MULTIGRID IN H(DIV) ON AXISYMMETRIC DOMAINS
MINAH OH

ABSTRACT. In this paper, we will construct and analyze a multigrid algorithm that can
be applied to weighted H (div) problems on a two-dimensional domain. These prob-
lems arise after performing a dimension reduction to a three-dimensional axisymmetric
H (div) problem. We will use recently developed Fourier finite element spaces that can
be applied to axisymmetric H(div) problems with general data. We prove that if the
axisymmetric domain is convex, then the multigrid V-cycle with modern smoothers will
converge uniformly with respect to the meshsize.

1. INTRODUCTION

Let Q « R3 be a convex axisymmetric domain. The Hilbert space H (div, Q) consists

of square integrable vector-valued functions defined on ) whose divergence is also square
integrable. The inner product on this space is given by

where (-, )2 (@) denotes the usual L*-inner product. Consider the following axisymmetric
H (div)-problem: find w € H(div, ) such that

(1.1) (6, 0) g5y + (div e, div o) o) = (F,v) 5, for all v e H(div, Q).

Numerical methods that can be applied to problems like (1.1) on general 3D domains (not
necessarily axisymmetric) have many applications, see [1, section 7] and [24] for example,
and multigrid methods for these problems have been constructed and studied in [2] and
[20].

Let R? denote the right half of the rz-plane (also called the meridian half-plane).
For problems defined on an axisymmetric domain such as (1.1), one can use a Fourier
series decomposition to change the three-dimensional (3D) problem into a sequence of
two-dimensional (2D) problems defined on the meridian domain < R%. Fourier Finite
Element Methods (Fourier-FEMs) can be used to approximate each Fourier-mode of the
solution w by using a suitable FEM. Such dimension reduction is an attractive feature
considering computation time, but the resulting weighted 2D problems are quite different
from the corresponding unweighted problems as we will see in the next section. The
appropriate weighted spaces include functions with singularities at the axis of rotation,
so the analysis of such weighted problems requires special attention. When the data
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function F' in (1.1) is independent of the rotational variable # when written in terms of
cylindrical coordinates, then the solution w is also independent of the #-variable, and only
the zero-th Fourier mode of w is alive. In most applications, however, F' is dependent
on the #-variable, so w has non-vanishing higher order Fourier-modes. In this paper, we
construct and analyze a multigrid algorithm that can be applied to weighted 2D-problems
arising from (1.1) that provide an approximate solution to each k-th Fourier mode of the
exact solution u for |k| > 1.

Multigrid methods for axisymmetric H (curl) problems have been studied in the past.
Multigrid for the azimuthal problem was analyzed in [18], and another multigrid analysis
was done by using line relaxations in [6]. In [15], a multigrid analysis for the V-cycle algo-
rithm was done for the meridian problem by using the smoothers in [2] and [21]. To our
knowledge, multigrid methods for axisymmetric H (div) problems have not been studied
yet. All of the above mentioned papers are assuming that not only the 3D domain is ax-
isymmetric but also the data given in the problem is axisymmetric as well. One reason for
this was perhaps the lack of commuting projections associated with axisymmetric prob-
lems with general data. This difficulty was overcome in [30] where the author constructed
a new family of Fourier-finite element spaces whose interpolation operators satisfy a com-
muting diagram property. Therefore, in this paper, we will use the H 7«(divk)—confomrning
finite element space for |k| = 1 constructed in [30] to construct and analyze a multigrid
V-cycle that can be applied to weighted 2D-problems arising from (1.1). We will follow
the framework of [2] for the multigrid analysis.

This paper is organized as follows: in section 2, we will give an overview on Fourier-
FEMs and state the weighted problem of interest. We will also summarize the definitions
of some needed weighted spaces and a family of Fourier finite element spaces along with
commuting projections onto those spaces. In section 3, we prove better error estimates
for the commuting projections constructed in [29]. The new ideas taken here is in the
construction and use of operators that have appropriate error estimates in the weighted
L?-space with the measure r3drdz instead of the usual rdrdz. This will help us deal with
the multiple 1/r terms appearing in the interpolation operators used in [30]. In section 4,
a weighted mixed formulation that will be helpful in the multigrid analysis will be studied,
and in the following two sections, the multigrid V-cycle algorithm will be introduced and
analyzed. Finally, in section 7 numerical results that support the mathematical theory
established in this paper are provided followed by a section with concluding remarks.
Some technical proofs are included in the Appendix (section 9) to improve the readability
of the paper.

2. PRELIMINARIES

In this section, we summarize definitions of weighted spaces as well as Fourier finite
element spaces. We will also state the weighted problem of interest.
If f is a function defined on €2 that is independent of the #-variable, then

JJL F(r,0,2)2dV = 27TJL f(r,2)*rdrdz,
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where f' and f are functions defined on Q) and Q respectively with the same formula.
Therefore, we are interested in the weighted L?-space defined by

L2(Q) = {u J Jgu(r, rdrds < o},

This is a Hilbert space with the inner-product being

(u,v), = JJ uwordrdz,
0

and the induced norm will be denoted by | - ||z2(q). In general, we will use || - | x to denote
the norm of the Hilbert space X. Notice that

u e L2(Q) if and only if e L%(Q),
r

where
LZ(Q) = {u: JJ u(r, z)*r*drdz < oo}.
Q

In general, we may define a weighted L2-space in the following way:
L2(Q) = {u: JJ u(r, 2)*r®drdz < oo}
with the associated norm )
|ullr2 @ = (f JQ u(r, 2)2redrdz)".

In this paper, we will be mainly using o = 1, but « = 3 and o = —1 will be used in some
places. Since these are the only three a values that will be used, we will simply write
L}(Q), L2(9), and L3, (Q) respectively to denote these spaces.

Let w0
u u
d.u=(=—,=)".
gra 'r‘Zu ((’/){r?az)

Then, we define
H;(Q) = {ue L}(Q) : grad,, u e L(Q)},

and the associated norms for these spaces are

|l g ) = (HUH%g(Q) + | graerUIFLg(m)m,

3y = by + Bl @)™

We will use I'y to denote the part of the boundary of §2 that is not on the axis of symmetry,
i.e., the rotation of I'y returns 0(2, and [y to denote the part of 0€2 that is on the axis
of symmetry, i.e., Iy = 0Q\I'y. Then H((Q) denotes the closed subspace of H}!(2) with
vanishing trace on I';. In general, we will use H'(Q2) to denote the subspace of L?(£2) that
consists of functions whose distributional derivatives of order [ and under also belong in
L3(Q2). Furthermore, Hll/r(Q) will be used to denote the space of functions in L? ()

whose gradient also belongs in L7, (€2). Similarly, H(§2) denotes the subspace of LZ;($2)
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whose gradient is also in L% (€2). We will use boldface to denote vector-valued functions
as well as functions spaces consisting of vector-valued functions. For simplicity, ¢, will be

used instead of o etc. For v = (v,,v9,v.)T, we use v, to denote (v,,v,)7.
r

Many authors have previously studied axisymmetric problems with general data through
a Fourier series decomposition. (See [5, 19, 27, 28, 10, 11, 12, 29] for example.) Since
each Fourier mode is obtained by taking an integral with respect to 6, each Fourier mode
is only dependent on variables r and z, and thus by using the axial symmetry of the 3D
domain € and a truncated partial Fourier series, one can reduce the 3D problem into N
2D problems. We use the term Fourier-FEMs when each Fourier-mode of the solution is
approximated by using a suitable FEM.

For scalar-valued functions, the Fourier series decomposition takes the following form:

o0 0]
u = ug + Z uy cos k + Z u_y, sin k6.
k=1 k=1
For a vector-valued function, first write u = u,e, + ugey + u,e, by using the cylindrical
basis e,, ey, and e,. Then, u = u* + u* where

0

k
u, o [u, coskl

u'=10 —1—2 ub sink6 |,

uwl ) k=1 \u cos ko
(2.1) L
0 w [u, " sink0
u® = [uf |+ Z up ™ cos ko
0/ k=1 \u;"sink6
Note that 4® and u® are the so-called “symmetric” and “antisymmetric” parts of u
respectively.

Next, consider the usual divergence operator in cylindrical coordinates:
1 1
divu = —0,(ru,) + —0pug + 0 u,.
r r

By applying the divergence operator to u® and u® we get
0

1 k4 kub
divu® = (=0, (rud) + d.u?) + Z(&ruf + U T Mg + 0,u¥) cos kb,
r = r
(2.2) " b gk
divu® = Z(&ru;k + L0 4 0 u") sin k6.
k=1 "
Since {1, cos#,sin @, cos20,sin20, - - -cos kb, sin k), - - -} form an orthogonal and complete

system in L?((—m, 7)), we have
(divu, divv) 26 Z f J div uy, div vgrdrdzdd,
kez YT

as well as

(u,v) L2 J J upvirdrdzdo,
keZ
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where u, denotes the k-th Fourier mode of u. Therefore, (1.1) can be split into indepen-
dent problems for each k € Z.

Note that when considering a de Rham complex such as in Theorem 2.1, one must
consider the div-operator in relation with the curl-operator. When curl is applied to u?,
it returns a vector that only has an antisymmetric part. Therefore, the formulas of curl
and div used in [29, 30] for Fourier-FEMs come from applying curl to «® and div to u®.
In this paper, we will focus on div applied to u® in (2.2) as well.

Let

& Ur U, — kg
divy |ug | = dpu, + ——— + d.u.,

Tz
r
Uy

and define the following weighted H (div) space:
H,(div*, Q) = {u e L2(Q) : divF, u e L2(Q)}.
This is a Hilbert space with the inner product being
A (u,v) = (u,v), + (divF, u, divF, v),.

Let C), be a finite element subspace of H,(div*, Q) that will be introduced shortly. Define
AZ . Ch - Ch by

(23) (AZ’U,h, 'Uh)r = Ak(uh, ’Uh) for all Uy, Uy, € Ch.

In this paper, we construct and analyze a multigrid algorithm that can be applied to (2.3).
The analysis done in this paper holds true for any fixed integer |k| = 1, so we assume
that the Fourier-mode k is fixed. For simplicity of notation, we will write A instead of
A*. The norm induced by A(,-) is denoted by | - |-

Through a similar process, one also obtains the following grad and curl formulas that
affect the k-th Fourier mode:

[ 0,u
grad® u = —%u ,
o.u
Uy —(éuz + 0, up)
curl’:z ug | = O uy — Opuy |
U, i M + 6rue

and we get the following Hilbert spaces:

H,(grad®, Q) = {u e 12(Q) : grad", u e L}(Q)},
H,(curl”, Q) = {ue L*(Q) : curl’, uw e L?(Q)}.
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Next, let
Oyl
grad/*u= | 2u |,
o,u
C Ok
. Uy “u, — Oy ug
*
curl’” [ug | = kézur —Opuy |,
u, _%ﬂe + O,
and define

H,o(grad™ Q) = {ue L3(Q) : grad™ u e L*(Q) and u = 0 on ', },
H,o(curl™ Q) = {ue L2(Q) : curl™ u e L3(Q) and u,. - t = 0,uy = 0 on T }.

As usual, t denotes the unit tangent vector along I';.
Then grad®* and curl®* are adjoints operators of — div¥, and curl®, respectively [29,
Theorem 7.1] in the following sense:

(— divF, w,v), = (u,grad™v),  for all w e H,(div",Q),v € H,(grad*™, Q),

(curl®, u,v), = (u, curl® v), for all w e H,(curl®, Q),v e H,o(curl*™, Q).

Next, let .7, be a finite element triangulation of {2 that satisfies the usual geometrical
conformity conditions [13]. We now summarize the family of Fourier finite element spaces
constructed in [30]. First define the following polynomial spaces:

Alz{a1r+a2r2+a3rz:aieRfor1<i<3},

B+ Bar + B3z — Berz

B1= —]{5514-627"—]{5532 BZERfOI'lglgfs ,
Bsr + Ber?
k1 + vyor
C, = Yi+73r |y eRforl1 <i<4
Va4 + Y2z

We are interested in the following Fourier finite element spaces:

Ap ={ue H,(grad", Q) : u|x € 4, for all K € %},
By, ={ue H,(curl",Q) : u|x € B for all K € %},
C, = {'u, € Hr(divk,Q) cu|g e Cy forall K € ﬂh},

Dy, = {ue L}(Q) : u|x is constant for all K € F,}.

(2.4)

Note that Bj, and C}, are dependent on k. It was proved in [30, Theorem 4.1] that these
Fourier finite element spaces are conforming and the corresponding interpolation operators
satisfy the commuting diagram property with error estimates. We note that B was
constructed separately in [23, 22]. Furthermore in [29], a set of projectors H*Z’k, HZ’k, Hi’k,
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and H;’L’k that form a W-bounded cochain projection was constructed for this family of
Fourier finite element spaces. The following theorem can be found in [29, Theorem 5.1].

Theorem 2.1. There exist projections Hi’k,HZ’k,HZ’k, and HZ’k that are continuous for
all functions in L2(Q) (or L2(Y)) that satisfy the following properties:

(1) Commutativity. The operators make the following diagram commute:

ra cur ivk
12(0) B2 p20) 2 p2(0) B o)
J mno* J ek l ek l no*
radk curl® ivk
A, grad,. B, curly. C, _dive. | D,

(2) Approximation.

o <
‘“ - I e = Ot 1~ Wl
O L VR
H“ - sy S O 8, e = welzzo

In this paper, we will mainly use the projection HZ’k onto C},. While the original
interpolation operator used in the construction of C}, in [30] satisfies error estimates, that
interpolation operator requires more regularity on the function than necessary. Therefore,
in the next section, we will construct another projection onto C}, to show that

Jnf = w300y < Chllarafiy ) + Petta = ey )

3. ERROR ESTIMATES FOR COMMUTING PROJECTIONS

In this section, we will construct another interpolation operator onto C', to obtain a
better concrete error estimate for Hfl’k.
The following result can be found in [30, Proposition 3.3].

Proposition 3.1. The following finite element (X*, K, P*) is unisolvent and conforming
in H,(div", Q).

o K: triangle with vertices a;, edges e;, and normal vectors n;, 1 <1 < 3.
e Pk: space of polynomials defined by

kyr + yar
u= | 7 +7sr
Y4t 722
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e XF: set of linear forms, for 1 <i <3

u 1 f kug — u,
og iU~ 0 | ——,
K| Jk r

Uy

O¢, - U — Nn,;.
u
e; z

Notice that u,. = (u,,u.)? is being projected onto the lowest order Raviart Thomas

kug — u, . . . . .
space [31], while S0 g being projected onto the piecewise constant space. The

degrees of freedom used above does not take into consideration that the corresponding
interpolation operator (denoted by [ ,ka) will be applied to functions in weighted functions

spaces. Therefore, the error estimates one gets for 1 ,‘f’k in [30, Theorem 4.1] requires u,, u,,

kug — u,

and to be in the space H?(€) which is known to be continuously embedded in

r
L3(2) [25].
In [16, Lemma 5.3] an interpolation operator onto the lowest order Nédélec space [26]

that is continuous on H!(£2) was constructed, and a projection onto the same space that
is continuous on L?(§2) was constructed in [17] as well. Employing a similar idea, one

might consider taking the L2-orthogonal projection of T80~ U instead of the standard L2-

,
orthogonal projection in Proposition 3.1, but this does not solve the issue of the regularity

_u’/‘

condition being posed on instead of kug — u, for example. As demonstrated in

,

the proof of the following theorem, the trick is to use the weight r® instead of the usual

kug — u,
r

weight r. This is because as in Proposition 3.1, a projection will be applied to

1
that involves —-terms and
T

ve LX) ifand only if e L%(Q).
r

Let H,%(Q) denote the space {u € H(Q) : kug — u, € Lf/T(Q)}. Then we have the
following theorem.

Theorem 3.1. For all u e H*(Q), the commuting projection Hfl’k satisfies
d,k
Jw — I w2 (0) < Ch(Jwrs o) + [Ruo — url gy q)-
Proof. By Theorem 2.1 item (2), it suffices to prove that

u,iLIel(fZ'h lu — UhHLg(Q) S Ch(‘urzﬁ{}(ﬂ) + [ hug — uTHf{ﬁ(Q))‘

Define the set of global degrees of freedom of C', as
3 kug — u, JA
(3.1) orclu) =

SK 7‘35 1 for all mesh triangles K



MULTIGRID IN WEIGHTED H(DIV) 9
and

Ta(u) = f U, - Nrds for all mesh vertices a € I,
e(a)

(3.2) Te(u) = J U, - nds for all mesh edges e n Ty = &,

K, (u) = JK rdiv,, u,,dA for all mesh triangles Ko n Ty # F,
0

where e(a) is an edge associated with a vertex a on T'g that is not on Ty, and
div,, w = 0,u, + d,u,.

Note that the degrees of freedom (3.2) are the same as the ones used in [16, Lemma 5.3]
for the lowest order Nédélec space when viewing the lowest order Raviart Thomas space
as the rotated lowest order Nédélec space. The linear functionals (3.2) are continuous
linear functionals on H'(Q) and form unisolvent degrees of freedom for the lowest order
Raviart Thomas space [16, Proposition 5.2].
We clarify the difference between the degrees of freedom (3.1) and (3.2) and the ones
k - Ur
used in Proposition 3.1. First of all, in (3.1), the L?-orthogonal projection of Mo~ Ur
r
k - Up . . ..
is used while the L2-orthogonal projection of B9 7 Ur s used in Proposition 3.1. Sec-
T
ondly, in (3.2), the degrees of freedom used in [16, Lemma 5.3] are used for u,, instead
of the standard non-weighted lowest order Raviart-Thomas degrees of freedom used in
Proposition 3.1.

We define IIY* : H,.(div", Q) — C}, as
o (I} ) = 5(v)

for all degrees of freedom & in (3.1) and (3.2). In other words, for each triangle K € .7,

v 0 5 152-"
~ T
(3.3) I | vy ||x = ox(v) R > ai(v) 75|
Uy 0 i=1 5‘?

where 7; denotes the local degrees of freedom corresponding to (3.2), &, = (&, &7)7 is the
local basis for the lowest order Raviart Thomas space associated with e;, and yx denotes
the constant function one on triangle K.
For any edge e in .7, let A, denote the union of two triangles that share e as a common
edge, and let h, denote its diameter. Then from [4, Lemma 5] we get
inf |lv— < Chelv ,
ettty v = dlzza ol
where Py = {a : a € R}. By replacing r by 7 in the proof of [4, Lemma 5] before applying
Young’s inequality, this result extends to the following:

(3.4) qe]i%l(fAe) lv — CIHLfs(Ae) < Ch6|U’HT13(AE)-
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As in [4, Lemma 5], this remains true when A, is replaced by any triangle K as well:
(3.5) }Dn(fK Jv— QHL2 (K) ChK’U’H;S(K),
where hyx is the diameter of K.

Next, we say that a triangle is type 1 or type 2 if it intersects Iy at one vertex or two
vertices resepctively, and we call a triangle type 3 if it does not intersect 'y at all. If K is
a type 1 triangle, let Dy denote the union of all triangles connected to the one vertex of
K that is on I'g. If K is of type 2, then Dy denotes the union of the two vertex patches
of the two vertices of K that are on I'y. For type 3 triangles, Dy is simply equal to K.
Then, for any triangle K € .7},, we have
(3.6)

2

+
r, K

N 2
Hv — Hi’kv =

r, K

3
Uy, — Z 5i(v)€
=1

Vg — 6K(v)£xK - 25(v)

o=

13
C(h2|v,,z\§{%(DK) + | =(kvg — o (V)rxK) — 7 Z& fr by [16, Lemma 5.3],

3 2

< C(P?|vrs L3 oy + || (Bve — 0) — Gxc(v)rxic + vr — Y 6i(0)€
=1

r, K

_ 2
C(h*|vr () + [(kve — vr) = xc (V)X i),

— ok (v)XK)

)7

kvg — v,

= C(h2|sz\%IT1(DK) + 7”( ,

kvg — v,  _

= C(h2|vm@mDK) + — - ok (V)XK

)7

12, (K)

kvg — v,
The last inequality is using the fact that the error of the L%-orthogonal projection is

bounded by the best approximation error in the Lfg—norm.
Direct calculation shows that

kvg — v,
(3.7) | |HT13(K) < [[kve — vr| 1 gy
Therefore, by (3.6) and (3.7), and summing over all triangles as usual, we conclude that
dk -
(3.8) Hv — 1 ”‘Lzm) < Ch(jorslmyy + 5o = vrl gy
U
Next, let

H}f}g(Q) ={ve H(Q) : kv,, kv, + vy € Lf/T(Q)}.
Then, by using a similar idea as in the proof of Theorem 3.1 and Clément operators
[14, 25, 4], we get the following error estimate for the commuting projector H,Cl’k
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Theorem 3.2. For all v € H,5 () we have

H’U — HfL’kv

L2(9) < Ch(lvel (o) + Hk“z“ﬁ;(n) + [ kv, + ngng(Q)).

The proof of Theorem 3.2 can be found in the Appendix. It uses the L?-orthogonal
projection when constructing a weighted Clément-type operator.

4. A WEIGHTED MIXED PROBLEM

For the multigrid analysis in section 6, we need to study the following weighted mixed

problem:

find (z,p) € H,(div*,Q) x L?(Q) such that
1) (z,w), — (divF_w,p), = 0 for all w e H,(div*,Q),
. (divF, z,8), = (f,s), forall s e L3(Q).

This mixed problem is the weighted Poisson equation with Dirichlet boundary conditions,
and p is the solution of

—A(k)p = f in Q,

(42) p=0 on I}y,

where Ay = divF, grad®*. The mixed problem (4.1) has been studied in [29] as one of
the axisymmetric Hodge Laplacian problems. It follows from [29, Theorem 3.1] that (4.1)
is well-posed and that

120 £, @it 0) + IPlzz) < Cllflz@)-

In [11], more detailed regularity results were given for the solution of (4.2). For our
multigrid analysis, we further prove the following regularity result.

Theorem 4.1. If$) is convex, then the solution to (4.1) denoted by (z,p) € H,(divF, Q) x
L2(Q) satisfies

Pz + Il 71 0) + ||arpHLf/r(Q) < O fllzz,

|2y + k20 = 2| 3 0) < Clf 2@
for all |k| = 1.
Proof. If ) is convex, by [11, page 589], the solution p to (4.2) is in H(Qk)(Q) N H} (),
where
H(Qil)(Q) ={we H3(Q):w = 0on Iy},
H{y(Q) = HX(Q) n HY ,(Q) for |k] = 2.

Then the first regularity result follows by [11, Theorem 3.2] for |k| > 2 and by [11, page
594] for |k| = 1.
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Next, notice that z = — gradff: p, and consider the complex vector-valued function
q = (2,129, z.)". Then, by direct calculation, one can show that
curl, g = 0,
divk q= f)
(4.3)
q,,-t=0onlIy,
o = 0 on Fl)
where

. 1 )
div, w = ;é’r(er) + 7w9 + d,w,,
ik
(curly w), = ?wz — O, wy,

(curl, w)y = d,w, — d,w,,
(curl, w), = ;(&(rw(;) — ikw,).
The boundary conditions in (4.3) are true since p = 0 on I'y. Therefore,
qge X4)(Q) :={veLXQ): curlyv e L(Q) and divyv € L2(Q) and v,,-t = 0 and vy = 0 on I';}.
By [12, Theorem 2.10], this space is continuously embedded in H %k)(Q) where
H%ﬁl)&) = {we H}(Q) x H(Q) x H(Q) : w, +iwy € L%/T(Q»a
H,,(Q) = HX(Q) x H(Q) x H}(Q) for [k > 2.

For all |k| > 1, this continuous embedding proves the second result.

Next, we consider the following discrete version of (4.1):
(4 4) (zh,wh),, — (ph,divfz wh)r =0 for all wy, € Ch,
. (divffz Zh, Sn)r = (f,sp), for all s, € Dy,.

Stability and convergence results of (4.4) were proved in [29, Theorem 4.1]. We prove a
more concrete error estimate here.

Theorem 4.2. Suppose (z,p) € H,(div", Q) x L2(Q) solve (4.1) and (z1,,py) € Ch, x Dy,
solve (4.4). If f € Dy, we have the following error estimates for all |k| = 1:

|z = zn|r20) < Chl flr20)
ITp — Prlrz) < ChQHfHLZ(Q)a
where 115 : L2(Q) — Dy, denotes the L2-orthogonal projection onto Dj,.
h r T

Proof. Throughout this proof, we assume that f € D;. Let w), = z; — Hi’kz. Then, since
divk_ 2z = f e Dy,

(4.5) divk, z = div¥, 2z,
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and so
div®, wy, = div¥ (z), — 1" 2),
(4.6) — divF, z, — 19" divF, 2 by Theorem 2.1 item (1),
=0 by (4.5).

We also have that
(4.7) (z —zn, )y — (p — pn, divF_vp,), =0 for all v, € C},

(div,. z — div¥, 2, 5,), =0 for all s, € Dy,
Therefore, by (4.6) and (4.7), it follows that

(z — zp,wy) =0,
(z —zp, 2 — Hi’kz)r =(z—2zp,2— 2p)r

Therefore,
ra) < 12 =102 200

|z — 2z,
This together with Theorem 3.1 and Theorem 4.1 completes the proof of the first estimate
of the Theorem.
To prove the second estimate of the Theorem, we first let (e, €,) and (e, 4, €,) be the
solution to (4.1) and (4.4) respectively with f replaced with I1¥p — p;, € Dy,. Then,

IS p — th%E(Q) = (div¥, e, 0, TIPp — p1), by definition of €, j,
= (lefz €zh, P — ph)’r‘7
= (Z — Zp, ez,h)r by (47),
= (Z — Zh, 627}1 — €z>r by (45)

Therefore,

1T = palia) < 12 = zalea@les — enlize) < O flze TP — pulloz).

where in the last inequality, we are using the first estimate of the Theorem twice. This
completes the proof of the second estimate of the Theorem. O

5. THE MULTIGRID ALGORITHM

We consider a sequence of nested triangular meshes 7 = {Z, %, - -, 7} for the
multigrid algorithm. In particular, .77 is the coarsest level mesh, and .7 is obtained by
connecting the midpoints of all edges in Z_; for [ = 2,3,---, L. Throughout this paper,
we assume that 7 satisfy this property. Let C; denote the discrete space C}, on the [-th
level mesh. Define A; : C; — C| in the following way:

(AFv, w;) = A¥(v;, w;) for all v, w; € C,.

Since we are assuming that |k| > 1 is fixed, we write A; instead of A} for simplicity of
notation as we are doing for A*. In order to approximate the solution w € H r(divk, Q)
that satisfies

Au,v) = (f,v), for all v e H,(div¥,Q),
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the multigrid algorithm presented here will solve

Arup = fL

on the finest level mesh by using the sequence of meshes .7. The right-hand-side function
f1 denotes the usual representation of the data function. Multigrid will use the sequence
of meshes 7 to provide a solution in C',.

For the multiplicative subspace correction method, we will use the following subspace
decomposition of C; as in [2]:

(5.1) C =) Cy,
I/EVl

where V; denotes the set of mesh vertices in the [-th level mesh, D, denotes the vertex
patch of v € V; (the union of all triangles that have v as a vertex), and

C/ ={w; € C,:supp(w;) < D,}.

We will use the decomposition (5.1) to construct additive and multiplicative subspace
correction methods. We will present here the block Gauss-Seidel type multiplicative
smoothing iteration w;11 = gs(u;, f). Let C;; for j = 1,2, -, N; be the enumeration
of subspaces appearing in the subspace decomposition (5.1) where N; is the number of
vertices in 7. Then, define A;; : C;; — C}; as

(Amv’w) = A(v,w) for all v,w € Cij,

and Q;; as the LZ-orthogonal projection onto C;;. Similarly, we will use @; to denote
the L2-orthogonal projection onto C.

Algorithm 5.1. (multiplicative smoothing) Given u; € C), u;1; = gs(u,, f) in C; is
computed in the following way:

(1) Set uEO’ = u;.

(2) For j =1,2,- -+, N;, compute

ut) = ul ™+ A QU (F - A Y).

(Nl)'

7

(3) Set Uiyl = U
Standard arguments show that u; 1 = gs(u;, f) can be rewritten as
w1 = u; + Ri(f — Auy),
where
Ry=(I—(I—=P)(I=Pin-1) (I =Pa)A
where P, ; denotes the orthogonal projection onto C;; with respect to the A(-,-)-inner

product. Now we are ready to state the multigrid algorithm.

Algorithm 5.2. (Multigrid V-cycle) Given w and f in C}, define the output mg;(u, f) in
C by the following recursive procedure:
(1) Set mg, (u, f) = A7 f.
(2) For I > 1, define mg;(u, f) recursively:
(a) (pre-smoothing) vV = u + R(f — Ayu).
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(b) (coarse grid correction) v® = v™ +mg, |(0,Q;_1(f — Ajp™)).
(¢) (post-smoothing) v® = v® + RY(f — Ajv®@).
(d) mgy(u, f) =v®.

The V-cycle iterates x;y; = mg(x;, f), approximating * = A;'f, are connected
through a linear error reduction operator Fj, i.e.,
(5.2) T —x = E(x; —x).

(See [8] for details.) The following theorem is the main result of this paper.

Theorem 5.1. Assume that {2 = R3 is conver. Then, for any fized integer |k| = 1, there
exists 0 < § < 1 independent of the meshsize and refinement level that satisfies

0 < A(Bu,u) < dA(u,u) for all u e C; and all [ > 1.

This theorem together with (5.2) implies that the multigrid V-cycle will converge to
the exact solution and that the convergence rate is independent of the meshsize h. The
proof of Theorem 5.1 is given at the end of the next section after the necessary tools are
developed.

Remark 5.1. We note here that the constant § in Theorem 5.1 depends on the Fourier-
mode k. This is demonstrated through a numerical example in section 7.

6. MULTIGRID ANALYSIS

This section is devoted to proving Theorem 5.1. Following the standard abstract frame-
work for multigrid analysis [2, 7, 8, 9], we will verify the two conditions stated in the
following lemma. We closely follow the steps introduced in [2] to accomplish this task.
All results proved in this section holds true for any fixed integer |k| = 1, and P, denote
the orthogonal projection onto C; with respect to the A(:,-)-inner product.

Lemma 6.1. Theorem 5.1 follows from the two conditions below:

(1) Existence of a stable decomposition: There exists a constant Cy > 0 independent
of the meshsizes and l, such that for all v in (I — P,_1)C,, there is a decomposition

Ny
V= Z V; with v; € Cl,ja

j=1

satisfying
N
Z A(v;,v;) < C1A(v,v).
j=1

(2) Limited interaction: There exists a constant Cy > 0, independent of l, such that

Z Z A(vj, wy,)| < Cy (Z A('Uj,'Uj)) (Z A('wm,'wm)>

j=1m=1

forallv; e Cy;, wy, € Cyy, and 1 > 1.
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The two conditions in Lemma 6.1 are proved at the end of this section.
It was shown in [30] that the following family of Fourier finite element spaces form an
exact sequence:

(6.1) 0—A,—B,—C,—D,—0.
Let gradﬁ : Dj, — C}, denote the L2-adjoint of the map of — divffz :Ch, — Dy, ie.,
(= div,. vp, 5p)r = (vn, grads s;),  for all v, € C}, and s, € Dj,.
Then, due to the exactness of (6.1), we have the following discrete Helmholtz decomposi-
tion [30] and [29, page 10]:
(6.2) C, = Curlfszh + gradz Dy,

When discussing two consecutive level meshes and the corresponding finite element
spaces C;_; and C, for example, we will use H to denote the meshsize on C;_; and h
to denote the meshsize on C). Since we obtain the next level mesh by connecting the
midpoints of all edges in the previous level mesh, we have that H = 2h. C'y and C), will
often be used in place of C;_; and C| respectively. Dy and D), are connected in a similar
way. Recall that II7 is the L2-orthogonal projection on to Dy, and similarly I1% is the
L2-orthogonal projection on to Dg. With this notation, we have the following lemma.

Lemma 6.2. For all p, € Dy, we have
Ipn — o] r2(0) < CH| grady, pu|r2(q)

Proof. Given py, € Dy, define z € H,(div®, Q) and p e L2(Q) as the solution of (4.1) with
f=- divffz grad’,j pn € Dy,. Then, z, = — gradﬁ pn € C}, and py, € D), will be the solution
of (4.4) with the same f. By triangle inequality, we have

(6.3) lpn = Wrpal r20) < lpn = pllrzi) + [0 = 5D r20) + [TE2 — TEpal r2(0)
Let us first prove that

(6.4) lp — 1§ p|r20) < CH| grady, pu|r2()

It is known in the literature [4, Lemma 5] that

(6.5) Ip = 5pli2@) < CHIplayo

By definition of grad™, it is clear that

rZ)

(6.6) Pl < | gradys pliz)

Furthermore, we have

H grad pHL2

g dk* zh)ra

= (
= (p,
= (p, divk Zh)r since f € Dy,
= (gr
(grad]:z b, gradZ ph)’r'
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Therefore,

(6.7) | grad}? plr2(0) < | grad; p|r2(),

and thus (6.4) is proved by (6.5)—(6.7).
To bound the first term appearing on the right hand side of (6.3), we will next show
that

(6.8) [pn = Plr2) < Chl grady, puli20)-
Since orthogonal projections have unit norm, (6.8) will also prove that
(6.9) IT5p — Ipnl 2y < Ch grady, p2)-
First of all, by Theorem 4.2, we have that
(6.10) |pn = T3Pl 20y < Ch?| divy, grady pa| r20) < Ch| grady pui2o)-

The second inequality above follows from known inverse inequalities in weighted spaces
[17, Proposition 2.1] and [29, Proposition 5.1]. Therefore, by (6.10) and (6.4), we have

[pn = pllrz@) < lpn = 3pl i) + [ — plize) < Chl grady, pal iz
Since H < Ch, the proof is complete by (6.3), (6.4), (6.8), and (6.9). O

Let Py : C), — Cg denote the A-orthogonal projection. The following lemma is crucial
in proving the uniform convergence of the multigrid algorithm.

Lemma 6.3. Let wy, € C},. Let
wy, — Pypw), = Curlffzbh + gradﬁ dy,
be the discrete Helmholtz decomposition of wy, — Pgwy, with by, € By, and dy € Dy. Then
Ibr | r2(0) < CH|wy, — Pywpl 20,
| grady; dp| 12y < CH|wy, — Prwp|a.
Proof. Define zj € C}, to be the solution to
Az, q,) = (grad} dy, q,,), for all g, € C},.
It follows that
(6.11) (zn, curlfz'vh)Lg(Q) = A(zp, curl’fzfvh) =0 for all v), € By,
so z, = —grad} p, for some p;, € Dy, by (6.2). Then
(zn,pn) € Cj, x Dy is the solution of (4.4) with f = div", z, € Dj.
Now, let
(z,p) € H.(div", Q) x L?(Q) be the solution of (4.1) with f = div¥, z;, € Dy,
and

(2, pr) € Ci x Dy be the solution of (4.4) with f = div”, z;, € Dy,
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Note that

(6.12) divk_ z = div*, z,,
and

(6.13) divF, zy = 113, divF, z;,.

We further define
(2,p) € H,(div", Q) x L2(Q) to be the solution of (4.1) with f = div¥, zy € Dy.
In this case, since f € Dy,
(6.14) divF z = divF, zy.
Then,

| grady th%%(Q) = A(zp, grad; dy,),
A(zh,'wh - PH'UJh) by (611),

= A(Zh —Zg,Wp — PHwh),

(6.15)
<lzn — zu|alwn — Prwn|a.
The second inequality of the lemma is proved once we show that
|21 = zula < CH| grady i 20
To do this, let us first consider ||z — 2|12

B 2“%3(9) =(z2—2,2—2),
= —(grad}? p — grad}? j, z — 2),,
= (p — p,divy, z — div}, 2),
= (p—p.div}, z, — div), zp) by (6.12) and (6.14),
= (p — p,divF, z), — IIY, div”, zp,) by (6.13),
= ((p —p) — g (p — p), divy, 2, — 17 divy, zp),
< CHlp = plm ol divF z), — I3, divF, Zn| 22(0)
< CH|p — plux )l divy, 2] 220,
C

< CH|z — 2|20 divF, Znllr2(0) since z — 2 = — grad®™(p — ).

Therefore, we have

(6.16) |z — 2|12 < CH| divk, 2,120,
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and so we have

(6.17)
Iz = zul2@ < |20 — 2l + 12 = 2l20 + 12 = zul 20,
< ChH divfz ZhHLg(Q) +CH dinz ZhHLg(Q) + CHH dinz ZHHLE(Q)
by Theorem 4.2 and (6.16),
< CH| div}, 21 1200 by (6.13).
Hence,
(6.18)

l2n = zul} = 20 — zulT2) + 1 divi(zn — 2za) | 72(0),
< CH?|divy, 2|72 + || divy, 2z, — I3 div), 2x[72¢) by (6.17) and (6.13),
< CH?(| divF, ZhH%g(ﬂ) + | grad} divF, zh||%g(9)) by Lemma 6.2,
< CH?| grad) th%g(Q).
The last inequality above holds, since
| divy, zal 72 + | grady divy, zul72 ) < [Anzalizq) < | grady daf7aq)-
Note that the first inequality above is true, since
[Anzal720) = |20l 72) + 20 divy, zal72() + | grady divy, za] 72 ).

We then reach the second inequality of the Lemma by (6.18) and (6.15).
Now let us prove the first inequality of the Lemma. To do so, let F' = curll,,fZ b, and
consider the following boundary value problem:

b = curl®* r,
Ep_—
curl, b=F,
-k _
div,, r = 0,

r..-t=0andry =0 onl}j.

(6.19)

This is a subproblem of one of the weighted Hodge Laplacian problems studied in [29].
Such subproblems were called B* problems in [3].
By the definition of b and b, and Theorem 2.1 item (1), we have
(b — by, by, — 115*b), = 0.
This implies that
(b— by, b—by), = (b— by, b—1I;"b),,
and so
(6.20)
[b = bi| L2) < B — 11550 20y,
Ch([bo|mr) + Kbzl 1) + Kb + ol 1)) Py Theorem 3.2,

NN

< Ch| curly, b|12() = Chl curly, by 120
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The last inequality above follows from the continuous embedding result in [12, Theorem
2.10]. Next, notice that

(6.21)  (curl®, by, curl® vy), = A(w), — Pywy, curl” vy) =0  for all vy € By.

Then, since 7 € null(div¥,) = range(curl®,) and II%* satisfies the commuting diagram
property, we have
(6.22)

bl = (b, curlit )
= (curl®, b, 7),,
= (curl”, by, r),,
= (curl®, by, r — 1%"r), by (6.21),

< | eurl?, by 20y |r — 057|200,

N

CH| curl?, bh”L%(Q)(’rrZ’%}(Q) +|lkro — 7ol 1)) by Theorem 3.1,

A

CH| curll, by| 20| curly v| 120 by [12, Theorem 2.10],
Since b = curl®* 7, (6.22) implies that

(6.23) bl 2(0) < CH| curly, by 2.

Therefore, by the triangle inequality, (6.20), and (6.23), we conclude that

(6.24) Ibn]|2() < CH| curly, by 12 < CH|wy, — Prw 120,

and this completes the proof. 0

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1.

The proof will be complete once we verify the two conditions stated in Lemma 6.1. The
proof of the limited interaction is standard [2, 9], so we will only prove the existence of
a stable decomposition. In other words, we will show that the subspace decomposition
(5.1) is stable in the sense that if v, € (I — P,_;)C, and

N,
v = Z v;; where v;; € C

j=1

is the decomposition (5.1), then

N
2 A('UZJ','U[J'> < OlA('Ul,'Ul).
7=1

Consider the following Helmholtz decomposition:

(6.25) v, = curl® b, + ¢;.
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Then, by (5.1),

N
c = Z ¢, for ¢ j € Cyj,

j=1
and by considering a decomposition like (5.1) for B;, we also have
Ny
bl = Z bl,j for bl,j € Bl,j-
j=1
Then, v;; = curl®_b;; + ¢, and

N

N
D lvigli = D) leurly, by, + e,

j=1 j=1

N
= Z H curlfz bl,j| %3(9) + Hcl,j |%g(Q) + || divfz cl,]' |%$(Q)’
j=1
N,
<C Y W bigliae + (14 h72) ez,
j=1

< Ch72<Hbl”2LZ(Q) + HClH%g(Q))a
Ch™*(CH?|vi|12() + CH?|vi]a)

<
< Cfvga-

21

by Lemma 6.3,

Note that we are using h to represent the meshsize of mesh level [ and H to represent

that of mesh level [ — 1. This completes the proof of Theorem 5.1.

7. NUMERICAL RESULTS

In this section, we will report numerical results that support the theory presented in
this paper. In particular, we present convergence rates for the mixed problem (4.4) and
the convergence rates for the multigrid V-cycle when applied to (2.3). Uniform meshes

are used for all examples.

The computer implementation of (4.4) is done in the usual way. In Table 7.1, we report
the L2(Q2)-norm of the observed errors when k& = 1. In Table 7.2, we do the same for
k = 2. In both cases, we use the square domain 2 = [0,1]* and choose the right hand
side data function f so that the exact solution (z,p) € H,(div¥, Q) x H,(grad", Q) is

p = sin(rz) cos(0.5mr)r?,

—2r cos(0.57r) sin(7z) + 0.5r%7 sin(0.577) sin(72)

z = —krsin(mz) cos(0.57r)

—r?m cos(0.577) cos(rz)

These results are consistent with Theorem 4.2. As for |p — ps| (), We note that

Ip — thLg(Q) < Hp - ngHLg(Q) + anp - thLz(Q)
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TABLE 7.1. Mixed Problem Convergence Rates for Fourier-mode k£ = 1

MeshLevel

2 — znl| 20y | Tate | [P — pall 2 | rate [Tip — PhHLg(Q) rate
2.6827e-01 4.7997e-02 1.5531e-02
2.3739e-01 | 0.18 | 4.0432¢-02 | 0.25 1.5324e-02 0.02
1.4887e-01 | 0.67 | 2.4285e-02 | 0.74 5.8420e-03 1.39
7.9202e-02 | 0.91| 1.2563e-02 | 0.95 1.6590e-03 1.82
4.0238e-02 | 0.98 | 6.3259¢-03 | 0.99 4.2928e-04 1.95
2.0200e-02 | 0.99 | 3.1682e-03 | 1.00 1.0827e-04 1.99
1.0110e-02 | 1.00 | 1.5847e-03 | 1.00 2.7126e-05 2.00
5.0564e-03 | 1.00 | 7.9244e-04 | 1.00 6.7853e-06 2.00

0O O Ot i Wi+

TABLE 7.2. Mixed Problem Convergence Rates for Fourier-mode k = 2

MeshLevel | |z — 24|12 | rate | [p = pr|p2q) | rate p — PhHLg(Q) rate
1 2.7520e-01 4.6388e-02 9.4515e-03
2 2.4466e-01 | 0.17 | 3.9077e-02 | 0.25 1.1274e-02 -0.25
3 1.5192e-01 | 0.69 | 2.4055e-02 | 0.70 4.7994e-03 1.23
4 8.0665e-02 | 0.91 | 1.2533e-02 | 0.94 1.4118e-03 1.77
) 4.0967e-02 | 0.98 | 6.3221e-03 | 0.99 3.6878e-04 1.94
6 2.0565e-02 | 0.99| 3.1677e-03 | 1.00 9.3232e-05 1.98
7 1.0293e-02 | 1.00 | 1.5847e-03 | 1.00 2.3373e-05 2.00
8 5.1476e-03 | 1.00 | 7.9244e-04 | 1.00 5.8474e-06 2.00

and that the first term on the right-hand-side which is of O(h) dominates even though
the second term is of O(h?).

Next we verify the uniform convergence rate for the multigrid V-cycle algorithm applied
to (2.3). We consider two different domains here: the unit square €; = [0, 1]* and the L-
shape domain Qy = [0, 1]*\[0.5, 1], For this example, we choose f = 0. The initial value
xo was chosen randomly, and the stopping criteria was given by |z,[s/|Zo]s < 1077,
where x,, denotes the n-th iteration of the multigrid V-cycle. The order of convergence
was computed by taking the average of |z, |s/|®n—1|a. The prolongation matrix and the
restriction matrix are implemented in the usual way. Tables 7.3 and 7.4 report convergence
rates for €2y and {2 respectively for various Fourier-modes denoted by k. It is clear that
the convergence rate is bounded uniformly as proved in Theorem 5.1 for convex domains.
This is noticeable even for the L-shape domain €2y suggesting that the theory can be
extended to non-convex domains.

Before we end this section, we show how the V-cycle convergence rates are affected by
the Fourier-mode k. In Figure 1, we report the V-cycle convergence rates for k-values
starting from k£ = 100 in increments of 100 on mesh level 9. While such large k-values are
unused in practice for Fourier-FEMs, we report these results to clearly demonstrate that
the V-cycle convergence rates depend on k.
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TABLE 7.3. Multigrid V-cycle Convergence Rates for Square Domain €2,

MeshLevel | k=1 |k=2|k=—-1|k= -2
0.12 | 0.06 0.11 0.07
0.13 | 0.12 0.13 0.09
0.23 | 0.19 0.25 0.19
0.24 | 0.23 0.27 0.22
0.25 | 0.24 0.27 0.22
0.25 | 0.23 0.27 0.21
0.24 | 0.21 0.26 0.18
0.24 | 0.21 0.26 0.18

© 0 ~J O Tk~ Wi

TABLE 7.4. Multigrid V-cycle Convergence Rates for L.-Shape Domain 2,

MeshLevel | k=1 |k=2|k=—-1|k= -2
0.13 | 0.16 0.16 0.16
0.19 | 0.13 0.19 0.13
0.25 | 0.24 0.25 0.25
0.27 | 0.25 0.28 0.25
0.29 | 0.26 0.29 0.26
0.30 | 0.26 0.30 0.26
0.31 | 0.27 0.32 0.26

00 O O i~ W i

-cycle convergence rate

V-

F1GURE 1. Multigrid V-cycle Convergence Rates for various Fourier modes
on Square Domain {2y

8. CONCLUDING REMARKS

We have provided a multigrid algorithm that can be applied to axisymmetric H (div)-
problems with general data by using a recently developed Fourier finite element space for
Fourier modes |k| = 1. Under the assumption that the axisymmetric domain is convex, we
proved that the multigrid V-cycle will converge uniformly with respect to the meshsize.
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Multigrid analysis for axisymmetric H (div)-problems for Fourier mode k = 0 along with
axisymmetric H (curl)-problems with non-axisymmetric data remain as future work.

9. APPENDIX: PROOF OF THEOREM 3.2

We prove the theorem by showing that

inf v —vhl 20y < Ch(|valmye) + [kv:] g1 ) + [kvr + vl g1(0))-

’UhEBh
To do so, we first recall the weighted Clement operator II;, constructed in [4, section 4.3].
For each vertex a; in .7, associate an arbitrary triangle K that contains a;, and let
P ={ar+bz+c:abceR}.
Then define II; : L2(K;) — Pi(K;) to be the L2-orthogonal projection. The weighted
Clément operator ITj, : L2(Q2) — V}, := {v e HY(Q) : v|x € P, for all K € .} is defined as

Nq

(9.1) My = Y [(IL(w))(a5)]9;

j=1
where N, is the number of vertices in .7, and ¢, denotes the lowest order Lagrangian
finite element basis function associated with a;. The following error estimate follows from
[4, Theorem 1]:

(9.2) Ju— w2 ) < Chiclulgag,

where A denotes the union of all triangles that shares at least a common vertex with
K. We will write o, to denote the local degrees of freedom associated with (9.1).
Next, let
H,(curl, Q) = {(v,,v.) € L}(Q) : 0,v, — d,v, € L2(Q)},
and recall the lowest order Nédélec space:
N, ={ve H,(curl,Q) : v|x € ND;(K) for all K € F,},
where
ND; ={(b—az,c+ar):a,b,ceR}.
We now construct a weighted Clément type operator II, : [L2%(2)]* — IN), that satisfies

v — Hh’TJHLfS(Q) < Ch|f’\H33(Q)-

We will modify the construction of the basic Clement operator in [4, section 4.3]. For
each edge e; in 7, associate an arbitrary triangle K; that contains e;. Then define
I : L%(K;) — NDy(K;) as the L2;-orthogonal projection, i.e.,
(Hzfjv q)r3 = (i}u q)r3 for all g € NDl(KZ)
The weighted Clément type operator II, : L2,(Q2) — NN}, is defined as
Ne

(9.3) 11,0 = Z[J L9 - tds|y,,

i=1 vei
where N, denotes the number of edges in .7, and 1), is the usual Nédélec basis associated
with the edge e;. We will use o, to denote the local degrees of freedom corresponding to
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(9.3), and Ak to denote the union of all triangles that share an edge with triangle K in
I, We show that II, satisfies the following lemma.

Lemma 9.1. For all K € J, and v € [H5(Ak)]?, we have
o — Hh’bHLfg(K) < Ch’f’|H;3(AK)-

Proof. First of all, we note the following results that follows by direct calculation for any
triangle K:

(9.4) ||¢eH%iS(K) < Cry

where rx = mazgzexr(x).
Fix a triangle K in .7, and let ey, €5, and e3 denote its three edges. Then

3

(9.5) I1,0|x = Z(f I - tds)ip,,.
i=1 Jei

For each i, we have
(9.6) I 105 )by < Ol 11 e 9,2,

. . . Tmaz ()
If K; is a triangle that does not intersect ['y, then we can use W < C, (94), and a

T'min A

standard inverse inequality to obtain
(9.7) I 105 -ty a2y < Cloliz,

3

If K; is a triangle that intersects I'g, then rx < Chg so (9.4) becomes
12, e < O,

and

~ —5/2 ~
T ey < Chi* TL® ) 12, 1

by a standard scaling argument, so (9.7) continues to hold. Therefore, by (9.5) and (9.7),
we have

(9.8) ||Hh’5HL§3(K) < C”’EHL%(AK)‘
Since (3.4) still holds when A, is replaced by Ak, we have

(9.9) qeljof(lg}() lv — CIHng(AK) < Ch|U|HT13 (Ag)s

where in (9.9), we are using h to denote the diameter of Ak.
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Now, let g € Py(Ag)?. Then, for all edges e; of K, II;q is equal to g, so the restriction
of II,q onto K is also equal to q. Therefore,

& =T 12, 1) = |0 — T® + 11hg — @2, ().

< o - QHLfg,(K) + (v — q)HLES(K)a
< Cfo - Q||L§3(AK) by (9.8),
This completes the proof of the Lemma. 0

Let us now show that

Uiggh v — 'Uh”Lg(Q) < Ch(|velmy () + ”kUZHH}(Q) + |lkvr + 1}0”1};(9))-

Given wu, define ﬁzku € By, locally in the following way:

1 ror
3 __¢1 k:ur-i-ue E g

5% | = Zaal(u@) Z e, ( ( ks )) TO
=1 O r E ’Lz

We used 9, = (¢7,97)" to denote 1, for simplicity. The interpolation operators used in

30] are different from IT7* in two ways: in [30], the standard nodal interpolation operator
was used for wuy instead of (9.1), and the standard lowest order Nédélec interpolation
operator was used for (k“zﬂ Bz )T instead of (9.3).

We will show that sz satisfies the following error estimate:

ek
Hv—HfL’ v

12(Q) < Ch([velmie) + [kval i) + 1kvr + vol g1())-
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This is true, since

ﬂck 2
S U‘L%(K)
3 2 kvrtvg r 2
Ue—zaai(ve)@ dez ( kvs ))E@Dz‘z
=1 LQ(K) " L(K)
2
kvrtug r
U’/"’“Zaal UG Zo-el ( kvz ))E¢: )
" L(K)
) ) r k?UZ 3 kvr-i-vg 2
Ol + |~ o ("a" e
T L (K)
1 3 r kv, + vy 3 kvrtvg ’
E(—vwz%wew»w(%—20@(( o | o),
=1 i= " L(K)

/{:vz & k”””‘) R kv, +vp < LLE AN
ZC(}L2”U9‘?{;(* Zaez ( kvy >W + T_Zaei<( @ >)wz

< Chz(’“O‘?{;(AK) +|—

<

T T

22 (K) i1

kv, kv, + vg

|H1 ag) T ’Hj3(AK)) by Lemma 9.1,

Ch*(Jvol 1 (a0 + HkvzHﬁ;(AK) + kv, + U"H%’%(Ax))‘

This completes the proof of the theorem.
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