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ABSTRACT: Artificial photosynthesis could promise abun-
dant, carbon-neutral energy, but implementation is currently
limited by a lack of control over the multi-electron catalysis of
water oxidation. Discoveries of the most active catalysts still
rely heavily on serendipity. [Ru(tpy)(bpy)(H,0)]** (1; bpy =
2,2'-bipyridine, tpy = 2,2';6,2"-terpyridine) is representative
of the largest known class of water oxidation catalysts. We
undertook an extensive spectroscopic analysis of the
prototypical 1 water oxidation catalyst and its fastest known
analog [Ru(EtO-tpy)(bpy)(H,0)]** (2), capable of 10 times
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faster water oxidation, to investigate the mechanism of action and factors controlling catalytic activity. EPR and resonance
Raman spectroscopy did not detect the proposed [Ru'=0] intermediate in 1 and 2 but indicated the possible formation of N-
oxides. A lag phase was observed prior to O, evolution, suggesting catalyst modification before the onset of catalysis. The
reactive intermediate [Ru(tpy)(bpy-NO)(H,0)]** (1-NO; bpy-NO = 2,2"-bipyridine-N-oxide) proposed by combined
spectroscopic and DFT analysis was de novo synthesized and demonstrated 100-fold greater catalytic activity than 1. Thus, in
situ transient formation of small amounts of the Ru complex with N-oxide ligands can significantly activate single-site Ru-based
catalysts. Furthermore, the rate of O, evolution was found to correlate with the redox potential of the ligand. This observation

might assist with rational design of new catalysts.

B INTRODUCTION

The growing amount of greenhouse gases, especially CO,, in
the atmosphere has been connected with climate change and
higher incidence of severe weather events. A significant
increase in the generation of renewable, CO,-neutral energy
is required to satisfy growing energy demands worldwide.' The
creation of a man-made device mimicking the light-induced
water splitting which occurs during natural photosynthesis*
would enable solar energy-to-fuel conversion schemes.”” "
Intermittent electricity from solar and wind can potentially be
converted into fuels via water splitting, but such processes are
currently expensive. Development of artificial photosynthesis
as well as the optimization of modern electrolyzers hinges on
the understanding water oxidation mechanisms in both the
natural oxygen-evolving complex of Photosystem II°~'"'*
and man-made catalysts.""*

O—-0O bond formation can proceed via two main
mechanisms: water nucleophilic attack (WNA) and radical
coupling (RC).

WNA:  [M=O]"" + H,0 — [M—OOH]" V* + H*

RC: 2[M=O0O]"t - [M—0-O0-M]*"*

Both mechanisms require formation of highly oxidized
metal-oxo (M=0) species which are typically achieved from
M-H,0O via proton-coupled electron transfer (PCET).
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Molecular catalysts for water oxidation provide a convenient
system for detailed mechanistic analysis."> While such catalysts
have been reported for multiple metal ions, Ru-based
complexes remain the most stable and the most stud-
ied.”'%'°"'® Mechanistic analysis with spectroscopic identi-
fication of reactive intermediates is available for the first
discovered molecular water oxidation catalyst, blue dimer
(BD),"” where the formation of the [Ru",Ru¥=0] inter-
mediate was confirmed by X-ray spectroscopy and electron
paramagnetic resonance (EPR; Figure 1A).”%*" [Ru!Y,Ru'=
O] is expected to react with water via WNA. However, the
resulting peroxo intermediates have not yet been unambigu-
ously identified.”” [(bpy),Ru’=0,0H]*" was identified by
EPR and can react via both WNA and RC.”>** Its high activity,
however, subsides to quick deactivation via dimer formation.”*

Introduction of the negatively charged bda (H,bda = 2,2’
bipyridine-6,6’-dicarboxylic acid) ligand resulted in a family of
fast Ru'(L),(bda) catalysts (Figure 1B).***° These react
quickly in solution via RC, as evidenced by a rate of O,
evolution that is second order on the catalyst. Immobilization
of the Ru'(L),(bda) complex on the electrode surface allowed
the first spectroscopic characterization of the key 7-coordinate
[Ru'=0(L),(bda)]* intermediate.'® The bda family of
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Figure 1. Activated Ru-based species capable of O—O bond formation and oxygen atom transfer. (A) Formation of the activated [Ru",Ru’=0]
intermediate in the blue dimer is achieved via PCET. (B) The Ru'(L),(bda) class of WOCs forms 7-coordinate Ru¥=0 intermediates via
coordination sphere expansion and PCET. Catalysts with a variety of axial ligands were investigated; two typical axial ligands (L,) are shown. (C)
The 7-coordinate [Ru'=0(L),(dpp)]** intermediate with neutral dpp ligand is stable in solutions on a minute time scale due to ligand protection
of the Ru¥=0 fragment. Activation occurs via oxygen atom transfer with formation of dpp-N-oxides. (D) Overview of ligand modifications in the
[Ru"(bpy) (tpy) (H,0)]** family of catalysts. It has been shown that ethoxy (EtO—) and methoxy (MeO—) substituents increase the rate of O,

evolution.

catalysts currently demonstrate the highest rate of water
oxidation in acidic solutions. However, surface immobilization
significantly lowers the catalytic rate, as it disrupts the RC
pathway. Neutral polypyridine ligands can also support the
formation of a 7-coordinate [Ru’=0(L),(dpp)]** intermedi-
ate under oxidizing conditions (Figure 1C). The increased
lifetime of this species was attributed to the protective effect of
the ligand environment.”’

Despite recent spectroscopic advances, there remains a large
class of Ru complexes with currently unexplained mechanisms
of action. These complexes utilize neutral polypyridine ligands
and single water as a direct ligand to Ru (Figure 1D). In this
study, we focus on the basic catalyst family of [Ru'(bpy)-
(tpy) (H,0)1** (1; tpy = 2,2';6',2"-terpyridine, bpy = 2,2'-
bipyridine), the framework of which was used extensively for
ligand modification to uncover structure—activity relationships
(Figure 1D). The following ligand modifications were
reported: Ry, = —OMe, —COOH;”® R,, = ,
—OH, Ry, = —OMe;” Ry7 = =F Ry = - Rys =
—CH,S0,7;' R, = —OEt, —OMe, —Me, —CL.** Extensive
studies have shown that introduction of the ethoxy (EtO—)
and methoxy (MeO—) substituents on tpy or bpy ligands
increases the rate of O, evolution by as much as a factor of 10.
Other modifications were moderately activating or moderately
deactivating. Faster O, evolution was attributed to the decrease
in redox potential of the [Ru'=O0(bpy)(EtO-tpy)]** for-
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mation.’>** Catalysts of this type are also widely tested for
incorporation in functional assemblies but, so far, with limited
success.” "

Our quest for an alternative mechanism was driven by an
apparent controversy in the field of catalytic water oxidation.
While multiple PCET accessible Ru'=0 (S = 1/2)
intermediates critical for O—O bond formation were detected
(Figure 1A—C),'*?**1***7 [(5N-ligands)Ru'=0]* inter-
mediates”****” and products of its reaction with water have
never been observed (blue path in Figure 2)."”'® Here, catalyst
activation proceeds via PCET to Ru'V=0 steady-state species
characterized in situ by X-ray absorption spectroscopy (XAS)
and resonance Raman (RR) spectroscopy (green box, Figure
2)!9171838 However, Ru"V=0 does not have enough energy
to react with water via WNA or RC. The PCET channel to
form a Ru'=0 state is not available, and direct oxidation
(without PCET) appears to be thermodynamically prohibitive
(see Figure 2, inset).”'® For Ru complexes with neutral
polypyridine ligands, WNA on a Ru'=0 species to form an
0-0 bond adds a second (~0.6—1.1 eV) barrier.””~** In
total, two significant, consecutive activation barriers must be
overcome first to generate the Ru'=O and then for its
reaction with water. Some studies proposed direct involvement
of Ce'" (via hydroxo-Ce" fragment) to facilitate O—O bond
formation®®** and to bind with Ru complexes.””** While we
recently characterized a Mn'V=0---Ce'" adduct,” our earlier
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Figure 2. Catalytic cycle of [Ru"(SN-ligands)H,0]** family of
catalysts (Figure 1D). There is ~95% [Ru""=0(bpy)(tpy)]** in the
catalytic steady state. Involvement of the Ru’=0 and proposed O—
O bond formation via WNA (blue arrows) currently lacks
experimental confirmation. For Ru complexes with neutral poly-
pyridine ligands, this pathway has a high total barrier to O—O bond
formation, as two significant, consecutive activation barriers must be
overcome: first to generate the Ru’=0 and second for its reaction
with water (middle inset). The lag phase in the onset of O, evolution
indicates an additional step of catalyst activation (yellow box).

extended X-ray absorption fine structure (EXAFS) study of
Ru-based catalysts did not reveal structural signatures of the
Ru'V=0---Ce" or other adducts with Ce'".

Thus, there is a need for a new hypothesis on how such
molecular catalysts can be transformed to achieve water
oxidation reaction. All these catalysts commonly use
polypyridine ligands. Recently, we have shown that both 6-
coordinate Ru'Y=0 and 7-coordinate Ru'=0 can efficiently
transfer oxygen to nitrolg7ens in polypyridine ligands, with the
formation of N-oxides.”””*” Computationally, the [RuV=
O(tpy)(L)]** was shown to convert to intermediates with
coordinated N-oxide.

Here, using a combination of in situ spectroscopy and de
novo synthesis of the reactive intermediate, we were able to
establish that formation of the complex with an N-oxide ligand
has a key activating role for the [(SN-ligands)Ru(H,0)]**
class of catalysts. This discovery resulted from detailed
spectroscopic analysis and identification of transient reactive
intermediates. Direct synthesis of the reactive intermediate
[Ru"(tpy) (bpy-NO)(H,0)]*" (1-NO) validated a multitude
of in situ spectroscopic observations and computational
predictions. Overall, single-atom modification of the ligand
resulted in a 100-fold increase in catalytic activity.

B RESULTS AND DISCUSSION

1. Spectroscopic Characterization of Water Oxidation
Using [Ru"(bpy)(tpy)(H,0)1** (1) and [Ru(bpy)(EtO-tpy)-
(HZO)]ZJr (2). Upon addition of 1 equiv of Ce" to 1 and 2,
Ru'™ (S = 1/2) forms with g,, = 2.60, gy =24 and g, = 1.66
in1and g, =278, g, =233, and g, = 1.53in 2 (Figure 3A).
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Figure 3. (A) EPR spectra of 1 (orange) and 2 (magenta) in 0.1 M
HNO, after addition of 1 equiv of Ce' (solid lines) and after addition
of 20 equiv of Ce' (dash lines). (B) Zoom (x20) into low-intensity
EPR signals from solutions generated by adding 20 equiv of Ce" in
0.1 M HNO; to 1 (orange) and to 2 (magenta). All samples were
frozen within 30 s.

Such Ru™ (S = 1/2) EPR signals are well known.'71#3849
Under catalytic conditions, modeled here by adding 20 equiv
of Ce", the majority of the 1 and 2 is in the EPR-silent
[RuY=0] state (S = 1) (see decrease in EPR intensity in
Figure 3A). Residual (~5%) EPR si%nals in Figure 3B (g, =
2.31, g,, = 2.20, and g, = 1.91 for 1 3% and g, = 2.33, &y =
2.18, and g,, = 1.90 for 2) do not match expected g—factors of
the RuY=0 (S = 1/2) species (Table SI). 6:23,24,27,50
Reported Ru'=0 g-factors show g,, ranging from 2.05 to
2.08, and g, from 1.98 to 2.0, and g, from 1.85 to 191
(Table S1). For 1 using a combination of EPR and XAS, we
demonstrated earlier that 95% of the Ru complex in the
catalytic steady state is in the form of [Ru"=O(bpy)-
(tpy)]**.'® According to literature reports, the Ru¥=0 state
should be more accessible in [Ru(bpy)(EtO-tpy)(H,0)]*
(2).”>** However, similar to 1, a low-intensity EPR signal
with g, = 2.33, g, = 2.18, and g, = 1.90 is detected here
instead of the expected EPR associated with [Ru'=0(bpy)-
(EtO-tpy)]**. The EPR signals in Figure 3B form quickly and
are not sensitive to the nature of the acid, ruling out their
origin as anation products. Since our 2014 repor’c,18 EPR
spectra with similar g-tensors were found for Ru complexes
[Ru"™(NPM-NO)(4-pic),(H,0)]** and [Ru(NPM-
NO,NO)(4-pic),]** (where NPM = 4-tert-butyl-2,6-di(1’,8'-
naphthyrid-2'-yl)-pyridine and pic = 4-picoline) (g,, = 2.30, g,,
=2.18,g,=183)" and in the [Rum%)ic)z(dpp—NO)P* (gux -
2.39, g, = 2.16, g, = 1.86) and [Ru"'(pic),(dpp-NO,NO)]**
(8 =223, 8, = 2.16, g, = 1.92) catalytic intermediates, which
all featured the N-oxide ligands.”’

Resonance Raman (RR) with '%0/'0 isotope labeling is
particularly helpful with identification of key Ru=0, Ru—O,
and possibly O—O bonds (Figure 4, Figure S1). In 1 and 2
oxidized with 20 equiv of CeVin 0.1 M HNO3/H2160 or
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Figure 4. Selected frequency range of resonance Raman spectra (532
nm) of 1 mM solutions of 1 and 2 in 0.1 M HNO; mixed with 20
equiv of Ce' (1 min after oxidation) in H,'°0 and H,'®0 (Figure S1,
Table S2). Two isotope-sensitive vibrations were assigned to Ru'V=
O (~800 cm™) and Ru—O—N (~830 cm™).

H,'"®0, the major band at 800 cm™' undergoes a —45 cm™

shift. This band was previously ass'gned to Ru"'=0 and
similar isotope shifts were reported.'””" Interestingly, the 800
cm™! band was accompanied by the '*0/'®0 isotope-sensitive
band (=20 cm™') at ~831 cm™" detected previously’” and
assigned to [(tpy)Ru"'=0,=0,0H]". The RR spectrum of
the [(tpy)Ru"'=0,=0,0H]*, prepared as a reference
compound, showed an isotope shift of —44 cm™' for its
symmetric Ru¥'=0,=0 vibration at 833 cm™ (Figure S2).
While a —44 cm™" shift is consistent with the Ru"'=0 nature
of the bond, a —20 cm™" shift is more appropriate for a single
Ru—O bond. To the best of our knowledge, only the Ru—O—
N vibration of N-oxides coordinated to Ru is known to be at
~830 cm™1.>"

We also obtained a lag phase (delay in O, evolution after
addition of Ce'V oxidant) on the order of 2—20 s for 0.1 mM
solution of 2 and 40—100 s for the 1.0 mM solution of less
active 1 (Table S3, Figure S3). The lag phase is shorter for
more active 2. An increase in Ce'” concentration results in the
shorter lag phase. From this result, we believe both complexes
undergo an additional activation step, in agreement with earlier
reports”” for 1. The classical mechanism of O—O bond
formation via water nucleophilic attack (Figure 2) is
inconsistent with experimental observations of the lag phase.
An activation period on the order of minutes was observed in
Ru-based water oxidation catalysts with quaterpyridine ligands,
and it was attributed to ;I—N,N’”—dioxide formation as a key
step in catalyst activation. 7
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Dimer formation was noted for 1 and its analogs under
prolonged oxidation (Figure S4). It has been reported that
prolonged bulk electrolysis or prolonged oxidation (several
days to 1 week) with an excess of Ce'” of 1 and its analogs
might result in dimerization of this complex with formation of
more stable but less active [(tpy)(bpy)Ru"Y-O-Ru'(tpy)=
O(OH)]*.>**° The analog with bpyms = 2,2-bipyridine-5,5'-
bis(methanesulfonate) delivered crystals with [(tpy)(bpyms)-
Ru"-O-Ru"(tpy) (bpyms)]** dimer after 3 weeks with Ce".”!
Formation of the bpy N-oxide and its consecutive de-
coordination might be responsible for the reported [(tpy)-
(bpy)Ru"-O-Ru" (tpy)=0(OH)]** dimer formation. We
demonstrated that catalysts” deactivation via dimerization can
be effectively prevented for catalysts immobilized in metal—
organic frameworks.”>' XRD analysis of late dimeric products
delivered limited information on in situ processes at early times
and, in particular, on catalysts’ activation at the onset of
catalytic current. Formation of free bpy-NO was noted under
catalytic conditions.”® Thus, we reasoned that while dimer
formation cannot account for the lag phase, ligand N-oxide
formation can happen quickly at the Ru"V=0 level (~95% in
catalytic steady state)'® and result in catalyst activation. This
hypothesis is tested below via de novo synthesis of the
proposed reactive intermediate.

2. De Novo Synthesis of [Ru(tpy)(bpy-NO)(H,0)1** (1-
NO). The catalytic intermediate [Ru(tpy)(bpy-NO)(H,0)]**
(1-NO) was prepared, and its performance in O, evolution was
investigated (Figure S). To the best of our knowledge, few Ru
complexes with N-oxide ligands have been described.*’**°*%
Earlier we’® and others’® were able to synthesize
[Ru"(bpy),(bpy-NO)]**. However, this compound is ex-
tremely light sensitive. [Ru(tpy)(bpy-NO)CI]Cl was prepared
using a procedure similar to the synthesis of [Ru"(bpy)(tpy)-
CI]Cl with some modifications.’® All preparations were
handled in the dark due to its unknown properties. 1-NO
turned out to be a reactive compound with a tendency to
convert to 1 under the conditions of the synthesis. Regardless
of the precautions and explored alternative synthetic routes,
mixtures of (tpy)(bpy)RuCl, and (tpy)(bpy-NO)RuCl, were
obtained. Facile conversion of [Ru(tpy)(bpy-NO)(X)] to
[Ru(tpy)(bpy)(X)] happens under the conditions of the
synthesis, in stark contrast to [Ru'(bpy),(bpy-NO)]**, which
was prepared with good yields.”> We attributed this dramatic
difference to the much higher reactivity of [(tpy)(bpy-
NO)Ru(X)]**. We noted that the decrease of the water
content from 25% to 5% in the reaction mixture helps to
increase the 1-NO content. We also noted that in [(tpy)(bpy-
NO)RuClI]* Cl ligand exchanges faster than in 1. Thus, we can
speculate that the presence of the liable Ru-Cl and/or Ru-H,0O
ligand is responsible for the conversion of 1-NO to 1,
especially when heated.

Despite the mixed content, such catalyst preparations
already demonstrated a 10-fold increase in the rate of catalytic
water oxidation using Ce'" (Figure SS). Separation on silica gel
allowed us to purify trans- and cis-1-NO. UV—vis and FTIR
data (Figure SA,B) show distinct spectroscopic signatures of 1-
NO, which include a purple color and ~830 cm™! vibration
also noted in the [Ru"(bpy),(bpy-NO)]** complex.” cis-1-
NO demonstrated high catalytic activity (Figure SC,D). To the
best of our knowledge, this is the highest O, evolution activity
reported for a single-site Ru-based catalyst in acid and with
first-order rate dependence on the catalyst complex. Note that
some faster catalysts are accessible via a radical coupling
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Figure 5. Spectroscopic and catalytic properties of the [Ru(tpy)(bpy-NO)(H,0)]** (1-NO) intermediate. (A) UV—vis absorption of 1, trans-1-
NO, and cis-1-NO. Ethanol solutions contain trans- and cis-[Ru(tpy) (bpy-NO)CI]* correspondingly. In [Ru(tpy) (bpy-NO)CI]*, Cl undergoes fast
exchange in water. (B) FTIR of 1 and 1-NO powders. Inset shows FTIR of pure ligands. (C) Cyclic voltammetry of 0.5 mM 1 and cis-1-NO in 0.1
M HNO,, scan rate 0.1 V/s. Inset shows the Ru""/Ru™ and Ru™/Ru"" couples. (D) Oxygen evolution of 1, 2, and cis-1-NO prepared by mixing 1

mL of a 0.2 mM solution and 40 equiv of Ce" in 0.1 M HNO,.

mechanism,””*” but these cannot currently be integrated into
devices, as at pH 1 their activity decreases upon immobiliza-
tion. The trans-1-NO isomer forms in unpractically small
amounts and was not investigated beyond UV—vis and NMR
characterization.

The electrochemical properties of cis-1-NO were inves-
tigated by cyclic voltammetry (Figure SC). Redox events at
~0.8—0.9 V vs NHE are likely the oxidation of the Ru" to Ru'!
and later to Ru" predicted by DFT at ~1 V (Table 1, Table
S7). The oonset of catalytic current at ~1.4 V is the lowest
known for Ru-based complexes outside the Ru-bda family.””
The overall high catalytic activity of the cis 1-NO intermediate
shows that the formation of such or analogous tpy-NO
intermediates at a level of few percent might be fully
responsible for all observed catalytic activity of [(tpy)(bpy)-
Ru(H,0)]*" and its large family of analogs.

3. DFT Analysis of Catalytic Mechanism. DFT was used
here to support the analysis of redox properties, spectroscopic
signatures, and chemical reactivity of Ru-based catalysts (Table
1, Tables S4—S7). Latimer—Frost diagrams for a variety of
possible intermediates and reactivity pathways give a better
understanding of the feasibility of catalysts’ activation via
formation of N-oxide ligands and their further reactivity
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(Figures S6—S89). Calculations for the redox potentials of 1, 1-
NO, and 2 (Table 1) agree well with the literature reports’ >
and measurements for 1-NO.

The redox potential for the [Ru'=0(bpy)(EtO-tpy)]*
formation was found to be ~1.98 V, which is slightly lower
than ~2.15 V computed for [Ru'=0(bpy)(tpy)]** and ~2.12
for [RuY=0(bpy-NO)(tpy)]** (Table 1). Neither potential is
accessible to the Ce' oxidant (~1.7 V).

We also analyzed the reactivity of Ru"'=0 in 1 and 2 in the
oxygen atom transfer to bpy, tpy, and EtO-tpy ligands with the
formation of ligand-N-oxides (Table 1). The free energies in
both paths are small (~0.1 eV), and transfers to tpy and EtO-
tpy are more favorable compared to the transfer to bpy.
Preliminary computational analysis by another group® has
shown similar results. Both bpy-NO and tpy-NO ligand
modifications could exist under the reaction conditions.

It has long been noted that the redox potentials of the Ru
complexes correlate poorly with catalytic activity in water
oxidation.”” With three molecularly highly similar catalysts
spanning 2 orders of magnitude in catalytic activity, we
searched for a molecular property which correlates with O,
evolution rates. Formation of the Ru'=0 state is considered
key to both pathways of O—O bond formation via radical
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Table 1. Key Thermodynamic Parameters Computed Using DFT

reaction® AG’/eV E/Vv?
Redox Reactions
(2) [Ru™(EtO-tpy) (bpy) (H,0)]*/2H,0 + ¢~ — [Ru'(EtO-tpy)(bpy)(H,0)],,/2H,0 +1.03 (+0.98 %)
(2)[RuY=0(EtO-tpy) (bpy)]**/2H,0 + e~ + 2H" — [Ru!(EtO-tpy) (bpy)(H,0)]**/2H,0 +1.14 (+124 %)
(D[Ru™(tpy) (bpy) (H,0)**/2H,0 + ¢~ = [Ru'(tpy) (bpy)(H,0)]**/2H,0 +1.10 (+1.04°)
(1) [RuV=0(tpy) (bpy)]**/2H,0 + e~ + 2H* — [Ru"(tpy)(bpy)(H,0)]**/2H,0 +1.12 (+1.237%)
(1-NO) [Ru"(tpy) (bpy-NO) (H,0)]**/2H,0 + ¢~ — [Ru'(tpy)(bpy-NO)(H,0)]**/2H,0 +1.01 (+0.82)
(1-NO) [Ru"V=0(tpy) (bpy-NO)]**/2H,0 + e™+ 2H" — [Ru"!(tpy)(bpy-NO)(H,0)]*"/2H,0 +0.89 (+0.86)
Ru¥=0 Formation
(2)[RuY=0(EtO-tpy)(bpy)]**/2H,0 + e~ — [Ru"Y=0(EtO-tpy)(bpy)]**/2H,0 +1.98
(1)[Ru¥=0(tpy) (bpy)]**/2H,0 + ¢~ — [Ru"=0(tpy)(bpy)]**/2H,0 +2.15
(1-NO)[Ru"=0(tpy) (bpy-NO)**/H,0 + e~ — [Ru'Y=0(tpy)(bpy-NO)]**/H,0 +2.12
Ru"V=0(Ligand**) Formation
(1-NO)[Ru"V=0(tpy) (bpy-NO*",,) (OH) ] + ¢ + H' — [Ru™=0(tpy) (bpy-NO,,) (H,0)]** +151
Oxygen Atom Transfer to Ligand with Formation of N-Oxide
(2)[Ru"Y=0(EtO-tpy) (bpy)]**/2H,0 — [Ru"(EtO-tpy-NO)(bpy)(H,0)]**/H,0 —0.09
(2)[Ru"Y=0(EtO-tpy)(bpy)]**/2H,0 — [Ru"(EtO-tpy)(bpy-NO)(H,0)]**/H,0 +0.14
(1)[Ra™=0(tpy) (bpy) |*'/2H,0 — [Ru"(tpy-NO)(bpy) (H,0)]"/H,0 ~0.13
(1)[Ru"=0(tpy)(bpy)]**/2H,0 — [Ru"(tpy)(bpy-NO)(H,0)]** + H,0 +0.09
Oxidation of the Ligand with Formation of Cation Radical
tpy** + e~ — tpy +1.86
EtO-tpy** + ¢~ — EtO-tpy +1.70
bpyNO** + e~ — bpyNO +1.31

?/H,0 denotes explicit solvent molecule used in DFT calculations. “Experimental values are in parentheses.

coupling and via water nucleophilic attack. In all cases, when
Ru¥=0 species were thermodynamically accessible via PCET,
the presence of these species was verified by spectrosco-

10202027 However, despite the assumed accessibility of the
[Ru’=0(bpy) (EtO-tpy)]*" state, the corresponding EPR was
not detected (Figure 3B). Moreover, the calculated Ru'=0
potentials for the three analyzed complexes (Table 1) do not
correlate with the rate of O, evolution. At the same time, we
noted that the onset of catalytic current (~1.6 V and ~1.4 V
for 1 and 1-NO; Figure SC) happens at a potential higher than
formation of the Ru'" state. This was earlier interpreted as an
indicator for Ru'V-to-Ru¥ oxidation.”® However, it can also
correspond to a ligand oxidation. For instance, the most
oxidatively potent bioinorganic compound, Complex I, is
known to contain an Fe'=0 unit and an oxidized ligand in a
cation radical form.”” The computed redox potentials for the
ligand cation radicals listed in Table 1 correlate significantly
better with O, evolution activity (Figure 6). Frontier orbitals
(HOMO) of the [RuV=0]?" states show delocalization onto
EtO-tpy and bpy-NO ligands (Figure S10), suggesting that
electron removal can happen from a ligand localized orbital or
that oxidized species can have a multi-configurational
character. Alternatively, ligands with lower oxidation potentials
can acquire N-oxides more readily, causing an increase in
catalytic activity. For complexes with bpy-NO, tpy-NO, and
EtO-tpy-NO ligands, NO group de-coordination (i) opens the
PCET channel via recruitment of the additional water ligand
into the first coordination sphere of Ru; (ii) results in [Ru"V=
O(ligandNO**)] states which carry three holes but are
significantly more accessible (~1.5 V, Table 1) than [Ru'=
O] states (~2.0 eV); and (iii) have redox potential above the
+1.23 V required for water oxidation. Thus, we can suggest
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that, if Ru¥=0 formation is prohibitively high thermodynami-
cally (due to the lack of the PCET), the catalytically
competent [RuY=0(cation radical**)] state might form,
ensuring activity in the water oxidation. More experiments are
underway to elucidate the pathway for O—O bond formation,
and the results will be reported in a follow-up paper.

Overall, de novo synthesis and isolation of the reactive
catalytic intermediate [Ru(tpy)(bpy-NO)(H,0)]*" resulted in
material with high catalytic potency. Thus, the mere presence
of such an intermediate or similar tpy-NO in the reaction
mixtures at a level of few percent can account for the entire
catalytic activity of the most-studied [(tpy)Ru(bpy)(H,0)]**
family of Ru-based water oxidation catalysts. A difference of 2
orders of magnitude in catalytic activity was correlated with the
redox property of the ligand toward formation of the cation
radical.

B MATERIALS AND METHODS

Ultrapure nitric acid was used (Catalog No. 225711 from Sigma-
Aldrich). Commercially available ligands and precursors were used,
such as bpy, tpy, bpy-NO, and 4’-chloro-terpyridine. Aqueous
solutions were prepared using ultrapure (Type 1) water (resistivity
18.2 MQ-cm at 25 °C, TOC 4 ug/L), Millipore.

a5 T s 5 -

trans-complex h
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Figure 6. (A) Spin density of [Ru™V=0(tpy)(bpyNO**,..)(OH)]**
in three different views. (B) DFT computed Ru'=0 redox potentials
(Table 1) do not correlate with the rate of O, evolution. We found
that redox potentials for ligand oxidation (dashed lines) correlate
better with O, evolution rates. Transient ligand oxidation with the
formation of the ligand-N-oxide lowers the oxidation potential of the
ligand, allowing it to store the third hole needed for water activation.

[Ru'(bpy)(tpy)CI]Cl and [Ru'(bpy)(4'-EtO-tpy)CI]Cl (tpy =
2,2';6',2" -terpyridine, bpy = 2,2'-bipyridine) were synthesized and
characterized as described in the literature.>”*® The synthesis of the
[Ru(tpy)(C,0,)(H,0)]-2H,0 reference compound was performed
according to a procedure described previously.”’ bpy-NO ligand was
obtained from Sigma-Aldrich. [Ru(tpy)(bpy-NO)CI]Cl was prepared
by a procedure similar to the synthesis of the [Ru"(bpy)(tpy)C1]CL*"
with following details:

150 mg of Ru(tpy)Cl; (0.34 mmol), 58 mg of bpy-NO (1 equiv),
0.1 mL of trimethylamine, and 30 mg of LiCl were mixed in a solution
of 40 mL of ethanol and 2 mL of water and refluxed for 1 h at a
temperature not exceeding 100 °C. After cooling to room temper-
ature, all solvents were evaporated at reduced pressure to dryness. 'H
NMR of a residue was taken, showing the presence of 61% of
[Ru(tpy) (bpy-NO)CI]Cl. The residue was separated using 100%
ethanol on a silica gel column (Sorbtech, 200 X 400 mesh), collecting
3—4 mL fractions. Products in the fractions were monitored by UV—
vis and NMR. All steps of the synthesis were completed under dim
red light due to suspected light sensitivity. Elution from the silica gel
column with ethanol resulted in first a purple fraction of trans- isomer
with a very low content of compound; later [Ru(bpy)(tpy)Cl]* was
eluted, followed by fractions enriched with cis-[Ru(bpy-NO)(tpy)-
Cl]*. Later fractions allowed us to isolate pure cis-Ru(bpyNO)(tpy)-
Cl, for catalytic tests and spectroscopy.

"H NMR (DMSO-d,) of cis-[Ru(bpyNO)(tpy)CII* (Figure S11).
59.61 (d, 1H, Ha), 8.66—8.70 (dd, 4H, H3'/HS’, H3/H3"), 8.32 (d,
1H, Hd), 8.26 (d, 1H, Hg), 8.66 (d, 2H, H3/H3"), 8.15 (td, 1H,
H4'), 8.05 (td, 2H, H4/H4"), 7.92—7.84 (m, 4H, Hb,Hc,H6/H6"),
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7.78 (td, 1H, Hh), 7.54 (ddd, 2H, H5/H5"), 7.03 (ddd, 1H, Hi), 6.82
(d, 1H, Hj).

3C NMR (DMSO-d) of cis-[Ru(bpyNO)(tpy)CI]* (Figure S12).
5 160.34 (C2/C2"), 159.16 (C2'/C6"), 151.76 (Ce), 150.77 (Ca),
15025 (C6/C6’), 146.96 (Cc), 143.71 (Cb), 137.42 (C4/C4"),
137.20 (Cd), 136.22 (C4'), 131.34 (Cf), 130.29 (Cj), 128.83 (Ch),
128.63 (Ci), 127.29 (C5/CS’), 12691 (Cg), 123.82 (C3/C3"),
122.87 (C3’/CS’).

"H NMR (DMSO-d;) of trans-[Ru(bpyNO)(tpy)CII*. § 10.06 (d,
1H, Ha), 8.97 (d, 1H, Hd), 8.87 (d, 2H, H3'/HS'), 8.75 (d, 2H, H3/
H3"), 8.72 (d, 1H, Hg), 8.36 (td, 1H, Hc), 8.20 (t, 1H, H4'), 8.06
(ddd, 1H, Hb), 7.96 (td, 2H, H4/H4"), 7.76 (td, 1H, Hh), 7.59 (4,
2H, H6/H6"), 7.38 (ddd, 2H, H5/HS5"), 7.31 (d, 1H, Hj), 7.29 (ddd,
1H, Hi).

"H NMR spectra were recorded on a Bruker AV500 spectrometer
equipped with a S mm BBFO Z-gradient probe. All measurements
were performed at room temperature. Chemical shifts were referenced
to the residual solvent peak.

[Ruu(bPY)(tPY)(HzO)]Clz: [RuH(bpy)(4'—Et0—tpy)(HZO)]CIZ,
and [Ru"(bpy-NO)(tpy)(H,0)]Cl, were prepared by aging the
corresponding chlorides in pure water for 24 h. After that, 2 equiv of
silver nitrate was added to the solution, which then was filtered in
order to remove Cl ions. When Ce'V is used as the oxidant, it is
prepared freshly daily. O, evolution activity using Ce' was in
agreement with earlier reports."®*>?*%> Oxygen evolution was
measured with a PC-operated Clark-type polarographic oxygen
electrode from Oxygraph Systems (Hansatech Instruments Ltd.).
The sample was housed within a hermetic borosilicate glass reaction
vessel. Calibration was carried out by measurements of the signal from
O,-saturated water in an open reaction vessel. Sodium dithionite, an
oxygen-depleting agent, was added to the water, and the drop in the
signal was related to the solubility of oxygen in water at room
temperature (262 ymol/L). The glass vessel was thoroughly washed
with water, and 0.6 mL of Ru complex solution in 0.1 M HNO; was
added. A defined number of Ce' equivalents were carefully added
into the chamber, and oxygen evolution was measured as a function of
time.

To prepare EPR samples, 200 yL of a 1 mM solution of Ru
complex in 0.1 M HNO; were oxidized with a defined number of Ce™
equivalents, transferred in an EPR tube, and frozen in liquid nitrogen
within 30 s. Low-temperature X-band EPR spectra were recorded with
a Bruker EMX X-band spectrometer equipped with an X-band CW
microwave bridge. The sample temperature was maintained at 20 K
using a ColdEdge closed cycle cryostat. For EPR signal quantitation,
the standard EPR sample tubes were filled with sample through all of
the resonator space, and signal intensities were measured on the same
day and under the same conditions to allow direct comparison of the
signal intensities.

The resonance Raman spectra were collected using a HeCd CW
laser with a wavelength of 420 nm, 20 mW power, and a second-
harmonic wave of Nd:YAG (532 nm). The sample was held in a
Teflon custom-designed electrochemical cell with a clear polypropy-
lene thin-film window for bulk electrolysis resonance Raman
measurement. For the Ce' treatment, a drop of sample directly
was exposed to laser light. The diameter of the laser beam at the
sample was about 0.5 mm. The orientation of the laser beam, the
sample, and the detector was held at 0°. Two fused silica lenses were
used to collect the Raman signal and focus it at the Shamrock 303i
spectrometer input slit. The slit width was 50 gm. The Semrock edge-
pass filter eliminated the Rayleigh scattering to get into the
spectrometer. Holographic gratings of 1800 1/mm for the 442 nm
laser and 1200 1/mm (grating blaze 500) for the 532 nm laser were
used to disperse the light and later collimated light exposed on iDus
420 Andor camera.

The DFT calculations were performed with Gaussian09 using the
B3LYP exchange-correlation (XC) functional. The 6-31G* basis was
set for all organic atoms (C, O, N, H), and the all-electron DGDZVP
basis was set for the Ru atom. The CPCM polarizable conductor
model was used to model water solvation. The value of the reference
potential (NHE) was assigned as 4.44 V, and the solvation free energy
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of a proton was —11.64 V. Results of DFT calculations are shown in
Figures S6—S9 and in Tables S4—S7. Structures are given in Table S6.
Earlier we demonstrated that this computational technique
reproduces bond distances and redox potentials of the Ru
complexes.'*™'%>*%3 With our calculation protocol, we have achieved
matches (within expected 0.2 eV) to all unambiguously known redox
potentials for all Ru complexes as outlined in our earlier
publications.'*™"®

A Thermo Nicolet Nexus FTIR spectrometer was used to conduct
FTIR measurements. OMNIC software, a MCT detector, and a KBr
beam splitter are some of specifications of the spectrometer. The
spectrometer was continuously purged with nitrogen gas before and
during measurements. For data collection, the powder sample was
pressed against an attenuated total reflectance (ATR) diamond
crystal. The measurement was conducted in the dark, at room
temperature, and in dim ambient light to make sure the light does not
cause unintended reactions. The graph consists of 36 scans with 4
cm™’ resolution.

UV—vis absorptions spectroscopy was conducted by using a Cary
300 UV—vis spectrometer. All solutions were measured in a quartz
cuvette with a path line of 1 mm.

All of the electrochemistry experiments were conducted with a
BASi Epsilon potentiostat with a platinum counter electrode and Ag/
AgCl (saturated KCl) as the reference electrode. The reference
electrode was calibrated against the Fe(CN)s*"/Fe(CN)s* redox
couple in 0.5m NaCl, which should be 0.208 V versus Ag/AgCl
(saturated KCl). Bulk electrolysis experiments were performed in a
three-compartment electrochemical cell, with each compartment
separated by porous glass frits. For cyclic voltammetry, a polished
platinum electrode with Ag/AgCl (saturated KCl) as reference
electrode was used. The scan rate in CV was 0.1 V/s. All the solutions
were in 0.1 M HNO;, and all the presented measurements already
have pure platinum and 0.1 M HNO; subtracted as background.
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