
Efficient Size Estimation and Impossibility of Termination in
Uniform Dense Population Protocols

David Doty∗

University of California, Davis
Davis, California
doty@ucdavis.edu

Mahsa Eftekhari∗

University of California, Davis
Davis, California

mhseftekhari@ucdavis.edu

ABSTRACT

We study uniform population protocols: networks of anonymous
agents whose pairwise interactions are chosen at random, where
each agent uses an identical transition algorithm that does not
depend on the population size n. Many existing polylog(n) time
protocols for leader election and majority computation are nonuni-
form: to operate correctly, they require all agents to be initialized
with an approximate estimate of n (specifically, the value �logn�).
Our first main result is a uniform protocol for calculating log(n)±

O(1) with high probability in O(log2 n) time and O(log4 n) states
(O(log logn) bits of memory). The protocol is not terminating: it
does not signal when the estimate is close to the true value of logn.
If it could be made terminating with high probability, this would
allow composition with protocols requiring a size estimate initially.
We do show how ourmain protocol can be indirectly composedwith
others in a simple and elegant way, based on leaderless phase clocks,
demonstrating that those protocols can in fact be made uniform.
However, our second main result implies that the protocol cannot

be made terminating, a consequence of a much stronger result: a
uniform protocol for any task requiring more than constant time
cannot be terminating even with probability bounded above 0, if
infinitely many initial configurations are dense: any state present
initially occupies Ω(n) agents. (In particular no leader is allowed.)
Crucially, the result holds no matter the memory or time permitted.

CCS CONCEPTS

• Theory of computation→ Distributed algorithms.

KEYWORDS

population protocols; size estimation; termination

ACM Reference Format:

David Doty and Mahsa Eftekhari. 2019. Efficient Size Estimation and Im-
possibility of Termination in Uniform Dense Population Protocols. In 2019
ACM Symposium on Principles of Distributed Computing (PODC ’19), July

29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3293611.3331627

∗Both authors contributed equally to this research. Authors supported by NSF grants
1619343 and 1844976.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00
https://doi.org/10.1145/3293611.3331627

1 INTRODUCTION

Population protocols [7] are networks that consist of computational
entities called agents with no control over the schedule of inter-
actions with other agents. In a population of n agents, repeatedly
a random pair of agents is chosen to interact, each observing the
state of the other agent before updating its own state. They are
an appropriate model for electronic computing scenarios such as
sensor networks and for “fast-mixing” physical systems such as an-
imal populations [39], gene regulatory networks [18], and chemical
reactions [36], the latter increasingly regarded as an implementable
“programming language” for molecular engineering, due to recent
experimental breakthroughs in DNA nanotechnology [21, 37].
All problems computable with zero error probability by a

constant-state population protocol are computable in O(n) time [9,
26]; the benchmark for “efficient” computation is thus sublinear
time, ideally polylog(n). For example, the transition x ,q → y,y
(starting with at least as many q as the “input” state x) computes
f (x) = 2x in expected timeO(logn), whereas x ,x → y,q computes
f (x) = �x/2� exponentially slower: expected time O(n) [20].
Although the original model [7] assumed a set of states and tran-

sitions that is constant with respect to n, for important distributed
computing problems such as leader election [27], majority compu-
tation [2], and computation of other functions and predicates [14]
no constant-state protocol can stabilize in sublinear time with prob-
ability 1.1 This motivated the study of protocols in which the set
of states and transitions grows with n (essentially adding a non-
constantmemory to each agent). Such protocols achieve leader elec-
tion and majority computation using O(polylog(n)) time, keeping
the number of states “small”: typically O(polylog(n)) [2–4, 15, 17],
although O(log logn) states suffice for leader election [29].
Unfortunately, many of these sublinear-time protocols [2–4, 15,

17] are nonuniform: the set of states and transitions are allowed to
depend arbitrarily on n (this is not true of all, see for example recent
fast, low-memory leader election protocols [29, 30]). This capability
is used to initialize each agent with an approximate estimate of n
(the value �logn�) required by the protocols.
More desirablewould be a uniform protocol inwhich each agent’s

local algorithm for computing the outputs, given the inputs, has
no knowledge of n. Such an algorithm may produce outputs longer

1 A protocol stabilizes when it becomes unable to change the output. A protocol con-
verges in a given execution when the output stops changing, though it could take longer
to subsequently stabilize. Known time lower bounds [2, 14, 27] are on stabilization, not
convergence. Recently Kosowski and Uznanski [31] achieved a breakthrough result,
showingO (1)-state protocols for leader election and all decision problems computable
by population protocols (the semilinear predicates), converging with high probability
in polylog(n) time, and for any ϵ > 0, probability 1 protocols for the same problems
converging inO (nϵ) expected time. The latter protocols require Ω(n) time to stabilize,
as would any constant-state protocol due to the cited time lower bounds.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

34

https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1145/3293611.3331627

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada David Doty and Mahsa Eftekhari

than its inputs, retaining the ability to use a number of states that

grows with the population size. A uniform protocol can be deployed

into any population without knowing in advance the size, or even

a rough estimate thereof.

1.1 Contributions
Nonuniform protocols in the literature [2–4, 15, 17] initialize each

agent with the value ⌊logn⌋. Hence we study the problem of com-

puting an approximate estimate of logn.
Our first main result, Theorem 3.1, is a uniform protocol, starting

from a configuration where all n agents are in an identical state,

that with high probability computes logn ±O(1) (storing the value
in every agent), using O(log2 n) time and O(log4 n) states. This an-
swers affirmatively open question 5 of [25]. This is done primarily

by generating a sequence of geometric random variables,
2
and prop-

agating the maximum to each agent. However, before the maximum

reaches all agents they begin computation; thus we use a restart

scheme similar to [29] to reset an agent’s computation when it

updates to a higher estimate of the max.

One might hope to use this protocol as a subroutine to “uni-

formize” existing nonuniform protocols for leader election and

majority [2–4, 15, 17].
3
Suppose the size-estimating protocol could

be made terminating, eventually producing a termination “signal”

that with high probability does not appear until the size estimate

has converged. This would allow composition with other protocols

requiring the size estimate. It has been known since the beginning

of the population protocol model [7] that termination cannot be

guaranteed with probability 1. However, leader-driven protocols

can be made terminating with high probability, including simula-

tion of register machines [9] or exact population size counting [32].

Our second main result, Theorem 4.1, shows that this is impossi-

ble to do with our leaderless size-estimation protocol and a very

wide range of others. This answers negatively open questions 1-3

of [25]. The production of such a terminating signal cannot be de-

layed, even with probability bounded above 0, by more than O(1)
time in any uniform protocol where, for some α > 0, infinitely

many valid initial configurations are α-dense, meaning that each

state present is the state of at least αn agents. This holds even for

randomized protocols with a nondeterministic transition function.

(Because this is an impossibility result, the fact that it holds for both

deterministic and randomized protocols makes it stronger than if

it held only for deterministic protocols.) Since virtually all non-

trivial computation with population protocols requires Ω(logn)
time

4
(including leader election, and computation of predicates and

functions such as majority and д(x) = 2x), this implies that no

uniform terminating protocol can solve these problems from dense

initial configurations.

2
To our knowledge, this constitutes the first analysis of sums of independent random

variables, each of which is a maximum of geometric random variables. Standard

Chernoff and other tail bounds generally used for bounded random variables fail in

this case. We apply the theory of sub-exponential random variables [35] to obtain

strong bounds on the moment-generating function of a maximum of geometric random

variables in order to obtain the required Chernoff bounds.

3
Some protocols for leader election [29, 30] are uniform, but other protocols [2, 4,

15, 17] have the benefit of simplicity and may possibly be easier to reason about and

compose with other protocols.

4 Ω(logn) is a lower bound on most interesting computation: by a coupon collector

argument, this is the expected time for each agent to have at least one interaction.

The hypothesis of density is crucial: with a leader, high-

probability termination is possible in a uniform protocol [9]. The

hypothesis of uniformity is also crucial: if each agent can initially

store a value f (n), then a termination signal can be delayed until

some agent experiences f (n) interactions, an event whose expected

time grows unboundedly with n if f grows sufficiently fast. This re-

sult uses a density argument similar to that used previously to show

time lower bounds, which assume a state set of sizeO(1) [14, 23, 27]
or ≤ 1

2
log logn [2]. In contrast, our argument holds for any state

set size, by showing that a particular subset of states is produced

in constant time w.h.p., and using a careful argument to show that

this subset necessarily contains the termination signal.

Despite this difficulty in directly composing size estimation with

a downstream protocol (or several stages/subprotocols composed in

series), we present a general and simple method of composition (via

restarting), based on a “leaderless phase clock” using a weaker log

population size estimate s (called logSize2 in the pseudocode in

Section 3.2) obtained initially (where logn − log lnn ≤ s ≤ 2 logn
w.h.p.).

5
Based on s and the expected convergence time of the

downstream protocol, each agent once per interaction increments a

counter c , from 0 up to f (s), and the first agent to reach f (s) signals
the entire population to terminate (or move to the next stage).

f (s) is chosen large enough that no agent reaches f (s) before the
downstream protocol converges. The entire downstream protocol

is reset if the initial size estimate s changes. With the above scheme,

agents need to store the variables s , c , and possibly also f (s) (in
our case f (s) = O(s) so it need not be stored explicitly, but if

f (s) = poly(s), for example, f (s) may need to be stored separately

from s). If the downstream protocol requires t(n) time to converge,

then agents also set their threshold f (s) > t(n) (where f (s) is
“large” compared to t(n)). This requiresO(f (s)2 · logn) states will be
added to the state complexity of the protocol, orO(log2 n) if f (s) =
O(logn) (as in our case) since f (s) need not be stored explicitly. To

compose multiple downstream stages/subprotocols in series, we

also need a way to compute and possibly store the number K of

stages (in our case K = Θ(logn), also chosen as a constant times s ,
so K need not be stored explicitly), and we need to store an index

indicating which stage we are on. For K stages, this multiplies the

state complexity by K if K = O(logn) and K2
otherwise (since K

must be stored explicitly in the latter case).

1.2 Related work
The work of this paper was inspired by recent work on nonuniform

polylog time leader election/majority [2–4, 6, 15, 17, 38]; the fact

that those protocols require an approximate size estimate is the

direct motivation for seeking a protocol that can compute such an

estimate (though unfortunately due to Theorem 4.1, composition

of our protocol with these is not totally straightforward).

Some nonuniform protocols crucially rely on an estimate of logn
(e.g. [2–4, 15, 17, 38]) for correctness. Other nonuniform protocols

are more robust, using the estimate merely to allow the proto-

col to have a finite number of states. For example, Alistarh and

Gelashvili [4] show a O(log3 n)-time protocol for leader election in

which leaders increment a counter on each interaction. The uniform

variant of that protocol, with no estimate of logn, is correct with

5
The first leaderless phase clock for population protocols was proposed in [3]. Ours

is different, based on [38]. Both are nonuniform, relying on an estimate of logn.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

35

Efficient Size Estimation and Impossibility of Termination in Uniform Dense Population Protocols PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

probability 1, and the estimate of logn is used only to bound the

counter (hence also the number of states) below logn. Nevertheless,
it is not obvious how to modify that protocol to be uniform and

have a bounded number of states with high probability.

Self-stabilizing leader election and exact size counting. Cai,
Izumi, and Wada [19] (using different terminology) show an impos-

sibility result for uniform population protocols, that no protocol

electing a leader can be uniform if it is also required to be self-

stabilizing: correct with probability 1 from any initial configuration.

In fact, it must be nonuniform in a very strong way: the exact

population size must be encoded into each agent. Self-stabilizing

exact size computing has also been shown to be possible with a

leader [12] in O(n logn) time and O(n) states for the leader and 2

states for the other agents, all asymptotically optimal parameters

in the self-stabilizing setting [10].

Exact size counting. In the less restrictive setting where all agents
start from a pre-determined state, Michail [32] proposed a uniform

terminating protocol (where agents “know” when they have con-

verged) in which a pre-elected leader computes the exact population

size n in O(n logn) time with high probability. Going from the ter-

minating to the less restrictive converging criterion (where agents

eventually converge on the correct size, but do not know when this

occurs), exact size counting is possible in O(logn log logn) time

and O(n60) states [25], without an initial leader.

Approximate size estimation. Alistarh, Aspnes, Eisenstat,

Gelashvili, and Rivest [2] show a uniform protocol that in O(logn)
expected time and states converges to an approximation n′ of the
population size n, computing an integer k such that with high prob-

ability
1

2
logn ≤ k ≤ 9 logn, i.e.,

√
n ≤ 2

k ≤ n9. Each agent gener-

ates (an approximation of) a geometric random variable, letting k
be their maximum. We use their protocol as the first step of ours.

The analysis of [2] is based on synthetic coins with a deterministic

transition function, which have bias complicating the analysis. Our

randomizedmodel assumes access to perfectly random bits, so a sim-

pler analysis (Corollary 3.7) shows that logn−log lnn ≤ k ≤ 2 logn
w.h.p. The remainder of our protocol improves this from a constant

multiplicative error in approximating logn to a constant additive

error. In other words we estimate the population size to within a

constant multiplicative factor (instead of a polynomial factor as

in [2]), but use O(log2 n) time and O(log4 n) states.
Berenbrink, Kaaser, and Radzik [16] independently studied the

same size estimation problem as ours, obtaining stronger bounds

on additive error and number of states: computing the value ⌊logn⌋
or ⌈logn⌉ (i.e., additive error < 1) with high probability, using

O(log2 n) time and O(logn log logn) states. They also show a pro-

tocol with probability 1 of correctness, using O(log2 n) time and

O(log2 n log logn) states.

2 MODEL
To formally define uniform computation in population protocols,

the agents’ transition algorithm is modeled as a 2-tape deterministic

Turing machine (TM) with the read only “input tape” as tape 1 (for

reading the other agent’s state) and read-write “working tape” as

tape 2 (for storing this agent’s state).
6

6
Our model generalizes the original constant-state model [8] by allowing the memory

potentially to grow with n; however, constant-state protocols can be implemented

Our protocol describes a constant number of integer fields com-

prising each agent’s state, which could all be stored in the working

tape and separated by a special symbol. An agent’s working tape

is identical to what it was on the conclusion of the previous inter-

action. When two agents interact, each copies the content of the

other’s tape 2 its own tape 1, and then each of their TM states is

reset from a halting TM state to the start TM state. The space usage

(in bits) s is defined as normal for TMs: the maximum number of

tape cells that are written during the computation on the read/write

working tape. The number of possible agent states (working tape

contents) is then cs , where s is the maximum space usage of any

agent during an execution of the protocol and c is the size of the
tape alphabet. For ease of understanding, we will use standard popu-

lation protocol terminology and not refer explicitly to details of the

TM definition except where needed. A state s ∈ Λ always refers to

the TM working tape content of an agent (leaving out TM state and

tape head positions since these are identical in all initial configura-

tions), where Λ is the set of all agent states. A configuration ®c ∈ NΛ

is a vector indexed by a state, where ®c(s) is the count of state s in
the population. We set the output of our protocol the value stored

in a special field labeled “output”. Some definitions allow the output

to be a function of the fields stored in an agent’s memory, without

the output itself counting against the memory usage. Our protocol

reuses a field for the output that is used prior in the protocol, so

our memory usage is the same under either definition.

We furthermore assume that each agent has access to indepen-

dent uniformly random bits, assumed to be pre-written on a special

read-only tape (this allows the TM to be deterministic even though

it is computing a nondeterministic relation). This is different from

the traditional definition of population protocols, which assumes a

deterministic transition function. In our case, we have a transition

relation δ ⊆ Λ4
. Several papers [2, 15] indicate how to use the

randomness built into the interaction scheduler to provide nearly

uniform random bits to the agents, using various synthetic coin

techniques, showing that the deterministic model can effectively

simulate the randomized model. In the interest of brevity and sim-

plicity of presentation, we will simply assume in the model that

each agent has access to a source of uniformly random bits. A vari-

ant of our protocol using the sender/receiver choice to simulate

uniformly random bits with a deterministic transition function,

with the same time, state, and error bounds, is available in [24].

Throughout this paper, n denotes the number of agents in the

population. Repeatedly, a pair of agents is selected uniformly at

random to interact, where they run the transition algorithm on the

pair of states they were in prior to the interaction, and storing the

output states for their next interactions. The time until some event

is measured as the number of interactions until the event occurs,

divided by n, also known as parallel time. This represents a natural

model of time complexity in which we expect each agent to have

O(1) interactions per unit of time, hence across the whole popula-

tion, Θ(n) total interactions occur per unit time. All references to

“time” in this paper refer to parallel time. An execution is a sequence

of configurations ®c0, ®c1, . . . such that for all i , applying a transition

with our model. It is worth distinguishing four ways for memory to increase with

n: 1) not at all (constant-state), 2) increasing with n but, for each n, bounded by a

constant depending on n (most non-uniform protocols), and 3) possibly unbounded

but bounded with probability 1 (this paper), 4) unbounded with positive probability.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

36

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada David Doty and Mahsa Eftekhari

to �ci results in �ci+1. logn is the base-2 logarithm of n, and lnn is
the base-e logarithm of n.

2.1 Definition of correctness and time

The notion that a protocol’s configuration “has the correct answer”
is problem-specific. For leader election, it means there is a single
leader agent. For predicate computation, it means all agents have
the correct Boolean output. In this paper, since our goal is to ap-
proximate logn within additive factor 5.7, we say a configuration
is correct if the output field of each agent is within 5.7 of logn.7

The following definitions match those used in the literature,
when other notions of “correct” are substituted. Let E = (�c0, �c1, . . .)
be an infinite execution. A configuration �c is stably correct if every
configuration reachable from �c is correct.8 We say E converges at
interaction i if �ci is not correct and for all j > i , �c j is correct. We say
E stabilizes at interaction i if �ci is not stably correct and for all j > i ,
�c j is stably correct. A protocol can converge and/or stabilize with
probability 1 or a smaller probability. However, if the set of reach-
able configurations is bounded with probability 1 (which is the case
for the protocols discussed in this paper), then for any p ∈ [0, 1],
a protocol converges with probability p if and only if it stabilizes
with probability p.9 For a computational taskT equipped with some
definition of “correct”, we say that a protocol P stably computes T
with probability p if, with probability p, it stabilizes (equivalently,
converges). If p is omitted, it is assumed p = 1. However, when
measuring time complexity, convergence and stabilization may be
much different. We say that P converges (respectively, stabilizes)
in (parallel) time t(n)with probability p if, with probability p, it pro-
duces an execution that converges (resp., stabilizes) by interaction i ,
where i/n ≤ t(n). Many protocols converge much faster than they
stabilize, such as those that combine a fast, error-prone subprotocol
with a slow, error-free protocol, e.g., [9, 20, 31]. However, for the
protocol of this paper, convergence and stabilization coincide. We
use the term “converge” throughout the paper to refer to this event.
Many papers separately measure high-probability time conver-

gence and expected time to converge. Our protocol has positive
probability of error, but we argue that expected time is a meaningful
notion only with error probability 0, which is why we do not mea-
sure expected time. The only reasonable definition “time until cor-
rectness” on a non-converging execution is∞. So with positive error

7 We note that our notion of function approximation differs from that of Belleville,
Doty, and Soloveichik [14]. They use a distributed output convention, where the output
of a function f : Nd → N is encoded as the population count of agents in a special
output state y . Thus one must examine the entire population to know the output. In
our local output convention, each agent has a field encoding a value from the function’s
range. The output is undefined if some agents have different values, and defined to be
their common value otherwise. This is similar to how Boolean predicate output with
range {0, 1} is encoded in population protocols [7].
8 Belleville, Doty, and Soloveichik [14] also consider function approximation, but
define a configuration to be stable if the output cannot change, whereas we allow it
to change within a small interval around the correct value. The time lower bound
techniques of [14] do not apply to our more relaxed notion of stability.
9 Let C and S respectively be the set of stabilizing and converging executions. Clearly
S ⊆ C . Although S � C is possible, we argue that Pr [C \ S] = 0. Suppose a protocol
converges in an execution (�c0, �c1, . . .) at interaction i (so �c j is correct for all j > i). If

did not stabilize, then for all j > i , some incorrect configuration �dj would be reachable
from �c j . Let pj > 0 denote the probability of reaching �dj from �c j . The set of reachable
configurations is bounded with probability 1, so min

j>i
pj is well-defined and positive.

The probability of never reaching any �dj is then 0.

probability, the expected convergence time is E [time|converges] +
E [time|doesn’t converge] = E [time|converges] + ∞ = ∞. One
could imagine measuring only E [time|converges]. However, con-
ditioning can artificially “speed up” the process.10

3 FAST PROTOCOL FOR ESTIMATING logn
WITHIN O(1) ADDITIVE ERROR

In this section we describe a uniform protocol for computing the
value of logn with an additive error, i.e., estimating the population
size to within a constant multiplicative factor. We say a population
protocol is leaderless if all agents start in the same state.

Theorem 3.1. There is a uniform leaderless population protocol

that converges in time O(log2 n) with probability ≥ 1 − 1/n2, uses
O(log4 n) states with probability ≥ 1 − O(logn)/n, and stores in

each agent an integer k such that |k − logn | ≤ 5.7 with probability

≥ 1 − 9/n.
We note that the protocol has a positive probability of error. It

is open to find a protocol using polylog(n) time/states computing
log(n) ±O(1) with probability 1.
The protocol is described and its time and state complexity ana-

lyzed in Subsection 3.2. Much of the analysis of the approximation
involves proving a bound on the moment-generating function of a
maximum of geometric random variables, enabling the Chernoff
technique can be applied to sums of such variables. This is quite
nontrivial; see appendix in [24] .

3.1 Intuition

Alistarh et al. [2] describe a protocol for estimating logn within
a constant multiplicative factor. A 1

2 -geometric random variable
is the number of flips needed to get one head when flipping a
fair coin. In their protocol, each agent generates an independent
geometric random variable Gi , then propagates the maximumM =

max1≤i≤n Gi by epidemic: transitions of the form i, j → j, j for i ≤
j, which in O(logn) time “infect” all agents with the maximum. It
is known that E [M] ≈ logn [28], and logn− log lnn ≤ M ≤ 2 logn
with probability ≥ 1 −O(1)/n (Lemma C.7 [24]).
We take the obvious extension of this approach: do this K times

and take an average. The estimated average is within O(1) of logn
so long as K = Ω(logn) [24]. One problem to solve first is how to
calculate K ; after all, K = Θ(logn) scales with n, so with a uniform
protocol it cannot be encoded into the agents at the start. The
agents estimate it using the protocol of [2]. Since that protocol
is converging but not terminating (provably it cannot be made
terminating by Theorem 4.1), each time an agent updates its value
of K , it reinitializes the remainder of its state.
However, a trickier problem remains: a naïve approach to im-

plement “averaging of K numbers” requires storing K = Θ(logn)
numbers in each agent, each having value Θ(logn), implying the
number of states is Θ((logn)logn) = Θ(nlog logn). This is even more
10 Consider a hypothetical protocol that runs a parallel subprotocol S that completes
quickly and, upon completion, somehow prevents the main protocolM from converg-
ing. The main protocol, on the other hand, may somehow detect if it completes before
S does, and if so,M then shuts S down. Many executions will not converge, but those
that do must be very fast in order to converge before S completes. Thus conditioning
on convergence “anthropically speeds up” convergence [1]. This is an extreme exam-
ple that has the property that the probability of correctness is reduced by S , but it
nevertheless shows that measuring conditional expected time can be problematic.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

37

Efficient Size Estimation and Impossibility of Termination in Uniform Dense Population Protocols PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

than the O(n60) sufficient to quickly compute exactly n [25]. To
overcome this problem, we use a “leaderless phase clock” similar
to those of [3, 34, 38], but uniform. Unlike the phase clock used
by [3, 34], our leaderless phase clock simply increments a counter on
every interaction. This simultaneously gives an elegant way to com-
pose our protocols with downstream protocols requiring the size
estimate. Agents count their number of interactions and compare it
with a threshold value Θ(logn). Whenever their number of interac-
tion passes the threshold they will move to the next round similar
to the protocol described above (the population with a leader). The
threshold is calculated in the following way. In our protocol, agents
start generate a geometric random variable called logSize2 and
propagate the maximum logSize2 among themselves. After agents
agree on the logSize2 variable, a constant multiple 95.logSize2
is the threshold in their leaderless phase clock. This lets the agents
synchronize epochs of the algorithm, each taking O(logn) time,
and prevent the next epoch from starting until the previous has
concluded.
The probabilistic clock inside agents might go off very soon at

the very beginning of the protocol, but afterO(logn) time all agents
will store the maximum generated logSize2 and their leaderless
phase clock will eventually converge to a stable one which goes
off after completion of a predefined constant factor of logn; to
handle this, each time an agent updates its value of logSize2, the
remainder of its state is reset and it begins the rest of the protocol
anew. Restarting the downstream protocol is a known technique
in population protocols also used in [29] to compose two leader
elimination subprotocols. The agents then generate K additional
geometric random variables in sequence, taking their sum. Upon
completing the generation and propagation of the K ’th number,
the agent divides the sum by K and stores the result in their output
field. Composition with a downstream protocol is as simple as
letting that protocol be the last phase. However, since our protocol
has a positive probability of failure, this would translate to the
downstream protocol as well.
The time is O(log2 n) by the following rough analysis (details

follow). We propagate K numbers one after each other and for each
epidemic O(logn) time is required. Since we set k = O(logn) then
the protocol will take O(log2 n) total time to complete.

3.2 Formal specification of protocol

Our protocol uses uniform random bits in multiple places. We as-
sume agents have access to independent uniformly random bits.
In the protocol, agents start by dividing in two groups of S and
A. A agents are responsible for the most part of the algorithm in-
cluding generating geometric random variables and propagating
their maximums while the S agents only provide memory to store
the sum of K maximum geometric random variables. We split the
state space such that A agents and S agents are responsible to store
different variables. The space multiplexing is a common approach
used in population protocols to reduce the space complexity of the
protocols [5].
Agents initially have no role (X), and partition into roles via

X, X → A, S. Since this takes Θ(n) time to complete, we add transi-
tions A, X → A, S and S, X → S, A, converging in O(logn) time,
with the price of deviating from n

2 for each role. It is proven

in [24] this deviation is O(
√
n lnn), increasing the size estima-

tion error by merely a constant additive factor.11 All agents start
at epoch = 0. The A agents generate one geometric random vari-
able (called logSize2) and continue by propagating the maximum
among the whole population. Since we use this logSize2 value for
all early estimation of logn, each time an agent finds out there was
a greater value for the logSize2 than its own, it will reset all other
computations that might have happened.
The maximum logSize2 amongst the population is a 2 factor es-

timation of logn . When any agent updates its logSize2with a new
maximum, it restarts the entire downstream protocol via Restart.
Once the maximum logSize2 value is generated in the popula-
tion, it propagates (triggering Restart) by epidemic in O(logn)
time. The logSize2 variable could be used to estimate K , which is
the number of independent additional geometric random variables
each agent will generate. We also use logSize2 to set the leader-
less phase clock inside each agent. In each epoch, the A agents will
generate one new geometric random variable and propagate its
maximum. They count their number of interactions in each epoch
using the time variable. At the end of an epoch, when time reaches
95.logSize2, the A agents accumulate the value of the maximum
gr into the sum of a S agent. The A agents increase their epoch
variable by one and set time = 0 after either passing the geometric
random variable to a S agent or interacting with a S agent in a
higher phase. Separately, S agents are responsible to propagate the
maximum sum and maximum epoch among themselves.
In the Log-Size-Estimation protocol, all agents in role A will

finally generate K = 5 · logSize2 geometric random variable and
let the S agents to store a sum of maximum one generated for
each phase. Once all agents reach epoch = 5 · logSize2 they set
protocolDone = True and output = sum

epoch + 1. We use |A|, |S| for
the cardinality of A and S agents respectively.

Corollary 3.2. In the Log-Size-Estimation protocol the cardinal-

ity of agents with A role is in the interval of
[
n
3 ,
2n
3

]
with probability

≥ 1 − e−n/18.

In each epoch, one geometric random variable (in the first epoch
logSize2 and in the subsequent epochs gr) is generated and its
maximum will be propagated by epidemic among the population.
We set the time of each epoch equal to the required time of gener-
ating one plus the time for completion of an epidemic. To analyze
the time complexity of our protocol, we require the time bounds
for completing an epidemic from the paper [9]. The current form is
taken from [25]. For all n ∈ N+, let Hn =

∑n
k=1

1
k
denote the n’th

harmonic number. Note that lnn ≤ n−1
n Hn−1 ≤ 1 + lnn.

Lemma 3.3 ([9]). Let T denote the time to complete an epidemic.

Then E [T] = n−1
n Hn−1, Pr

[
T < 1

4 lnn
]
< 2e−

√
n , and for any αu >

0, Pr [T > αu lnn] < 4n−αu /4+1.
The following corollary describes an epidemic in a subpopulation.

This refers to some subset S of the population executing epidemic
transitions only among themselves, which slows down the epidemic
by only a constant factor if |S | = Ω(n).
11 This mechanism of splitting the population approximately in two works for our
protocol, because the number of A agents is likely to be so close ton/2 that our estimate
of logn is reduced by an additive factor likely to be very close to −1.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

38

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada David Doty and Mahsa Eftekhari

Protocol 1 Log-Size-Estimation(rec, sen)

▷ initial state of agent:

role = X,
time = 0, sum = 0, epoch = 0,

gr = 1, logSize2 = 1,

protocolDone = False

Partition-Into-A/S(rec, sen)

if rec.role = A then
rec.time← rec.time + 1
Check-if-Timer-Done-and-Increment-Epoch(rec)

if sen.role = A then
sen.time← sen.time + 1
Check-if-Timer-Done-and-Increment-Epoch(sen)

Propagate-Max-Clock-Value(rec, sen)

Propagate-Incremented-Epoch(rec, sen)

if one agent have role = S and one have role = A then
Update-Sum(rec, sen)

if both agents have role = A then
Propagate-Max-G.R.V.(rec, sen)

if sen.protocolDone then
output← sum

epoch + 1

Subprotocol 2 Partition-Into-A/S(rec, sen)

▷ Partition the population in two almost equal size subpopula-

tions.

if sen.role = X, rec.role = X then
sen.role← A
sen.logSize2← one geometric random variable

rec.role← S
else if sen.role = A, rec.role = X then

rec.role← S
else if sen.role = S, rec.role = X then

rec.role← A
rec.logSize2← one geometric random variable

Subprotocol 3 Propagate-Max-Clock-Value(agent1, agent2)

▷Maximum generated geometric variable for logSize2 will be
propagated.

if agent1.logSize2 < agent2.logSize2 then
agent1.logSize2← agent2.logSize2
Restart(agent1)

else if agent2.logSize2 < agent1.logSize2 then
agent2.logSize2← agent1.logSize2
Restart(agent2)

Subprotocol 4 Restart(agent)

time← 0, sum← 0, epoch← 0

gr← one geometric random variable

protocolDone← False

Setting c = 3 and αu = 24 in Corollary A.3 of [24] gives the

following.

Subprotocol 5 Propagate-Max-G.R.V.(agent1, agent2)

▷ Maximum generated geometric variable for gr will be propa-

gated.

if agent1.epoch = agent2.epoch then
if agent1.gr < agent2.gr then

agent1.gr← agent2.gr
else if agent2.gr < agent1.gr then

agent2.gr← agent1.gr

Subprotocol 6Check-if-Timer-Done-and-Increment-Epoch(agent)

▷ Agents compare their time value to the specified threshold.

if agent.time = 95 × agent.logSize2,
agent.protocolDone = False, agent.updatedSUM = True

then
agent.epoch← agent.epoch + 1
Move-to-Next-G.R.V(agent)

if agent.epoch = 5 × agent.logSize2 then
agent.protocolDone← True

Subprotocol 7 Propagate-Incremented-Epoch(agent1, agent2)

▷ The maximum epoch will be propagated.

if both agents have role = A then
if agent1.epoch < agent2.epoch then

agent1.epoch← agent2.epoch
Move-to-Next-G.R.V(agent1)

else if agent2.epoch < agent1.epoch then
agent2.epoch← agent1.epoch
Move-to-Next-G.R.V(agent2)

else if both agents have role = S then
if agent1.epoch < agent2.epoch then

agent1.epoch← agent2.epoch
agent1.sum← agent2.sum

else if agent2.epoch < agent1.epoch then
agent2.epoch← agent1.epoch
agent2.sum← agent1.sum

Subprotocol 8 Move-to-Next-G.R.V(agent)

▷ The agent move to the next epoch:
agent.time← 0

agent.gr← one geometric random variable

agent.updatedSUM = False

Corollary 3.4. Suppose an epidemic happens among a subpopu-

lation of n/3 agents with time T. Then Pr [T > 24 lnn] < 27n−3.

The next lemma bounds the number of interactions an agent has

in a given time, and it is the basis of the leaderless phase clock we

use. It is proven in [24]. It follows from a simple Chernoff bound

on the number of interactions involving a single agent in a given

window of time.

Lemma 3.5. Let C ≥ 3 and D = 2C +
√
12C . In time C lnn, with

probability ≥ 1 − 1/n, each agent has at most D lnn interactions.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

39

Efficient Size Estimation and Impossibility of Termination in Uniform Dense Population Protocols PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Subprotocol 9 Update-Sum(agent1, agent2)

▷ The agent accumulates the current value of gr in sum:
a← agent with role = A
s← agent with role = S
if a.epoch = s.epoch, a.time ≥ 95· a.logSize2, and

a.protocolDone = False then
s.epoch← s.epoch + 1
s.sum← s.sum+ a.gr
a.updatedSUM = True

else if a.epoch < s.epoch then
a.updatedSUM = True

Corollary 3.6. Each agent has ≥ 65 lnn interactions in time

24 lnn with probability ≤ 1/n.

By Lemma 3.5 each agent has at most

(
2 · 24 +

√
12 · 24

)
lnn ≤

65 lnn ≤ 94 logn interactions in the time that it takes to generate

and propagate maximum of one geometric random variable. Thus,

each agent should count up to 94 logn for its leaderless phase clock,

to ensure that with high probability none reaches that count until

the maximum geometric random variable is known to all agents.

However, agents are not aware of any prior approximation of logn.
In the Log-Size-Estimation protocol, agents use their logSize2
variable for this approximation. As mentioned, all the agents in

role A start by generating one geometric random variable logSize2.
The maximum in the population is used as a weak (constant factor)

approximation of logn. Their statement and proofs appear in [24].

Corollary 3.7. The logSize2 (gr) value generated by

Generate-Clock (Generate-G.R.V) is in the interval of [logn −

log lnn − 2, 2 logn − 1] with probability at least 1 − 1/n − e−n/18.

Corollary 3.8. The number of interactions in each epoch

in the Log-Size-Estimation is in the interval [95 logn −

95 log lnn, 189 logn] with probability ≥ 1 − 1/n − e−n/18.

Proof. By Corollary 3.6, agents should count up to 96 ln ≤

139 logn before moving to the next epoch. if we set the thresh-

old of the time to 95 · logSize2, 95 logn − 95 log lnn ≥ 93 logn
then the time variable will be in the interval of [95 logn −
95 log lnn, 188 logn + 95] with high probability (188 logn + 95 ≤
189 logn for n ≥ 2). □

Corollary 3.9. The number of epochs in the

Log-Size-Estimation is in the interval [5 logn − 5 log lnn, 11 logn]

with probability ≥ 1 − 1/n − e−n/18.

Proof. By Corollary C.10 in [24], to achieve the additive error

of 4.7 for our protocol the number of geometric random variables

should be ≥ 4 logn. By setting the threshold of the number of phases

to 5×logSize2, for n ≥ 200, 5 logn− 5 log lnn ≥ 4 logn. The num-

ber of phases will be in the interval of [5 logn−5 log lnn, 10 logn+5]
with high probability (10 logn + 5 ≤ 11 logn for n ≥ 2). □

The next Lemma bounds the space complexity of our main

protocol by counting the likely range taken by the variables in

Log-Size-Estimation. It is proven in [24].

Lemma 3.10. Log-Size-Estimation uses O(log4 n) states with

probability ≥ 1 −O(logn)/n.

The next corollary bounds the time complexity of protocol Log-

Size-Estimation; the main component of the time complexity

is that Θ(logn) geometric random variables must be generated

and propagated by epidemic among the population, each epidemic

taking Θ(logn) time. A proof appears in [24].

Corollary 3.11. The Log-Size-Estimation protocol converges in

O(log2 n) time with probability at least 1 − 1/n2.

The following result is a Chernoff bound on sums of random

variables, each of which is the maximum of independent geometric

random variables (with probability of success
1

2
). It is a corollary

of a similar Chernoff bound proven in the appendix of [24].

Lemma 3.12. Let K ≥ 4 logn and a be a number in the interval

of [n/2 −
√
n lnn,n/2 +

√
n lnn]. Let sum/K be the average of K 1

2
-

geometric random variables. Then Pr

[�� sum
K + 1 − logn

�� ≥ 5.7
]
≤ 6

n .

Lemma 3.13. In the Log-Size-Estimation protocol, with probabil-

ity 1, all agents converge to the same value C in their output field.
Furthermore, Pr [|C − logn | ≥ 5.7] ≤ 9/n.

Termination with a leader and guaranteed size upper bound.
Two other results are discussed in more detail in [24]. The first is

that we can make the size-estimation protocol terminating with

high probability using an initial leader. Intuitively, the leader can

be used to trigger an epidemic-based phase clock used to count

to Ω(log2 n), enough time for the protocol to probably have con-

verged. The second discusses the possibility of transforming the

size estimation, which has a small probability of being much larger

or much smaller than the actual size, into a guaranteed upper bound

on the population size.

Reducing the space complexity. In our protocol, we used space

multiplexing, a known technique in population protocols that split

the state space such that different agents are responsible to store

different variables. Although this technique reduces the number

of states per agent, we cannot push it further with the current

scheme. Our protocol is dependent on all agents agreeing on the

values of logSize2 and epoch to stay synchronized. Thus, if an

agent participates in the protocol it is required to stores the updated

value of both logSize2 and epoch.

4 TERMINATION
The concept of termination has been referenced and studied in

population protocols [11, 32, 33], but to our knowledge no for-

mal definition exists. We give an abstract definition capturing the

behavior of most protocols that “perform a computational task”.

Let P be a protocol with a set I of “valid” initial configurations,
where each agent’s memory has a Boolean field terminated set

to False in every configuration in I . A configuration ®c of P is

terminated if at least one agent in ®c has terminated = True. (Note

the distinction with a silent configuration, where no transition can

change any agent’s state [13].) Let κ > 0 and t : N → N. P is

κ-t-terminating if, for all ®i ∈ I , with probability ≥ κ, P reaches from

®i to a terminated configuration ®c , but takes time ≥ t(n) to do so.

This definition leaves totally abstract which particular task (e.g.,

leader election) is assumed to have terminated. The idea is that if the

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

40

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada David Doty and Mahsa Eftekhari

taskwill not be complete before time t(n)with high probability, then
no agent should set terminated = True until time ≥ t(n)with high
probability. So proving an upper bound on t(n) in the definition
of terminating implies that no protocol can be terminating if it
requires time > t(n) to converge.
The definition is applicable beyond the narrow goal of termi-

nating a population protocol. It says more generally that a “signal”
is produced after some amount of time. This signal may be used
to terminate a protocol, move it from one “stage” to another, or it
may be some specific Boolean value relevant to a specific proto-
col, where in any case the value will start False for all agents and
eventually be set to True for at least one agent.
Let α > 0. We say a configuration �c is α-dense if, for all s ∈ Λ,

�c(s) > 0 =⇒ �c(s) ≥ αn. (Recall n = ‖�c‖.) In other words, every
state present occupies at least fraction α of the population. We
say protocol P with valid initial configuration set I is i.o.-dense if
there exists α > 0 such that infinitely many �i ∈ I are α-dense. In
particular, an i.o.-dense protocol does not always have an initial
leader : a state present in count 1 in every �i ∈ I .
The next theorem, our second main result, shows that termi-

nation is impossible for uniform i.o.-dense protocols that require
more than constant time, no matter the space allowed.

Theorem 4.1. Letκ > 0 and t : N→ N, and let P be a uniform i.o.-

dense population protocol. If P is κ-t-terminating, then t(n) = O(1).
Let Λ be the (possibly infinite) set of all states of a population

protocol. Recall the definition of randomized transitions from Sec-
tion 2; We now introduce extra notation that will be useful in
this Section. We consider a transition relation Δ ⊆ Λ4, writing
a,b → c,d to denote that (a,b, c,d) ∈ Δ (i.e., if agents in states
a and b interact, then one of the possible random outcomes is

to change to states c and d). For ρ ∈ (0, 1], we write a,b ρ→ c,d
to denote that when states a and b interact, with probability ρ
they transition to c and d . Say that ρ is the rate constant of tran-

sition a,b
ρ→ c,d . If there exist a,b ∈ Λ and ρ ′ ≥ ρ such that

a,b
ρ′→ c,d , we write c ∈ PRODρ (a,b) and d ∈ PRODρ (a,b). (In

other words, c ∈ PRODρ (a,b) if c is produced with probability at
least ρ whenever a and b interact). For any Γ ⊆ Λ and ρ ∈ [0, 1],
define PRODρ (Γ) = {s ∈ Λ | (∃a,b ∈ Γ) s ∈ PRODρ (a,b)}.
Let Λ0 ⊆ Λ. For i ∈ N+, define Λiρ = Λi−1ρ ∪ PRODρ (Λi−1ρ). For

m ∈ N, if s ∈ Λmρ , we say s ism-ρ-producible from Λ0. For config-
uration �c , we say s ism-ρ-producible from �c if s ism-ρ-producible
from Λ0 = {s ∈ Λ | �c(s) > 0}, the states present in �c .
Our main technical tool is the following lemma, a variant of the

“timer/density lemma” of [23] (see also [2]). The original lemma
states that in a protocol withO(1) states, from any sufficiently large
α-dense configuration, inO(1) time all states appear with δ -density
(for some 0 < δ < α). The proof is similar to that of [23], but is re-
tooled to apply to protocols with a non-constant set of states (also
to use the discrete-time model of population protocols, instead of
the continuous-time model of chemical reaction networks).12 The

12 Alistarh et al. [2] also prove a variant applying to protocols with ω(1) states, but for
a different purpose: to show that all states in Λ appear as long as |Λ | ≤ 1

2 log logn.
However, beyond that bound, the lemma does not hold [29]. In our case, we are not
trying to show that all states in Λ appear, only those in some constant size subset of
states, all of which arem-ρ-producible from the initial configuration.

key new idea is that, even if a protocol has infinitely many states (of
which only finitely many can be produced in finite time), for any
subset of states Λmρ “producible via onlym transitions, each having
rate constant at least ρ”, all states in Λmρ are produced in constant
time with high probability from sufficiently large configurations.

Lemma 4.2. Let α > 0, m ∈ N+, ρ ∈ (0, 1], and P be a popu-

lation protocol. Then there are constants ϵ,δ ,n0 > 0 such that, for

all n ≥ n0, for all α-dense configurations �c of P with n = | |�c | |, the
following holds. Let Λmρ be the set of statesm-ρ-producible from �c .
For s ∈ Λ and t > 0, let Ct,s be the random variable denoting the

count of s at time t , assuming at time 0 the configuration is �c . Then
Pr

[
(∀s ∈ Λmρ) C1,s ≥ δn

]
≥ 1 − 2−ϵn .

A self-contained proof is in [24]. Intuitively, Lemma 4.2 can
be used to prove Theorem 4.1 in the following way. In some
“small” population size n0, the terminal signal appears. The set
of states Λ′ ⊆ Λ appearing with the terminal signal is constant
size. Lemma 4.2 states that for any constant-size Λ′ ⊆ Λ, in all
sufficiently large population sizes, all states in Λ′ appear in con-
stant time with high probability, so the termination signal appears
prematurely in larger populations. This is fairly straightforward
for deterministic transition functions, but it requires some care to
handle a randomized protocol.
We now use Lemma 4.2 to formally prove Theorem 4.1.

Proof of Theorem 4.1. Assume P is κ-t-terminating; we will
show t(n) = O(1). Let (�ci)∞i=1 be an infinite sequence of α-dense
initial configurations in I . Dickson’s Lemma [22] states that every
infinite sequence in Nk has an infinite nondecreasing subsequence,
so assume without loss of generality that �ci ≤ �ci+1 for all i ∈ N.
Let Λ0 = {s ∈ Λ | �c0(s) > 0} be the set of states present in �c0.
By hypothesis Pr [P terminates from �c0] ≥ κ > 0. Thus there is

at least one finite execution E starting with �c0 and ending in a ter-
minated configuration. Letm = |E | be the length of this execution.
Let ρ be the minimum rate constant of any transition in E. Then
every state appearing in configurations in E ism-ρ-producible from
�c0, i.e., is in Λmρ where Λ0 = {s ∈ Λ | �c0(s) > 0} is the set of states
present in �c0.
For any � ≥ 1, since �c0 ≤ �c� , all states in Λmρ arem-ρ-producible

from �c� as well. By Lemma 4.2, there are constants ϵ,δ ,n0 > 0 such
that, for all � ∈ N such that n = ‖�c� ‖ ≥ n0, letting C1,s be the
random variable denoting the count of s at time 1, assuming at time

0 the configuration is �c� , Pr
[(
∀s ∈ Λmρ

)
C1,s ≥ δn

]
≥ 1 − 2−ϵn .

However, Λmρ contains terminated states, so for all �c� with
‖�c� ‖ ≥ n0, with probability ≥ 1 − 2−ϵn , P terminates within time
1. Since 2−ϵn < κ for sufficiently large n, this implies that if P
is κ-t-terminating, then t(n) ≤ 1 for sufficiently large n. Thus
t(n) = O(1). �

Observe how the assumption of uniformity is used in the proof:
we take a set of transitions used on the population �c0 and apply it
to a larger population �c� . In a nonuniform protocol, the transitions
may not be legal to apply to �c� . As a concrete example, in a nonuni-
form protocol, an agent increments a counter using transitions such
as c7,x → c8,y until the counter exceeds logn, then produces a
termination signal t via a transition c8,x → t ,y. The transition

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

41

Efficient Size Estimation and Impossibility of Termination in Uniform Dense Population Protocols PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

c8,x → t ,y producing this signal is not legal in a population larger

than twice n, since the value logn is at least 1 larger in such a pro-

tocol. In this example, the transition of the larger protocol with the

same input states simply increments the counter without producing

a termination signal: c8,x → c9,y.
Acknowledgements. We are grateful to Eric Severson for helpful

comments and anonymous reviewers for their suggestions, which

vastly improved the paper. The second author thanks James Aspnes

for discussions that stimulated a key idea used in the main protocol.

REFERENCES
[1] Scott Aaronson. 2006. Computational Complexity and the Anthropic Principle.

https://www.scottaaronson.com/talks/anthropic.html.

[2] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest.

2017. Time-space trade-offs in population protocols. In SODA 2017: Proceedings of

the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

2560–2579.

[3] Dan Alistarh, James Aspnes, and Rati Gelashvili. 2018. Space-optimal majority

in population protocols. In SODA 2018: Proceedings of the Twenty-Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2221–2239.

[4] Dan Alistarh and Rati Gelashvili. 2015. Polylogarithmic-Time Leader Election in

Population Protocols. In 42nd International Colloquium on Automata, Languages,

and Programming (ICALP) (Lecture Notes in Computer Science), Vol. 9135. Springer,

Berlin, Heidelberg, 479 – 491.

[5] Dan Alistarh and Rati Gelashvili. 2018. Recent Algorithmic Advances in Popula-

tion Protocols. SIGACT News 49, 3 (Oct. 2018), 63–73. https://doi.org/10.1145/

3289137.3289150

[6] Dan Alistarh, Rati Gelashvili, and Milan Vojnović. 2015. Fast and Exact Majority

in Population Protocols. In PODC 2015: Proceedings of the 2015 ACM Symposium

on Principles of Distributed Computing. ACM, 47–56.

[7] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-

alta. 2006. Computation in networks of passively mobile finite-state sensors.

Distributed Computing 18, 4 (March 2006), 235–253.

[8] Dana Angluin, James Aspnes, and David Eisenstat. 2006. Stably computable

predicates are semilinear. In 25th annual ACM Symposium on Principles of Dis-

tributed Computing (PODC). ACM Press, New York, NY, USA, 292–299. https:

//doi.org/10.1145/1146381.1146425

[9] Dana Angluin, James Aspnes, and David Eisenstat. 2008. Fast computation by

population protocols with a leader. Distributed Computing 21, 3 (September 2008),

183–199.

[10] James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. 2017. Time

and Space Optimal Counting in Population Protocols. In 20th International Con-

ference on Principles of Distributed Systems (OPODIS 2016), Vol. 70. 13:1–13:17.

[11] James Aspnes and Eric Ruppert. 2007. An introduction to population protocols.

Bulletin of the European Association for Theoretical Computer Science 93 (October

2007), 98–117.

[12] Joffroy Beauquier, Janna Burman, Simon Claviere, and Devan Sohier. 2015. Space-

optimal counting in population protocols. In DISC 2015: International Symposium

on Distributed Computing. Springer, 631–646.

[13] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. 1999. Memory Space

Requirements for Self-stabilizing Leader Election Protocols. In Proceedings of the

18th Annual ACM Symposium on Principles of Distributed Computing (PODC 1999).

ACM, 199–207. https://doi.org/10.1145/301308.301358

[14] Amanda Belleville, David Doty, and David Soloveichik. 2017. Hardness of com-

puting and approximating predicates and functions with leaderless population

protocols. In ICALP 2017: 44th International Colloquium on Automata, Languages,

and Programming (LIPIcs), Vol. 80. 141:1–141:14.

[15] Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach. 2018. Simple

and Efficient Leader Election. In 1st Symposium on Simplicity in Algorithms (SOSA

2018), Vol. 61. 9:1–9:11.

[16] Petra Berenbrink, Dominik Kaaser, and Tomasz Radzik. 2019. On counting the

population size. In Proceedings of the 38th Annual ACM Symposium on Principles

of Distributed Computing (PODC 2019). to appear.

[17] Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. 2017. Brief

Announcement: Population protocols for leader election and exact majority with

O(log2 n) states and O(log2 n) convergence time. In PODC 2017: Proceedings of

the ACM Symposium on Principles of Distributed Computing. ACM, 451–453.

[18] James M Bower and Hamid Bolouri. 2004. Computational modeling of genetic and

biochemical networks. MIT press.

[19] Shukai Cai, Taisuke Izumi, and Koichi Wada. 2010. Space Complexity of Self-

stabilizing Leader Election in Passively-Mobile Anonymous Agents. In Structural

Information and Communication Complexity, Shay Kutten and Janez Žerovnik

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 113–125.

[20] Ho-Lin Chen, David Doty, and David Soloveichik. 2013. Deterministic Function

Computation with Chemical Reaction Networks. Natural Computing 13, 4 (2013),

517–534. Special issue of invited papers from DNA 2012.

[21] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli,

David Soloveichik, and Georg Seelig. 2013. Programmable chemical controllers

made from DNA. Nature Nanotechnology 8, 10 (2013), 755–762.

[22] Leonard E. Dickson. 1913. Finiteness of the odd perfect and primitive abundant

numbers with n distinct prime factors. American Journal of Mathematics 35

(1913), 413–422. Issue 4. https://doi.org/10.2307/2370405

[23] David Doty. 2014. Timing in chemical reaction networks. In SODA 2014: Proc. of

the 25th Annual ACM-SIAM Symp. on Discrete Algorithms. 772–784.

[24] David Doty and Mahsa Eftekhari. 2018. Efficient size estimation and impossibility

of termination in uniform dense population protocols. CoRR abs/1808.08913

(2018). arXiv:1808.08913 http://arxiv.org/abs/1808.08913

[25] David Doty, Mahsa Eftekhari, Othon Michail, Paul G. Spirakis, and Michail The-

ofilatos. 2018. Brief announcement: Exact size counting in uniform population

protocols in nearly logarithmic time. In 32nd International Symposium on Dis-

tributed Computing (DISC 2018). 46:1–46:3.

[26] David Doty and Monir Hajiaghayi. 2015. Leaderless Deterministic Chemical

Reaction Networks. Natural Computing 14, 2 (2015), 213–223. Preliminary

version appeared in DNA 2013.

[27] David Doty and David Soloveichik. 2018. Stable leader election in population

protocols requires linear time. Distributed Computing 31, 4 (2018), 257–271.

Special issue of invited papers from DISC 2015.

[28] Bennett Eisenberg. 2008. On the expectation of the maximum of IID geometric

random variables. Statistics & Probability Letters 78, 2 (2008), 135 – 143. https:

//doi.org/10.1016/j.spl.2007.05.011

[29] Leszek Gasieniec and Grzegorz Stachowiak. 2018. Fast Space Optimal Leader Elec-

tion in Population Protocols. In SODA 2018: ACM-SIAM Symposium on Discrete

Algorithms. to appear.

[30] Leszek Gasieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. 2018. Almost

logarithmic-time space optimal leader election in population protocols. Technical

Report. arXiv:1802.06867 http://arxiv.org/abs/1802.06867

[31] Adrian Kosowski and Przemyslaw Uznanski. 2018. Population Protocols Are Fast.

CoRR abs/1802.06872 (2018). arXiv:1802.06872 http://arxiv.org/abs/1802.06872

[32] Othon Michail. 2015. Terminating Distributed Construction of Shapes and Pat-

terns in a Fair Solution of Automata. In Proceedings of the 2015 ACM Symposium

on Principles of Distributed Computing. 37–46. Also in Distributed Computing,

2017.

[33] Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. 2012. Terminat-

ing population protocols via some minimal global knowledge assumptions. In

Stabilization, Safety, and Security of Distributed Systems (SSS). Springer, 77–89.

[34] Yves Mocquard, Bruno Sericola, and Emmanuelle Anceaume. 2018. Population

protocols with convergence detection. In 2018 IEEE 17th International Symposium

on Network Computing and Applications (NCA). IEEE, 1–8.

[35] Philippe Rigollet. 2015. Lecture Notes for MIT course 18.S997: High Dimen-

sional Statistics. URL: https://ocw.mit.edu/courses/mathematics/18-s997-high-

dimensional-statistics-spring-2015/lecture-notes/.

[36] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. 2008. Com-

putation with Finite Stochastic Chemical Reaction Networks. Natural Computing

7, 4 (2008), 615–633. http://dx.doi.org/10.1007/s11047-008-9067-y

[37] Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Solove-

ichik. 2017. Enzyme-free nucleic acid dynamical systems. Science 358, 6369 (2017),

eaal2052.

[38] Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and Toshim-

itsu Masuzawa. 2019. Brief Announcement: Logarithmic Expected-Time Leader

Election in Population Protocol Model. In Proceedings of the 38th Annual ACM

Symposium on Principles of Distributed Computing (PODC 2019). to appear.

[39] Vito Volterra. 1926. Variazioni e fluttuazioni del numero dâĂŹindividui in specie

animali conviventi. Mem. Acad. Lincei Roma 2 (1926), 31–113.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

42

https://www.scottaaronson.com/talks/anthropic.html
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/1146381.1146425
https://doi.org/10.1145/1146381.1146425
https://doi.org/10.1145/301308.301358
https://doi.org/10.2307/2370405
http://arxiv.org/abs/1808.08913
http://arxiv.org/abs/1808.08913
https://doi.org/10.1016/j.spl.2007.05.011
https://doi.org/10.1016/j.spl.2007.05.011
http://arxiv.org/abs/1802.06867
http://arxiv.org/abs/1802.06867
http://arxiv.org/abs/1802.06872
http://arxiv.org/abs/1802.06872
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/
http://dx.doi.org/10.1007/s11047-008-9067-y

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Model
	2.1 Definition of correctness and time

	3 Fast protocol for estimating logn within O(1) additive error
	3.1 Intuition
	3.2 Formal specification of protocol

	4 Termination
	References

