OH radicals which under low-NO conditions leads to the
formation of unsaturated hydroxy hydroperoxides (ISO-
POOH). Further oxidation of ISOPOOH by OH produces
isoprene epoxydiols (IEPOX),”" and the subsequent multi-
phase chemistry of IEPOX leads to substantial SOA
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interacting with water and Fe(I1).">"® The fate and multiphase
processes of ISOPOOH are yet to be elucidated.

Fe ions are redox-active and reactive toward hydrogen
peroxide and organic hydroperoxides via Fenton(-like)
chemistry to induce ROS formation,™” affecting ROS
concentrations in aqueous droplets.'***™>° A recent study
suggests that the complex formation between Fe ions and SOA
components may suppress OH formation by photo-Fenton
chemistry.”® Other recent studies suggest that humic-like
substances can enhance OH formation due to the chemistry of
3132 The effect of metal—

organic complexes on ROS formation is complex and hardly

the organic acid—Fe** complex.

understood. In this study, we investigate the aqueous-phase
chemistry of ISOPOOH with Fe ions and organic ligands to
quantify the production of OH radicals.
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2. MATERIALS AND METHODS

2.1. Experiments. Two major isomers of ISOPOOH, 4,3-
ISOPOOH and 1,2-ISOPOOH, were synthesized in high
purity (>99%).*>** A total of 60 uL of sample solution was
mixed from the following chemicals in the order of 20 uL of
ISOPOOH, 20 uL of BMPO, and 20 uL of Fe(II) or Fe(III)
solution at room temperature (20—25 °C). BMPO (S-tert-
butoxycarbonyl-S-methyl-1-pyrroline-N-oxide) is a spin-trap-
ping agent that captures short-lived radicals including super-
oxides, hydroxyls, and carbon- and oxygen-centered organic
radicals to form stable radical adducts.” For metal—organic
complexation experiments, oxalic acid is chosen as a model
organic ligand because it is an abundant organic constituent in
atmospheric particles and a strong organic ligand that
preferentially complexes with Fe(Il) and Fe(III).36 ISOPOOH
(10 uL), oxalic acid (OA, 10 L), BMPO (20 uL), and Fe(II)
(20 pL) were mixed. The pH was not adjusted, and pH
measurements showed that the final solution had a pH of
between 2.5 and 4. A continuous-wave electron paramagnetic
resonance (CW-EPR) spectrometer (Bruker, Germany) was
used to detect the radical adducts at room temperature.
Control experiments showed that ISOPOOH alone, OA alone,
and Fe with OA in water do not generate any detectable
radicals, so Fe(Il) or Fe(IlI) was added last to initiate the
radical-generating reaction (i.e,, t = 0). The formation of the
radical adducts and their temporal evolution was monitored.
Each EPR spectrum was simulated by the Spin Fit module in
the Xenon software to identify the radical adducts. The Spin
Count module was further applied to quantify the concen-
trations of different radical adducts. Measurement uncertainties
were assessed by repeating a subset of samples (N = 90) and
are estimated to be 10% (Figure S1).

2.2. Kinetic Modeling. The concentrations of BMPO-OH
and BMPO-R radical adducts were simulated using a kinetic
box model with the mechanism in Table S1. The reactions in
the model include reactions of ISOPOOH with Fe species
(R18—R20) and OH radicals (R23 and R24), the formation of
different radical adducts (R28—R32), the destruction of these
adducts by self-decomposition (R33—R36), reactions with
Fe(II) (R43) and radicals (R37—R42), radical—radical
reactions (R16 and R44—R47), and Fe-oxalate complexation
chemistry (R48—R69). For the majority of reactions, rate
constants were based on literature values. Unknown or
uncertain rate coeflicients were determined using the Monte
Carlo genetic algorithm (MCGA) method’” and sensitivity
studies. The MCGA method provides a high-performance
optimization to constrain model input parameters using
experimental data. It has been successfully used in the kinetic
modeling of aerosol multiphase chemistry.”” We applied the
Visual MINTEQ 3.1 model® to estimate the equilibrium
speciation of different Fe-oxalate complexes over the range of
Fe and oxalate concentrations which were used during the
experiments. For Fe(Il), the speciation was determined at pH
3, while for Fe(IIl), the average speciation from pH 2.5 and 3.5
was determined by representing the variability during experi-
ments. Equilibrium constants were calculated using the
MINTEQ_ 3.1 speciation output and were then used to
constrain one direction of the equilibrium reaction (RS0, 51,
65, 67, and 69), so that the kinetic model is constrained by
MINTEQ 3.1 at equilibrium.

3. RESULTS AND DISCUSSION
3.1. ROS Generation by ISOPOOH and Fe. Figure 1

shows an example of the time evolution of EPR spectra from

—_—t=1
-<-BMPO-OH  -=--- BMPO-R bt
a) experiment data t=290s
—— t=344s
— t=399s
— t=454s

b) simulation

Figure 1. Examples of time-dependent (a) EPR spectra and (b)
simulated spectra of BMPO-OH and BMPO-R adducts obtained from
aqueous reactions of ISOPOOH with Fe(II). EPR spectra were
recorded at various reaction times ¢ from the initiation of the reaction
by the addition of Fe(Il). The vertical dashed lines indicate the
characteristic peaks of BMPO-OH (pink) and BMPO-R (black)
adducts.

the experiments and simulation based on aqueous reactions of
ISOPOOH with Fe(Il). The characteristic four- and six-line
signals generated by the hyperfine splitting of BMPO-OH and
BMPO-R adducts, respectively, indicate that ISOPOOH reacts
with Fe(I) ions to form mainly OH and carbon-centered
radicals in water. The fraction of BMPO-OH adducts shows a
large variation (20—80%, median = 53%), depending on the
initial concentrations of Fe(II) (Figure S2). In the absence of
iron ions, ISOPOOH does not generate detectable amounts of
any radicals in water. Note that previous studies have shown
that isoprene SOA generate OH radicals dominantly and that
the OH formation yield is enhanced in the presence of
Fe(II)."”'* 1t indicates that other organic hydroperoxides
contained in isoprene SOA are more reactive than ISOPOOH
and should be decomposed in water to form OH radicals.

Fe(III) is known to induce positive OH adduct artifacts in
EPR measurements with DMPO, a nitric oxide spin tra
similar to that of BMPO, through nucleophile substitution.””
Similarly, Fe(III) can withdraw an electron from the double
bond of BMPO, and water can attack the positively polarized
double bond of BMPO, leading to a non-spin-trap production
of BMPO-OH. Therefore, a set of EPR measurement on
Fe(Ill) and BMPO only (i.e, no ISOPOOH) were used for
baseline subtractions. After subtraction, BMPO-OH levels
from the reactions between ISOPOOH and Fe(IIl) are low
(Figure S3), indicating that radical formation by ISOPOOH +
Fe(III) is not substantial.

Figure 2 shows experimental data and kinetic model
simulations of the Fe(II)-concentration dependence of the
BMPO-OH concentrations (Figure 2a) and the OH-forming
efficiencies (i.e., molar concentration ratio of BMPO-OH and
ISOPOOH in %) (Figure 2b) at different initial ISOPOOH
concentrations at reaction time t = 290 s. Both 4,3-ISOPOOH
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Figure 2. (a) Concentrations of OH radicals as trapped by BMPO in the aqueous reactions of 4,3-ISOPOOH with Fe(II) as a function of Fe
concentrations. (b) OH formation efficiency (i.e., [BMPO—OH]/[ISOPOOH] in %) against [Fe(1I)]/[ISOPOOH] at a reaction time of 290 s.
The markers with error bars (10% uncertainty) are experimental data, and the solid lines represent kinetic model simulations.
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Figure 3. Speciation of (a) Fe(II) and (b) Fe(III) in Fe ions and oxalate solutions based on the MINTEQ 3.1 model (markers) and the kinetic
model (lines). Fe(II) and Fe(III) are uncomplexed Fe ions. Fe(ox)*, Fe(ox),”, and Fe(ox);>~ are Fe-forming complexes with one, two, and three
oxalates, respectively. The solid lines indicate kinetic model outputs in the absence of ISOPOOH and oxygen.

and 1,2-ISOPOOH isomers show very similar trends in
BMPO-OH and BMPO-R over the same ranges of Fe(II)
and ISOPOOH concentrations (Figure S4), suggesting that
radical formation from aqueous reactions of ISOPOOH and
the Fe(II) ion does not depend on isomer types and a
functional group plays a central role in radical formation.
Hydroperoxide groups (ROOH) are known to react with
Fe(II) via Fenton-like reactions, leading to the heterolytic
cleavage of the O—O bond in two ways: one forms OH
radicals (R18) and the other forms alkoxyl radicals (R19) as

13,40

Fe(Il) + ISOPOOH — Fe(IIl) + RO—+OH-

kg =73 x 10 %em®s™! (4.4 x 10°M's71) (R18)
Fe(Il) + ISOPOOH — Fe(IIl) + RO- + OH—
kg =6.6x 1077 ecm®*s™! (4.0 x 10* M™'s7") (R19)

where k is the rate coefficient determined from the MCGA
optimization method. By implementing these two reactions in
addition to other reactions as assembled in Table S1, the
model reproduces experimental data within error bars over a
wide range of ISOPOOH and Fe(II) concentrations as shown
with the solid lines in Figure 2a. The comparisons at other
reaction times also show good agreement (data not shown).

Note that kyg is in the range (107>'—6 X 1077 cm® s™") and ko
is larger (~107*° cm® s7') compared to previously reported
rate coefficients for ROOH contained in different types of
SOA.">'* The observed OH concentrations show a strong
dependence on the concentration of Fe(1l). BMPO-OH
increases initially with an increase of Fe(II), which is due to
faster turnover rates of R18 at higher Fe(II). BMPO-OH then
decreases at higher Fe(II) concentrations, which can be
explained by the decay of BMPO-OH by Fe(1I) (R43 in Table
S1)."* Note that alkoxy (RO) radicals are formed in R19 but
not detected, which may be due to the fast decomposition of
RO radicals to form R radicals (R21). The trend in BMPO-R
concentrations on different initial Fe ions or ISOPOOH
concentrations is not clear (Figure. SS), probably due to R
representing different organic radical species which may be
generated via secondary reactions of OH with ISOPOOH.
This makes the comparisons between the model and
experimental results for BMPO-R challenging, although the
model reproduces the experimental BMPO-R data to the same
order of magnitude.

Fe(Ill) is known to oxidize the ROOH groups to form
peroxy radicals (RO,) and Fe(Il) by a widely reported
reaction: Fe(III) + ROOH — Fe(Il) + RO, + H* (R20).*"*
Further reactions of ROOH with Fe(II) (R18) generate OH
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Figure 4. Effect of oxalic acid on the BMPO-OH adducts formed from BMPO trapping OH radicals generated in the aqueous reactions of 4,3-
ISOPOOH with different Fe(II) concentrations ((a) 0.11, (b) 0.68, and (c) 1.70 mM) at a reaction time of 290 s. The markers with error bars
(10% uncertainty) are experimental data, and the solid lines represent kinetic model simulations.

radicals. However, R20 is very slow (ko = 3.6 X 107 ¢cm® s™")
and thus would not contribute substantially to OH generation.
The much slower rate constant of R20 compared to those of
R18 and RI19 is consistent with the catalytic cycle of the
Fenton reactions: Fe(IlI) + H,0, — Fe(II) + HO, + H* (k;;
=33 x 107 em® s71)* is much slower than Fe(Il) + H,O,
— Fe(Ill) + OH™ + OH (ko = 1.1 X 1078 cm® s71).** Thus, a
slow reaction of Fe(III) with ISOPOOH to generate Fe(I),
which further reacts with ISOPOOH to form OH radicals, is
consistent with the low OH formation from the Fe(III)
reaction with ISOPOOH observed in our experiments.

3.2. Effect of Metal-Organic Complexation. We
further investigated the effect of metal—organic complexation
on OH production by ISOPOOH and Fe(II) with the addition
of oxalic acid (OA). Figure 3 shows the Fe speciation from the
kinetic model and the MINTEQ model at (a) [Fe(II)] = 0.68
mM and (b) [Fe(III)] = 0.70 mM. Fe(II) mainly forms a
monocomplex (Fe(ox)) with oxalate (ox, C,0,).* An
increase in [OA] leads to a steady increase in [Fe''(ox)] and a
decrease in uncomplexed [Fe(II)] (Figure 3). Fe(III) can form
mono-oxalate (Fe™(ox)*), dioxalate (Fe™(ox),”), or trioxalate
(Fe(0x),>7) complexes46 depending on the concentrations of
oxalate and Fe ions (Figure S6). At [OA] < [Fe(Ill)], an
increase in [OA] leads to a decrease in uncomplexed [Fe(I1I)]
and an increase in [Fe™(ox)*]; at [OA] > [Fe(IlI)],
[Fe"(ox)*] decreases and Fe(ox),” and Fe™(ox);>~ start
to form in the absence of uncomplexed Fe(IIl) (Figure 3).

Figure 4 shows [BMPO—OH] with three different initial
ISOPOOH and Fe(II) concentrations and various OA
concentrations. The addition of OA leads to a nonlinear
response of BMPO—OH over different OA concentrations. At
low [Fe(1l)] (Figure 4a), [BMPO—OH] shows an initial
increase followed by a sharp decrease to zero with increasing
[OA]. The initial increase is likely due to the formation of
Fe(II)-OA complexes. Fe''(ox) is known to act as a catalyst
and accelerate the reaction of Fe(II) with H,0,.*”** Similarly,
Fe'(ox) may increase the OH production of Fe(II) with
ISOPOOH. The sharp decrease is likely due to oxalate
competing with BMPO in the reaction with OH radicals
(R63).* At medium and high [Fe(II)] with low [ISOPOOH]
(Figure 4b,c), since most ISOPOOH is consumed by reacting
with Fe(II), there is limited ISOPOOH available to react with
the Fe"(ox) complex to form OH radicals. This leads to a
smaller increase in [BMPO-OH] at initial [OA]. However, as
[OA] increases, [BMPO-OH] follows the same decrease due
to the radical-scavenging activity of oxalate. This suggests that
OH formation is limited by ISOPOOH availability. In contrast,
when Fe(II) and ISOPOOH are relatively abundant,

substantial Fe(IIl) is formed via Fenton-like reactions R18
and R19. Fe(III) is more efficient in forming complexes with
oxalate than Fe(II) (Figure S6 and S7),*" thereby inhibiting
oxalate from scavenging OH radicals. Thus, [BMPO-OH] can
stay constant over a larger range of [OA].

By implementing the complex formation and associated
chemical reactions (Table S1), the model reproduces the
observed OH formation reasonably well. However, it still could
not fully explain the initial increases in [BMPO-OH] at high
[ISOPOOH] and medium [Fe(II)] (Figure 4b). This indicates
that additional OH sources related to ISOPOOH may still be
missing, which needs to be further investigated to fully
elucidate the chemistry of Fe complexes. Nevertheless, these
experimental and modeling results demonstrate the complex
behavior and effects of multicomponent mixtures on ROS
formation: organic compounds that can act as polydentate
ligands can promote the Fenton-like reactions.

The findings of this study have significant implications on
the atmospheric fate of ISOPOOH. ISOPOOH has been
mainly regarded as an important precursor of IEPOX that
triggers multiphase processes, but this study suggests that
ISOPOOH itself can trigger aqueous chemistry by forming
OH and RO radicals. RO radicals may further decompose to
form stable products such as methyl vinyl ketone, meth-
acrolein, and formaldehyde.*® With typical ambient gas-phase
ISOPOOH concentrations of 10—200 pptv’’ and a Henry’s
law constant of 1.17 X 10* M atm™' for 4,3-ISOPOOH,
aqueous concentrations of ISOPOOH are estimated to be
0.1-2.5 nM. Considering typical aqueous Fe concentrations of
1073-40 uM,”’ the OH production rates from ISOPOOH
reacting with Fe are estimated to be in the range of 107*—~1 pM
s~". Even though ISOPOOH decomposition should be a minor
source of OH radicals compared to other sources,” the formed
OH radicals should participate in reactions with surrounding
organic molecules to induce chemical transformation. These
aqueous-phase processes can be further complicated by the
complexation state of Fe ions. In the presence of oxalic acid
with typical concentrations of 0.18—12 uM,”">* kinetic
modeling predicts that the OH production rates increase up
to 2 pM s™' (double the OH production rate estimated
without oxalic acid) (Figure S8). Aqueous OH concentrations
are controlled by a complexation-mediated increase in
production rates as well as the scavenging activity of oxalate.
It should be noted that although oxalate is an abundant aerosol
constituent and a strong organic ligand,36 other metal-
complexing organic acids may also play a role in OH
production from ISOPOOH and Fe Fenton-like reactions
under atmospheric conditions.
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4. CONCLUSIONS

ISOPOOH formed by isoprene photooxidation plays an
important role in the formation and chemical transformation
of secondary organic aerosols, but the fate of ISOPOOH in
aqueous droplets has been poorly understood. In this study, we
investigated the decomposition of ISOPOOH and formation
of ROS in the aqueous phase with and without iron ions at
room temperature using electron paramagnetic resonance
spectroscopy combined with a spin-trapping technique. We
found that ISOPOOH is stable in the aqueous phase and no
ROS formation is observed in the absence of iron ions. In
aqueous mixtures of ISOPOOH and Fe(II) ions, it is shown
that OH and organic radicals are formed, while ROS formation
is insignificant for mixtures of ISOPOOH and Fe(III) ions.
The ROS formation dependence on the concentrations of
ISOPOOH and Fe(II) can be reproduced by kinetic modeling
by considering Fenton-like reactions between ISOPOOH and
Fe(II) ions as well as ROS and spin-trapping reactions. We
further investigated the effect of metal—organic complexation
on OH production by ISOPOOH and Fe(II) with the addition
of oxalic acid. At low concentrations, oxalate forms
monocomplexes with Fe(I) ions, leading to the promotion
of OH formation; however, at high oxalate concentrations, the
scavenging of OH radicals by oxalate results in a lowering of
the aqueous OH concentrations. This work highlights ROS
generation and the role of metal—organic complexation in the
Fenton-like reactions of ISOPOOH and Fe(1I) ions, providing
new insight for the atmospheric fate of ISOPOOH in the
aqueous phase. Further work is necessary to elucidate the role
and impact of generated ROS by ISOPOOH on the aqueous-
phase processing of organic aerosols in the atmosphere.
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