

1 **Ionic Liquid Stabilized TEMPO Catalysis for**
2 **Alcohol Oxidation**

3 *Min Li[†], Kevin Klunder[†], Emmy Blumenthal[†], Matthew B. Prater[†], Jack Lee[†], John E.*
4 *Matthiesen[‡], Shelley D. Minteer^{†*}*

5 [†] Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT,
6 84112, United States. [‡] 2265 S State St, Salt Lake City, UT, 84115, United States.

7 ^{*}Corresponding Author: Shelley D. Minteer

8 Email Address: minteer@chem.utah.edu

9

10 **KEYWORDS**

11 Ionic Liquid, TEMPO, Catalytic Stability, Alcohol Oxidation, Electrode Composites

12 **ABSTRACT**

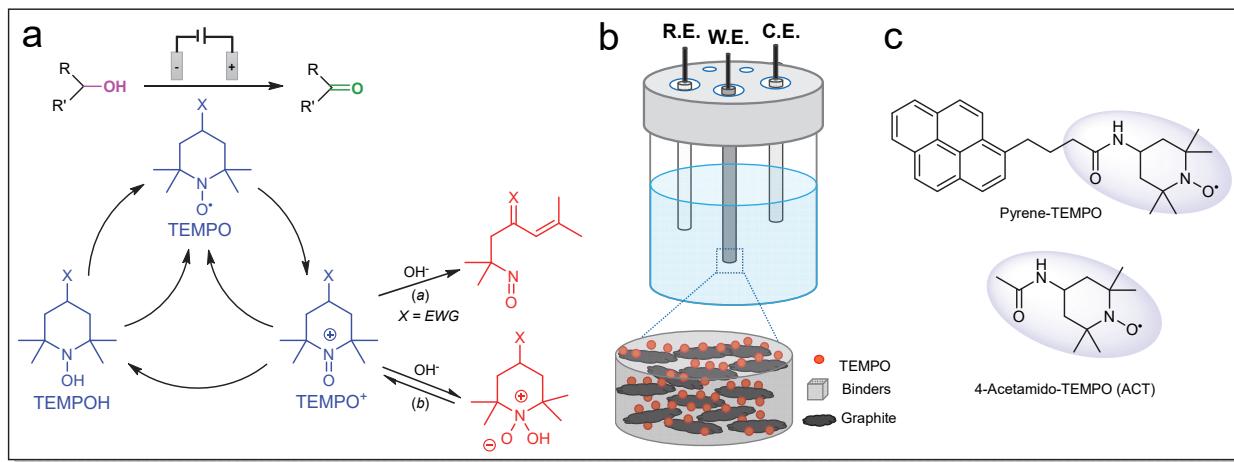
13 N-oxyl reagents, particularly 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), have been
14 extensively used for alcohol oxidations. While TEMPO-mediated oxidations are kinetically and
15 thermodynamically favorable in high pH electrolytes, base-induced degradation often results in
16 significant loss of catalytic activity. Herein, we demonstrated enhanced alkaline stability of

17 TEMPO derivative in ionic liquids (ILs). By incorporating TEMPO in imidazole-anchored IL, no
18 loss of current was observed at pH 10.0 after 2.0 h during the oxidation of butanol and glycerol,
19 while TEMPO in polycaprolactone (PCL), a patternable binder material, degraded 58.5%, and
20 67.1%, respectively. The stability enhancement was further demonstrated by analyzing the
21 conversion of glycerol in an 800 μ L electrochemical cell using bulk chemical analysis
22 techniques. Successive cycles of glycerol oxidation indicated 14-fold stability enhancement by
23 applying IL in TEMPO electrode composite in comparison to PCL. The strategy demonstrated
24 here provides an opportunity to prepare catalytic systems with enhanced stability. Further, this
25 method provides the ability to convert what are typically homogeneous catalysts to
26 heterogeneous systems.

27 INTRODUCTION

28 Among catalysts developed for alcohol oxidations, N-oxyl compounds, such as 2,2,6,6-
29 tetramethylpiperidine 1-oxyl (TEMPO), have enjoyed widespread applications due to their
30 remarkably low-cost, high activity, and metal-free nature.¹ The oxidized oxoammonium species
31 (TEMPO^+) are required for alcohol oxidation and are generated from the chemical or
32 electrochemical oxidation of TEMPO. The use of chemical oxidants (e.g., NaOCl ,² or NOx/O_2 ³),
33 however, produce undesired byproducts and often requires a co-catalyst (e.g., $n\text{-Bu}_4\text{NBr}$ ^{4,5} or
34 pyridine hydrobromide⁶) to generate active oxoammonium cation *in situ*. Alternatively, the
35 electrochemical generation of TEMPO^+ by one-electron oxidation of TEMPO is simple, clean,
36 and versatile.⁷ The electrons replace traditional oxidants, thus circumventing byproduct
37 formation. Moreover, electrochemical analysis renders it possible to directly and easily observe
38 catalysis, which is otherwise not attainable *via* traditional thermal synthesis. Further, the

39 activation of alcohol oxidations by external potential gives rise to reactions operated under mild
40 conditions (e.g., ambient temperature and pressure). Thus, the potential degradation of thermally
41 unstable alcohols can be significantly prevented. While many TEMPO-based electrochemical
42 synthetic strategies utilize homogeneous catalysts,⁸ the use of heterogeneous catalysts is highly
43 advantageous as it does not require removal from the final product.⁹ Finally, catalyst fouling can
44 severely decrease catalyst activity (in the order of graphite felt > glassy carbon > graphite due to
45 increased surface area). Thus, developing a stable surface-immobilized catalyst is critical for
46 repeated syntheses.


47 Regardless of the advancements made in TEMPO-mediated studies, the use of TEMPO
48 in electrochemical oxidations still encounters challenges. In particular, the performance of
49 TEMPO and its derivatives in catalysis and synthetic oxidations are well documented, but
50 examples of their stability are rare.^{8,10} In TEMPO-mediated reactions, oxidations are mainly
51 performed in alkaline conditions as high pH electrolyte alleviates both kinetic and
52 thermodynamic limitations¹¹ (e.g., comproportionation of TEMPO⁺ with TEMPOH, and
53 oxidation of the corresponding hydroxylamine to TEMPO). However, oxoammonium species are
54 susceptible to base-induced degradation, which results from the elimination reaction that cleaves
55 C-N bond and consequently ring-opening of the oxoammonium (pathway (a) in **Scheme 1a**).¹²
56 This is especially problematic for electron-deficient aminoxyls. In many instances, this catalyst
57 degradation process has challenged the use of high pH electrolytes for long-term
58 electrosynthesis. For instance, F. Geneste *et al.* reported the attachment of TEMPO *via* an amide
59 link to a graphite felt electrode. Though the catalytic stability was improved after immobilization
60 in comparison to TEMPO in solution, the current-voltage response decreased to 50% after 50
61 scans at pH 10.3.¹³ Another example is the immobilization of TEMPO in a Nafion film for

62 carbohydrate oxidation at pH 10.¹⁴ The catalyst was active, but the activity of TEMPO decreased
63 dramatically. Aside from the ring opening-associated degradation, TEMPO⁺ may also form a
64 zwitterionic adduct (TEMP(OH)O) at high pH values (pathway (b) in (Scheme 1a)).^{9,15,16} The
65 formation of this TEMP(OH)O from TEMPO⁺ is an equilibrium process and favors
66 TEMP(OH)O when increasing base concentration.⁸ As a result, the base-promoted
67 decomposition and the formation of the inert zwitterion compete with the base-promoted
68 formation of TEMPO/TEMPO⁺, resulting in the loss of reactive TEMPO⁺ for further alcohol
69 oxidation. Recently, Cardiel *et al.* evaluated the stability of 4-acetamido-TEMPO (ACT) at pH
70 12. Almost a quarter of ACT was degraded after 30 min.¹⁷ Consequently, the development of
71 catalyst systems that enable preserving TEMPO catalytic activity at high pH values remains an
72 important challenge.

73 The advent of room-temperature ionic liquids (RTILs) as the solvent or in an electrode
74 composite has opened up many new opportunities for the improvement of catalyst
75 performance.^{18,19} The ionic nature of RTILs, wide electrochemical window and good solubility
76 for both organic and inorganic molecules, provide various advantages in electro-synthesis.
77 RTILs are a ‘designer’ solvent in which their physicochemical and electrochemical properties
78 (e.g., thermal stability²⁰ and electrochemical stability^{21,22}) can be tuned *via* cations or/and anions.
79 RTILs have thus resulted in an exciting class of catalytic systems with properties not attainable
80 with traditional organic solvents. For example, TEMPO in RTILs²³⁻²⁶ or TEMPO-derived ionic
81 liquids (ILs)^{27,28} have shown to be capable of recovery and reuse without any significant loss of
82 catalytic activity. A multilayered covalently supported ionic liquid phase (mlc-SILP) system has
83 given a new dimension to IL-based catalysis.²⁹⁻³¹ In mlc-SILP, bisvinylimidazolium salt is
84 oligomerized with thiol-anchored solid (e.g., silica), resulting in the covalent addition of

85 multilayered IL on silica. The resultant mlc-SILP combines the benefits of both homogeneous
86 and heterogeneous catalysts. RTILs, therefore, hold great promise in developing effective
87 catalytic systems.

88 In this paper, we present efforts in extending the high alkaline chemical stability of
89 RTILs to enhance the catalytic activity of TEMPO derivatives under alkaline conditions. To
90 achieve this, a hydrophobic TEMPO was homogeneously mixed in RTILs with graphite being
91 added to improve the conductivity of the composite. The resultant carbon ionic liquid electrodes
92 (CILEs) (**scheme 1b**) are employed as a part of the biphasic system (electrode phase and
93 electrolyte phase) – reactant moves to the boundary of the CILE, reacts, and is then released back
94 into the solution. Consequently, the strategy demonstrated here addresses the issue of base-
95 induced TEMPO degradation and also converts what are typically homogeneous catalysts to
96 heterogeneous systems. A key point is that the use of TEMPO in alcohol oxidations has been
97 extensively demonstrated.^{8,10} What distinguishes the approach reported here from existing
98 strategies is that CILEs enhance the TEMPO catalytic stability by simply tuning its
99 microenvironment. This feature, when combined with highly active TEMPO derivatives, will
100 facilitate alcohol conversions, particularly for primary aliphatic alcohols.

102 **Scheme 1. (a)** Simplified mechanism for TEMPO-mediated alcohol oxidation under basic
103 condition. Adapted from ref [8]. Compounds engaged in the catalytic cycle are labeled in blue,
104 and two possible TEMPO degradation pathways are highlighted in red. **(b)** Schematic
105 description of the electrode composites studied in this work. Binders are RTILs. PCL as a binder
106 was also studied as a comparison. A hydrophobic TEMPO is required to form the composite. **(c)**
107 Chemical structure of pyrene-TEMPO, and the analog of 4-acetamido-TEMPO used in the
108 present work.

109 EXPERIMENTAL SECTION

110 **Materials.** 1-methylimidazole (>99.0%, TCI), 1-methylpyrrolidine (>99%, TCI), 1-bromobutane
111 (>98%, TCI), 1-bromohexane (>98%, TCI), 1-bromodecane (>98%, TCI), potassium
112 hexafluorophosphate (>95.0%, TCI), and lithium bis(trifluoromethylsilyl)amide (>98%, TCI) were purchased
113 from Fisher Scientific (Thermo Fisher Scientific, Inc., Waltham, MA).
114 Trihexyltetradecylphosphonium chloride ($\geq 95.0\%$), methyltrioctylammonium bromide (97%), 1-
115 butyl-3-methylimidazolium tetrafluoroborate ($\geq 98\%$), isoquinoline (97%), 1-pyrenebutyric acid
116 (97%), 4-amino-TEMPO (97%), N,N'-dicyclohexylcarbodiimide (DCC, 99%), and 4-
117 dimethylamino pyridine (4-DMAP, $\geq 99\%$) were purchased from Sigma-Aldrich, Inc. (St. Louis,
118 MO). Pyrene-TEMPO was prepared according to a literature procedure.²⁵ Details of the
119 preparation of RTILs are shown in the Supporting Information.

120 **Electrochemical Methods.** The details of the preparation of CILEs and PTPEs are described in
121 the Supporting Information. All electrochemical experiments were performed with CH
122 Instruments 611C and 660E potentiostats (CH Instruments, Inc., Austin, TX). Cyclic
123 voltammetry (CV) and constant potential amperometry experiments were conducted with a

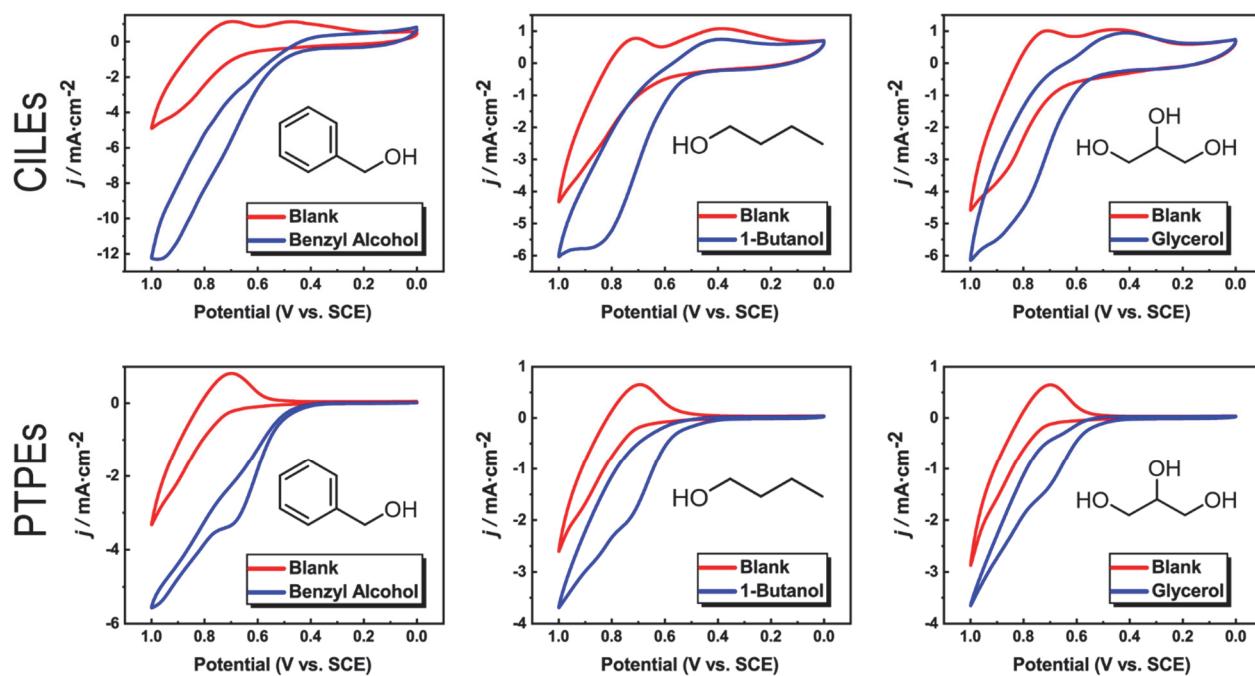
124 standard three-electrode cell using SCE as a reference electrode, and carbon as a counter
125 electrode. pH 10 0.1 M carbonate buffer was used as the electrolyte, and 55.5 mM alcohols were
126 applied in all experiments, unless otherwise indicated.

127 **Electrochemical Cell Fabrication.** An 800 μ L electrochemical cell was designed and fabricated
128 for the detection of analytes. The working and counter electrodes were made from a 0.125"
129 poly(methylmethacrylate) (PMMA) sheet (*Acrylic Mega Store in Amazon*). A 0.250" PMMA
130 sheet (*Mifflin*) was used for other interface layers. A PLS6.150D Laser-Cutter tool (*Universal
131 Laser Systems*) was configured with an Epilog Zing (30 Watt, *Epilog Laser*) CO₂ laser to cut and
132 raster (ablate) the materials. The materials were then patterned and cut into several rectangular
133 pieces that were stacked compressed together using machine screws and nuts to form a
134 watertight cell. Laser-cutting and rastering details are described in the Supporting Information.

135 **Glycerol Conversion.** To quantitatively analyze glycerol conversion and C₃ products, reaction
136 mixtures were analyzed on a Waters H-Class UPLC fitted with an Aminex HPX-87H column
137 connected in series with photodiode array (PDA) and QDa detectors. A 10 μ L sample was
138 injected into the column at 0.6 mL/min flow rate using 0.1% formic acid mobile phase at room
139 temperature (~23 °C). The quantity of analytes in the samples was obtained by analysis of exact
140 masses (M+H)⁺ or (M+Na)⁺.

141 **RESULTS AND DISCUSSION**

142 High pH electrolytes promote TEMPO-mediated oxidations, while the degradation of TEMPO is
143 also favorable in base.⁸ Ionic Liquids (ILs), however, possess good alkaline chemical stability
144 and TEMPO solubility.^{33,34} This gives us an opportunity to design electrode composites in which
145 ILs are used as on part of a biphasic system (electrode phase and buffer phase) preventing

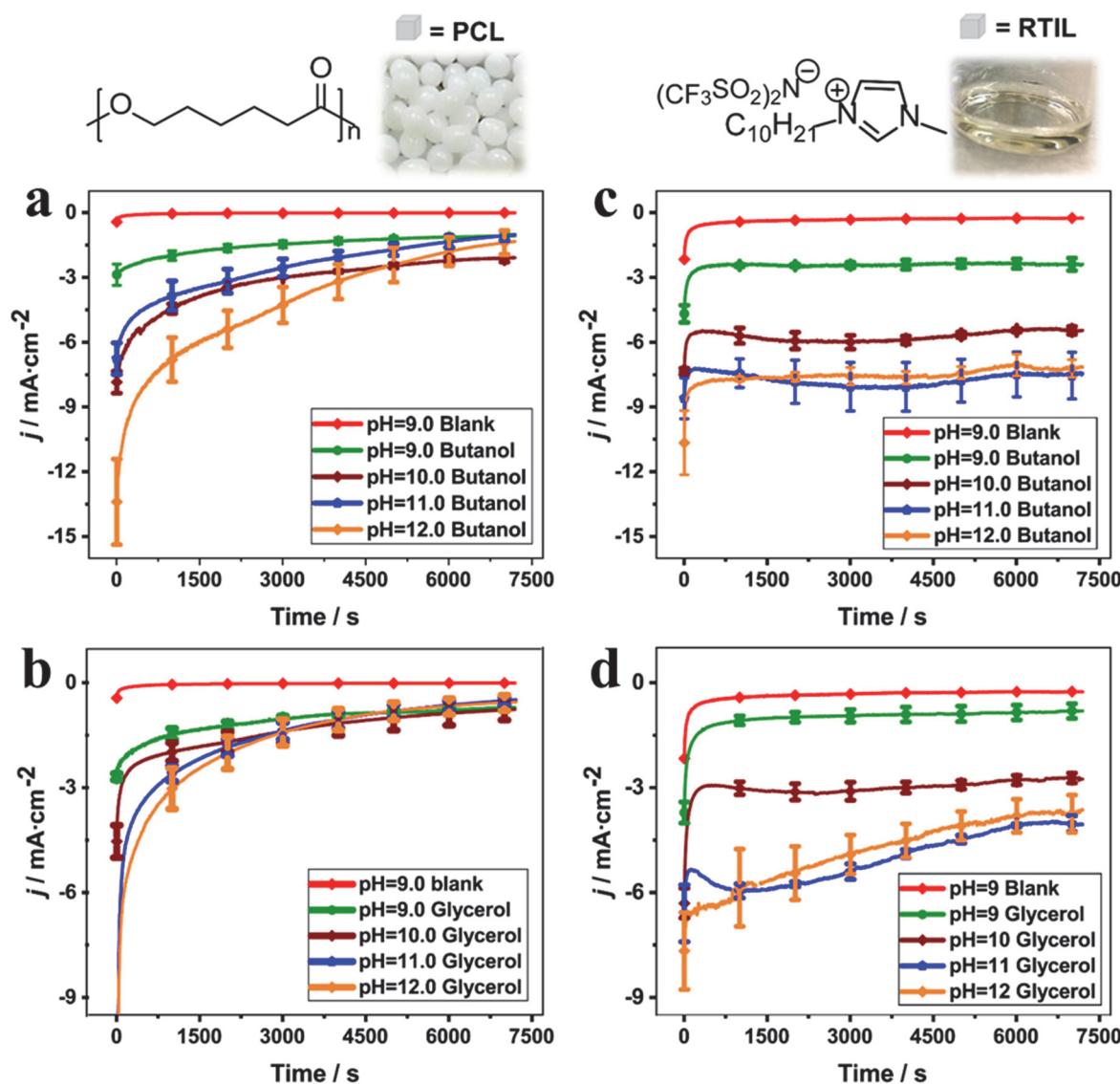

146 TEMPO from being decomposed (**Scheme 1b**). First, a TEMPO-based composite with IL 1-
147 decyl-3-methylimidazolium bis(trifluoromethylsilyl) ether ($C_{10}\text{mimNTf}_2$) was developed. Another composite
148 electrode system composed of polycaprolactone (PCL) as binder³⁵ (PTPEs) was prepared as a
149 comparison due to its low melting point, low cost, and good solubility in organic solvents.³⁵
150 Pyrene-TEMPO³² (**Scheme 1c**) was chosen as the TEMPO moiety for use in both composite
151 electrodes, because of its hydrophobicity and ability to pi-pi stack to carbon surfaces. In this
152 work, we do not seek to prepare new TEMPO derivatives, but rather develop an electrode
153 platform in which RTILs actively performed in the catalytical system. Thus, our strategy below
154 could be used for other nitroxyl radicals that have been designed.

155 **Catalytic Activity of CILEs Towards Different Alcohol Substrates.** Before evaluating the
156 catalytic stability of CILEs, the catalytic activity of the electrode composites towards different
157 alcohols were initially investigated. As the TEMPO to IL ratio also plays an important role in
158 catalytic performance, the amount of IL, and graphite/TEMPO ratio were first optimized (**Figure**
159 **S1**). The optimum ratio of TEMPO to IL was found to be 0.48:5 (mg : μL). The optimized ratio
160 resulted in the largest current density observed at 0.9 V vs. SCE during the oxidation of 1-
161 butanol using cyclic voltammetry.

162 With the optimized ratio, the TEMPO-mediated oxidation of CILEs in a series of alcohol
163 substrates was studied (**Figure 1**). The increased anodic peak shows the onset potential of each
164 substrate during the TEMPO-mediated oxidations.³⁶ Another critical feature observed is the
165 variances among the anodic current of different alcohols. Specifically, the anodic current of
166 primary alcohols is considerably higher than that of secondary alcohols, likely the result of the
167 lower pKa of primary alcohols and small steric hindrance.^{37,38} In addition, electron-rich
168 substrates (e.g., benzylic alcohols) exhibit larger anodic currents than aliphatic alcohols.^{39,40}

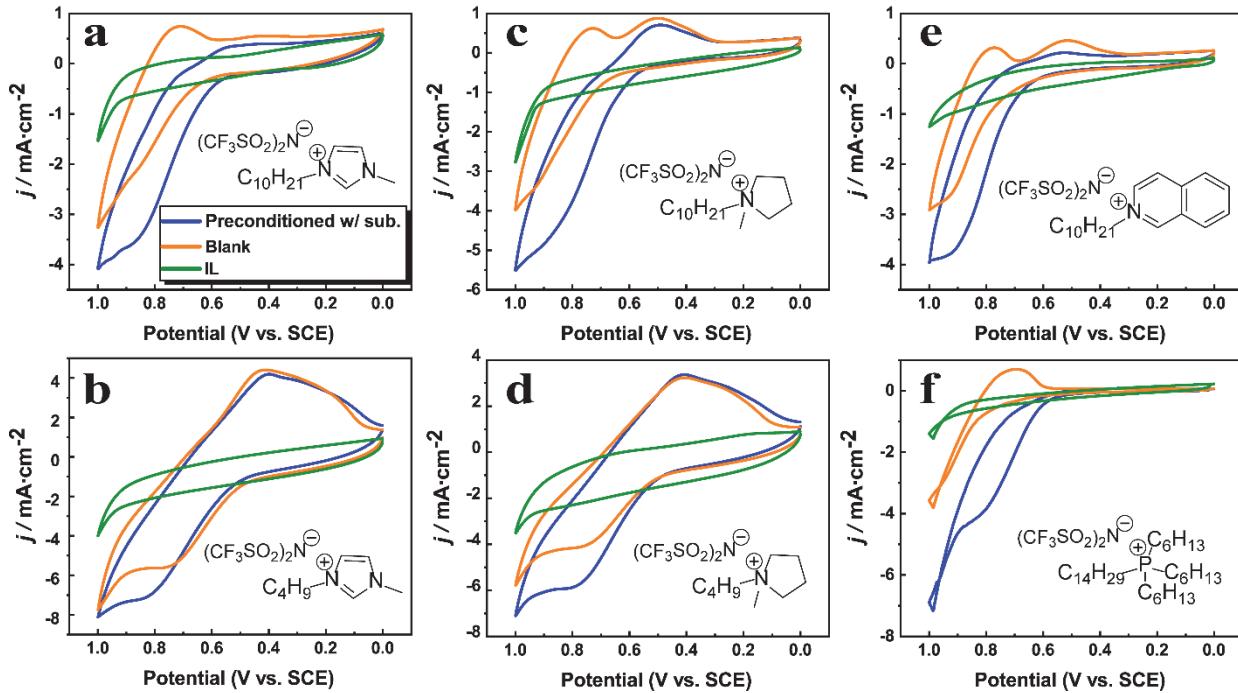
169 The differences in the oxidation reactivities of alcohols highlight the need for maintaining
170 the stability of TEMPO-based composites, particularly for substrates with low oxidation rates.
171 For example, the pyrene-TEMPO used in this work has a current density of 8.3 mA/cm^2 (at 0.8 V
172 vs. SCE) for benzyl alcohol. However, 1-butanol has a density that is nearly 50% lower. In the
173 case of glycerol, although it possesses two primary alcohols, the reaction rate was surprisingly
174 comparable to 1-butanol. Due to the low activity of these aliphatic alcohols, it is not only
175 important to develop catalysts that are active, but also highly stable.

176 In the following work, glycerol is highlighted as a case study considering it is a biomass-
177 derived aliphatic alcohol. 1-butanol was included as another model substrate for evaluation of
178 CILEs due to its structural similarity to glycerol, but only one primary alcohol is present. Here
179 we are interested in examining whether the CILEs developed would improve the oxidation
180 stability of aliphatic alcohols, and further, whether the ILs utilized, coupled with the fundamental
181 understanding of their properties, would allow flexibility and control in the catalytic system.



183 **Figure 1.** Representative cyclic voltammograms (5 mV s^{-1}) of various alcohols in 0.1 M
184 carbonate buffer (pH 10) using two-electrode composites CILEs (top), and PTPEs (bottom),
185 respectively.

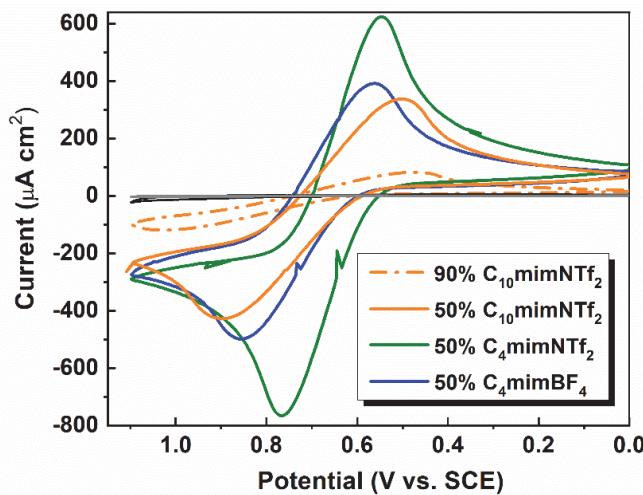
186 **Catalytic Stability of TEMPO-Based Electrode Composites in ILs.** Considering TEMPO-
187 mediated oxidation is pH sensitive and can induce degradation, amperometry using CILEs and
188 PTPEs were performed at a pH range of pH 9.0 to pH 12.0. **Figure 2** shows the amperometric
189 results of the different electrode platforms with electrolysis for 2.0 h. For stability evaluation, the
190 current at 5.0 min was chosen as the initial steady-state current, and background current was
191 subtracted to obtain the catalytic current. Clearly, in comparison to the control binding material
192 of PCL, the use of RTILs resulted in a dramatic enhancement of the catalytic stability of the
193 TEMPO composite. In particular, for butanol oxidation using CILEs, almost no current loss was
194 achieved throughout all pH values. However, the current loss with PTPEs steadily increased
195 from 47.9% current loss (pH 9.0) and reached up to 82.0% current loss at pH 12.0. In the case of
196 glycerol oxidation, this drop became more significant, especially when the pH was higher than
197 10.0. With PTPEs, 83.2% and 84.6% catalytic current was lost at pH 11.0 and pH 12.0,
198 respectively. However, this loss was considerably diminished *via* CILEs, where 30.0% and
199 41.1% current loss was observed for pH 11.0 and pH 12.0, respectively. These results
200 demonstrate that the binder plays a crucial role in catalyst stability.


201 Aside from catalytic stability, it is also noteworthy that while high pH electrolyte
202 facilitates substrate conversion, the increase of current density became diminishing return after
203 pH 11.0. This slower increase might result from the increased rate of TEMPO degradation at
204 high pH values. As a result, the competition between the base-induced degradation and the base-
205 favored oxidation has to be considered to choose an optimal pH for alcohol oxidation.

206 Additionally, consistent with **Figure 1**, the additional alcohol groups in glycerol, in comparison
 207 to 1-butanol, did not result in faster conversion. In contrast, a decrease in current density was
 208 observed. This decreased anodic current was significantly mitigated by using CILEs. For
 209 instance, a 42.5% current density increase was observed for PTPEs when changing pH from 10.0
 210 to 11.0, while a 121.6% increase in current density was observed for CILEs for the same pH
 211 change. Consequently, utilization of CILEs is not only capable of enhancing the catalytic
 212 stability, but also enables the improvement in reactivity.

214 **Figure 2.** Effects of binders on the catalytic performance of TEMPO electrode composites.
215 Amperometry results using PTPEs for butanol **(a)** and glycerol **(b)**. **(c)** and **(d)** are the
216 background subtracted current response using CILEs for butanol, and glycerol oxidation,
217 respectively.

218 **Electrochemical Behavior of Various Ionic Liquids.** To unravel the structural effect of ILs on
219 the composite catalysis, a series of ILs that possess different chain lengths and cations were
220 studied. The ILs anion, bistriflimide, was fixed and the corresponding cation varied in chain
221 length from C4 to C14. Bistriflimide anion was chosen due to its fast reaction kinetics and
222 product selectivity for alcohol oxidations.⁴¹ **Figure 3** shows the electrochemical behavior of the
223 electrodes prepared with various ILs. Different from PTPEs, there appears to be two separate
224 reduction peaks present in many of the IL-TEMPO combinations. It was hypothesized that
225 TEMPO, from within the CILE matrix, that was not in contact with the solution triggered
226 broadening or the appearance of two peaks. The TEMPO is essentially in a solution of electrolyte
227 when buried in the electrode and should be able to be redox cycled, even when not in contact
228 with the solution.

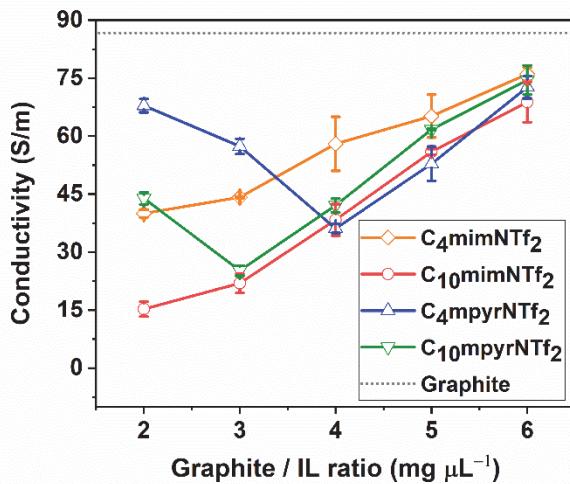


229

230 **Figure 3.** Electrochemical behavior of a variety of ionic liquids in TEMPO-mediated glycerol
 231 oxidation. The green trace is the CV of electrode composites consisting of only carbon and ionic
 232 liquids. The orange trace is the CV of CILEs with TEMPO embedded. The blue trace is the CV
 233 of CILEs with TEMPO using glycerol (55.5 mM) as a substrate. All the CVs were recorded
 234 using a scan rate of 5 mV/s, and 0.1 M carbonate buffer (pH 10.0).

235 Note that in **Figure 3a-e**, the secondary peak at lower potential maintained its reductive
 236 redox feature even in the presence of substrate. To study the effect of ILs on the redox nature of
 237 TEMPO, 4-acetamido-TEMPO (ACT) was selected as an analog for pyrene-TEMPO. ILs were
 238 used as the bulk electrolyte in a typical three-electrode electrochemical cell. This three-electrode
 239 cell experiment serves as an analog to what is happening within the CILE matrix. Acetonitrile
 240 was added in ILs to enhance the solubility of ACT, and adjust the viscosity of ILs – increasing
 241 the amount of acetonitrile decreases IL viscosity. The resulting IL solution used is 50%
 242 C₄mimNTf₂, 50% C₄mimBF₄, 50% C₁₀mimNTf₂, and 90% C₁₀mimNTf₂ (in the order of lowest

243 to highest). The chain length on the IL was adjusted from C4 to C10 which has a reported
 244 difference of $\sim 4 - 4.5$ in conductivity. Conductivity and viscosity values of the three ILs
 245 employed are listed in **Table S1**. The results from **Figure 4** indicate that peak separation is
 246 highly dependent on the viscosity of the IL. When nearly neat $\text{C}_{10}\text{mimNTf}_2$ was used, the peak
 247 current was severely diminished and the CV had the greatest peak separation, with a reductive
 248 peak at -0.5 V vs. SCE. This is near identical for the second peak location with CILEs in **Figure**
 249 **3a, c, e**. Indeed, the blank CVs in **Figure 3b, d** with the C4 IL appear to be almost fully
 250 dominated by the presumed subsurface redox-active TEMPO. This is logical as the smaller IL is
 251 less viscous, thereby easier to rearrange. Viscosity is well known to affect the peak-to-peak
 252 separation (electron transfer kinetics), causing an increase in separation as viscosity increases.⁴²


253
 254 **Figure 4.** Cyclic voltammetry of 24 mM 4-acetamido-TEMPO dissolved in various ILs with 10
 255 and 4 chain length and differing anion. 3mm diameter glassy carbon electrode at 300 mV/s.

256 While ILs with the short carbon chain (e.g., 1-butyl-1-methylimidazolinium
 257 bistrifliimide, $\text{C}_4\text{mimNTf}_2$, and 1-butyl-1-methylpyrrolidinium bistrifliimide, $\text{C}_4\text{mpyrNTf}_2$)
 258 displayed the least peak separation, the oxidative current only increased slightly with the

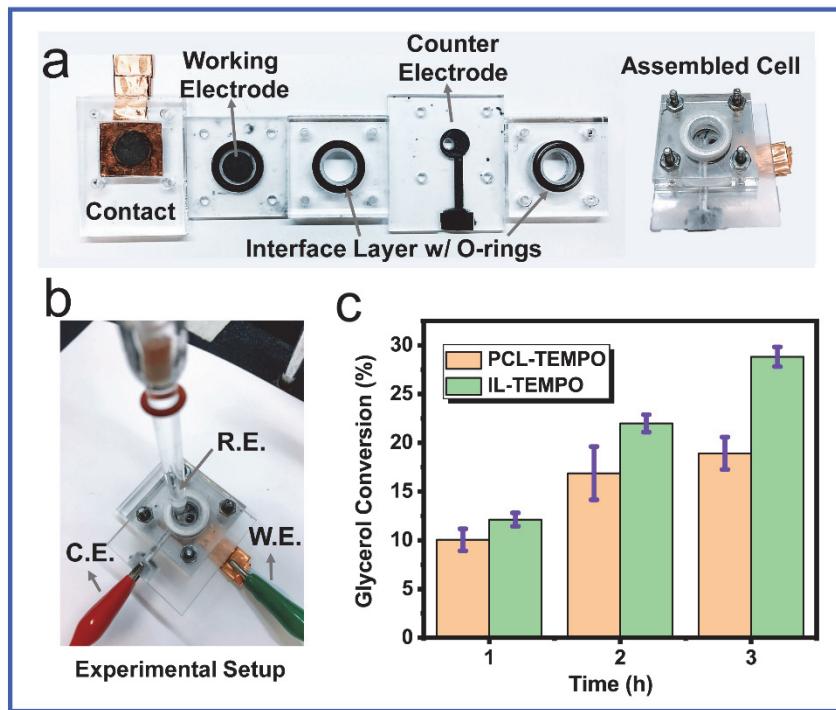
259 substrate, indicating that the catalytic reactivity of TEMPO in these ILs became slow. Therefore,
260 ILs with long carbon chains were selected to further investigate the effect on the stability of
261 electrodes (**Figure S2**). The results indicated that all electrode composites retained their catalytic
262 activity after 100 cycles. However, after 300 cycles, electrodes composed of
263 Trihexyltetradecylphosphonium bistrifliimide ($P_{66614}NTf_2$) and 2-decyliisoquinolinium
264 bis(trifluoromethanesulfonyl)imide ($[C_{10}qun]NTf_2$) degraded. In contrast, CILEs consisting of
265 $C_{10}mpyrNTf_2$ and $C_{10}mimNTf_2$ showed consistent catalytic activity. These differences in
266 electrochemical behavior in various CILEs were the direct evidence that the structure of ILs play
267 a critical role in the TEMPO-mediated catalysis.

268 **Effects of Ionic Liquid Structures on the Composite Conductivity.** Besides the performance
269 of CILEs in electrocatalytic activity and stability, the bulk electrical conductivity is another
270 critical factor as electrode composites with high resistance lead to large ohmic drops. Thus, the
271 conductivity of CILEs as a function of graphite-to-IL ratio was evaluated (**Figure 5**). Consistent
272 with other composite materials, increasing the amount of carbon used results in an increase in the
273 electrode conductivity. It is worth noting that structural changes of the ILs also alter the
274 composite conductivity. This variation is mainly ascribed to the changes in viscosity.
275 Particularly, ILs with short carbon chains display low viscosity, while ILs with imidazolium as
276 cations are more viscous than that of pyrrolidinium. Consequently, at the same graphite/IL ratio,
277 the conductivity rankings of the ILs tested (from highest to lowest) was $C_4mpyrNTf_2$,
278 $C_4mimNTf_2$, $C_{10}mpyrNTf_2$, $C_{10}mimNTf_2$. This conductivity difference, as shown in **Figure 5**,
279 was evident at low graphite/IL ratio, and attenuated when increasing the graphite percentage.
280 Further, increasing the amount of graphite led to similar conductivity, regardless of IL structures.
281 Although electrode composites with high conductivity are preferred, the homogeneous

282 distribution of IL and catalyst may become poor. On the other hand, graphite/IL ratio lower than
283 1:1 lost its mechanical stability. Overall, properties such as conductivity, composition, catalytical
284 performance and mechanical stability should all be considered in order to select the appropriate
285 graphite/IL ratio.

286
287 **Figure 5.** Measured conductivity values of CILEs containing various graphite/IL ratios. The
288 conductivity of 100% carbon was also measured (dotted line) as a comparison.

289 **Evaluation of Catalytic Stability in Bulk Glycerol Conversion.** The amperometry results
290 demonstrated that the incorporation of TEMPO in ILs improved the current stability. To further
291 investigate whether the stabilized current practically translates to the conversion of TEMPO-
292 based reactants, the oxidation of glycerol was studied and analyzed using UPLC-MS. A small
293 volume, 800 μL three-electrode electrochemical cell was designed to facilitate glycerol detection
294 in short-term experiments (**Figure 6a-b**). Using the 800 μL cell, a potential of 0.8 V (vs. SCE)
295 was applied to the CILEs and PTPEs for 1 h, 2 h, 3 h, separately. As shown in **Figure 6c**, the
296 conversion of glycerol in PTPEs plateaued after 2 h, which corroborates the chronoamperometry
297 results shown in **Figure 2b**, suggesting that TEMPO was deactivated during the reaction

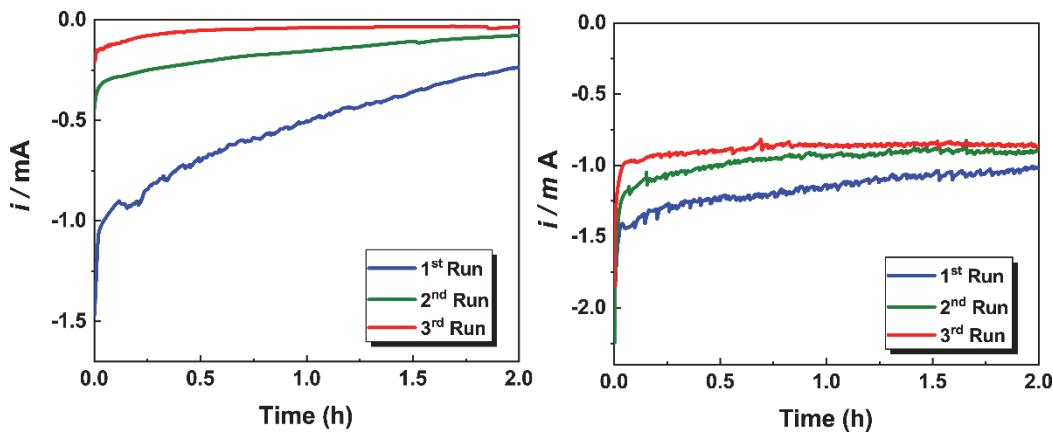

298 duration. In comparison, the IL-incorporated TEMPO CILEs displayed consistent increasing
299 conversion to glyceric acid and tartronic acid throughout the reaction period (**Figure S5**). These
300 results demonstrate TEMPO in $C_{10}mimNTf_2$, in comparison to TEMPO in PCL, exhibited
301 improved catalytic stability.

302 It is worth mentioning that although upgrading glycerol to valuable products via product
303 selectivity is of great interest, they are not the scope of the present work. Here we focus on
304 improving catalytic stability by incorporating alkaline stable ionic liquids. Glycerol was selected
305 as a model aliphatic alcohol. As discussed earlier, the low anodic current of CILEs when using
306 glycerol as a substrate (**Figure 1**) underlines the critical need for developing highly stable
307 catalyst systems. The results obtained by using glycerol as a model alcohol are expected to give
308 insights into the current catalytic system (e.g., the choice of ionic liquids) and eventually serve as
309 a universal tool to apply to other alcohols.

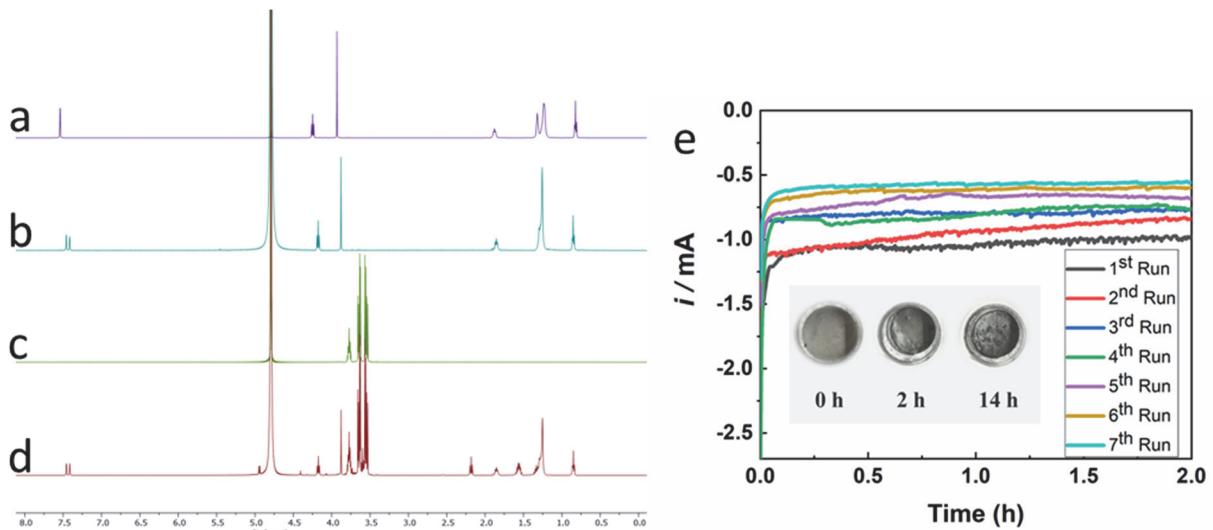
310 Catalytic stability, to some degree, can be revealed by the evaluation of certain products.
311 However, the use of product analysis as a parameter for evaluating catalyst stability can be
312 ambiguous as the mass balance obtained by-products hardly achieve 100%. Specifically, for
313 glycerol oxidation, the mass balance is poor and sometimes can be as low as 20%.⁴³ This is
314 mainly due to the fact that glycerol exhibits multiple oxidation pathways during the reaction
315 duration. In alkaline conditions, it is reported that terminal carbons are more likely to be
316 oxidized.^{44,45} The generated C₃ products (e.g., glyceric acid, tartronic acid) may further undergo
317 C-C cleavage in base, resulting in the formation of C₂ and C₁ products (e.g., glycolic acid, and
318 formic acid).^{46,47} Consequently, the catalytic current not only translates glycerol to glyceric acid,
319 but also to other oxidation products. The formation of tartronic acid (**Figure S4**) is an indicator

320 of this multiple oxidation events. In this scenario, without knowing the kinetics of all potential
321 oxidation pathways, the product analysis by itself cannot explain catalytic stability.

322


323

324 **Figure 6.** Electrochemical cell designed for glycerol conversion. **(a)** (left-to-right) Images of
325 each layer and the assembled cell. Electrode composites of PTPEs or CILEs (1 cm^2) are
326 sandwiched between the contact pad and interface layer. An off-center hole was made in the
327 counter electrode to release bubbles formed during electrolysis from the cell without in touch
328 with the reference electrode. **(b)** Experimental setup of the $800\text{ }\mu\text{L}$ electrochemical cell. **(c)**
329 Results of the glycerol conversion using PTPEs and CILEs.


330 To further evaluate the stability and reusability of the CILEs, successive cycles of the
331 glycerol oxidation were performed without any post-treatments of the electrode composite. Note
332 that high substrate conversion ($\geq 20\%$) can decelerate the reaction kinetics,⁴⁸ causing ambiguous
333 results. Thus, 2 h was applied as one cycle period and the reaction mixture was refreshed after

334 each individual cycle. **Figure 6** has shown the anodic current translates to the conversion of
335 glycerol. During the 2 h reaction duration, the current response was directly used to evaluate
336 catalyst stability. As depicted in **Figure 7**, the minimal decay of current (4.4%) was observed
337 between the second and the third cycle for CILEs. In contrast, TEMPO in PCL exhibited nearly
338 100 % degradation after the first cycle. This phenomenon is direct evidence that TEMPO
339 incorporated in ionic liquids was not deactivated, while in PCL was. Since this C₁₀mimNTf₂ is
340 reported to have 0.0% degradation at current pH values,⁴⁹ we expect stable catalytic current in
341 the three cycles. The fact that the anodic current decreased at the extended reaction period might
342 be attributed to ionic liquid dissolution in the electrolyte, which in turn, results in catalyst
343 leaching. To investigate whether the ionic liquid dissolution actually occurs, NMR analysis was
344 carried out. The presence of the characteristic peaks of 1-decyl-3-methylimidazolium in
345 deuterated carbonate buffer after electrolysis indicates the loss of ionic liquid (**Figure 8a-b**).
346 Although C₁₀mimNTf₂ is one of the most hydrophobic ionic liquids known (solubility in water is
347 < 3.2 x 10⁻⁵ in mole fraction⁵⁰), the effect of dissolution on catalyst leaching is non-trivial. In
348 fact, the damage of the electrode surface after oxidation (**Figure 8e**) is another indicator of IL
349 dissolution and catalyst leaching. Interestingly, this surface destruction is not observed when
350 there is no potential applied, even under vigorous stirring overnight (**Figure S5**). This difference
351 in the electrode surface change suggests that electrochemical events can accelerate IL
352 dissolution. Nevertheless, the extreme hydrophobic nature of C₁₀mimNTf₂ enables slow
353 dissolution, leading to stable catalytic current for a relatively long time period - after 7 cycles (14
354 h), about 50% of anodic current remained (**Figure 8e**), while the current loss was up to 50 % for
355 CILEs within 1 h (**Figure 7**). Overall, these results suggest a 14-fold enhanced alkaline stability
356 of TEMPO in ILs.

357 These differences in the catalytic stability between PTPEs and CILEs indicated the
 358 critical role the binding material plays in the TEMPO catalytic stability. More specifically, the
 359 binding materials exhibit two key functions – protection of TEMPO from being decomposed at
 360 high pH values, and maintaining the electrode composition throughout the electrolysis. To
 361 achieve this, the material needs to possess good alkaline chemical stability as well as extreme
 362 hydrophobicity. The IL used in this work enables preserving the TEMPO stability due to its high
 363 chemical stability in basic electrolyte. However, its dissolution into aqueous solution results in
 364 the loss of TEMPO. While PCL as a polymer is anticipated to retain the composite components
 365 without suffering from dissolution and TEMPO leaching, it is subjective to hydrolysis
 366 degradation. This hydrolysis due to the presence of carboxylate ester linkage is a common issue
 367 in polyesters.⁵¹ Based on the above discussions, polymerization of chemically stable ILs could
 368 potentially further improve the stability and reusability of the electrode composite.⁵² Such an
 369 improvement in the stability of the electrode components will, in turn, facilitate electrode
 370 applications and be critical for product isolation.

371
 372 **Figure 7.** Comparison of the stability and reusability of the PTPEs and CILEs. For each run,
 373 55.5 mM of glycerol in 0.1 M carbonate buffer (pH 10) was used with constant potential at 0.8
 374 V. After each cycle, the reaction mixture was replaced with fresh glycerol solution.

375 **Figure 8.** ¹H NMR spectrum of (a) C₁₀mimBr in deuterated carbonate buffer, (b) Supernatant of
 376 deuterated carbonate buffer solution with C₁₀mimNTf₂ being added. (c) Glycerol solution (55.5
 377 mM) before (c) and after 2.0 h electrolysis (d). The concentration of the deuterated carbonate
 378 buffer used was 0.1 M (pH 10). Each spectrum was adjusted in different intensities to highlight
 379 the characteristic peaks of the 1-decyl-3-methylimidazolium cation. (e) Current responses of
 380 seven cycles using CILEs. For all runs, a solution of 55.5 mM glycerol in 0.1 M carbonate buffer
 381 (pH 10) was used, and refreshed after each cycle. The images shown represent the electrode
 382 surface before cycling, after first cycle, and seven cycle, respectively.

384 **CONCLUSION**

385 Among catalysts for alcohol oxidations, TEMPO has major advantages — it is selective, metal-
 386 free, and remarkably low-cost — yet it suffers from base-induced decomposition. This lack of
 387 stability hinders the widespread applications of TEMPO for electrosynthesis. In this work, we
 388 synthesized a TEMPO composite electrode with ionic liquid embedded for the enhancement of
 389 TEMPO-mediated oxidations under basic conditions. The results of this study demonstrate the
 390 continued reactivity of TEMPO for long time periods at high pH values, under which normally

391 results in TEMPO decomposition. For glycerol oxidation, electrodes with TEMPO in
392 $C_{10}mimNTf_2$ displayed no loss of current at pH 10.0 after 2.0 h, while TEMPO in PCL degraded
393 67.1%. Further analysis of the bulk conversion of glycerol evidenced that the stabilized current
394 practically translated to the oxidation of glycerol. Successive cycles of glycerol oxidation
395 suggest that although ionic liquid dissolution and thus catalyst leaching occurs, the extreme
396 hydrophobic nature of $C_{10}mimNTf_2$ permits stable current for a relatively long reaction period.
397 About 50% catalytic current remained after 7 cycles (14 h) for CILEs, while in contrast; the
398 current loss was up to 50 % for PTPEs within 1 h, leading to a 14-fold catalytic enhancement by
399 applying IL in TEMPO electrode composite. The significant advancement in the catalytic
400 stability by applying ILs reveals the critical role of the binding materials. A combination of the
401 polymer nature of PCL with chemically stable functional groups of ILs is expected to generate
402 next-generation binding materials – not only stable in catalytic turnover, but also stable in
403 electrode components. Note that chemical dissolution present in the current work may
404 complicate product isolation and purification. Such advancement in the stability of the electrode
405 components is critical for the catalyst development and practical applications.

406 In addition to the enhanced catalytic stability, the present work enables the composite
407 based catalyst to be attached to the electrode surface. This surface-attached catalyst system
408 removes the requirement of catalyst separation from the reaction mixture. More importantly, the
409 use of ILs enhances catalytic stability, rendering it applicable for electrode reuse and recycling.
410 This can be particularly meaningful as ILs are expensive materials. Further, the current strategy
411 only requires microliters of IL in electrode preparation. Accordingly, incorporation of ILs in
412 electrode composite potentially can be a cost-effective approach. Therefore, the strategy is

413 expected to provide many opportunities for designing heterogeneous electrode composites with
414 enhanced catalytic performance using other homogenous based systems.

415

416 **ASSOCIATED CONTENT**

417 **Supporting Information.**

418 The Supporting Information is available free of charge on the ACS Publications website.

419 Details of synthesis of ionic liquids, preparation of the two electrode composites,
420 conductivity measurement, fabrication of the 800 μL electrochemical cell,
421 chronoamperometry results of glycerol oxidation, and corresponding C₃ product analysis.

422 **AUTHOR INFORMATION**

423 **Corresponding Author**

424 *EMAIL: minteer@chem.utah.edu

425 **NOTES**

426 The authors declare no competing financial interest.

427

428 **ACKNOWLEDGMENT**

429 The authors would like to thank the National Science Foundation Center for Synthetic Organic
430 Electrosynthesis for funding (CHE-1740656).

431 **REFERENCES**

432 (1) Ciriminna, R.; Pagliaro, M. Industrial Oxidations with Organocatalyst TEMPO and Its
433 Derivatives. *Org. Process Res. Dev.* **2010**, *14* (1), 245-251, DOI: 10.1021/op900059x.

434 (2) Anelli, P. L.; Montanari, F.; Quici, S. A General Synthetic Method for the Oxidation of
435 Primary Alcohols to Aldehydes: (S)-(+)-2-Methylbutanal. *Org. Synth. Wiley: New York*, **2003**, 2,
436 212-212, DOI: 10.1002/0471264180.os069.26.

437 (3) He, X.; Shen, Z.; Mo, W.; Sun, N.; Hu, B.; Hu, X. TEMPO-tert-Butyl Nitrite: An Efficient
438 Catalytic System for Aerobic Oxidation of Alcohols. *Adv. Synth. Catal.* **2009**, *351* (1-2), 89-92,
439 DOI: 10.1002/adsc.200800501.

440 (4) Rychnovsky, S. D.; Vaidyanathan, R. TEMPO-Catalyzed Oxidations of Alcohols Using m-
441 CPBA: The Role of Halide Ions. *J. Org. Chem.* **1999**, *64* (1), 310-312, DOI: 10.1021/jo9819032.

442 (5) Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Catalytic synthesis of aldehydes and ketones
443 under mild conditions using TEMPO/Oxone. *Org. Lett.* **2000**, *2* (8), 1173-1175, DOI:
444 10.1021/ol005792g.

445 (6) Lambert, K. M.; Bobbitt, J. M.; Eldirany, S. A.; Kissane, L. E.; Sheridan, R. K.; Stempel, Z.
446 D.; Sternberg, F. H.; Bailey, W. F. Metal-Free Oxidation of Primary Amines to Nitriles through
447 Coupled Catalytic Cycles. *Chem. Eur. J.* **2016**, *22* (15), 5156-5159, DOI:
448 10.1002/chem.201600549.

449 (7) Semmelhack, M. F.; Chou, C. S.; Cortes, D. A. Nitroxyl-mediated electrooxidation of
450 alcohols to aldehydes and ketones. *J. Am. Chem. Soc.* **1983**, *105* (13), 4492-4494, DOI:
451 10.1021/ja00351a070.

452 (8) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide
453 N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in

454 Electrocatalytic Reactions. *Chem. Rev.* **2018**, 118 (9), 4834-4885, DOI:
455 10.1021/acs.chemrev.7b00763.

456 (9) Bobbitt, J. M.; BrüCkner, C.; Merbouh, N. Oxoammonium- and Nitroxide-Catalyzed
457 Oxidations of Alcohols. *Org. React.* **2010**, 103-424, DOI: 10.1002/0471264180.or074.02.

458 (10) Beejapur, H. A.; Zhang, Q.; Hu, K.; Zhu, L.; Wang, J.; Ye, Z. TEMPO in Chemical
459 Transformations: From Homogeneous to Heterogeneous. *ACS Catal.* **2019**, 9 (4), 2777-2830,
460 DOI: 10.1021/acscatal.8b05001.

461 (11) Hickey, D. P.; Schiedler, D. A.; Matanovic, I.; Doan, P. V.; Atanassov, P.; Minteer, S. D.;
462 Sigman, M. S. Predicting Electrocatalytic Properties: Modeling Structure-Activity Relationships
463 of Nitroxyl Radicals. *J. Am. Chem. Soc.* **2015**, 137 (51), 16179-16186, DOI:
464 10.1021/jacs.5b11252.

465 (12) Nilsen, A.; Braslau, R. Nitroxide decomposition: Implications toward nitroxide design for
466 applications in living free-radical polymerization. *J. Polym. Sci. Pol. Chem.* **2006**, 44 (2), 697-
467 717, DOI: 10.1002/pola.21207.

468 (13) Geneste, F.; Moinet, C.; Ababou-Girard, S.; Solal, F. Covalent attachment of TEMPO onto
469 a graphite felt electrode and application in electrocatalysis. *New. J. Chem.* **2005**, 29 (12), 1520-
470 1526, DOI: 10.1039/b507213c.

471 (14) Belgsir, E. M.; Schäfer, H. J. Selective oxidation of carbohydrates on Nafion®-TEMPO-
472 modified graphite felt electrodes. *Electrochem. Commun.* **2001**, 3 (1), 32-25, DOI:
473 10.1016/s1388-2481(00)00137-5.

474 (15) Fish, J. R.; Swarts, S. G.; Sevilla, M. D.; Malinski, T. Electrochemistry and
475 Spectroelectrochemistry of Nitroxyl Free-Radicals. *J. Phys. Chem.* **1988**, *92* (13), 3745-3751,
476 DOI: Doi 10.1021/J100324a012.

477 (16) Golubev, V. A.; Sen, V. D.; Rozantsev, G. Synthesis and properties of alkali salts of 2,2,6,6-
478 tetramethyl-1-hydroxypiperidine 1-oxide. *Russ. Chem. Bull.* **1979**, *28* (9), 1927-1931, DOI:
479 10.1007/bf00952480.

480 (17) Cardiel, A. C.; Taitt, B. J.; Choi, K.-S. Stabilities, Regeneration Pathways, and
481 Electrocatalytic Properties of Nitroxyl Radicals for the Electrochemical Oxidation of 5-
482 Hydroxymethylfurfural. *Acsl. Sustain. Chem. Eng.* **2019**, *7* (13), 11138-11149, DOI:
483 10.1021/acssuschemeng.9b00203.

484 (18) Gordon, C. M. New developments in catalysis using ionic liquids. *Appl. Catal a-Gen* **2001**,
485 222 (1-2), 101-107, DOI: 10.1016/S0926-860x(01)00834-1.

486 (19) Mehnert, C. P. Supported ionic liquid catalysis. *Chem. Eur. J.* **2004**, *11* (1), 50 -56, DOI:
487 10.1002/chem.200400683.

488 (20) Maton, C.; De Vos, N.; Stevens, C. V. Ionic liquid thermal stabilities: decomposition
489 mechanisms and analysis tools. *Chem. Soc. Rev.* **2013**, *42* (13), 5963-5977, DOI:
490 10.1039/c3cs60071h.

491 (21) Xue, Z.; Qin, L.; Jiang, J.; Mu, T.; Gao, G. Thermal, electrochemical and radiolytic
492 stabilities of ionic liquids. *Phys. Chem. Chem. Phys.* **2018**, *20* (13), 8382-8402, DOI:
493 10.1039/c7cp07483b.

494 (22) Kazemiabnavi, S.; Zhang, Z.; Thornton, K.; Banerjee, S. Electrochemical Stability Window
495 of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries. *J. Phys. Chem. B*
496 **2016**, *120* (25), 5691-5702, DOI: 10.1021/acs.jpcb.6b03433.

497 (23) Jiang, N.; Ragauskas, A. J. TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes
498 with the H₂O₂/HBr/ionic liquid [bmim]PF₆ system. *Tetrahedron Lett.* **2005**, *46* (19), 3323-3326,
499 DOI: 10.1016/j.tetlet.2005.03.078.

500 (24) Jiang, N.; Ragauskas, A. J. Copper(II)-catalyzed aerobic oxidation of primary alcohols to
501 aldehydes in ionic liquid [bmPy]PF₆. *Org. Lett.* **2005**, *7* (17), 3689-3692, DOI:
502 10.1021/ol051293+.

503 (25) Qian, W.; Jin, E.; Bao, W.; Zhang, Y. Clean and highly selective oxidation of alcohols in an
504 ionic liquid by using an ion-supported hypervalent iodine(III) reagent. *Angew. Chem. Int. Ed.*
505 **2005**, *44* (6), 952-955, DOI: 10.1002/anie.200461889.

506 (26) Kuroboshi, M.; Fujisawa, J.; Tanaka, H. N-Oxyl-Mediated Electrooxidation in Ionic Liquid.
507 A Prominent Approach to Totally Closed System. *Electrochem* **2004**, *72* (12), 846-848, DOI:
508 10.5796/electrochemistry.72.846.

509 (27) Wu, X. E.; Ma, L.; Ding, M. X.; Gao, L. X. TEMPO-derived task-specific ionic liquids for
510 oxidation of alcohols. *Synlett* **2005**, *2005* (4), 607-610, DOI: 10.1055/s-2005-862396.

511 (28) Zhu, C. J.; Ji, L.; Wei, Y. Y. Clean and selective oxidation of alcohols with n-Bu₄NHSO₅
512 catalyzed by ionic liquid immobilized TEMPO in ionic liquid [bmim][PF₆]. *Catal. Commun.*
513 **2010**, *11* (12), 1017-1020, DOI: 10.1016/j.catcom.2010.05.002.

514 (29) Gruttaduria, M.; Liotta, L. F.; Salvo, A. M. P.; Giacalone, F.; La Parola, V.; Aprile, C.;
515 Noto, R. Multi-Layered, Covalently Supported Ionic Liquid Phase (mlc-SILP) as Highly Cross-
516 Linked Support for Recyclable Palladium Catalysts for the Suzuki Reaction in Aqueous
517 Medium. *Adv. Syn. Catal.* **2011**, *353* (11-12), 2119-2130, DOI: 10.1002/adsc.201100186.

518 (30) Aprile, C.; Giacalone, F.; Agrigento, P.; Liotta, L. F.; Martens, J. A.; Pescarmona, P. P.;
519 Gruttaduria, M. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon
520 dioxide: a high-throughput study in supercritical conditions. *ChemSusChem* **2011**, *4* (12), 1830-
521 1837, DOI: 10.1002/cssc.201100446.

522 (31) Montroni, E.; Lombardo, M.; Quintavalla, A.; Trombini, C.; Gruttaduria, M.; Giacalone, F.
523 A Liquid-Liquid Biphasic Homogeneous Organocatalytic Aldol Protocol Based on the Use of a
524 Silica Gel Bound Multilayered Ionic Liquid Phase. *ChemCatChem* **2012**, *4* (7), 1000-1006, DOI:
525 10.1002/cctc.201200125.

526 (32) Das, A.; Stahl, S. S. Noncovalent Immobilization of Molecular Electrocatalysts for
527 Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene-TEMPO
528 Conjugate. *Angew. Chem. Int. Ed.* **2017**, *56* (30), 8892-8897, DOI: 10.1002/anie.201704921.

529 (33) Meek, K. M.; Nykaza, J. R.; Elabd, Y. A. Alkaline Chemical Stability and Ion Transport in
530 Polymerized Ionic Liquids with Various Backbones and Cations. *Macromol.* **2016**, *49* (9), 3382-
531 8503, DOI: 10.1021/acs.macromol.6b00434.

532 (34) Ye, Y. S.; Elabd, Y. A. Relative Chemical Stability of Imidazolium-Based Alkaline Anion
533 Exchange Polymerized Ionic Liquids. *Macromol.* **2011**, *44* (21), 8494-8503, DOI:
534 10.1021/ma201864u.

535 (35) Klunder, K. J.; Clark, K. M.; McCord, C.; Berg, K. E.; Minteer, S. D.; Henry, C. S.

536 Polycaprolactone-enabled sealing and carbon composite electrode integration into

537 electrochemical microfluidics. *Lab Chip* **2019**, *19* (15), 2589-2597, DOI: 10.1039/c9lc00417c.

538 (36) Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman,

539 M. S.; White, H. S.; Minteer, S. D. A synthetic chemist's guide to electroanalytical tools for

540 studying reaction mechanisms. *Chem. Sci.* **2019**, *10* (26), 6404-6422, DOI: 10.1039/c9sc01545k.

541 (37) Bailey, W. F.; Bobbitt, J. M.; Wiberg, K. B. Mechanism of the oxidation of alcohols by

542 oxoammonium cations. *J. Org. Chem.* **2007**, *72* (12), 4504-4509, DOI: 10.1021/jo0704614.

543 (38) Hamlin, T. A.; Kelly, C. B.; Ovian, J. M.; Wiles, R. J.; Tilley, L. J.; Leadbeater, N. E.

544 Toward a Unified Mechanism for Oxoammonium Salt-Mediated Oxidation Reactions: A

545 Theoretical and Experimental Study Using a Hydride Transfer Model. *J. Org. Chem.* **2015**, *80*

546 (16), 8150-8167, DOI: 10.1021/acs.joc.5b01240.

547 (39) Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-

548 proton-transfer mediators. *Nature* **2016**, *535* (7612), 406-410, DOI: 10.1038/nature18008.

549 (40) Lambert, K. M.; Stempel, Z. D.; Kiendzior, S. M.; Bartelson, A. L.; Bailey, W. F.

550 Enhancement of the Oxidizing Power of an Oxoammonium Salt by Electronic Modification of a

551 Distal Group. *J. Org. Chem.* **2017**, *82* (21), 11440-11446, DOI: 10.1021/acs.joc.7b01965.

552 (41) Delorme, A. E.; Sans, V.; Licence, P.; Walsh, D. A. Tuning the Reactivity of TEMPO

553 during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids. *Acsl. Sustain.*

554 *Chem. Eng.* **2019**, *7* (13), 11691-11699, DOI: 10.1021/acssuschemeng.9b01823.

555 (42) Ejigu, A.; Lovelock, K. R. J.; Licence, P.; Walsh, D. A. Iodide/triiodide electrochemistry in
556 ionic liquids: Effect of viscosity on mass transport, voltammetry and scanning electrochemical
557 microscopy. *Electrochim. Acta.* **2011**, *56* (28), 10313-10320, DOI:
558 10.1016/j.electacta.2011.03.108.

559 (43) McMorn, P.; Roberts, G.; Hutchings, G. J. Oxidation of glycerol with hydrogen peroxide
560 using silicalite and aluminophosphate catalysts. *Catal. Lett.* **1999**, *63* (3/4), 193-197, DOI:
561 10.1023/a:1019073122592.

562 (44) Talebian-Kiakalaieh, A.; Amin, N. A. S.; Rajaei, K.; Tarighi, S. Oxidation of bio-renewable
563 glycerol to value-added chemicals through catalytic and electro-chemical processes. *Appl. Energ.*
564 **2018**, *230*, 1347-1379, DOI: 10.1016/j.apenergy.2018.09.006.

565 (45) Martins, C. A.; Fernández, P. S.; Camara, G. A. Alternative Uses for Biodiesel Byproduct:
566 Glycerol as Source of Energy and High Valuable Chemicals. In: Trindade M. (eds) Increased
567 Biodiesel Efficiency. Green Energy and Technology. Springer, Cham, **2018**, 159-186.

568 (46) Dodekatos, G.; Schunemann, S.; Tuysuz, H. Recent Advances in Thermo-, Photo-, and
569 Electrocatalytic Glycerol Oxidation. *ACS Catal.* **2018**, *8* (7), 6301-6333, DOI:
570 10.1021/acscatal.8b01317.

571 (47) Ayude, M. A.; Dournic, L. I.; Cassanello, M. C.; Nigam, K. D. P. Clean Catalytic Oxidation
572 for Derivatization of Key Biobased Platform Chemicals: Ethanol, Glycerol, and Hydroxymethyl
573 Furfural. *Ind. Eng. Chem. Res.* **2019**, *58* (35), 16077-16095, DOI: 10.1021/acs.iecr.9b00977.

574 (48) Xie, J. H.; Huang, B.; Yin, K. H.; Pham, H. N.; Unocic, R. R.; Datye, A. K.; Davis, R. J.

575 Influence of Dioxygen on the Promotional Effect of Bi during Pt-Catalyzed Oxidation of 1,6-

576 Hexanediol. *ACS Catal.* **2016**, *6* (7), 4206-4217, DOI: 10.1021/acscatal.6b00972.

577 (49) Meek, K. M.; Elabd, Y. A. Alkaline Chemical Stability of Polymerized Ionic Liquids with

578 Various Cations. *Macromol.* **2015**, *48* (19), 7071-7084, DOI: 10.1021/acs.macromol.5b01223.

579 (50) Freire, M. G.; Carvalho, P. J.; Gardas, R. L.; Marrucho, I. M.; Santos, L. M.; Coutinho, J. A.

580 Mutual solubilities of water and the $[C_n\text{mim}][\text{NTf}_2]$ hydrophobic ionic liquids. *J. Phys. Chem. B*

581 **2008**, *112* (6), 1604-1610, DOI: 10.1021/jp7097203.

582 (51) Meek, K. M.; Elabd, Y. A. Alkaline Chemical Stability of Polymerized Ionic Liquids with

583 Various Cations. *Macromol.* **2015**, *48* (19), 7071-7084, DOI: 10.1021/acs.macromol.5b01223.

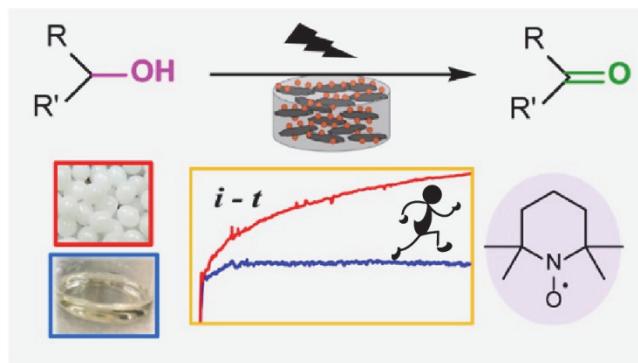
584 (52) Meek, K. M.; Nykaza, J. R.; Elabd, Y. A. Alkaline Chemical Stability and Ion Transport in

585 Polymerized Ionic Liquids with Various Backbones and Cations. *Macromol.* **2016**, *49* (9), 3382-

586 3394, DOI: 10.1021/acs.macromol.6b00434.

587

588


589

590

591

592

593 For Table of Content Use Only

594

595 TEMPO mediated oxidations are used for a wide variety of biorenewables including alcohols. To
596 improve the stability of TEMPO for these reactions, an ionic liquid-based catalyst was
597 developed.