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Abstract. In this paper, we will construct and analyze a multigrid algorithm that can
be applied to weighted Hpdivq problems on a two-dimensional domain. These prob-
lems arise after performing a dimension reduction to a three-dimensional axisymmetric
Hpdivq problem. We will use recently developed Fourier finite element spaces that can
be applied to axisymmetric Hpdivq problems with general data. We prove that if the
axisymmetric domain is convex, then the multigrid V-cycle with modern smoothers will
converge uniformly with respect to the meshsize.

1. Introduction

Let Ω̆ Ă R3 be a convex axisymmetric domain. The Hilbert space Hpdiv, Ω̆q consists

of square integrable vector-valued functions defined on Ω̆ whose divergence is also square
integrable. The inner product on this space is given by

pu,vqL2pΩ̆q ` pdivu, div vqL2pΩ̆q,

where p¨, ¨qL2pΩ̆q denotes the usual L2-inner product. Consider the following axisymmetric

Hpdivq-problem: find u PHpdiv, Ω̆q such that

(1.1) pu,vqL2pΩ̆q ` pdivu, div vqL2pΩ̆q “ pF ,vqL2pΩ̆q for all v PHpdiv, Ω̆q.

Numerical methods that can be applied to problems like (1.1) on general 3D domains (not
necessarily axisymmetric) have many applications, see [1, section 7] and [24] for example,
and multigrid methods for these problems have been constructed and studied in [2] and
[20].

Let R2
` denote the right half of the rz-plane (also called the meridian half-plane).

For problems defined on an axisymmetric domain such as (1.1), one can use a Fourier
series decomposition to change the three-dimensional (3D) problem into a sequence of
two-dimensional (2D) problems defined on the meridian domain Ω Ă R2

`. Fourier Finite
Element Methods (Fourier-FEMs) can be used to approximate each Fourier-mode of the
solution u by using a suitable FEM. Such dimension reduction is an attractive feature
considering computation time, but the resulting weighted 2D problems are quite different
from the corresponding unweighted problems as we will see in the next section. The
appropriate weighted spaces include functions with singularities at the axis of rotation,
so the analysis of such weighted problems requires special attention. When the data
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function F in (1.1) is independent of the rotational variable θ when written in terms of
cylindrical coordinates, then the solution u is also independent of the θ-variable, and only
the zero-th Fourier mode of u is alive. In most applications, however, F is dependent
on the θ-variable, so u has non-vanishing higher order Fourier-modes. In this paper, we
construct and analyze a multigrid algorithm that can be applied to weighted 2D-problems
arising from (1.1) that provide an approximate solution to each k-th Fourier mode of the
exact solution u for |k| ě 1.

Multigrid methods for axisymmetric Hpcurlq problems have been studied in the past.
Multigrid for the azimuthal problem was analyzed in [18], and another multigrid analysis
was done by using line relaxations in [6]. In [15], a multigrid analysis for the V-cycle algo-
rithm was done for the meridian problem by using the smoothers in [2] and [21]. To our
knowledge, multigrid methods for axisymmetric Hpdivq problems have not been studied
yet. All of the above mentioned papers are assuming that not only the 3D domain is ax-
isymmetric but also the data given in the problem is axisymmetric as well. One reason for
this was perhaps the lack of commuting projections associated with axisymmetric prob-
lems with general data. This difficulty was overcome in [30] where the author constructed
a new family of Fourier-finite element spaces whose interpolation operators satisfy a com-
muting diagram property. Therefore, in this paper, we will use the Hrpdivkq-conforming
finite element space for |k| ě 1 constructed in [30] to construct and analyze a multigrid
V-cycle that can be applied to weighted 2D-problems arising from (1.1). We will follow
the framework of [2] for the multigrid analysis.

This paper is organized as follows: in section 2, we will give an overview on Fourier-
FEMs and state the weighted problem of interest. We will also summarize the definitions
of some needed weighted spaces and a family of Fourier finite element spaces along with
commuting projections onto those spaces. In section 3, we prove better error estimates
for the commuting projections constructed in [29]. The new ideas taken here is in the
construction and use of operators that have appropriate error estimates in the weighted
L2-space with the measure r3drdz instead of the usual rdrdz. This will help us deal with
the multiple 1{r terms appearing in the interpolation operators used in [30]. In section 4,
a weighted mixed formulation that will be helpful in the multigrid analysis will be studied,
and in the following two sections, the multigrid V-cycle algorithm will be introduced and
analyzed. Finally, in section 7 numerical results that support the mathematical theory
established in this paper are provided followed by a section with concluding remarks.
Some technical proofs are included in the Appendix (section 9) to improve the readability
of the paper.

2. Preliminaries

In this section, we summarize definitions of weighted spaces as well as Fourier finite
element spaces. We will also state the weighted problem of interest.

If f̆ is a function defined on Ω̆ that is independent of the θ-variable, then
ż ż ż

Ω̆

f̆pr, θ, zq2dV “ 2π

ż ż

Ω

fpr, zq2rdrdz,
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where f̆ and f are functions defined on Ω̆ and Ω respectively with the same formula.
Therefore, we are interested in the weighted L2-space defined by

L2
rpΩq “ tu :

ż ż

Ω

upr, zq2rdrdz ă 8u.

This is a Hilbert space with the inner-product being

pu, vqr “

ż ż

Ω

uvrdrdz,

and the induced norm will be denoted by } ¨ }L2
rpΩq

. In general, we will use } ¨ }X to denote
the norm of the Hilbert space X. Notice that

u P L2
rpΩq if and only if

u

r
P L2

r3pΩq,

where

L2
r3pΩq “ tu :

ż ż

Ω

upr, zq2r3drdz ă 8u.

In general, we may define a weighted L2-space in the following way:

L2
αpΩq “ tu :

ż ż

Ω

upr, zq2rαdrdz ă 8u

with the associated norm

}u}L2
αpΩ

“ p

ż ż

Ω

upr, zq2rαdrdzq1{2.

In this paper, we will be mainly using α “ 1, but α “ 3 and α “ ´1 will be used in some
places. Since these are the only three α values that will be used, we will simply write
L2
rpΩq, L

2
r3pΩq, and L2

1{rpΩq respectively to denote these spaces.
Let

gradrz u “ p
Bu

Br
,
Bu

Bz
q
T .

Then, we define

H1
r pΩq “ tu P L

2
rpΩq : gradrz u P L

2
rpΩqu,

H̃1
r pΩq “ H1

r pΩq X L
2
1{rpΩq,

and the associated norms for these spaces are

}u}H1
r pΩq

“ p}u}2L2
rpΩq

` }gradrz u}
2
L2
rpΩq
q
1{2,

}u}H̃1
r pΩq

“ p}u}2H1
r pΩq

` }u}2L2
1{r
pΩqq

1{2.

We will use Γ1 to denote the part of the boundary of Ω that is not on the axis of symmetry,
i.e., the rotation of Γ1 returns BΩ̆, and Γ0 to denote the part of BΩ that is on the axis
of symmetry, i.e., Γ0 “ BΩzΓ1. Then H1

r,0pΩq denotes the closed subspace of H1
r pΩq with

vanishing trace on Γ1. In general, we will use H l
rpΩq to denote the subspace of L2

rpΩq that
consists of functions whose distributional derivatives of order l and under also belong in
L2
rpΩq. Furthermore, H1

1{rpΩq will be used to denote the space of functions in L2
1{rpΩq

whose gradient also belongs in L2
1{rpΩq. Similarly, H1

r3pΩq denotes the subspace of L2
r3pΩq
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whose gradient is also in L2
r3pΩq. We will use boldface to denote vector-valued functions

as well as functions spaces consisting of vector-valued functions. For simplicity, Br will be

used instead of
B

Br
, etc. For v “ pvr, vθ, vzq

T , we use vrz to denote pvr, vzq
T .

Many authors have previously studied axisymmetric problems with general data through
a Fourier series decomposition. (See [5, 19, 27, 28, 10, 11, 12, 29] for example.) Since
each Fourier mode is obtained by taking an integral with respect to θ, each Fourier mode
is only dependent on variables r and z, and thus by using the axial symmetry of the 3D
domain Ω̆ and a truncated partial Fourier series, one can reduce the 3D problem into N
2D problems. We use the term Fourier-FEMs when each Fourier-mode of the solution is
approximated by using a suitable FEM.

For scalar-valued functions, the Fourier series decomposition takes the following form:

u “ u0 `

8
ÿ

k“1

uk cos kθ `
8
ÿ

k“1

u´k sin kθ.

For a vector-valued function, first write u “ urer ` uθeθ ` uzez by using the cylindrical
basis er, eθ, and ez. Then, u “ us ` ua where

(2.1)

us “

¨

˝

u0
r

0
u0
z

˛

‚`

8
ÿ

k“1

¨

˝

ukr cos kθ
ukθ sin kθ
ukz cos kθ

˛

‚,

ua “

¨

˝

0
u0
θ

0

˛

‚`

8
ÿ

k“1

¨

˝

u´kr sin kθ
u´kθ cos kθ
u´kz sin kθ

˛

‚.

Note that us and ua are the so-called “symmetric” and “antisymmetric” parts of u
respectively.

Next, consider the usual divergence operator in cylindrical coordinates:

divu “
1

r
Brprurq `

1

r
Bθuθ ` Bzuz.

By applying the divergence operator to us and ua we get

(2.2)

divus “ p
1

r
Brpru

0
rq ` Bzu

0
zq `

8
ÿ

k“1

pBru
k
r `

ukr ` ku
k
θ

r
` Bzu

k
zq cos kθ,

divua “
8
ÿ

k“1

pBru
´k
r `

u´kr ´ ku´kθ
r

` Bzu
´k
z q sin kθ.

Since t1, cos θ, sin θ, cos 2θ, sin 2θ, ¨ ¨ ¨ cos kθ, sin kθ, ¨ ¨ ¨u form an orthogonal and complete
system in L2pp´π, πqq, we have

pdivu, div vqL2pΩ̆q “
ÿ

kPZ

ż π

´π

ż

Ω

divuk div vkrdrdzdθ,

as well as

pu,vqL2pΩ̆q “
ÿ

kPZ

ż π

´π

ż

Ω

ukvkrdrdzdθ,
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where uk denotes the k-th Fourier mode of u. Therefore, (1.1) can be split into indepen-
dent problems for each k P Z.

Note that when considering a de Rham complex such as in Theorem 2.1, one must
consider the div-operator in relation with the curl-operator. When curl is applied to us,
it returns a vector that only has an antisymmetric part. Therefore, the formulas of curl
and div used in [29, 30] for Fourier-FEMs come from applying curl to us and div to ua.
In this paper, we will focus on div applied to ua in (2.2) as well.

Let

divkrz

»

–

ur
uθ
uz

fi

fl “ Brur `
ur ´ kuθ

r
` Bzuz,

and define the following weighted Hpdivq space:

Hrpdivk,Ωq “ tu P L2
rpΩq : divkrz u P L

2
rpΩqu.

This is a Hilbert space with the inner product being

Λk
pu,vq “ pu,vqr ` pdivkrz u, divkrz vqr.

Let Ch be a finite element subspace of Hrpdivk,Ωq that will be introduced shortly. Define
Λk
h : Ch Ñ Ch by

(2.3) pΛk
huh,vhqr “ Λk

puh,vhq for all uh,vh P Ch.

In this paper, we construct and analyze a multigrid algorithm that can be applied to (2.3).
The analysis done in this paper holds true for any fixed integer |k| ě 1, so we assume
that the Fourier-mode k is fixed. For simplicity of notation, we will write Λ instead of
Λk. The norm induced by Λp¨, ¨q is denoted by } ¨ }Λ.

Through a similar process, one also obtains the following grad and curl formulas that
affect the k-th Fourier mode:

gradkrz u “

»

–

Bru
´k
r
u

Bzu

fi

fl ,

curlkrz

»

–

ur
uθ
uz

fi

fl “

»

–

´pk
r
uz ` Bzuθq

Bzur ´ Bruz
kur`uθ

r
` Bruθ

fi

fl ,

and we get the following Hilbert spaces:

Hrpgrad
k,Ωq “ tu P L2

rpΩq : gradkrz u P L
2
rpΩqu,

Hrpcurl
k,Ωq “ tu P L2

rpΩq : curlkrz u P L
2
rpΩqu.
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Next, let

gradk˚rz u “

»

–

Bru
k
r
u
Bzu

fi

fl ,

curlk˚rz

»

–

ur
uθ
uz

fi

fl “

»

–

k
r
uz ´ Bzuθ
Bzur ´ Bruz

´kur`uθ
r

` Bruθ

fi

fl ,

and define

Hr,0pgrad
k˚,Ωq “ tu P L2

rpΩq : gradk˚rz u P L
2
rpΩq and u “ 0 on Γ1u,

Hr,0pcurl
k˚,Ωq “ tu P L2

rpΩq : curlk˚rz u P L
2
rpΩq and urz ¨ t “ 0, uθ “ 0 on Γ1u.

As usual, t denotes the unit tangent vector along Γ1.
Then gradk˚rz and curlk˚rz are adjoints operators of ´ divkrz and curlkrz respectively [29,

Theorem 7.1] in the following sense:

p´ divkrz u,vqr “ pu,grad
k˚
rz vqr for all u PHrpdivk,Ωq,v P Hr,0pgrad

k˚,Ωq,

pcurlkrz u,vqr “ pu, curl
k˚
rz vqr for all u PHrpcurl

k,Ωq,v PHr,0pcurl
k˚,Ωq.

Next, let Th be a finite element triangulation of Ω that satisfies the usual geometrical
conformity conditions [13]. We now summarize the family of Fourier finite element spaces
constructed in [30]. First define the following polynomial spaces:

A1 “
 

α1r ` α2r
2
` α3rz : αi P R for 1 ď i ď 3

(

,

B1 “

$

&

%

¨

˝

β1 ` β4r ` β3z ´ β6rz
´kβ1 ` β2r ´ kβ3z

β5r ` β6r
2

˛

‚: βi P R for 1 ď i ď 6

,

.

-

,

C1 “

$

&

%

¨

˝

kγ1 ` γ2r
γ1 ` γ3r
γ4 ` γ2z

˛

‚: γi P R for 1 ď i ď 4

,

.

-

.

We are interested in the following Fourier finite element spaces:

(2.4)

Ah “
 

u P Hrpgrad
k,Ωq : u|K P A1 for all K P Th

(

,

Bh “
 

u PHrpcurl
k,Ωq : u|K P B1 for all K P Th

(

,

Ch “
 

u PHrpdivk,Ωq : u|K P C1 for all K P Th

(

,

Dh “
 

u P L2
rpΩq : u|K is constant for all K P Th

(

.

Note that Bh and Ch are dependent on k. It was proved in [30, Theorem 4.1] that these
Fourier finite element spaces are conforming and the corresponding interpolation operators
satisfy the commuting diagram property with error estimates. We note that Bh was
constructed separately in [23, 22]. Furthermore in [29], a set of projectors Πg,k

h ,Πc,k
h ,Πd,k

h ,
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and Πo,k
h that form a W-bounded cochain projection was constructed for this family of

Fourier finite element spaces. The following theorem can be found in [29, Theorem 5.1].

Theorem 2.1. There exist projections Πg,k
h ,Πc,k

h ,Πd,k
h , and Πo,k

h that are continuous for
all functions in L2

rpΩq (or L2
rpΩq) that satisfy the following properties:

(1) Commutativity. The operators make the following diagram commute:

L2
rpΩq

gradkrz
ÝÝÝÝÑ L2

rpΩq
curlkrz
ÝÝÝÝÑ L2

rpΩq
divkrz
ÝÝÝÑ L2

rpΩq
§

§

đ

Πg,kh

§

§

đ

Πc,kh

§

§

đ

Πd,kh

§

§

đ

Πo,kh

Ah
gradkrz
ÝÝÝÝÑ Bh

curlkrz
ÝÝÝÝÑ Ch

divkrz
ÝÝÝÑ Dh

(2) Approximation.
›

›

›
u´ Πg,k

h u
›

›

›

L2
rpΩq

ď C inf
uhPAh

}u´ uh}L2
rpΩq

,
›

›

›
u´ Πc,k

h u
›

›

›

L2
rpΩq

ď C inf
uhPBh

}u´ uh}L2
rpΩq

,
›

›

›
u´ Πd,k

h u
›

›

›

L2
rpΩq

ď C inf
uhPCh

}u´ uh}L2
rpΩq

,
›

›

›
u´ Πo,k

h u
›

›

›

L2
rpΩq

ď C inf
uhPDh

}u´ uh}L2
rpΩq

.

In this paper, we will mainly use the projection Πd,k
h onto Ch. While the original

interpolation operator used in the construction of Ch in [30] satisfies error estimates, that
interpolation operator requires more regularity on the function than necessary. Therefore,
in the next section, we will construct another projection onto Ch to show that

inf
uhPCh

}u´ uh}L2
rpΩq

ď Chp|urz|
2
H1
r pΩq

` }kuθ ´ ur}H̃1
r pΩq
q.

3. Error Estimates for Commuting Projections

In this section, we will construct another interpolation operator onto Ch to obtain a
better concrete error estimate for Πd,k

h .
The following result can be found in [30, Proposition 3.3].

Proposition 3.1. The following finite element pΣk, K, P kq is unisolvent and conforming
in Hrpdivk,Ωq.

‚ K: triangle with vertices ai, edges ei, and normal vectors ni, 1 ď i ď 3.
‚ P k: space of polynomials defined by

u “

¨

˝

kγ1 ` γ2r
γ1 ` γ3r
γ4 ` γ2z

˛

‚.
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‚ Σk: set of linear forms, for 1 ď i ď 3

σK : u ÞÑ
1

|K|

ż

K

kuθ ´ ur
r

,

σei : u ÞÑ

ż

ei

ˆ

ur
uz

˙

¨ ni.

Notice that urz “ pur, uzq
T is being projected onto the lowest order Raviart Thomas

space [31], while
kuθ ´ ur

r
is being projected onto the piecewise constant space. The

degrees of freedom used above does not take into consideration that the corresponding
interpolation operator (denoted by Id,kh ) will be applied to functions in weighted functions

spaces. Therefore, the error estimates one gets for Id,kh in [30, Theorem 4.1] requires ur, uz,

and
kuθ ´ ur

r
to be in the space H2

r pΩq which is known to be continuously embedded in

L2pΩq [25].
In [16, Lemma 5.3] an interpolation operator onto the lowest order Nédélec space [26]

that is continuous on H1
rpΩq was constructed, and a projection onto the same space that

is continuous on L2
rpΩq was constructed in [17] as well. Employing a similar idea, one

might consider taking the L2
r-orthogonal projection of

kuθ ´ ur
r

instead of the standard L2-

orthogonal projection in Proposition 3.1, but this does not solve the issue of the regularity

condition being posed on
kuθ ´ ur

r
instead of kuθ ´ ur for example. As demonstrated in

the proof of the following theorem, the trick is to use the weight r3 instead of the usual

weight r. This is because as in Proposition 3.1, a projection will be applied to
kuθ ´ ur

r

that involves
1

r
-terms and

v P L2
rpΩq if and only if

v

r
P L2

r3pΩq.

Let H1‹
r,kpΩq denote the space tu P H1

rpΩq : kuθ ´ ur P L
2
1{rpΩqu. Then we have the

following theorem.

Theorem 3.1. For all u PH1‹
r pΩq, the commuting projection Πd,k

h satisfies

}u´ Πd,k
h u}L2

rpΩq
ď Chp|urz|

2
H1
r pΩq

` }kuθ ´ ur}H̃1
r pΩq
q.

Proof. By Theorem 2.1 item (2), it suffices to prove that

inf
uhPCh

}u´ uh}L2
rpΩq

ď Chp|urz|
2
H1
r pΩq

` }kuθ ´ ur}H̃1
r pΩq
q.

Define the set of global degrees of freedom of Ch as

(3.1) σ̄Kpuq “

ş

K
r3 ¨

kuθ ´ ur
r

dA
ş

K
r3dA

for all mesh triangles K



MULTIGRID IN WEIGHTED H(DIV) 9

and

(3.2)

σ̄apuq “

ż

epaq

urz ¨ nrds for all mesh vertices a P Γ̄0,

σ̄epuq “

ż

e

urz ¨ nds for all mesh edges eX Γ̄0 “ H,

σ̄K0puq “

ż

K0

r divrz urzdA for all mesh triangles K0 X Γ̄0 ‰ H,

where epaq is an edge associated with a vertex a on Γ0 that is not on Γ0, and

divrz u “ Brur ` Bzuz.

Note that the degrees of freedom (3.2) are the same as the ones used in [16, Lemma 5.3]
for the lowest order Nédélec space when viewing the lowest order Raviart Thomas space
as the rotated lowest order Nédélec space. The linear functionals (3.2) are continuous
linear functionals on H1

rpΩq and form unisolvent degrees of freedom for the lowest order
Raviart Thomas space [16, Proposition 5.2].

We clarify the difference between the degrees of freedom (3.1) and (3.2) and the ones

used in Proposition 3.1. First of all, in (3.1), the L2
r3-orthogonal projection of

kvθ ´ vr
r

is used while the L2-orthogonal projection of
kvθ ´ vr

r
is used in Proposition 3.1. Sec-

ondly, in (3.2), the degrees of freedom used in [16, Lemma 5.3] are used for urz instead
of the standard non-weighted lowest order Raviart-Thomas degrees of freedom used in
Proposition 3.1.

We define Π̃d,k
h : Hrpdivn,Ωq Ñ Ch as

σ̄pΠ̃d,k
h vq “ σ̄pvq

for all degrees of freedom σ̄ in (3.1) and (3.2). In other words, for each triangle K P Th,

(3.3) Π̃d,k
h v

¨

˝

vr
vθ
vz

˛

‚|K “ σ̄Kpvq

¨

˚

˝

0
r

k
χK

0

˛

‹

‚

`

3
ÿ

i“1

σ̄ipvq

¨

˚

˝

ξri
1

k
ξri

ξzi

˛

‹

‚

,

where σ̄i denotes the local degrees of freedom corresponding to (3.2), ξi “ pξ
r
i , ξ

z
i q
T is the

local basis for the lowest order Raviart Thomas space associated with ei, and χK denotes
the constant function one on triangle K.

For any edge e in Th, let ∆e denote the union of two triangles that share e as a common
edge, and let he denote its diameter. Then from [4, Lemma 5] we get

inf
qPP0p∆eq

}v ´ q}L2
rp∆eq ď Che|v|H1

r p∆eq,

where P0 “ ta : a P Ru. By replacing r by r3 in the proof of [4, Lemma 5] before applying
Young’s inequality, this result extends to the following:

(3.4) inf
qPP0p∆eq

}v ´ q}L2
r3
p∆eq

ď Che|v|H1
r3
p∆eq

.
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As in [4, Lemma 5], this remains true when ∆e is replaced by any triangle K as well:

(3.5) inf
qPP0pKq

}v ´ q}L2
r3
pKq ď ChK |v|H1

r3
pKq,

where hK is the diameter of K.
Next, we say that a triangle is type 1 or type 2 if it intersects Γ0 at one vertex or two

vertices resepctively, and we call a triangle type 3 if it does not intersect Γ0 at all. If K is
a type 1 triangle, let DK denote the union of all triangles connected to the one vertex of
K that is on Γ0. If K is of type 2, then DK denotes the union of the two vertex patches
of the two vertices of K that are on Γ0. For type 3 triangles, DK is simply equal to K.
Then, for any triangle K P Th, we have
(3.6)
›

›

›
v ´ Π̃d,k

h v
›

›

›

2

r,K
“

›

›

›

›

›

vrz ´
3
ÿ

i“1

σ̄ipvqξi

›

›

›

›

›

2

r,K

`

›

›

›

›

›

vθ ´ σ̄Kpvq
r

k
χK ´

3
ÿ

i“1

σ̄ipvq
1

k
ξri

›

›

›

›

›

2

r,K

,

ď Cph2
|vrz|

2
H1
r pDKq

`

›

›

›

›

›

1

k
pkvθ ´ σ̄KpvqrχKq ´

1

k

3
ÿ

i“1

σ̄ipvqξ
r
i

›

›

›

›

›

2

r,K

q by [16, Lemma 5.3],

ď Cph2
|vrz|

2
H1
r pDKq

`

›

›

›

›

›

pkvθ ´ vrq ´ σ̄KpvqrχK ` vr ´
3
ÿ

i“1

σ̄ipvqξ
r
i

›

›

›

›

›

2

r,K

q,

ď Cph2
|vrz|

2
H1
r pDKq

` }pkvθ ´ vrq ´ σ̄KpvqrχK}
2
r,Kq,

“ Cph2
|vrz|

2
H1
r pDKq

`

›

›

›

›

rp
kvθ ´ vr

r
´ σ̄KpvqχKq

›

›

›

›

2

r,K

q,

“ Cph2
|vrz|

2
H1
r pDKq

`

›

›

›

›

kvθ ´ vr
r

´ σ̄KpvqχK

›

›

›

›

2

L2
r3
pKq

q,

ď Cph2
|vrz|

2
H1
r pDKq

` Ch2
|
kvθ ´ vr

r
|
2
H1
r3
pKqq by (3.5).

The last inequality is using the fact that the error of the L2
r3-orthogonal projection is

bounded by the best approximation error in the L2
r3-norm.

Direct calculation shows that

(3.7) |
kvθ ´ vr

r
|H1

r3
pKq ď }kvθ ´ vr}H̃1

r pKq
.

Therefore, by (3.6) and (3.7), and summing over all triangles as usual, we conclude that

(3.8)
›

›

›
v ´ Π̃d,k

h v
›

›

›

L2
rpΩq

ď Chp|vrz|H1
r pΩq

` }kvθ ´ vr}H̃1
r pΩq
q.

�

Next, let
H1˛

r,kpΩq “ tv PH
1
rpΩq : kvz, kvr ` vθ P L

2
1{rpΩqu.

Then, by using a similar idea as in the proof of Theorem 3.1 and Clément operators
[14, 25, 4], we get the following error estimate for the commuting projector Πc,k

h .
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Theorem 3.2. For all v PH1˛
r,kpΩq we have

›

›

›
v ´ Πc,k

h v
›

›

›

L2
rpΩq

ď Chp|vθ|H1
r pΩq

` }kvz}H̃1
r pΩq

` }kvr ` vθ}H̃1
r pΩq
q.

The proof of Theorem 3.2 can be found in the Appendix. It uses the L2
r3-orthogonal

projection when constructing a weighted Clément-type operator.

4. A Weighted Mixed Problem

For the multigrid analysis in section 6, we need to study the following weighted mixed
problem:

find pz, pq PHrpdivk,Ωq ˆ L2
rpΩq such that

(4.1)
pz,wqr ´ pdivkrzw, pqr “ 0 for all w PHrpdivk,Ωq,

pdivkrz z, sqr “ pf, sqr for all s P L2
rpΩq.

This mixed problem is the weighted Poisson equation with Dirichlet boundary conditions,
and p is the solution of

(4.2)
´∆pkqp “ f in Ω,

p “ 0 on Γ1,

where ∆pkq “ divkrz grad
k˚
rz . The mixed problem (4.1) has been studied in [29] as one of

the axisymmetric Hodge Laplacian problems. It follows from [29, Theorem 3.1] that (4.1)
is well-posed and that

}z}Hrpdivk,Ωq ` }p}L2
rpΩq

ď C}f}L2
rpΩq

.

In [11], more detailed regularity results were given for the solution of (4.2). For our
multigrid analysis, we further prove the following regularity result.

Theorem 4.1. If Ω̆ is convex, then the solution to (4.1) denoted by pz, pq PHrpdivk,Ωqˆ
L2
rpΩq satisfies

}p}H2
r pΩq

` }p}H̃1
r pΩq

` }Brp}L2
1{r
pΩq ď C}f}L2

rpΩq
,

}zrz}H1
r pΩq

` }kzθ ´ zr}H̃1
r pΩq

ď C}f}L2
rpΩq

for all |k| ě 1.

Proof. If Ω̆ is convex, by [11, page 589], the solution p to (4.2) is in H2
pkqpΩq X H1

r,0pΩq,
where

H2
p˘1qpΩq “ tw P H

2
r pΩq : w “ 0 on Γ0u,

H2
pkqpΩq “ H2

r pΩq XH
1
1{rpΩq for |k| ě 2.

Then the first regularity result follows by [11, Theorem 3.2] for |k| ě 2 and by [11, page
594] for |k| “ 1.
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Next, notice that z “ ´gradk˚rz p, and consider the complex vector-valued function
q “ pzr, izθ, zzq

T . Then, by direct calculation, one can show that

(4.3)

curlk q “ 0,

divk q “ f,

qrz ¨ t “ 0 on Γ1,

qθ “ 0 on Γ1,

where

divkw “
1

r
Brprwrq `

ik

r
wθ ` Bzwz,

pcurlkwqr “
ik

r
wz ´ Bzwθ,

pcurlkwqθ “ Bzwr ´ Brwz,

pcurlkwqz “
1

r
pBrprwθq ´ ikwrq.

The boundary conditions in (4.3) are true since p “ 0 on Γ1. Therefore,

q PXpkqpΩq :“ tv P L2
rpΩq : curlk v P L

2
rpΩq and divk v P L

2
rpΩq and vrz¨t “ 0 and vθ “ 0 on Γ1u.

By [12, Theorem 2.10], this space is continuously embedded in H1
pkqpΩq where

H1
p˘1qpΩq “ tw P H

1
r pΩq ˆH

1
r pΩq ˆ H̃

1
r pΩq : wr ˘ iwθ P L

2
1{rpΩqu,

H1
pkqpΩq “ H̃1

r pΩq ˆ H̃
1
r pΩq ˆ H̃

1
r pΩq for |k| ě 2.

For all |k| ě 1, this continuous embedding proves the second result.
�

Next, we consider the following discrete version of (4.1):

(4.4)
pzh,whqr ´ pph, divkrzwhqr “ 0 for all wh P Ch,

pdivkrz zh, shqr “ pf, shqr for all sh P Dh.

Stability and convergence results of (4.4) were proved in [29, Theorem 4.1]. We prove a
more concrete error estimate here.

Theorem 4.2. Suppose pz, pq PHrpdivk,Ωq ˆ L2
rpΩq solve (4.1) and pzh, phq P Ch ˆDh

solve p4.4q. If f P Dh, we have the following error estimates for all |k| ě 1:

}z ´ zh}L2
rpΩq

ď Ch}f}L2
rpΩq

,

}ΠS
hp´ ph}L2

rpΩq
ď Ch2

}f}L2
rpΩq

,

where ΠS
h : L2

rpΩq Ñ Dh denotes the L2
r-orthogonal projection onto Dh.

Proof. Throughout this proof, we assume that f P Dh. Let wh “ zh´Πd,k
h z. Then, since

divkrz z “ f P Dh,

(4.5) divkrz z “ divkrz zh,
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and so

(4.6)

divkrzwh “ divkrzpzh ´ Πd,k
h zq,

“ divkrz zh ´ Πo,k
h divkrz z by Theorem 2.1 item (1),

“ 0 by (4.5).

We also have that

(4.7)
pz ´ zh,vhqr ´ pp´ ph, divkrz vhqr “ 0 for all vh P Ch,

pdivrz z ´ divkrz zh, shqr “ 0 for all sh P Dh

Therefore, by (4.6) and (4.7), it follows that

pz ´ zh,whq “ 0,

pz ´ zh, z ´ Πd,k
h zqr “ pz ´ zh, z ´ zhqr.

Therefore,

}z ´ zh}L2
rpΩq

ď }z ´ Πd,k
h z}L2

rpΩq
.

This together with Theorem 3.1 and Theorem 4.1 completes the proof of the first estimate
of the Theorem.

To prove the second estimate of the Theorem, we first let pεz, εpq and pεz,h, εp,hq be the
solution to (4.1) and (4.4) respectively with f replaced with ΠS

hp´ ph P Dh. Then,

}ΠS
hp´ ph}

2
L2
rpΩq

“ pdivkrz εz,h,Π
S
hp´ phqr by definition of εz,h,

“ pdivkrz εz,h, p´ phqr,

“ pz ´ zh, εz,hqr by (4.7),

“ pz ´ zh, εz,h ´ εzqr by (4.5).

Therefore,

}ΠS
hp´ ph}

2
L2
rpΩq

ď }z ´ zh}L2
rpΩq
}εz ´ εz,h}L2

rpΩq
ď Ch2

}f}L2
rpΩq
}ΠS

hp´ ph}L2
rpΩq

,

where in the last inequality, we are using the first estimate of the Theorem twice. This
completes the proof of the second estimate of the Theorem. �

5. The Multigrid Algorithm

We consider a sequence of nested triangular meshes T “ tT1,T2, ¨ ¨ ¨,TLu for the
multigrid algorithm. In particular, T1 is the coarsest level mesh, and Tl is obtained by
connecting the midpoints of all edges in Tl´1 for l “ 2, 3, ¨ ¨ ¨, L. Throughout this paper,
we assume that T satisfy this property. Let C l denote the discrete space Ch on the l-th
level mesh. Define Λl : C l Ñ C l in the following way:

pΛk
l vl,wlq “ Λk

pvl,wlq for all vl,wl P C l.

Since we are assuming that |k| ě 1 is fixed, we write Λl instead of Λk
l for simplicity of

notation as we are doing for Λk. In order to approximate the solution u P Hrpdivk,Ωq
that satisfies

Λpu,vq “ pf ,vqr for all v PHrpdivk,Ωq,
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the multigrid algorithm presented here will solve

ΛLuL “ fL

on the finest level mesh by using the sequence of meshes T . The right-hand-side function
fL denotes the usual representation of the data function. Multigrid will use the sequence
of meshes T to provide a solution in CL.

For the multiplicative subspace correction method, we will use the following subspace
decomposition of C l as in [2]:

(5.1) C l “
ÿ

νPVl

Cν
l ,

where Vl denotes the set of mesh vertices in the l-th level mesh, Dν denotes the vertex
patch of ν P Vl (the union of all triangles that have ν as a vertex), and

Cν
l “ twl P C l : supppwlq Ă Dνu.

We will use the decomposition (5.1) to construct additive and multiplicative subspace
correction methods. We will present here the block Gauss-Seidel type multiplicative
smoothing iteration ui`1 “ gspui,fq. Let C l,j for j “ 1, 2, ¨ ¨ ¨, Nl be the enumeration
of subspaces appearing in the subspace decomposition (5.1) where Nl is the number of
vertices in Tl. Then, define Λl,j : C l,j Ñ C l,j as

pΛl,jv,wq “ Λpv,wq for all v,w P C l,j,

and Ql,j as the L2
r-orthogonal projection onto C l,j. Similarly, we will use Ql to denote

the L2
r-orthogonal projection onto C l.

Algorithm 5.1. (multiplicative smoothing) Given ui P C l, ui`1 “ gspui,fq in C l is
computed in the following way:

(1) Set u
p0q
i “ ui.

(2) For j “ 1, 2, ¨ ¨ ¨, Nl, compute

u
pjq
i “ u

pj´1q
i ` Λ´1

l,j Ql,jpf ´ Λlu
pj´1q
i q.

(3) Set ui`1 “ u
pNlq
i .

Standard arguments show that ui`1 “ gspui,fq can be rewritten as

ui`1 “ ui `Rlpf ´ Λluiq,

where
Rl “ pI ´ pI ´ Pl,NlqpI ´ Pl,Nl´1q ¨ ¨ ¨ pI ´ Pl,1qqΛ

´1
l ,

where Pl,j denotes the orthogonal projection onto C l,j with respect to the Λp¨, ¨q-inner
product. Now we are ready to state the multigrid algorithm.

Algorithm 5.2. (Multigrid V-cycle) Given u and f in C l, define the output mglpu,fq in
C l by the following recursive procedure:

(1) Set mg1pu,fq “ Λ´1
1 f .

(2) For l ą 1, define mglpu,fq recursively:
(a) (pre-smoothing) vp1q “ u`Rlpf ´ Λluq.
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(b) (coarse grid correction) vp2q “ vp1q `mgl´1p0, Ql´1pf ´ Λlv
p1qqq.

(c) (post-smoothing) vp3q “ vp2q `Rt
lpf ´ Λlv

p2qq.
(d) mglpu,fq “ v

p3q.

The V-cycle iterates xi`1 “ mglpxi,fq, approximating x “ Λ´1
l f , are connected

through a linear error reduction operator El, i.e.,

(5.2) xi`1 ´ x “ Elpxi ´ xq.

(See [8] for details.) The following theorem is the main result of this paper.

Theorem 5.1. Assume that Ω̆ Ă R3 is convex. Then, for any fixed integer |k| ě 1, there
exists 0 ă δ ă 1 independent of the meshsize and refinement level that satisfies

0 ď ΛpElu,uq ď δΛpu,uq for all u P C l and all l ě 1.

This theorem together with (5.2) implies that the multigrid V-cycle will converge to
the exact solution and that the convergence rate is independent of the meshsize h. The
proof of Theorem 5.1 is given at the end of the next section after the necessary tools are
developed.

Remark 5.1. We note here that the constant δ in Theorem 5.1 depends on the Fourier-
mode k. This is demonstrated through a numerical example in section 7.

6. Multigrid Analysis

This section is devoted to proving Theorem 5.1. Following the standard abstract frame-
work for multigrid analysis [2, 7, 8, 9], we will verify the two conditions stated in the
following lemma. We closely follow the steps introduced in [2] to accomplish this task.
All results proved in this section holds true for any fixed integer |k| ě 1, and Pl denote
the orthogonal projection onto C l with respect to the Λp¨, ¨q-inner product.

Lemma 6.1. Theorem 5.1 follows from the two conditions below:

(1) Existence of a stable decomposition: There exists a constant C1 ą 0 independent
of the meshsizes and l, such that for all v in pI´Pl´1qC l, there is a decomposition

v “
Nl
ÿ

j“1

vj with vj P C l,j,

satisfying
Nl
ÿ

j“1

Λpvj,vjq ď C1Λpv,vq.

(2) Limited interaction: There exists a constant C2 ą 0, independent of l, such that

Nl
ÿ

j“1

Nl
ÿ

m“1

|Λpvj,wmq| ď C2

˜

Nl
ÿ

j“1

Λpvj,vjq

¸
1
2
˜

Nl
ÿ

m“1

Λpwm,wmq

¸
1
2

for all vj P C l,j, wm P C l,m, and l ě 1.
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The two conditions in Lemma 6.1 are proved at the end of this section.
It was shown in [30] that the following family of Fourier finite element spaces form an

exact sequence:

(6.1) 0 Ñ Ah Ñ Bh Ñ Ch Ñ Dh Ñ 0.

Let gradkh : Dh Ñ Ch denote the L2
r-adjoint of the map of ´ divkrz : Ch Ñ Dh, i.e.,

p´ divrz vh, shqr “ pvh,grad
k
h shqr for all vh P Ch and sh P Dh.

Then, due to the exactness of (6.1), we have the following discrete Helmholtz decomposi-
tion [30] and [29, page 10]:

(6.2) Ch “ curlkrzBh ` gradkhDh.

When discussing two consecutive level meshes and the corresponding finite element
spaces C l´1 and C l, for example, we will use H to denote the meshsize on C l´1 and h
to denote the meshsize on C l. Since we obtain the next level mesh by connecting the
midpoints of all edges in the previous level mesh, we have that H “ 2h. CH and Ch will
often be used in place of C l´1 and C l respectively. DH and Dh are connected in a similar
way. Recall that ΠS

h is the L2
r-orthogonal projection on to Dh, and similarly ΠS

H is the
L2
r-orthogonal projection on to DH . With this notation, we have the following lemma.

Lemma 6.2. For all ph P Dh, we have

}ph ´ ΠS
Hph}L2

rpΩq
ď CH}gradkh ph}L2

rpΩq

Proof. Given ph P Dh, define z PHrpdivk,Ωq and p P L2
rpΩq as the solution of (4.1) with

f “ ´ divkrz grad
k
h ph P Dh. Then, zh “ ´gradkh ph P Ch and ph P Dh will be the solution

of (4.4) with the same f . By triangle inequality, we have

(6.3) }ph ´ ΠS
Hph}L2

rpΩq
ď }ph ´ p}L2

rpΩq
` }p´ ΠS

Hp}L2
rpΩq

` }ΠS
Hp´ ΠS

Hph}L2
rpΩq

.

Let us first prove that

(6.4) }p´ ΠS
Hp}L2

rpΩq
ď CH}gradkh ph}L2

rpΩq
.

It is known in the literature [4, Lemma 5] that

(6.5) }p´ ΠS
Hp}L2

rpΩq
ď CH|p|H1

r pΩq
.

By definition of gradk˚rz , it is clear that

(6.6) |p|H1
r pΩq

ď }gradk˚rz p}L2
rpΩq

.

Furthermore, we have

}gradk˚rz p}
2
L2
rpΩq

“ pgradk˚rz p,´zqr,

“ pp, divkrz zqr,

“ pp, divkrz zhqr since f P Dh,

“ pgradk˚rz p,´zhqr,

“ pgradk˚rz p,grad
k
h phqr.
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Therefore,

(6.7) }gradk˚rz p}L2
rpΩq

ď }gradkh ph}L2
rpΩq

,

and thus (6.4) is proved by (6.5)–(6.7).
To bound the first term appearing on the right hand side of (6.3), we will next show

that

(6.8) }ph ´ p}L2
rpΩq

ď Ch}gradkh ph}L2
rpΩq

.

Since orthogonal projections have unit norm, (6.8) will also prove that

(6.9) }ΠS
Hp´ ΠS

Hph}L2
rpΩq

ď Ch}gradkh ph}L2
rpΩq

.

First of all, by Theorem 4.2, we have that

(6.10) }ph ´ ΠS
hp}L2

rpΩq
ď Ch2

} divkrz grad
k
h ph}L2

rpΩq
ď Ch}gradkh ph}L2

rpΩq
.

The second inequality above follows from known inverse inequalities in weighted spaces
[17, Proposition 2.1] and [29, Proposition 5.1]. Therefore, by (6.10) and (6.4), we have

}ph ´ p}L2
rpΩq

ď }ph ´ ΠS
hp}L2

rpΩq
` }ΠS

hp´ p}L2
rpΩq

ď Ch}gradkh ph}L2
rpΩq

.

Since H ď Ch, the proof is complete by (6.3), (6.4), (6.8), and (6.9). �

Let PH : Ch Ñ CH denote the Λ-orthogonal projection. The following lemma is crucial
in proving the uniform convergence of the multigrid algorithm.

Lemma 6.3. Let wh P Ch. Let

wh ´ PHwh “ curlkrzbh ` gradkh dh

be the discrete Helmholtz decomposition of wh ´ PHwh with bh P Bh and dh P Dh. Then

}bh}L2
rpΩq

ď CH}wh ´ PHwh}L2
rpΩq

,

}gradkh dh}L2
rpΩq

ď CH}wh ´ PHwh}Λ.

Proof. Define zh P Ch to be the solution to

Λpzh, qhq “ pgrad
k
h dh, qhqr for all qh P Ch.

It follows that

(6.11) pzh, curlkrzvhqL2
rpΩq

“ Λpzh, curlkrzvhq “ 0 for all vh P Bh,

so zh “ ´gradkh ph for some ph P Dh by (6.2). Then

pzh, phq P Ch ˆDh is the solution of (4.4) with f “ divkrz zh P Dh.

Now, let

pz, pq P Hrpdivk,Ωq ˆ L2
rpΩq be the solution of (4.1) with f “ divkrz zh P Dh,

and

pzH , pHq P CH ˆDH be the solution of (4.4) with f “ divkrz zh P Dh.
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Note that

(6.12) divkrz z “ divkrz zh,

and

(6.13) divkrz zH “ ΠS
H divkrz zh.

We further define

pz̃, p̃q P Hrpdivk,Ωq ˆ L2
rpΩq to be the solution of (4.1) with f “ divkrz zH P DH .

In this case, since f P DH ,

(6.14) divkrz z̃ “ divkrz zH .

Then,

(6.15)

}gradkh dh}
2
L2
rpΩq

“ Λpzh,grad
k
h dhq,

“ Λpzh,wh ´ PHwhq by (6.11),

“ Λpzh ´ zH ,wh ´ PHwhq,

ď }zh ´ zH}Λ}wh ´ PHwh}Λ.

The second inequality of the lemma is proved once we show that

}zh ´ zH}Λ ď CH}gradkh dh}L2
rpΩq

.

To do this, let us first consider }z ´ z̃}L2
rpΩq

:

}z ´ z̃}2L2
rpΩq

“ pz ´ z̃, z ´ z̃qr,

“ ´pgradk˚rz p´ gradk˚rz p̃, z ´ z̃qr,

“ pp´ p̃, divkrz z ´ divkrz z̃q,

“ pp´ p̃, divkrz zh ´ divkrz zHq by (6.12) and (6.14),

“ pp´ p̃, divkrz zh ´ ΠS
H divkrz zhq by (6.13),

“ ppp´ p̃q ´ ΠS
Hpp´ p̃q, divkrz zh ´ ΠS

H divkrz zhq,

ď CH|p´ p̃|H1
r pΩq
} divkrz zh ´ ΠS

H divkrz zh}L2
rpΩq

,

ď CH|p´ p̃|H1
r pΩq
} divkrz zh}L2

rpΩq
,

ď CH}z ´ z̃}L2
rpΩq
} divkrz zh}L2

rpΩq
since z ´ z̃ “ ´gradk˚rz pp´ p̃q.

Therefore, we have

(6.16) }z ´ z̃}L2
rpΩq

ď CH} divkrz zh}L2
rpΩq

,
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and so we have
(6.17)
}zh ´ zH}L2

rpΩq
ď }zh ´ z}L2

rpΩq
` }z ´ z̃}L2

rpΩq
` }z̃ ´ zH}L2

rpΩq
,

ď Ch} divkrz zh}L2
rpΩq

` CH} divkrz zh}L2
rpΩq

` CH} divkrz zH}L2
rpΩq

by Theorem 4.2 and (6.16),

ď CH} divkrz zh}L2
rpΩq

by (6.13).

Hence,
(6.18)
}zh ´ zH}

2
Λ “ }zh ´ zH}

2
L2
rpΩq

` } divkrzpzh ´ zHq}
2
L2
rpΩq

,

ď CH2
} divkrz zh}

2
L2
rpΩq

` } divkrz zh ´ ΠS
H divkrz zh}

2
L2
rpΩq

by (6.17) and (6.13),

ď CH2
p} divkrz zh}

2
L2
rpΩq

` }gradkh divkrz zh}
2
L2
rpΩq
q by Lemma 6.2,

ď CH2
}gradkh dh}

2
L2
rpΩq

.

The last inequality above holds, since

} divkrz zh}
2
L2
rpΩq

` }gradkh divkrz zh}
2
L2
rpΩq

ď }Λhzh}
2
L2
rpΩq

ď }gradkh dh}
2
L2
rpΩq

.

Note that the first inequality above is true, since

}Λhzh}
2
L2
rpΩq

“ }zh}
2
L2
rpΩq

` 2} divkrz zh}
2
L2
rpΩq

` }gradkh divkrz zh}
2
L2
rpΩq

.

We then reach the second inequality of the Lemma by (6.18) and (6.15).
Now let us prove the first inequality of the Lemma. To do so, let F “ curlkrz bh and

consider the following boundary value problem:

(6.19)

b “ curlk˚rz r,

curlkrz b “ F ,

divkrz r “ 0,

rrz ¨ t “ 0 and rθ “ 0 on Γ1.

This is a subproblem of one of the weighted Hodge Laplacian problems studied in [29].
Such subproblems were called Bk problems in [3].

By the definition of b and bh and Theorem 2.1 item (1), we have

pb´ bh, bh ´ Πc,k
h bqr “ 0.

This implies that

pb´ bh, b´ bhqr “ pb´ bh, b´ Πc,k
h bqr,

and so
(6.20)

}b´ bh}L2
rpΩq

ď }b´ Πc,k
h b}L2

rpΩq
,

ď Chp|bθ|H1
r pΩq

` }kbz}H̃1
r pΩq

` }kbr ` bθ}H̃1
r pΩq
q by Theorem 3.2,

ď Ch} curlkrz b}L2
rpΩq

“ Ch} curlkrz bh}L2
rpΩq

.
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The last inequality above follows from the continuous embedding result in [12, Theorem
2.10]. Next, notice that

(6.21) pcurlkrz bh, curl
k
rz vHqr “ Λpwh ´ PHwh, curl

k
rz vHq “ 0 for all vH P BH .

Then, since r P nullpdivkrzq “ rangepcurlkrzq and Πd,k
H satisfies the commuting diagram

property, we have
(6.22)
}b}2L2

rpΩq
“ pb, curlk˚rz rqr,

“ pcurlkrz b, rqr,

“ pcurlkrz bh, rqr,

“ pcurlkrz bh, r ´ Πd,k
H rqr by (6.21),

ď } curlkrz bh}L2
rpΩq
}r ´ Πd,k

H r}L2
rpΩq

,

ď CH} curlkrz bh}L2
rpΩq
p|rrz|

2
H1
r pΩq

` }krθ ´ rr}H̃1
r pΩq
q by Theorem 3.1,

ď CH} curlkrz bh}L2
rpΩq
} curlk˚rz r}L2

rpΩq
by [12, Theorem 2.10],

Since b “ curlk˚rz r, (6.22) implies that

(6.23) }b}L2
rpΩq

ď CH} curlkrz bh}L2
rpΩq

.

Therefore, by the triangle inequality, (6.20), and (6.23), we conclude that

(6.24) }bh}L2
rpΩq

ď CH} curlkrz bh}L2
rpΩq

ď CH}wh ´ PHwh}L2
rpΩq

,

and this completes the proof. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1.

The proof will be complete once we verify the two conditions stated in Lemma 6.1. The
proof of the limited interaction is standard [2, 9], so we will only prove the existence of
a stable decomposition. In other words, we will show that the subspace decomposition
(5.1) is stable in the sense that if vl P pI ´ Pl´1qC l and

vl “
Nl
ÿ

j“1

vl,j where vl,j P C l,j

is the decomposition (5.1), then

Nl
ÿ

j“1

Λpvl,j,vl,jq ď C1Λpvl,vlq.

Consider the following Helmholtz decomposition:

(6.25) vl “ curlkrz bl ` cl.
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Then, by (5.1),

cl “
Nl
ÿ

j“1

cl,j for cl,j P C l,j,

and by considering a decomposition like (5.1) for Bl, we also have

bl “
Nl
ÿ

j“1

bl,j for bl,j P Bl,j.

Then, vl,j “ curlkrz bl,j ` cl,j, and

Nl
ÿ

j“1

}vl,j}
2
Λ “

Nl
ÿ

j“1

} curlkrz bl,j ` cl,j}
2
Λ,

“

Nl
ÿ

j“1

} curlkrz bl,j}
2
L2
rpΩq

` }cl,j}
2
L2
rpΩq

` } divkrz cl,j}
2
L2
rpΩq

,

ď C
Nl
ÿ

j“1

h´2
}bl,j}

2
L2
rpΩq

` p1` h´2
q}cl,j}

2
L2
rpΩq

,

ď Ch´2
p}bl}

2
L2
rpΩq

` }cl}
2
L2
rpΩq
q,

ď Ch´2
pCH2

}vl}L2
rpΩq

` CH2
}vl}Λq by Lemma 6.3,

ď C}vl}Λ.

Note that we are using h to represent the meshsize of mesh level l and H to represent
that of mesh level l ´ 1. This completes the proof of Theorem 5.1.

7. Numerical Results

In this section, we will report numerical results that support the theory presented in
this paper. In particular, we present convergence rates for the mixed problem (4.4) and
the convergence rates for the multigrid V-cycle when applied to (2.3). Uniform meshes
are used for all examples.

The computer implementation of (4.4) is done in the usual way. In Table 7.1, we report
the L2

rpΩq-norm of the observed errors when k “ 1. In Table 7.2, we do the same for
k “ 2. In both cases, we use the square domain Ω “ r0, 1s2 and choose the right hand
side data function f so that the exact solution pz, pq PHrpdivk,Ωq ˆHrpgrad

k,Ωq is

p “ sinpπzq cosp0.5πrqr2,

z “

»

–

´2r cosp0.5πrq sinpπzq ` 0.5r2π sinp0.5πrq sinpπzq
´kr sinpπzq cosp0.5πrq
´r2π cosp0.5πrq cospπzq

fi

fl .

These results are consistent with Theorem 4.2. As for }p´ ph}L2
rpΩq

, we note that

}p´ ph}L2
rpΩq

ď
›

›p´ ΠS
hp
›

›

L2
rpΩq

`
›

›ΠS
hp´ ph

›

›

L2
rpΩq
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Table 7.1. Mixed Problem Convergence Rates for Fourier-mode k “ 1

MeshLevel }z ´ zh}L2
rpΩq

rate }p´ ph}L2
rpΩq

rate
›

›ΠS
hp´ ph

›

›

L2
rpΩq

rate

1 2.6827e-01 4.7997e-02 1.5531e-02
2 2.3739e-01 0.18 4.0432e-02 0.25 1.5324e-02 0.02
3 1.4887e-01 0.67 2.4285e-02 0.74 5.8420e-03 1.39
4 7.9202e-02 0.91 1.2563e-02 0.95 1.6590e-03 1.82
5 4.0238e-02 0.98 6.3259e-03 0.99 4.2928e-04 1.95
6 2.0200e-02 0.99 3.1682e-03 1.00 1.0827e-04 1.99
7 1.0110e-02 1.00 1.5847e-03 1.00 2.7126e-05 2.00
8 5.0564e-03 1.00 7.9244e-04 1.00 6.7853e-06 2.00

Table 7.2. Mixed Problem Convergence Rates for Fourier-mode k “ 2

MeshLevel }z ´ zh}L2
rpΩq

rate }p´ ph}L2
rpΩq

rate
›

›ΠS
hp´ ph

›

›

L2
rpΩq

rate

1 2.7520e-01 4.6388e-02 9.4515e-03
2 2.4466e-01 0.17 3.9077e-02 0.25 1.1274e-02 -0.25
3 1.5192e-01 0.69 2.4055e-02 0.70 4.7994e-03 1.23
4 8.0665e-02 0.91 1.2533e-02 0.94 1.4118e-03 1.77
5 4.0967e-02 0.98 6.3221e-03 0.99 3.6878e-04 1.94
6 2.0565e-02 0.99 3.1677e-03 1.00 9.3232e-05 1.98
7 1.0293e-02 1.00 1.5847e-03 1.00 2.3373e-05 2.00
8 5.1476e-03 1.00 7.9244e-04 1.00 5.8474e-06 2.00

and that the first term on the right-hand-side which is of Ophq dominates even though
the second term is of Oph2q.

Next we verify the uniform convergence rate for the multigrid V-cycle algorithm applied
to (2.3). We consider two different domains here: the unit square Ω1 “ r0, 1s

2 and the L-
shape domain Ω2 “ r0, 1s

2zr0.5, 1s2. For this example, we choose f “ 0. The initial value
x0 was chosen randomly, and the stopping criteria was given by }xn}Λ{}x0}Λ ă 10´7,
where xn denotes the n-th iteration of the multigrid V-cycle. The order of convergence
was computed by taking the average of }xn}Λ{}xn´1}Λ. The prolongation matrix and the
restriction matrix are implemented in the usual way. Tables 7.3 and 7.4 report convergence
rates for Ω1 and Ω2 respectively for various Fourier-modes denoted by k. It is clear that
the convergence rate is bounded uniformly as proved in Theorem 5.1 for convex domains.
This is noticeable even for the L-shape domain Ω2 suggesting that the theory can be
extended to non-convex domains.

Before we end this section, we show how the V-cycle convergence rates are affected by
the Fourier-mode k. In Figure 1, we report the V-cycle convergence rates for k-values
starting from k “ 100 in increments of 100 on mesh level 9. While such large k-values are
unused in practice for Fourier-FEMs, we report these results to clearly demonstrate that
the V-cycle convergence rates depend on k.
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Table 7.3. Multigrid V-cycle Convergence Rates for Square Domain Ω1

MeshLevel k “ 1 k “ 2 k “ ´1 k “ ´2
2 0.12 0.06 0.11 0.07
3 0.13 0.12 0.13 0.09
4 0.23 0.19 0.25 0.19
5 0.24 0.23 0.27 0.22
6 0.25 0.24 0.27 0.22
7 0.25 0.23 0.27 0.21
8 0.24 0.21 0.26 0.18
9 0.24 0.21 0.26 0.18

Table 7.4. Multigrid V-cycle Convergence Rates for L-Shape Domain Ω2

MeshLevel k “ 1 k “ 2 k “ ´1 k “ ´2
2 0.13 0.16 0.16 0.16
3 0.19 0.13 0.19 0.13
4 0.25 0.24 0.25 0.25
5 0.27 0.25 0.28 0.25
6 0.29 0.26 0.29 0.26
7 0.30 0.26 0.30 0.26
8 0.31 0.27 0.32 0.26
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Figure 1. Multigrid V-cycle Convergence Rates for various Fourier modes
on Square Domain Ω1

8. Concluding Remarks

We have provided a multigrid algorithm that can be applied to axisymmetric Hpdivq-
problems with general data by using a recently developed Fourier finite element space for
Fourier modes |k| ě 1. Under the assumption that the axisymmetric domain is convex, we
proved that the multigrid V-cycle will converge uniformly with respect to the meshsize.
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Multigrid analysis for axisymmetric Hpdivq-problems for Fourier mode k “ 0 along with
axisymmetric Hpcurlq-problems with non-axisymmetric data remain as future work.

9. Appendix: Proof of Theorem 3.2

We prove the theorem by showing that

inf
vhPBh

}v ´ vh}L2
rpΩq

ď Chp|vθ|H1
r pΩq

` }kvz}H̃1
r pΩq

` }kvr ` vθ}H̃1
r pΩq
q.

To do so, we first recall the weighted Clement operator Π̄h constructed in [4, section 4.3].
For each vertex aj in Th, associate an arbitrary triangle Kj that contains aj, and let

P1 “ tar ` bz ` c : a, b, c P Ru.
Then define Π̄j : L2

rpKjq Ñ P1pKjq to be the L2
r-orthogonal projection. The weighted

Clément operator Π̄h : L2
rpΩq Ñ Vh :“ tv P H1

r pΩq : v|K P P1 for all K P Thu is defined as

(9.1) Π̄hu “
Na
ÿ

j“1

rpΠ̄jpuqqpajqsφj

where Na is the number of vertices in Th and φj denotes the lowest order Lagrangian
finite element basis function associated with aj. The following error estimate follows from
[4, Theorem 1]:

(9.2) }u´ Π̄hu}L2
rpKq

ď ChK |u|H1
r p∆̄Kq

,

where ∆̄K denotes the union of all triangles that shares at least a common vertex with
K. We will write σa to denote the local degrees of freedom associated with (9.1).

Next, let
Hrpcurl,Ωq “ tpvr, vzq P L

2
rpΩq : Bzvr ´ Brvz P L

2
rpΩqu,

and recall the lowest order Nédélec space:

Nh “ tv PHrpcurl,Ωq : v|K P ND1pKq for all K P Thu,

where
ND1 “ tpb´ az, c` arq : a, b, c P Ru.

We now construct a weighted Clément type operator Πh : rL2
r3pΩqs

2 ÑNh that satisfies

}ṽ ´ Πhṽ}L2
r3
pΩq ď Ch|ṽ|H1

r3
pΩq.

We will modify the construction of the basic Clement operator in [4, section 4.3]. For
each edge ei in Th, associate an arbitrary triangle Ki that contains ei. Then define
Πi : L2

r3pKiq Ñ ND1pKiq as the L2
r3-orthogonal projection, i.e.,

pΠiṽ, qqr3 “ pṽ, qqr3 for all q P ND1pKiq.

The weighted Clément type operator Πh : L2
r3pΩq ÑNh is defined as

(9.3) Πhṽ “
Ne
ÿ

i“1

r

ż

ei

Πiṽ ¨ tdssψei

where Ne denotes the number of edges in Th, and ψei
is the usual Nédélec basis associated

with the edge ei. We will use σe to denote the local degrees of freedom corresponding to
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p9.3q, and ∆K to denote the union of all triangles that share an edge with triangle K in
Th. We show that Πh satisfies the following lemma.

Lemma 9.1. For all K P Th and ṽ P rH1
r3p∆Kqs

2, we have

}ṽ ´ Πhṽ}L2
r3
pKq ď Ch|ṽ|H1

r3
p∆Kq

.

Proof. First of all, we note the following results that follows by direct calculation for any
triangle K:

(9.4) }ψe}
2
L2
r3
pKq ď Cr3

K

where rK “ maxxPKrpxq.
Fix a triangle K in Th and let e1, e2, and e3 denote its three edges. Then

(9.5) Πhṽ|K “
3
ÿ

i“1

p

ż

ei

Πiṽ ¨ tdsqψei
.

For each i, we have

(9.6) }p

ż

ei

Πiṽ ¨ tdsqψei
}L2

r3
pKq ď ChKi}Πiṽ}L8pKiq}ψei

}L2
r3
pKq.

If Ki is a triangle that does not intersect Γ0, then we can use
rmaxpKq

rminpKiq
ď C, (9.4), and a

standard inverse inequality to obtain

(9.7) }p

ż

ei

Πiṽ ¨ tdsqψei
}L2

r3
pKq ď C}ṽ}L2

r3
pKiq.

If Ki is a triangle that intersects Γ0, then rK ď ChK so (9.4) becomes

}ψe}
2
L2
r3
pKq ď Ch3

K ,

and

}Πiṽ}L8pKiq ď Ch
´5{2
Ki

}Πiṽ}L2
r3
pKiq

by a standard scaling argument, so (9.7) continues to hold. Therefore, by (9.5) and (9.7),
we have

(9.8) }Πhṽ}L2
r3
pKq ď C}ṽ}L2

r3
p∆Kq

.

Since (3.4) still holds when ∆e is replaced by ∆K , we have

(9.9) inf
qPP0p∆Kq

}v ´ q}L2
r3
p∆Kq

ď Ch|v|H1
r3
p∆Kq

,

where in (9.9), we are using h to denote the diameter of ∆K .
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Now, let q P P0p∆Kq
2. Then, for all edges ei of K, Πiq is equal to q, so the restriction

of Πhq onto K is also equal to q. Therefore,

}ṽ ´ Πhṽ}L2
r3
pKq “ }ṽ ´ Πhṽ ` Πhq ´ q}L2

r3
pKq,

ď }ṽ ´ q}L2
r3
pKq ` }Πhpṽ ´ qq}L2

r3
pKq,

ď C}ṽ ´ q}L2
r3
p∆Kq

by (9.8),

ď Ch|ṽ|H1
r3
p∆Kq

by (9.9).

This completes the proof of the Lemma. �

Let us now show that

inf
vhPBh

}v ´ vh}L2
rpΩq

ď Chp|vθ|H1
r pΩq

` }kvz}H̃1
r pΩq

` }kvr ` vθ}H̃1
r pΩq
q.

Given u, define Π̃c,k
h u P Bh locally in the following way:

Π̃c,k
h u|K “

3
ÿ

i“1

σaipuθq

¨

˚

˝

´
1

k
φi

φi
0

˛

‹

‚

`

3
ÿ

i“1

σeip

ˆ

kur`uθ
r
kuz
r

˙

q

¨

˚

˚

˝

r

k
ψri

0
r

k
ψzi

˛

‹

‹

‚

.

We used ψi “ pψ
r
i , ψ

z
i q
T to denote ψei

for simplicity. The interpolation operators used in

[30] are different from Π̃c,k
h in two ways: in [30], the standard nodal interpolation operator

was used for uθ instead of (9.1), and the standard lowest order Nédélec interpolation
operator was used for pkur`uθ

r
, kuz

r
qT instead of (9.3).

We will show that Π̃c,k
h satisfies the following error estimate:

›

›

›
v ´ Π̃c,k

h v
›

›

›

L2
rpΩq

ď Chp|vθ|H1
r pΩq

` }kvz}H̃1
r pΩq

` }kvr ` vθ}H̃1
r pΩq
q.
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This is true, since
›

›

›
v ´ Π̃c,k

h v
›

›

›

2

L2
rpKq

“

›

›

›

›

›

vθ ´
3
ÿ

i“1

σaipvθqφi

›

›

›

›

›

2

L2
rpKq

`

›

›

›

›

›

vz ´
3
ÿ

i“1

σeip

ˆ

kvr`vθ
r
kvz
r

˙

q
r

k
ψzi

›

›

›

›

›

2

L2
rpKq

`

›

›

›

›

›

vr `
3
ÿ

i“1

σaipvθq
1

k
φi ´

3
ÿ

i“1

σeip

ˆ

kvr`uθ
r
kvz
r

˙

q
r

k
ψri

›

›

›

›

›

2

L2
rpKq

,

ď Ch2
|vθ|

2
H1
r p∆̄Kq

`

›

›

›

›

›

r

k
p
kvz
r
´

3
ÿ

i“1

σeip

ˆ

kvr`vθ
r
kvz
r

˙

qψzi q

›

›

›

›

›

2

L2
rpKq

`

›

›

›

›

›

1

k
p´vθ `

3
ÿ

i“1

σaipvθqφiq `
r

k
p
kvr ` vθ

r
´

3
ÿ

i“1

σeip

ˆ

kvr`vθ
r
kvz
r

˙

qψri q

›

›

›

›

›

2

L2
rpKq

by (9.2),

“ Cph2
|vθ|

2
H1
r p∆̄Kq

`

›

›

›

›

›

kvz
r
´

3
ÿ

i“1

σeip

ˆ

kvr`vθ
r
kvz
r

˙

qψzi

›

›

›

›

›

2

L2
r3
pKq

`

›

›

›

›

›

kvr ` vθ
r

´

3
ÿ

i“1

σeip

ˆ

kvr`vθ
r
kvz
r

˙

qψri

›

›

›

›

›

2

L2
r3
pKq

q,

ď Ch2
p|vθ|

2
H1
r p∆̄Kq

` |
kvz
r
|
2
H1
r3
p∆Kq

` |
kvr ` vθ

r
|
2
H1
r3
p∆Kq

q by Lemma 9.1,

ď Ch2
p|vθ|

2
H1
r p∆̄Kq

` }kvz}
2
H̃1
r p∆Kq

` }kvr ` vθ}
2
H̃1
r p∆Kq

q.

This completes the proof of the theorem.
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