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Abstract. We investigate a P1 finite element method for a two-dimensional weighted
optimal control problem arising from a three-dimensional (3D) axisymmetric elliptic
state-constrained optimal control problem with Dirichlet boundary conditions.

1. Introduction

Let Ω̆ ⊂ R3 be an axisymmetric domain, and let Ω be the restriction of Ω̆ onto the
meridian half-plane R2

+ = {(r, z) ∈ R2 : r > 0}. Then,

Ω̆ = {(r, θ, z) : (r, z) ∈ Ω ∪ Γ0 and − π ≤ θ < π},

where Γ0 is the “artificial” boundary of Ω that is on the axis of rotation (the z-axis). We
will use Γ1 to denote the subset of ∂Ω that is not on the z-axis, i.e., the rotation of Γ1

around the z-axis will return ∂Ω̆.
We call a function axisymmetric if it is defined on an axisymmetric domain, and it is

independent of the rotational variable θ when written in terms of cylindrical coordinates.
We will write ·̆ above the function to indicate that a function is axisymmetric. Similarly,
we use ·̆ above a function space to denote an axisymmetric function space. For example,
L̆2(Ω̆) is the closed subspace of L2(Ω̆) that consists of square-integrable functions on Ω̆

that are independent of the θ-variable. Similarly, H̆k(Ω̆) consists of square-integrable
axisymmetric functions whose distributional derivatives of order k and under are also
square-integrable. We use H̆1

0 (Ω̆) to denote the closed subspace of H̆1(Ω̆) that consists of

functions that vanish on ∂Ω̆.
Let β be a positive constant and y̆d ∈ L̆2(Ω̆). We are interested in efficiently solving

the following axisymmetric problem after performing a dimension reduction:

(1.1) Find (y̆?, ŭ?) = argmin
(y̆,ŭ)∈K̆

[1

2
‖y̆ − y̆d‖2

L̆2(Ω̆)
+
β

2
‖ŭ‖2

L̆2(Ω̆)

]
,
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where (y̆, ŭ) ∈ H̆1
0 (Ω̆)× L̆2(Ω̆) belongs to K̆ if and only if∫

Ω̆

∇y̆∇w̆dV =

∫
Ω̆

ŭw̆dV for all w̆ ∈ H̆1
0 (Ω̆),(1.2)

y̆ ≤ ψ̆ a.e. in Ω̆.(1.3)

We assume that ψ̆ is smooth and that ψ̆ > 0 on ∂Ω̆. The condition ψ̆ > 0 on ∂Ω̆ assures
that the contact/coincidence set denoted by C̆ is a compact subset of Ω̆. This assumption
will be important throughout the paper.

Now let us perform a dimension reduction to the problem (1.1)–(1.3). Consider the 2D

domain Ω ⊂ R2
+ associated with Ω̆ and define the following weighted Hilbert space:

L2
r(Ω) =

{
v :

∫
Ω

v(r, z)2rdrdz <∞
}
.

Then, there is an isometry (up to a factor of
√

2π) between L̆2(Ω̆) and L2
r(Ω), since

(1.4)

∫
Ω̆

v̆(r, θ, z)2rdrdθdz = 2π

∫
Ω

v(r, z)2rdrdz,

where v(r, z) ∈ L2
r(Ω) is the function associated with v̆(r, θ, z) ∈ L̆2(Ω̆) that satisfies

v(r, z) = v̆(r, θ, z).

The inner-product and norm associated with L2
r(Ω) will be denoted as follows:

(v1, v2)r =

∫
Ω

v1v2rdrdz,

‖v‖L2
r(Ω) =

(∫
Ω

v2rdrdz

)1/2

.

Note that we are using (·, ·)r instead of (·, ·)L2
r(Ω) for simplicity. In general, we will use

‖ · ‖V and | · |V to denote the norm and semi-norm associated with the Hilbert space V ,
respectively. As usual, we use Hk

r (Ω) to denote functions in L2
r(Ω) whose distributional

derivatives of order k and under are in L2
r(Ω). Therefore,

H1
r (Ω) = {v ∈ L2

r(Ω) : ∇rzv ∈ L2
r(Ω)× L2

r(Ω)},

where

∇rzv =

(
∂v

∂r
,
∂v

∂z

)T
.

The semi-norm and norm associated with H1
r (Ω) are

|v|H1
r (Ω) =

(∫
Ω

(∇rzv)2rdrdz

)1/2

,

‖v‖H1
r (Ω) = (‖v‖2

L2
r(Ω) + |v|2H1

r (Ω))
1/2.



A WEIGHTED ELLIPTIC OPTIMAL CONTROL PROBLEM 3

For the remainder of the paper, we will use ∂r in place of
∂

∂r
, etc. The closed subspace

of H1
r (Ω) whose members have vanishing trace on Γ1 is denoted by H1

r,�(Ω), i.e.,

H1
r,�(Ω) = {v ∈ H1

r (Ω) : v = 0 on Γ1}.
It is well-known that the trace condition in this definition is well-defined. (See [3].)

Then (1.1)–(1.3) is equivalent to solving the following 2D weighted optimal control
problem:

(1.5) Find (y?, u?) = argmin
(y,u)∈K

[1

2
‖y − yd‖2

L2
r(Ω) +

β

2
‖u‖2

L2
r(Ω)

]
,

where (y, u) ∈ H1
r,�(Ω)× L2

r(Ω) belongs to K if and only if

(∇rzy,∇rzw)r = (u,w)r for all w ∈ H1
r,�(Ω),(1.6)

y ≤ ψ a.e. in Ω.(1.7)

We assume that yd ∈ L2
r(Ω) , and that ψ is smooth and ψ > 0 on Γ1.

An application of optimal control problems like (1.1)–(1.3) (and therefore (1.5)–(1.7))
is in optimal stationary heating when the body to be heated is axisymmetric. Suppose
Ω̆ is the axisymmetric body to be heated by electromagnetic induction or by microwaves.
Then, ŭ? can be thought as the optimal heat source (the control) in Ω̆, that makes the
temperature distribution y̆? (the state) to be the best possible approximation of the desired
stationary temperature distribution denoted by y̆d while satisfying conditions like (1.1)
and (1.3). Furthermore, β can be viewed as a measure of energy costs to implement the
control. More details of such applications (without the axisymmetric assumptions) can
be found in [27, Chapter 1].

The axisymmetric (θ-independency) assumption on the functions in (1.1)–(1.3) has two
meanings. One is that this problem arises when the desired temperature distribution (y̆d)

and the maximal temperature distribution (ψ̆) are axisymmetric, since then the solution
(y̆?, ŭ?) is also axisymmetric. The other is that the analysis of (1.5)–(1.7) is the first step of
analyzing the elliptic state-constrained optimal control problem with Dirichlet boundary
conditions that has the axial symmetry condition only on the domain Ω̆ and not necessarily
on the functions. This is because, even in such a more general setting, (1.5)–(1.7) is the
problem that needs to be solved to get the 0-th Fourier-mode of the optimal control and
state when using Fourier finite element methods for general axisymmetric problems as in
[3]. Therefore, efficient numerical methods that can approximate the solution of (1.5)–
(1.7) are important for elliptic state-constrained optimal control problems whose domain
is axisymmetric with axisymmetric data and also with general data.

Finite element methods (FEMs) for elliptic distributed optimal control problems with
pointwise state constraints have been studied by many authors ([4, 5, 6, 7, 8, 9, 10, 12, 16,
20, 22, 24]). To our knowledge, this will be the first paper that considers the numerical
solution of a 2D weighted optimal control problem arising from a 3D axisymmetric optimal
control problem. In particular, we will use P1 finite elements as in [4, 7, 12] but after
making necessary changes according to the weighted norms to approximate the solution
to (1.5)–(1.7). We follow the analysis done in [4] but modify it to appropriate weighted
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function spaces. These weighted spaces include functions with singularities at the axis of
rotation, so the analysis of the weighted problem require special attention. Furthermore,
to our knowledge, this paper will be the first paper that uses local weighted spaces in the
analysis of axisymmetric problems.

The remainder of the paper is organized as follows. In the next section, we summarize
definitions and useful properties in weighted spaces. In section 3, we analyze the solution
to the continuous weighted problem of interest by using a variational inequality and a
Lagrange multiplier. In the following section, we introduce the discrete weighted problem
that will be used in this paper, and in section 5, we derive error estimates. Finally,
section 6 provides numerical results to back up the theory.

2. Continuous Properties in Weighted Spaces

In this section, we summarize definitions and some results in weighted spaces that will
be useful in this paper. Throughout this paper, we assume that Ω̆ ⊂ R3 is a bounded
Lipschitz domain.

Let s ∈ (0, 2], and set

Hs
+(Ω) =Hs

r (Ω) if s ∈ (0, 2),

H2
+(Ω) ={w ∈ H2

r (Ω) : ∂rw ∈ L2
1/r(Ω)},

where

L2
1/r(Ω) = {w :

∫
Ω

w2

r
drdz <∞}.

Note that H2
+(Ω) is a Hilbert space endowed with the norm

‖w‖2,+ = (‖w‖H2
r (Ω) + ‖∂rw‖L2

1/r
(Ω))

1/2.

Furthermore, define

Hs
+(Ω) = {w ∈ Hs

r (Ω) : ∂rw = 0 on Γ0} if s ∈ (2, 3]

endowed
‖w‖Hs

+(Ω) = ‖w‖Hs
r (Ω) for s ∈ (2, 3].

The following results can be found in [3, Theorem II.2.1] and [1, subsection 3.2].

Proposition 2.1. The trace mapping f̆ 7→ f is an isometry (up to a factor
√

2π) from

L̆2(Ω̆) to L2
r(Ω). The same holds for the reciprocal lifting, L2

r(Ω)→ L̆2(Ω̆), f 7→ f̆ .

Proposition 2.2. The trace operator is an isomorphism from H̆s(Ω̆) to Hs
+(Ω) for all

s ∈ (0, 3].

Let Ĕ0(∆; L̆2(Ω̆)) be the subspace of H̆1
0 (Ω̆) defined by

Ĕ0(∆; L̆2(Ω̆)) = {v̆ ∈ H̆1
0 (Ω̆) : ∆v̆ ∈ L̆2(Ω̆)},

where ∆z̆ is understood in the sense of distributions. Due to elliptic regularity [4, 15, 19,

23], Ĕ0(∆; L̆2(Ω̆)) is a subspace of H̆1+α(Ω̆) for some α, and we have

(2.1) ‖v̆‖H̆1+α(Ω̆) ≤ C‖∆v̆‖L̆2(Ω̆) for all v̆ ∈ Ĕ0(∆; L̆2(Ω̆)).
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In general, the index of elliptic regularity α is in (1
2
, 1].

Next, let us consider ∆ in terms of cylindrical coordinates:

∆v̆ =
1

r
∂r(r∂rv̆) +

1

r2
∂θθv̆ + ∂zzv̆.

Since ∂θv̆ = 0 by the definition of axisymmetric functions, the right-hand-side of the
above formula reduces. With that in mind, and by using the relation v̆(r, θ, z) = v(r, z),
we define the following operator:

∆rzv =
1

r
∂r(r∂rv) + ∂zzv =

1

r
∂rv + ∂rrv + ∂zzv.

Then there is an isomorphism between Ĕ0(∆; L̆2(Ω̆)) and Er,�(Ω), where

Er,�(Ω) = {v ∈ H1
r,�(Ω) : ∆rzv ∈ L2

r(Ω)},
and by (2.1) and Proposition 2.2, we also have

(2.2) ‖v‖H1+α
+ (Ω) ≤ C‖∆rzv‖L2

r(Ω) for all v ∈ Er,�(Ω).

Since Ĕ0(∆; L̆2(Ω̆)) is a subspace of H̆1+α(Ω̆) ∩ H̆2
loc(Ω̆) ∩ H̆1

0 (Ω̆) for some α ∈ (1
2
, 1]

([15, 19, 23]), it follows from Proposition 2.2 that Er,�(Ω) is a subspace of H1+α
+ (Ω) ∩

H2

+,l̃oc
(Ω) ∩H1

r,�(Ω) where H2

+,l̃oc
(Ω) denotes the space of functions that are in H2

+(ω) for

all ω that satisfies ω̆ ⊂⊂ Ω̆ (the closure of ω̆ is a compact subset of Ω̆). We use the

notation l̃oc instead of loc to indicate that the condition on ω is that ω̆ ⊂⊂ Ω̆ instead of
ω ⊂⊂ Ω, i.e., a side of ω may be on Γ0 but not on Γ1.

Moreover, we have the following integration by parts formula:

(2.3) (∆rzw, v)r = −(∇rzw,∇rzv)r for all v ∈ H1
r,�(Ω), w ∈ Er,�(Ω).

As usual let L∞(Ω̆) denote the space of functions that satisfy

ess sup{w(x) for all x ∈ Ω̆} <∞.
Before we end this section, let us define a few more function spaces. Let W k

∞(Ω̆) denote

the subspace of functions in L∞(Ω̆) whose distributional derivatives of order k and under

are also in L∞(Ω̆). L∞(Ω) and W k
∞(Ω) are defined analogously without having to consider

the weight r.

3. The Continuous Problem

By applying integration by parts (2.3), we can rewrite the problem (1.5)–(1.7) in the
following way:

(3.1)
Find y? = argmin

y∈K

[1

2
‖y − yd‖2

L2
r(Ω) +

β

2
‖∆rzy‖2

L2
r(Ω)

]
,

where K = {y ∈ Er,�(Ω) : y ≤ ψ in Ω}.
By the classical theory of calculus of variations [17, 21], the solution y? ∈ K is charac-

terized by the variational inequality

(3.2) (y? − yd, y − y?)r + β(∆rzy?,∆rz(y − y?))r ≥ 0 for all y ∈ K.
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3.1. Interior Regularity of y?. By [11] there is a unique solution to the minimization
problem (1.1)–(1.3), and

(3.3) y̆? ∈ H̆3
loc(Ω̆) ∩ W̆ 2,∞

loc (Ω̆).

By Proposition 2.2, this implies that

(3.4) y? ∈ H3

+,l̃oc
(Ω) ∩W 2,∞

l̃oc
(Ω).

3.2. Lagrange Multiplier. Let φ̆ ∈ C̆∞c (Ω̆) (the space of axisymmetric C∞ functions

with compact support in Ω̆) be nonnegative. Then, let φ be the corresponding function

defined on Ω such that φ(r, z) = φ̆(r, θ, z). Since y = −φ+ y? ∈ K, by (3.2), we have

(y? − yd, φ)r + β(∆rzy?,∆rzφ)r ≤ 0.

It then follows from the Riesz representation theorem ([18, 25, 26]) that

(3.5) (y? − yd, v)r + β(∆rzy?,∆rzv)r =

∫
Ω

v dµ ∀ v ∈ Er,�(Ω)

where

(3.6) µ is a nonpositive regular Borel measure.

Let C̆ = {x ∈ Ω̆ : y̆?(x) = ψ̆(x)} be the 3D contact/coincidence set. Recall that we

are assuming that ψ̆ > 0 on ∂Ω̆ so that C̆ is a compact subset of Ω̆. Let ĞC̆ denote an

axisymmetric open neighborhood of C̆ such that ĞC̆ ⊂⊂ Ω̆. We will use C and GC to

denote the restriction of C̆ and ĞC̆ respectively onto the meridian half plane as usual.
For any v ∈ K whose support is disjoint from C, y±ε = ±εv + y? belongs to K if ε is

sufficiently small. Hence by (3.2) we have

(y? − yd,±εv)r + β(∆rzy?,∆rz(±εv))r ≥ 0,

which implies

(y? − yd, v)r + β(∆rzy?,∆rzv)r = 0, ∀ v ∈ K such that supp v ∩ C = ∅.
Consequently, by (3.5), µ is supported on C, which is equivalent to the complementarity
condition

(3.7)

∫
Ω

(y? − ψ) dµ = 0.

Conversely, if y? ∈ K satisfies (3.5)–(3.7), then y? is the solution to (3.2).
Another way to view µ is through the associated 3D axisymmetric problem, i.e.,

(3.8) (y̆? − y̆d, v̆)L̆2(Ω̆) + β(∆y̆?,∆v̆)L̆2(Ω̆) =

∫
Ω̆

v̆ dµ̆ ∀ v̆ ∈ Ĕ0(∆; L̆2(Ω̆))

where
µ̆ is a nonpositive regular Borel measure.

Furthermore, we have as in [8, (2.7)] and [7, (2.11)]

(3.9)

∣∣∣∣∫
Ω̆

v̆ dµ̆

∣∣∣∣ ≤ C‖v̆‖H̆1(ĞC̆) for all v̆ ∈ Ĕ0(∆; L̆2(Ω̆)),
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by (3.8), (3.3), and integration by parts. Thus, by (3.5), (3.8), and Proposition 2.2, we
also have that

(3.10)

∣∣∣∣∫
Ω

v dµ

∣∣∣∣ ≤ C‖v‖H1
r (GC) for all v ∈ Er,�(Ω).

3.3. Global Regularity of y? and u?. Globally, by (2.2), we know that

(3.11) ‖y?‖H1+α
+ (Ω) ≤ C‖∆rzy?‖L2

r(Ω).

Furthermore, in view of (3.9), it is known that ∆y̆? ∈ H̆1
0 (Ω̆). (See [10, section 2.4].)

Therefore,

(3.12) u? = −∆rzy? ∈ H1
r,�(Ω).

4. The Discrete Problem

Assume that Ω is meshed by a finite element triangulation Th that satisfies the usual
geometrical conformity conditions [14]. We use hT to denote the diameter of T ∈ Th, and
h = maxT∈Th hT to denote the mesh parameter.

Let V 0
h ⊂ H1

r,�(Ω) denote the P1 finite element space with vanishing trace on Γ1, i.e.,

V 0
h = {v ∈ C(Ω) : v|T ∈ V1 for all T ∈ Th and v = 0 on Γ1}

where
V1 = {ar + bz + c : a, b, c ∈ R}.

Now, let us define a discrete Laplacian ∆h : H1
r,�(Ω)→ V 0

h in the following way:

(4.1) (∆hϕ,wh)r = −(∇rzϕ,∇rzwh)r, ∀wh ∈ V 0
h .

Integration by parts implies that

(4.2) ∆hϕ = Qh∆rzϕ for all ϕ ∈ Er,�(Ω),

where Qh : L2
r(Ω)→ V 0

h denotes the L2
r-orthogonal projection. The discrete problem used

to approximate the solution to (3.1) is the following:

(4.3) yh? = argmin
yh∈Kh

(
1

2
‖yh − yd‖2

L2
r(Ω) +

β

2
‖∆hyh‖2

L2
r(Ω)

)
,

where Kh = {yh ∈ V 0
h : yh ≤ Ihψ in Ω} and Ih : H1

r,�(Ω)→ V 0
h is the nodal interpolation

operator, i.e., Ihw coincides with w on all nodes in Th.
It follows from the classical theory that (4.3) has a unique solution yh? ∈ Kh that can

be characterized by the following discrete variational inequality:

(4.4) (yh? − yd, yh − yh? )r + β(∆hy
h
? ,∆h(yh − yh? ))r ≥ 0 for all yh ∈ Kh.

Once the discrete state yh? ∈ V 0
h is obtained, we get the discrete control uh? ∈ V 0

h by
uh? = −∆hy

h
? .

Before we end this section we introduce an operator that we need in the convergence
analysis. Let the operator Eh : V 0

h → Er,�(Ω) be defined by

(4.5) ∆rzEhvh = ∆hvh, ∀ vh ∈ V 0
h ,
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or equivalently

(∇rzEhvh,∇rzw)r = (−∆hvh, w)r for all w ∈ H1
r,�(Ω).

By definition of ∆h, we also have that

(∇rzvh,∇rzwh)r = (−∆hvh, wh)r for all wh ∈ V 0
h .

Recall that Er,�(Ω) is a subspace of H1+α
+ (Ω)∩H2

+,l̃oc
(Ω)∩H1

r,�(Ω) . Then, by the standard

error estimate [13, section 5] and a duality argument, we get the following Proposition.

Proposition 4.1. For any vh ∈ V 0
h , Ehvh belongs to H1+α

+ (Ω) for some α ∈ (1
2
, 1], and

|Ehvh − vh|H1
r (Ω) ≤ Chα‖∆hvh‖L2

r(Ω),

‖Ehvh − vh‖L2
r(Ω) ≤ Ch2α‖∆hvh‖L2

r(Ω).

5. Error Estimates

Let us first define a mesh-dependent norm ‖ · ‖h by

(5.1) ‖v‖2
h = (v, v)r + β(∆hv,∆hv)r.

The following theorem is the main result of this paper, and it provides abstract error
estimates.

Theorem 5.1. Let y? be the unique solution to (3.1) and yh? be the unique solution to
(4.3). Then, it follows that

‖y? − yh?‖h ≤ C

(
h+ inf

yh∈Kh

[
‖y? − yh‖h + ‖y? − yh‖1/2

L∞(GC)

])
.

The following Lemma will be essential in proving Theorem 5.1.

Lemma 5.1. There exists a positive constant C independent of h such that

(5.2)

∫
Ω

Eh(yh − yh? )dµ ≤ C
(
h‖∆h(yh − yh? )‖L2

r(Ω) + h2 + ‖yh − Ihy?‖L∞(GC)

)
,

for all yh, y
h
? ∈ Kh.

Proof. Consider
(5.3)∫

Ω

Eh(yh − yh? ) dµ

=

∫
Ω

[
Eh(yh − yh? )− (yh − yh? )

]
dµ+

∫
Ω

(Ihψ − yh? ) dµ+

∫
Ω

Ih(y? − ψ) dµ+

∫
Ω

(yh − Ihy?) dµ,

≤
∫

Ω

[
Eh(yh − yh? )− (yh − yh? )

]
dµ+

∫
Ω

Ih(y? − ψ) dµ+

∫
Ω

(yh − Ihy?) dµ,

where in the last inequality above, we are using (3.6) and the fact that yh? ≤ Ihψ. We will
get an upper bound for each of the terms appearing in the right-hand-side of (5.3).
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First of all,
(5.4)∫

Ω

[
Eh(yh − yh? )− (yh − yh? )

]
dµ ≤ C‖Eh(yh − yh? )− (yh − yh? )‖H1

r (GC) by (3.10),

≤ Ch‖∆h(yh − yh? )‖L2
r(Ω) by Proposition 4.1.

The last inequality above is true, since Er,�(Ω) is a subspace of H2

+,l̃oc
(Ω) and ĞC̆ ⊂⊂ Ω̆.

Next we recall the following estimate that follows from [2, Proposition 3]:

‖w − Ihw‖L∞(GC) ≤ Ch2‖w‖W 2
∞(GC),(5.5)

for all w ∈ W 2
∞(GC). Then,

(5.6)

∫
Ω

Ih(y? − ψ) dµ =

∫
Ω

((ψ − y?)− Ih(ψ − y?)) dµ by (3.7),

≤ C‖(ψ − y?)− Ih(ψ − y?)‖L∞(GC) since µ is a finite measure,

≤ Ch2‖ψ − y?‖W 2
∞(GC).

The last inequality follows from (3.4) and (5.5). We also have

(5.7)

∫
Ω

(yh − Ihy?) dµ ≤ C‖yh − Ihy?‖L∞(GC).

The proof is complete by (5.3)–(5.7). �

Now we are ready to prove Theorem 5.1.

Proof. First of all, the following is straightforward:
(5.8)
‖yh − yh?‖2

h

= (yh − yh? , yh − yh? )r + β(∆h(yh − yh? ),∆h(yh − yh? ))r,

= (yh − y?, yh − yh? )r + β(∆h(yh − y?),∆h(yh − yh? ))r

+ (y? − yd, yh − yh? )r + β(∆hy?,∆h(yh − yh? ))r

− (yh? − yd, yh − yh? )r − β(∆hy
h
? ,∆h(yh − yh? ))r,

≤ ‖yh − y?‖h‖yh − yh?‖h + (y? − yd, yh − yh? )r + β(∆hy?,∆h(yh − yh? ))r by (4.4).
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Furthermore,
(5.9)
(y? − yd, yh − yh? )r + β(∆hy?,∆h(yh − yh? ))r

= (y? − yd, (yh − yh? )− Eh(yh − yh? ))r + (y? − yd, Eh(yh − yh? ))r + β(∆rzy?,∆h(yh − yh? ))r

by (4.2),

= (y? − yd, (yh − yh? )− Eh(yh − yh? ))r + (y? − yd, Eh(yh − yh? ))r + β(∆rzy?,∆rzEh(yh − yh? ))r

by (4.5),

= (y? − yd, (yh − yh? )− Eh(yh − yh? ))r +

∫
Ω

Eh(yh − yh? ) dµ

by (3.5),

≤ C‖(yh − yh? )− Eh(yh − yh? )‖L2
r(Ω) + C

(
h‖∆h(yh − yh? )‖L2

r(Ω) + h2 + ‖yh − Ihy?‖L∞(GC)

)
by Lemma 5.1,

≤ Ch2α‖∆h(yh − yh? )‖L2
r(Ω) + C

(
h‖∆h(yh − yh? )‖L2

r(Ω) + h2 + ‖yh − Ihy?‖L∞(GC)

)
by Proposition 4.1,

≤ C
(
h‖yh − yh?‖h + h2 + ‖yh − Ihy?‖L∞(GC)

)
.

Therefore, by (5.8) and (5.9), we have

‖yh − yh?‖2
h ≤ ‖yh − y?‖h‖yh − yh?‖h + C

(
h‖yh − yh?‖h + h2 + ‖yh − Ihy?‖L∞(GC)

)
,

≤ C
(
(‖yh − y?‖h + h)‖yh − yh?‖h + h2 + ‖yh − Ihy?‖L∞(GC)

)
,

which together with the inequality of arithmetic and geometric means implies

(5.10) ‖yh − yh?‖h ≤ C
(
‖yh − y?‖h + h+ ‖yh − Ihy?‖1/2

L∞(GC)

)
.

Hence, it holds for all yh ∈ Kh that

‖y? − yh?‖h ≤ ‖y? − yh‖h + ‖yh − yh?‖h,

≤ ‖y? − yh‖h + C
(
‖yh − y?‖h + h+ ‖yh − Ihy?‖1/2

L∞(GC)

)
,

≤ C
(
‖y? − yh‖h + h+ (‖yh − y?‖L∞(GC) + ‖y? − Ihy?‖L∞(GC))

1/2
)
,

≤ C
(
‖y? − yh‖h + h+ ‖yh − y?‖1/2

L∞(GC) + h
)

by (5.5),

and thus we have

‖y? − yh?‖h ≤ C

(
h+ inf

yh∈Kh

[
‖y? − yh‖h + ‖y? − yh‖1/2

L∞(GC)

])
.

�

Remark 5.1. Recall that the discrete control uh? ∈ V 0
h is obtained by uh? = −∆hy

h
? . There-

fore, by (5.1), Theorem 5.1 provides abstract error estimates for the control as well as the
state.
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Remark 5.2. Concrete error estimates may be obtained by constructing a yh ∈ Kh that
satisfies

(5.11) ‖y? − yh‖h + ‖y? − yh‖1/2
L∞(GC) ≤ C(| lnh|1/2h+ hα)

as done in [4, Lemma 5.3]. Then it will follow by Theorem 5.1 that

‖y? − yh?‖L2
r(Ω) + |y? − yh? |H1

r (Ω) + ‖u? − uh?‖L2
r(Ω) ≤ C(| lnh|1/2h+ hα).

We note here that the construction of such yh ∈ Kh is possible under the conjecture that

εh := ‖y? −Rhy?‖L∞(GC) ≤ C(| lnh|h2 + h2α),

where Rhy? ∈ V 0
h is the finite element solution that satisfies

(∇rzRhy?,∇rzvh)r = (∇rzy?,∇rzvh)r for all vh ∈ V 0
h .

Under this conjecture, yh = Rhy? − εhIhφ will satisfy (5.11), where φ is a nonnegative

function with φ = 1 on GC and φ̆ ∈ C̆∞c (Ω̆).

6. Numerical Results

Example 1
In this example, we modify [4, Section 7 Example 3] so that the domain and the exact

solution is axisymmetric. Let the axisymmetric 3D domain Ω̆ ⊂ R3 be the following
cylinder:

{(x, y, z) ∈ R3 : x2 + y2 ≤ 42 and − 4 ≤ z ≤ 4}.
The computational domain is then Ω = {(r, z) ∈ R2

+ : r ≤ 4 and − 4 ≤ z ≤ 4}. We
choose β = 1, ψ(r, z) = r2 + z2 − 1, and

y?(r, z) =


ψ(r, z) if |x| ≤ 1,

v(|x|) + [1− φ(|x|)]w(r, z) if 1 ≤ |x| ≤ 3,

w(r, z) if |x| ≥ 3,

where |x| denotes
√
r2 + z2 and

v(t) = (t2 − 1)

(
1− t− 1

2

)4

+
1

4
(t− 1)2(t− 3)4,

φ(t) =

[
1 + 4

(
t− 1

2

)
+ 10

(
t− 1

2

)2

+ 20

(
t− 1

2

)3
](

1− t− 1

2

)4

,

w(r, z) = r4 sin4(
π

8
(r + 4)) sin(

π

8
(z + 4)).

The corresponding yd function that we need to get the constructed exact solution y? is

yd(r, z) =

{
∆2
rzy? + y? if |x| > 1,

∆2
rzy? + y? + 2 if |x| ≤ 1.

The exact control u? is −∆rzy?. We use Matlab “quadprog” program to solve this optimal
control problem. We use yk and uk to denote the discrete state and control respectively
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k ‖y? − yk‖L2
r(Ω) rate |y? − yk|H1

r (Ω) rate ‖Iky? − yk‖L∞(Ω) rate ‖u? − uk‖L2
r(Ω) rate

0 5.97e+00 1.31e+01 1.41e+00 3.52e+01
1 4.24e+00 0.49 1.07e+01 0.28 8.55e-01 0.72 2.90e+01 0.28
2 1.11e+00 1.93 5.05e+00 1.09 2.41e-01 1.83 8.71e+00 1.74
3 3.34e-01 1.73 2.56e+00 0.98 8.03e-02 1.58 2.52e+00 1.79
4 8.92e-02 1.91 1.27e+00 1.01 2.24e-02 1.85 6.73e-01 1.90
5 3.13e-02 1.51 6.36e-01 1.00 8.83e-03 1.34 1.78e-01 1.91
6 6.69e-03 2.23 3.18e-01 1.00 1.52e-03 2.53 4.82e-02 1.89
7 1.50e-03 2.16 1.59e-01 1.00 4.24e-04 1.85 1.35e-02 1.84
8 3.89e-04 1.95 7.94e-02 1.00 9.14e-05 2.21 3.96e-03 1.77

Table 6.1. Results on uniform meshes for Example 1

(a) State (b) Control (c) Contact Set

Figure 1. State, control, and contact set for Example 1

at mesh level k. In Table 6.1, we report the error in the observed norms. Figure 1 shows
the graph of y8 and u8 and the contact set obtained in mesh level 8.

Example2

We now try an example with simpler data. We choose yd(r, z) =
1√
r

, ψ(r, z) = r2 + z2,

and β = 0.002. The domain is chosen to be the same as the previous example. In this case,
the exact solution (y?, u?) is unknown, so we calculate the error between two consecutive
approximations in the observed norms in Table 6.2. Figure 2 shows the optimal state,
optimal control, and contact set obtained by our method on mesh level 8.

Example 3

In this example, we let Ω to be the L-shape domain [0, 1]2\[0.5, 1]2. We choose β = 1,
yd(r, z) = −2, and ψ(r, z) = (r−0.25)2 +(z−0.25)2−0.05. We measure the error between
two consecutive approximations.
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k ‖yk+1 − yk‖L2
r(Ω) rate |yk+1 − yk|H1

r (Ω) rate ‖yk+1 − yk‖L∞(Ω) rate ‖uk+1 − uk‖L2
r(Ω) rate

1 1.81e+00 4.37e+00 1.36e+00 1.31e+01
2 9.70e-01 0.90 3.99e+00 0.13 9.15e-01 0.57 1.59e+01 -0.28
3 3.01e-01 1.69 2.17e+00 0.88 4.96e-01 0.88 7.93e+00 1.00
4 8.50e-02 1.83 1.13e+00 0.94 1.60e-01 1.64 3.14e+00 1.34
5 2.25e-02 1.92 5.79e-01 0.97 5.14e-02 1.63 1.14e+00 1.46
6 5.75e-03 1.97 2.92e-01 0.99 1.39e-02 1.89 4.87e-01 1.23
7 1.45e-03 1.98 1.46e-01 1.00 3.53e-03 1.98 1.90e-01 1.36
8 3.67e-04 1.99 7.32e-02 1.00 8.87e-04 1.99 5.99e-02 1.67

Table 6.2. Results on uniform meshes for Example 2

(a) State (b) Control (c) Contact Set

Figure 2. State, control, and contact set for Example 2

k ‖yk+1 − yk‖L2
r(Ω) rate |yk+1 − yk|H1

r (Ω) rate ‖yk+1 − yk‖L∞(Ω) rate ‖uk+1 − uk‖L2
r(Ω) rate

1 2.75e-03 4.37e-02 1.40e-02 1.79e-01
2 1.52e-03 0.86 2.53e-02 0.79 7.78e-03 0.85 1.59e-01 0.17
3 5.84e-04 1.38 1.23e-02 1.04 2.30e-03 1.76 4.96e-02 1.68
4 7.19e-05 3.02 6.48e-03 0.93 1.37e-03 0.75 1.81e-02 1.45
5 2.61e-05 1.46 3.54e-03 0.87 9.02e-04 0.60 6.78e-03 1.42
6 1.35e-05 0.96 1.99e-03 0.83 5.79e-04 0.64 3.42e-03 0.99
7 4.11e-06 1.71 1.15e-03 0.79 3.67e-04 0.66 1.25e-03 1.46
8 1.46e-06 1.50 6.78e-04 0.76 2.32e-04 0.66 5.81e-04 1.10

Table 6.3. Results on uniform meshes for Example 3

In Table 6.3, we report the error in the observed norms. In this example, the elliptic
regularity index α is 2/3. It is clear especially from the reported error in the H1-seminorm
and the L∞-norm that the order of convergence is dependent on the elliptic regularity
index α. Figure 3 shows the graph of y8 and u8 and the contact set obtained in mesh level
8.

Example 4
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(a) State (b) Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Contact Set

Figure 3. State, control, and contact set for Example 3

k ‖yk+1 − yk‖L2
r(Ω) rate |yk+1 − yk|H1

r (Ω) rate ‖yk+1 − yk‖L∞(Ω) rate ‖uk+1 − uk‖L2
r(Ω) rate

1 1.41e+01 1.31e+01 1.59e+01 3.76e+00
2 5.87e+00 1.27 9.08e+00 0.53 1.39e+01 0.19 2.78e+00 0.44
3 2.16e+00 1.44 4.36e+00 1.06 6.59e+00 1.07 8.98e-01 1.63
4 3.39e+00 -0.65 4.16e+00 0.07 6.69e+00 -0.02 9.73e-01 -0.12
5 1.72e+00 0.98 2.62e+00 0.67 5.25e+00 0.35 6.03e-01 0.69
6 1.00e+00 0.78 1.40e+00 0.90 2.84e+00 0.88 2.96e-01 1.03
7 2.53e-01 1.99 5.30e-01 1.40 1.36e+00 1.07 9.80e-02 1.59
8 1.23e-01 1.04 2.25e-01 1.24 6.10e-01 1.16 3.68e-02 1.41

Table 6.4. Results on uniform meshes for Example 4

In this example, we choose Ω to be a triangular domain with vertices (0, 6), (6, 0), and
(0,−6) with β = 1, yd(r, z) = 5 and ψ(r, z) = r2(r+z−1)2(r−z−1)2. Different from the
previous three examples, the contact set in this example has a non-empty intersection with
Γ1, so the theory presented in this paper does not apply to this example. Nevertheless
we examine the order of convergence. The error between two consecutive approximations
is reported in Table 6.4 and the approximate state, control, and contact set obtained in
mesh level 8 is presented in Figure 4.

Example 5
Before we end this section, we present here one more numerical example that uses an

algorithm that is closely related to (4.3). Namely, as in [4], we will use a mass lumping
technique to construct another P1-FEM to approximate the solution of (3.1). First of all,
let us define another inner product (·, ·)r,h:

(vh, wh)r,h =
∑
p∈Vh

(
∑
T∈Tp

∫
T
rdrdz

3
)vh(p)wh(p) for all vh, wh ∈ V 0

h ,

where Vh denotes the set of nodes in Th, and Tp denotes the union of all triangles that
have the node p as one of its nodes. Note that this inner-product is different from the one
used in [4, 7] for mass lumping, since

∫
T
rdrdz is used instead of |T | (area of T ). This is

a natural modification that takes into consideration the weight r present in our problem.
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(a) State (b) Control

0 1 2 3 4 5 6

-6

-4

-2

0

2

4

6

(c) Contact Set

Figure 4. State, control, and contact set for Example 4

k ‖y? − yk‖L2
r(Ω) rate |y? − yk|H1

r (Ω) rate ‖Iky? − yk‖L∞(Ω) rate ‖u? − uk‖L2
r(Ω) rate

0 1.15e+01 2.21e+01 4.17e+00 3.56e+01
1 7.72e+00 0.58 2.69e+01 -0.28 3.76e+00 0.15 3.33e+01 0.10
2 1.90e+00 2.02 1.04e+01 1.37 1.47e+00 1.35 1.28e+01 1.38
3 3.89e-01 2.29 3.19e+00 1.70 2.52e-01 2.55 3.31e+00 1.95
4 9.15e-02 2.09 1.35e+00 1.24 6.20e-02 2.02 9.60e-01 1.79
5 3.41e-02 1.43 6.46e-01 1.06 1.74e-02 1.83 3.20e-01 1.58
6 6.28e-03 2.44 3.19e-01 1.02 4.52e-03 1.94 1.15e-01 1.48
7 1.53e-03 2.03 1.59e-01 1.00 1.28e-03 1.82 4.57e-02 1.33
8 3.72e-04 2.04 7.94e-02 1.00 3.30e-04 1.95 1.95e-02 1.23

Table 6.5. Results on uniform meshes for Example 5

By using this inner-product, we define another discrete Laplacian ∆̃h : H1
r,�(Ω) → V 0

h in
the following way:

(∆̃hϕ,wh)r,h = −(∇rzϕ,∇rzwh)r, ∀wh ∈ V 0
h .

Then we solve the following discrete problem to approximate the state:

(6.1) yh? = argmin
yh∈Kh

(
1

2
‖yh − yd‖2

L2
r(Ω) +

β

2
‖∆̃hyh‖2

L2
r(Ω)

)
.

The approximate control uh? is then obtained by uh? = −∆̃hy
h
? . Since the mass matrix

corresponding to (·, ·)r,h is diagonal, we can use a primal dual active set method which
converges superlinearly instead of “quadprog” to solve (6.1).

Table 6.5 reports the error in the observed norms when (6.1) is used instead of (4.3)
with the same data provided in Example 1. These numerical results are promising, and
they are similar to the ones provided in Table 6.1. The convergence analysis of (6.1)
remains as future work.
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