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ABSTRACT

We study the composability of discrete chemical reaction networks
(CRNs) that stably compute (i.e., with probability 0 of error) integer-
valued functions f : N? — N. We consider output-oblivious CRNs
in which the output species is never a reactant (input) to any reac-
tion. The class of output-oblivious CRNs is fundamental, appearing
in earlier studies of CRN computation, because it is precisely the
class of CRNs that can be composed by simply renaming the output
of the upstream CRN to match the input of the downstream CRN.

Our main theorem precisely characterizes the functions f stably
computable by output-oblivious CRNs with an initial leader. The
key necessary condition is that for sufficiently large inputs, f is the
minimum of a finite number of nondecreasing quilt-affine functions.
(An affine function is linear with a constant offset; a quilt-affine
function is linear with a periodic offset).
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1 INTRODUCTION

A foundational model of chemistry commonly used in natural sci-
ences is that of chemical reaction networks (CRNs): finite sets of
chemical reactions such as A+ B — A+C. The model is described as
a continuous time, discrete state, Markov process [18]. A configura-
tion of the system is a vector of non-negative integers specifying the
molecular counts of the species (e.g., A, B, C), a reaction can occur
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only when all its reactants are present, and transitions between con-
figurations correspond to reactions (e.g., when the above reaction
occurs the count of B is decreased by 1 and the count of C increased
by 1). CRNs are widely used to describe natural biochemical sys-
tems such as the intricate cellular regulatory networks responsible
for the information processing within cells. Looking beyond the
scientific goal of understanding natural CRNs, to the engineering
goal of constructing programmable, autonomous smart molecules,
artificial CRNs have been implemented using the physical primitive
of nucleic-acid strand displacement cascades [8, 11, 22, 23].

Population protocols, a widely-studied model of distributed com-
puting with very limited agents, are a restricted subset of CRNs
(those with two reactants and two products in each reaction) that
nevertheless capture many of the interesting features of CRNs. The
key feature is the inability of agents (molecules) to control their
schedule of communication (collisions). The decision problems solv-
able by population protocols have been studied extensively: they
can simulate Turing machines with high probability in polyloga-
rithmic time (with [5] or without [19] an initial leader), whereas
requiring probability 0 of error limits the computable predicates to
being semilinear [6].

1.1 Function computation

Computation of functions f : N9 — N was discussed briefly in the
first population protocols paper [3, Section 3.4], which focused more
on Boolean predicate computation, and it was defined formally first
for CRNs [10, 15] and later for population protocols [7]. The class
of functions stably computable in either model is the same: the
semilinear functions [6, 10]. We use the CRN model because it is
more natural for describing functions, but our results also apply to
the population protocol model.

To represent an input x € N9, we start in a configuration with
counts x(i) of species X; for each i € {1,...,d}, and count 1 of a
“leader” species L.! A function f : N9 - N is stably computable by
a CRN if a correct and stable configuration O (i.e., on input x the
count of Y is f(x) in all configurations reachable from O) remains
reachable no matter what reactions occur.?

See Fig. 1 for examples. It is known that a function f : N9 > Nis
stably computable by a CRN if and only if it is semilinear: intuitively,
it is a piecewise affine function. (See Definition 2.5.)

! The leader is discussed in Section 1.3. A CRN may ignore its leader, as in Fig. 1.

2 We use this definition throughout the paper, but we mention here that it is equivalent
to two other natural definitions. The first definition is that any fair sequence of reactions
will take the CRN to such a correct stable configuration, where fair means that any
configuration that is infinitely often reachable is eventually reached. The second
definition is that a correct stable configuration is actually reached with probability 1.
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fx) = 2x || fx1,x2) = min(xg, x2)
X —2Y Xi+Xo—>Y
£ (1, x2) = max(xy, x2)
X1 > Z1+Y
Xo > Zp+Y
Z1+72Z, — K
K+Y — 0

Figure 1: Functions stably computed by CRNs. Note max is computed as
X1 + X2 — min(x1, x2).

1.2 Composability

Note a key difference between the CRNs for min and max in Fig. 1:
the former only produces the output species Y, whereas the latter
also contains reactions that consume Y. In one possible sequence of
reactions for the max CRN, the inputs can be exhausted through the
first two reactions before ever executing the last two reactions. In
doing so, the count of Y overshoots its correct value of max(x1, x2)
before the excess is consumed by the reaction K + Y — 0.

For this reason that the min CRN is more easily composed with a
downstream CRN. For example, the function 2 - min(xy, x7) is stably
computed by the reactions X1 + X2 — W (computing w = x1 + x2)
and W — 2Y (computing y = 2w), renaming the output of the min
CRN to match the input of the multiply-by-2 CRN. However, this
approach does not work to compute 2 - max(x1, x2); changing Y to
W in the four-reaction max CRN and adding the reaction W — 2Y
can erroneously result in up to 2(x; +x2) copies of Y being produced.
Intuitively, the multiply-by-2 reaction W — 2Y competes with the
upstream reaction K + W — ) from the max CRN.

This motivates us to study the class of functions f : N¢ — N
stably computable by output-oblivious CRNs: those in which the
output species Y appears only as a product, never as a reactant.
We call such a function obliviously-computable. Any obliviously-
computable function must be nondecreasing, otherwise reactions
could incorrectly overproduce output (see Observation 2.1).

Obliviously-computable functions must also be semilinear, so it is
reasonable to conjecture that a function is obliviously-computable
if and only if it is semilinear and nondecreasing. In fact, this is
true for 1D functions f : N — N (see Section 3). However, in
higher dimensions, the function max : N? — N is semilinear and
nondecreasing, yet not obliviously-computable; its consumption of
output turns out to be unavoidable. Assuming there is no leader,
this is simple to prove: Since max(1,0) = 1, starting with one Xj,
a Y can be produced. Similarly, a Y can be produced starting with
one X7. Then with one X; and one X3, these reactions can happen
in parallel and produce two Y’s, too many since max(1,1) = 1.
It is more involved to prove that even with a leader, it remains
impossible to obliviously compute max; see Section 4.3

1.3 The role of the leader

Our model includes an initial leader, which is essential for our
general constructions (see Sections 3 and 6). The class of stably

3 This result was obtained independently by Chugg, Condon, and Hashemi [12].
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f(x) = min(1, x)
X-Y
2Y -Y

f(x) = min(1, x)
L+X—>Y

Figure 2: min(1, x) is stably computed by a leaderless non-output-oblivious
CRN (left), and an output-oblivious CRN with a single leader L (right).

computable functions is identical whether an initial leader is al-
lowed or not [15], as is the class of stably computable predicates [6].

Interestingly, the class of obliviously-computable functions we
study is provably larger when an initial leader is allowed. For exam-
ple, consider the function f(x) = min(1, x) (see Fig. 2). f is stably
computable with or without a leader, but only the construction
with a leader is output-oblivious. Without using a leader, f is not
obliviously-computable (see Observation 9.1).

Including the leader gives additional power to the model. This
gives more power to our CRN constructions, but makes our impossi-
bility results stronger. Fully classifying the obliviously-computable
functions in a leaderless model remains an open question.

1.4 Contribution

Our main result, Theorem 5.2, provides a complete characteriza-
tion of the class of obliviously-computable functions. It builds off a
key definition: a quilt-affine function is a nondecreasing function
that is the sum of a rational linear function and periodic function
(formalized as Definition 5.1). For example, functions such as |_37xj
are quilt-affine (see Fig. 3a). Such floored division functions are
natural to the discrete CRN model (LSTXJ is stably computed by
reactions X — 3Z, 2Z — Y). Fig. 3b shows a higher-dimensional
quilt-affine function, with a “bumpy quilt” structure that motivates
the name. Quilt-affine functions are also characterized by nonnega-
tive periodic finite differences, a structure key to showing they are
obliviously-computable (see Lemma 6.1).

Theorem 5.2 states that a function f : N — N is obliviously-
computable if and only if

i) [nondecreasing] f is nondecreasing,
ii) [eventually-min] for sufficiently large inputs, f is the minimum
of a finite number of quilt-affine functions, and
iii) [recursive] every restriction f; : N4-1 5 N obtained by fixing
some inputs to a constant value? is obliviously-computable
(i.e., eventually the minimum of quilt-affine functions).

Condition (ii) characterizes f when all inputs are sufficiently
large (greater than some n € N), whereas condition (iii) character-
izes f when some inputs are fixed to smaller values. See Fig. 4a for a
representative example of an obliviously-computable f : N? — N,
This pictured function has arbitrary nondecreasing values in the “fi-
nite region” where x < (4, 4), has eventual 1D quilt-affine behavior
along the lines x; = 0,1, 2,3 and x2 = 0, 1, 2, 3, and is the minimum
of 3 different quilt-affine functions in the “eventual region” where
X > (4, 4). This behavior generalizes naturally to higher dimensions.

The most technically sophisticated part of our result is the proof
that the eventually-min condition (ii) of Theorem 5.2 is necessary;
the main ideas of this proof are outlined in Section 7.1.

4 Note that Theorem 5.2 defines fixed-input restrictions slightly differently; see Sec-
tion 5 for an explanation.
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o 1 2 3 4
X

(a) A 1D (single-input) quilt-affine function I_%XJ = %x+B(f mod 2), where (b) A 2D quilt-affine function g(x) = (1, 2) - x+ B(X mod 3), where B(X) = 0
B(0) = 0 and B(1) = —%. except when X € {(1, 2),(2,2),(2,1)}.

Figure 3: Examples of 1D and 2D quilt-affine functions.

min of 2D 1D ) )
f quilt-affine quilt- f min of linear
functions affine functions when
1D functions X1,X2 >0 linear at

quilt- linear at

affine‘ x; =0

x, =0

arbitrary finite 44) X1
behavior n=
X1
(a) A 2D function satisfying Theorem 5.2. (b) The scaling limit gives a 2D real-valued obliviously-computable function
from [9].
Figure 4: Example discrete and real-valued obliviously-computable functions.
1.5 Related work where f cannot be described by a unique quilt-affine function, see

Section 7). The ideas required to prove the 2D case are sophisticated
result in the continuous model of CRNs in which species amounts are and ‘far from simple, yet unfor. tunatc?ly, these ideas df’ not extend
given by nonnegative real concentrations. A consequence of their straightforwardly to higher dimensions. The planarity of the 2D

characterization is that any obliviously-computable real-valued input space constrains the regions induced by separating hyper-
planes (i.e., lines) in a strong way. Furthermore, the fact that there

Chalk, Kornerup, Reeves, and Soloveichik [9] showed an analogous

function is a minimum of linear functions when all inputs are

positive. In Theorem 8.2, we demonstrate that the limit of “scalings” is only one nontrivial integer dimension smaller than 2 implies that
the under-determined regions are simpler to reason about than in

the case where they can have arbitrary dimension between 1 and d.
Finally, even restricted to 2D, a notable aspect of our characteriza-
tion is expressing f a minimum of quilt-affine functions, which are
simple intrinsic building blocks that generalize immediately.

of a function f : N? 5 N satisfying our main Theorem 5.2 is in
fact a function f : R‘io — R satisfying the main theorem of [9]
(see Fig. 4b). The discrete details lost in the scaling limit constitute
precisely the unique challenges of proving Theorem 5.2 that are
not handled by [9]. In particular, our function class can contain
arbitrary finite behavior and repeated finite irregularities.
Returning to the discrete (a.k.a., stochastic) CRN model we study,
Chugg, Condon, and Hashemi [12] independently investigated the
special case of two-input functions f : N?> — N computable by
output-oblivious CRNs, obtaining a characterization equivalent to
ours when restricted to 2D. Their characterization is phrased much
differently, with specially constructed “fissure functions” to describe
the function behavior across what we describe as under-determined
regions (intuitively, thin “1D” regions bounded by parallel lines,

1.6 Other ways of composing computation

In Section 2.3 we show that a for a CRN C be composable with down-
stream CRN D by “concatenation” (renaming C’s output species
to match D’s input species and ensuring all other species names
are disjoint between C and D), it is (in a sense) necessary and
sufficient for C to be output-oblivious. There are other ways to
compose computations, however.
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A common technique (e.g. [17]) is for C to detect when its output
has changed and send a restart signal to . However, it is not
obvious how to do this with function computation as defined in
this paper, where D changes C’s output by consuming it.

Another technique (e.g. [5]) is to set a termination signal, which
is a sub-CRN that, with high probability, creates a copy of a signal
species T, but not before C has converged. T then “activates” the
reactions of D, so that O will not consume the output of C until it
is safe to do so. However, this has some positive failure probability.
In fact, if we require T to be guaranteed with probability 1 to be
produced only after the CRN has converged, only constant functions
can be stably computed. Worse yet, in the leaderless case, it is
provably impossible to achieve this guarantee even with positive
probability [14].

2 PRELIMINARIES
2.1 Notation

N denotes the set of nonnegative integers. For a set S (of species),
we write NS to denote the set of vectors indexed by the elements of
S (equivalently, functions f : & — N). Vectors appear in boldface,
and we reserve uppercase A € N for such vectors indexed by
species, and lowercase a € Nd,Zd, Qd,Rd for vectors indexed
by integers. A(S) or a(i) denotes the element indexed by S € S or
i€{l,...,d}. Wewritea < b to denote pointwise vector inequality
a(i) < b(i) for all i.

For p € N, Z/pZ denotes the additive group of integers modulo
p, whose elements are congruence classes. Generalizing to higher
dimensions, Z¢ /pZd denotes the additive group of 74 modulo P,
whose elements are congruence classes. For x € N¢ where d > 1,
we write X mod p to denote the congruence class {x +pz : z €
74} € 74 /p7, also denoted X when p is clear from context.

2.2 Chemical reaction networks

We use the established definitions of stable function computation
by (discrete) chemical reaction networks [4, 12]:

A chemical reaction network (CRN) C = (S, R) is defined by a
finite set S of species and a finite set R of reactions, where a reaction
(R, P) € NS xNS describes the counts of consumed reactant species
and produced product species.’ For example, given S = {A, B, C},
the reaction ((1, 0, 2), (0, 2, 1)) would represent A + 2C — 2B + C.

A configurationC € N specifies the integer counts of all species.
Reaction (R, P) is applicable to Cif R < C, and yields C" = C—R+P,
so we write C — C’. A configuration D is reachable from C if there
exists a finite sequence of configurations such that C - C; —

. — C; — D; we write C —* D to denote that D is reachable
from C. Note this reachability relation is additive: if A —* B, then
A + C —* B + C. This property is key in future proofs to show the
reachability of configurations which overproduce output.

To compute a function® f : N¢ — N, the CRN C will include an
ordered subset {X1,...,X;} C S of input species, an output species

% We do not limit ourselves to bimolecular (two input) reactions, but the higher-order
reactions we use can easily be converted to have this form. For example, 3X — Y is
equivalent to two reactions 2X < Xy and X + X; — Y.

®We consider codomain N without loss of generality, since f : N4 — N’ s stably
computable if and only if each output component is stably computable by parallel
CRNE.
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Y, and a leader species L € S. (Note that we consider removing the
leader in Section 9).

The computation of f(x) will start from an initial configuration
Ix encoding the input with Ix(X;) = x(i) foralli = 1,...,d, along
with a single leader Ix(L) = 1, and count 0 of all other species.
A stable configuration C has unchanged output C(Y) = D(Y) for
any configuration D reachable from C. The CRN C stably computes
f : N9 — N if for each initial configuration Iy encoding any
X € Nd, and configuration C reachable from Iy, there is a stable
configuration O reachable from C with correct output O(Y) = f(x).

2.3 Composition via output-oblivious CRNs

This section formally defines our notions of “composable com-
putation with CRNs via concatenation of reactions” and “output-
oblivious” CRNs that don’t consume their output, showing these
notions to be essentially equivalent.

A CRN is output-oblivious if the output species Y is never a
reactant’: for any reaction (R, P), R(Y) = 0. A function f : N 5 N
is obliviously-computable if f is stably computed by an output-
oblivious CRN.

We begin with an easy observation:

OBSERVATION 2.1. An obliviously-computable function f : N? -
N must be nondecreasing.

Proor. Assume a CRN C (with output species Y) stably com-
putes f, but f(a) > f(b) for a < b. To stably compute f(a), input
configuration I; —* O for some configuration with O(Y) = f(a).
However, since a < b, that same sequence of reactions can be
applied from the input configuration I, > I,. This overproduces
Y since f(a) > f(b). Thus to stably compute f(b), some reaction
must consume Y as a reactant, so C cannot be output-oblivious. O

A CRN being output-oblivious was shown in [9] (for continuous
CRNis) to be equivalent to being “composable via concatenation”,
meaning renaming the output species of one CRN to match the
input of another. This equivalence still holds in our discrete CRN
model. This is formalized as Observation 2.2 and Lemma 2.3.

For CRNs Cy stably computing f : N? — N and Cgy stably com-
puting g : N — N, define the concatenated CRN Cyo by combining
species and reactions, with C¢’s output species as Cy s input species
and no other common species, plus a reaction L — L/ + L9 creating
a copy of the leader from each of Cy and Cy.

We first observe that this composition works correctly if the
upstream CRN Cy is output-oblivious. Intuitively, the reactions
from Cy can only affect the reactions from Cy via the common
species W, but this output species of Cy is never used as a reactant
to stably compute f(x).

OBSERVATION 2.2. If Cy stably computes f N¢ N, Cy stably
computes g : N — N, and Cy is output-oblivious, then the concate-

nated CRN Cyor stably computes the composition g o f : N9 - N.

Note that the downstream CRN Cj; need not be output-oblivious,
but if two output-oblivious CRNs are composed, then the compo-
sition Cgof remains output-oblivious. More generally, g can take

7 A more general definition in [12] of output-monotonic CRNs just requires no reaction
to reduce the count of output species. This can be directly seen to classify the same
set of functions, see [21].
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any number of inputs from output-oblivious CRNs, which act as
modules for arbitrary feedforward composition.

The converse shows that a composable CRN is essentially output-
oblivious. If Cr can be correctly composed with any downstream
Cy. then Cy must function correctly even if downstream reactions
from Cy starve it of the common species W. Thus Cy will still stably
compute f if we remove all reactions with output W as a reactant,
making it output-oblivious. The proof appears in [21].

LemMA 2.3. Let Cy stably compute f : N9 — N such that for
any Cq stably computing g : N — N, the concatenated CRN Cyof
stably computes the composition go f : N4 — N. Then Cy still stably
computes f if we remove all reactions using the output species as a
reactant, making it output-oblivious.

2.4 Semilinear functions

The functions stably computable by a CRN were shown in [10],
building from work in [4], to be precisely the semilinear functions,
which are defined based on semilinear sets®

DEFINITION 2.4. A subset S C N is semilinear if S is a finite
Boolean combination (union, intersection, complement) of threshold
sets of the form {x e N? : a - x > b} fora € Z%,b € Z and mod sets
of the form{x e N :a-x=b mod c} forae Z% b e ZceN,.

A semilinear function can be concisely defined as having a semi-
linear graph, but a more useful equivalent definition comes from
Lemma 4.3 of [10]°:

DEFINITION 2.5 ([10]). A function f : N9 — N is semilinear if
f is the finite union of affine partial functions, whose domains are
disjoint semilinear subsets of N9.

All functions discussed have been semilinear. For example, the
function

x1, ifx; < x

min(xy, x2) = {

X2, if x 1> X2
is semilinear with affine partial functions on disjoint domains which
are defined by a single threshold and thus semilinear.

Similarly, the function

r,xJ {gx,
ST )3, 1
2 37X 3

is semilinear with affine partial functions on disjoint domains which
are defined by parity (a single mod predicate) and thus semilinear.

if x is even

if x is odd

All quilt-affine f : N9 — N are semilinear by the same argument.

LEmMA 2.6 ([10]). A function f : N9 5 N is stably computable
= f is semilinear.

3 WARM-UP: ONE-DIMENSIONAL CASE

For functions with one-dimensional input, the necessary conditions
of being nondecreasing and semilinear are also sufficient.

THEOREM 3.1. f : N — N is obliviously-computable <= f is
semilinear and nondecreasing.

8Semilinear sets have other common equivalent definitions [3]; the above definition is
convenient for our proof.

“Lemma 4.3 in [10] has domains that are non-disjoint linear sets. We assume the
domains are disjoint for convenience, making the domains semilinear sets.
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Figure 5: Every semilinear nondecreasing f : N — N is eventually quilt-
affine, with periodic finite differences Jx.

Intuitively, the proof works as follows. We show semilinear,
nondecreasing f : N — N must have the eventually quilt-affine
structure in Fig. 5. From this structure, we define a CRN that uses
auxiliary leader states to track the value of x (or ¥ mod p once
x > n), while outputting the correct finite differences from adding
each input.

PrROOF. = : Lemma 2.6 and Observation 2.1.

& :If f : N — N is semilinear and nondecreasing, it will
eventually be quilt-affine (generalized to higher-dimensional func-
tions as Definition 5.1) and thus have periodic finite differences: for
some n € N, period p € N, and finite differences &O, R 5pf1 eN,
then forall x > n, f(x + 1) = f(x) = §x mod p) (see Fig. 5).

Because f is semilinear, by Definitions 2.4 and 2.5, it can be
represented as a disjoint union of affine partial functions, whose
domains are semilinear sets, and thus represented as finite Boolean
combinations of threshold {x e N: x > a} andmod{x e N: x = b
mod c} sets. Now take n € N greater than all such a and p = lem(c)
for all such c. Thenforall x > n, f periodically cycles between affine
partial functions. Because f is nondecreasing, these periodically-
repeated affine partial functions must all have the same slope. This
implies f is eventually quilt-affine, with periodic finite differences
for all x > n as claimed.

The CRN C to stably compute f uses input species X, output
species Y, leader L, and species Lo, . .. ,Ln—LPg, .. "PF corre-
sponding to auxiliary “states” of the leader, i.e., exactly one of
L Lo,....Ln-1,P5, ... ’PF is present at any time. Intuitively the
leader tracks how many input X it has seen, where the count past
n wraps around mod p, and outputs the correct finite differences.
The reactions of C are as follows

L— f(0)Y + Lo
Li+X = [fi+1) = fD]Y + Li
Lp1+X = [f(n)— f(n-1)]Y + Pz
P§+X—>55Y+Pm

foralli=0,...,n—2

forallazﬁ,...,p—l.
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Figure 6: Lemma 4.1 applied to f = max(xj, x2).

In the 1D case, we can also characterize the functions obliviously-
computable without a leader: they are semilinear and superadditive:
meaning f(x) + f(y) < f(x +y) for all x, y. (Theorem 9.2)

4 IMPOSSIBILITY RESULT

The characterization of obliviously-computable functions as pre-
cisely semilinear and nondecreasing from Theorem 3.1 is insuffi-
cient in higher dimensions. As an example, consider the function
max : N2 — N, which is both semilinear and nondecreasing. We
prove max is not obliviously-computable via a more general lemma:

LemMa 4.1. Let f : N¢ — N. If there exists an increasing sequence
(a,a,...) € N9 such that for alli < j there exists some A;j € Nd
with f(a; + Ajj) — f(a;) > f(aj + Aij) — f(a;), then f is not
obliviously-computable.

Before proving Lemma 4.1, we use it to show max is not obliviously-
computable.

For f = max(x1,x2), we let a; = (i,0) and A;; = (0, j), so for
i < j, max(i,j) — max(i,0) = j — i > max(j,j) — max(j,0) = 0 as
desired (see Fig. 6). Adding A;; input after computing f(a;) should
produce j — i additional output Y. However, adding A;; input after
computing f(a;) should not. Lemma 4.1 uses this to show there
exists a reaction sequence that overproduces Y, thus max is not
obliviously-computable. We now prove Lemma 4.1.

PRrooOF. Assume toward contradiction an output-oblivious CRN
C stably computes f. To stably compute each f(a;), the initial
configuration I;, —* O; for some configuration with O;(Y) =
f(a;), giving a sequence of configurations (O;);2,. By Dickson’s
Lemma [13], any sequence of nonnegative integer vectors has a
nondecreasing subsequence, so there must be O; < O; for some
i < j. By assumption there exists A;; € N such that

f@@i+Aij) - fQai) > f(aj + Aij) - f(a))

Now consider the initial configuration Lo;+a;; = Ia;, s0 define
the difference D = L+a;; — 1o € NS Then the same sequence of
reactions I, —* O; is applicable to I, +a,; reaching configuration
C; = 0; + D, with C;(Y) = O;(Y) = f(a;). Then to stably compute
f(a; + Ajj) there must exist a further sequence of reactions o from
C; that produce an additional f(a; + A;;) — f(a;) copies of output
Y.

By the same argument, from initial configuration I,;+a,; the
configuration C; = O; + D is reachable, with C;(Y) = O;(Y) =
f(aj). Then since O; < Oj, we have C; < Cj, so the same sequence
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of reactions « is applicable to C;, reaching some configuration Cj’.
with an additional f(a; + A;j;) — f(a;) copies of output Y, so

C]/-(Y) = f(aj) + f(ai + A,’j) - f(a,-) > f(aj + A,’j)

Then I+, —* C} overproduces Y, so the output-oblivious CRN
C cannot stably compute f(a; + A;j). O
Lemma 4.1 is our main technical tool used to show that a particu-
lar semilinear, nondecreasing function is not obliviously-computable,
the key challenge in the impossibility direction of Theorem 5.2.

5 MAIN RESULT: FULL-DIMENSIONAL CASE

To formally state our main result, Theorem 5.2, we must first define
quilt-affine functions as the sum of a linear and periodic function
(see Fig. 3b):

DEFINITION 5.1. A nondecreasing function g : N4 — 7 is quilt-
affine (with period p) if there exists V4 € Qio and B : 74 /p7% — Q
such that g(x) = V4 -x + B(X mod p).

We call V; the gradient of g, and the periodic function B the
periodic offset. Without loss of generality we have the same period p
along all inputs, since p could be the least common multiple of the
periods along each input component. Note that V4 -x and B can each
be rational, but the sum g(x) € Z will be integer-valued. We allow g
to have negative output for technical reasons'?, but in the case that
g is quilt-affine with nonnegative output (i.e. g : N¢ — N), there
is a simple output-oblivious CRN construction to stably compute
g. The intuitive idea is to use a single leader that reacts with every
input species sequentially, tracks the periodic value X mod p, and
outputs the correct changes in g (Lemma 6.1).

Our main result has a recursive condition where we fix the input
of a function f : N9 — N. For each i = 1,...,d and j € N, define
the fixed-input restriction!! fix(h)—j] ¢ N9 — Nof f for all x € N¢
by fix(i)—j)(®) = f(x(1), ..., x(i = 1), j,x(i + 1),...,%(d)).

We can now formally state our main result:

TuroreM 5.2. f : N4 — N is obliviously-computable =

i) [nondecreasing] f is nondecreasing,
i) [eventually-min] there exist quilt-affine g1, ..., gm : N — Z
andn € N? such that for allx > n, f(x) = ming (g (x)), and
iii) [recursive] all fixed-input restrictions fix(;)— ;] are obliviously-
computable.

We first prove that these conditions imply f is obliviously-
computable via a general CRN construction in Section 6.

The nondecreasing condition (i) is necessary by Observation 2.1.
It is immediate to see the recursive condition (iii) is also necessary:

OBSERVATION 5.3. If f : N? - N is obliviously-computable,
then any fixed-input restriction fix(j)—j] N9 = N is obliviously-
computable.

10 The quilt-affine functions that describe f for large inputs may be negative on inputs
close to the origin.

1 We define fix(i)—j] to have domain N9 because it is notationally convenient to
have the same domain as f, but fiy(;)— ;] only has relevant input in d — 1 of its input
components, making condition (iii) recursive.
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Proor. Let the output-oblivious CRN C stably compute f. We
define the output-oblivious CRN C’ to “hardcode” the input x(i) = j
by modifying the reactions of C. Replace all instances of the leader
L and input species X; by L’ and X/ respectively, then add the initial
reaction L — jX/ + L'. It is straightforward to verify that C” stably
computes fix(i)— |- O

Then the remaining work (and biggest effort of this paper) is to
show the necessity of the eventually-min condition (ii): that every
obliviously-computable function can be represented as eventually
a minimum of a finite number of quilt-affine functions, which is
shown as Theorem 7.1. Its proof relies on f being semilinear, non-
decreasing, and not having any “contradiction sequences” to apply
Lemma 4.1. Thus the proof of Theorem 7.1 also yields the following
alternative characterization to Theorem 5.2:

THEOREM 5.4. f : N? - N is obliviously-computable <= f is
semilinear, nondecreasing, and has no sequence (aj, a, . . .) meeting
the conditions of Lemma 4.1.

This gives a “negative characterization” identifying behavior
obliviously-computable functions must avoid, whereas Theorem 5.2,
is a “positive characterization” describing the allowable behavior of
such functions. We include Theorem 5.4, though it is less descriptive
of the function, because it may be useful in other contexts.

6 CONSTRUCTION

First we show that any quilt-affine function with nonnegative range
is stably computed by an output-oblivious CRN:

LeEMMA 6.1. Every quilt-affine function g : N¢ — N is obliviously-
computable.

ProOF. Let g : N4 — N be quilt-affine with period p (recalling
Definition 5.1). Notice that g has periodic finite differences. For each
congruence class a € 74 /pZd and input component i = 1,...,d,
where e; is the ith standard basis vector, define
6L=Vy-e;+Bate; modp)-B@ modp)eN.

a

Observe that for all x € a, g(x + €;) — g(x) = 5;. We now use these
periodic finite differences to construct an output-oblivious CRN C
to stably compute g.

The CRN C has input species X7, . .
species L and pd additional species Ly for each a € 74 /pZd core-
sponding to auxilliary “states” of the leader. The initial reaction
L — g(0)Y + Lg is accompanied by dp? reactions of the form

., X4, output species Y, leader

Ly +X; = 6L + Lyger

foreachi=1,...,d anda € Z¢/PZ%. This CRN first creates g(0)
output, then sequentially outputs all finite differences, and is easily
verified to stably compute g. O

We now prove (in Lemma 6.2) one direction of Theorem 5.2:
that conditions (i), (ii), and (iii) imply an output-oblivious CRN can
stably compute f. Intuitively, by the eventually-min condition (ii)
we compute f(x) for x > n by composing min and quilt-affine
functions. If x # n, then x(i) = j for some input i and j < n(i).
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By the recursive condition (iii) we compute fiy(;)- (%) = f(x) 12,
The key remaining insight is a trick (similar to a proof in [9]) to
compose these pieces using minimum and indicator functions.

The proof of Lemma 6.2 then expresses f as such a minimum of
finitely many pieces. We justify that f is obliviously-computable
by showing that each piece is obliviously-computable, since by
Observation 2.2 obliviously-computable functions are closed under
composition.

LEMMA 6.2. If f : N? 5N satisfies the conditions of Theorem 5.2,
f is obliviously-computable.

ProOF. Assume f : N? — N satisfies the conditions of Theo-
rem 5.2. Then by eventually-min condition (ii), there exist quilt-
affine g1, ..., gm : N4 — Z and n € N (without loss of generality
assume n = (n, ..., n)) such that f(x) = ming (g (x)) for all x > n.

Let x V n = (max(x(1), n), . . ., max(x(d), n)) denote the compo-
nentwise max of x and n. Let 1 (y(;)> j) N9 — {0, 1} denote the
indicator function thatis 1 <= its input x obeys x(i) > j. Recall
fix(i)—j] is the fixed-input restriction setting input x(i) = j. We
claim that f can be expressed as

f(x) =min | f(xVn), fixi)—;1(0) + Lixi)>;3(x) - f(xVn)|. (1)

We first show f > min][...] since for all x € N4, f(x) is achieved
by some term. If x > n, then f(x) = f(x V n). If x # n, there
must be x(i) = jfor somei = 1,...,dandj = 0,...,n—1, so
F&) = fixi)—j1®) = fix(i)—j1®) + L{xi)> ;1 (%) - f(x V n) since
the indicator is 0.

We next show f < min]...] since f(x) < each term for all x €
N4, f(x) < f(xVn)since x < (xVn)and f is nondecreasing. When
1 x(i)>j3(¥) = 1, we then have f(x) < fix(i)—j1(X) + L x(3)> ) (%) -
fx V). If 15 jy(x) = 0, then x(i) < jso f(X) < fixi)—j)(X¥)
since f is nondecreasing. Thus equation 1 holds as claimed.

It remains to show that f is obliviously-computable. From Ob-
servation 2.2, output-oblivious CRNs are closed under composition,
and equation 1 gives a method to express f as a composition of
functions. Thus it suffices to show that each piece is obliviously-
computable. Specifically, we show the functions min : N — N
(for any k), f(x vV n) : N¥ — N, fiy;)m;1®) : N¢ — N, and
c(a,b,x) = a+ Lixi)>j(x) - b N9+2 5 N are each obliviously-
computable. Implicit in the composed CRN to stably compute f as
the composition from equation 1 is the “fan out” operation where
reactions of the form X; — Xil, ... X" create multiple copies of
species X; to be used as independent inputs to multiple “modules”
in this composition.

min : N¥ — N is obliviously-computable:
Consider the CRN with single reaction X1, ..., X, — Y, the
natural generalization of two-input min from Fig. 1.

f(x Vv n):N? - N is obliviously-computable:
By condition (ii), f(xV n) = ming(gg(xVn)) since xVn > n,
so it suffices to show for each quilt-affine gy, : N9 — Z that
gr(x V n) is obliviously-computable.

12 A5 a result, this construction is recursive, with an additional input being fixed at
each level of the recursion, so the base case is simply a constant function.
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By condition (ii), g (x + n) > f(x +n) > 0 since x +n > n.
Then g(x + n) : N — N is still quilt-affine since that
property is preserved by translation, but now has guaranteed
nonnegative output. Thus by Lemma 6.1, g (x+n) : N? 5 N
is obliviously-computable.
Letting (x—n)+ = (max(x(1)—n,0), . .., max(x(d)—n, 0)), we
then show the function (x — n); : N¢ — N9 ig obliviously-
computable via the CRN with reactions (n+1)X; — nX; +Y;
for each componenti =1,...,d.
Finally, because x V n = (x — n);+ + n, we have shown
gr(x V n) = gp((x — n);+ + n) is obliviously-computable
as the composition of obliviously-computable g (x + n) and
(x-n);.

fix(iy—j1(%) : N9 — N is obliviously-computable:
This is precisely the assumed recursive condition (iii).

c(a,b,x) = a+ 1 y)sj3(x) - b: Nd+2 5, N

is obliviously-computable:
Consider the output-oblivious CRN (with input species
A, B, X1,...,X, and output species Y) with two reactions
A— Yand j+1)X; +B — (j+ 1)X; + Y. The Ais all
converted to Y, and (j + 1) copies of input species X; cat-
alyze the conversion of B to Y, which will only happen when
1 (x(i)>j}(x) = 1. Thus this stably computes c(a, b, x) as de-
sired. O

7 OUTPUT-OBLIVIOUS IMPLIES
EVENTUALLY MIN OF QUILT-AFFINE
FUNCTIONS

To complete the proof of Theorem 5.2, it remains to show the
necessity of the eventually-min condition (ii):

Tueorem 7.1. If f : N4 — N is obliviously-computable, then
there exist quilt-affine g1, . . ., gm : N — Z andn € N9 such that
forallx > n, f(x) = ming (g (x)).

For the remainder of Section 7, we fix an obliviously-computable
f: N9 — N, and Section 7 is devoted to finding g1, ...,gm and n
satisfying Theorem 7.1.

7.1 Proof outline

Since f : N¢ — N is obliviously-computable, f is semilinear (recall
Definition 2.5), and we first consider all threshold sets used to
define the semilinear domains of the affine partial functions that
define f. Each threshold set defines a hyperplane, and we use these

hyperplanes to define regions (see Fig. 8a and Fig. 8c). We consider
d
>0’
13

regions as subsets of R? | so they are convex polyhedra with useful

geometric properties.

The regions partition 14 the points in the domain N9 To prove
Theorem 7.1, for each region R we will identify a quilt-affine
function g (the extension of f from region R) such that g(x) =
f(x) for all integer x € R. To ensure f = ming(gg), we further
require that these quilt-affine extensions eventually dominate f
(each gi(x) > f(x) for sufficiently large x). Also, because we only

3What we consider is a restricted case of a hyperplane arrangement [24], with well-
studied combinatorial properties.

“Without loss of generality, we assume that the hyperplanes do not intersect N9, so
that the partition is well-defined (see Fig. 8a).
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(a) Plot of f, whose domain has 3
regions: Dy, Dy, and U.

(b) g1 (green) is the unique quilt-
affine extension from region D;.

(d) gu (green) is a quilt-affine ex-
tension from U, and gy > f.

(c) g (green) is a quilt-affine exten-
sion from U, but g < f on D;.

Figure 7: Obliviously-computable f can be expressed as a min of quilt-
affine functions.

care about sufficiently large x, we need only consider eventual
regions which are unbounded in all inputs (for example regions 3,4,
and 5 in Fig. 8a).

As a simple motivating example, consider the semilinear, nonde-
creasing function

x1+1, ifx; < xy (region Dq)
flri,x2) ={x2 + 1, ifx; > x2 (region Dy)
x1 if x1 = x (region U)

As in Definition 2.5, f is piecewise-affine, with semilinear domains
that happen to be only defined by threshold sets. These thresh-
olds then partition the domain into three regions: D1, Dy, and U
(see Fig. 7a). For region Dy, there is a unique quilt-affine extension
g1(x1,x2) = x1 + 1 (note an affine function is the special case of
a quilt-affine function with period 1). Also, g; eventually domi-
nates f as desired, since g1(x) > f(x) for all x € N? (see Fig. 7b).
By symmetry, we have the same for region D and its extension
ga(x1,%2) = x2 + 1.

These desirable properties follow from D; and D being “wide”
regions that we define to be determined (formalized later). On the
other hand, U is a “narrow” region that is under-determined. As
a result, there is not a unique quilt-affine extension from U. For
example, g(x1, x2) = x7 is a quilt-affine extension, however, we do
not have g(x) > f(x) for all sufficiently large x (see Fig. 7c).

In order to identify a quilt-affine extension from U that does
eventually dominate f, we will refer to the unique extensions g; and
g2 from regions Dy and Dy, which are neighbors of U (formalized
later). We can construct a quilt-affine function with a gradient
(%, %) that is the average of the gradients (1,0) of g; and (0,1)
of go. In particular, we can let gy7(x1, x2) = [%] (note this is
a quilt-affine function with period 2, see Fig. 7d). We then have
f(x) = min[g1(x), g2(x), gy (x)] for all x > n = 0 as guaranteed by
Theorem 7.1.
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X1

(a) Three threshold hyperplanes creating five regions. Regions 3 and 5 are
determined, region 4 is under-determined but still eventual (unbounded

in all input).

X3

x
Xq 2

(c) Two pairs of parallel threshold hyperplanes creating nine eventual
regions. Regions 1,3,7,9 are determined. Region 5 is under-determined
with 1D recession cone. Regions 2,4,6,8 are under-determined with 2D

recession cones.
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recc(1)
°

recc(4)
regc(Z)

(b) The recession cones of all five regions. For finite regions, recc(1) =
recc(2) = {0}. Under-determined region 4 has a 1D recession cone, deter-
mined regions 3 and 5 have 2D recession cones.

X3 X3
recc(5) recc(6)
X2 Xy Xz

—

X3
recc(3)
X1 *2

X1

(d) recc(5) C recc(6) C recc(3) so region 3 is a determined neighbor of
under-determined region 5 and under-determined region 6. Also, region
6 is a neighbor of region 5.

Figure 8: Examples with domains N? (top) and N* (bottom), with threshold hyperplanes giving regions (left), which are classified by their recession cones (right).

We now describe how we formalize the notion of a determined
region, under-determined region, and neighbor, for the general case
of domain N¢, where the regions are convex polyhedra in R4,

To formally define determined regions, we identify the recession
conerecc(R) € RY of each region R: the set of vectors along infinite
rays in R [20] (see Fig. 8b and Fig. 8d). A determined region D is
defined as having a d-dimensional recession cone (see regions 3 and
5 in Fig. 8a and regions 1,3,7,9 in Fig. 8c). For determined regions, we
can prove there is a unique quilt-affine extension, which eventually
dominates f.

Under-determined regions are then defined as having a reces-
sion cone with dimension < d (see regions 1,2,4 in Fig. 8a and
regions 2,4,5,6,8 in Fig. 8c). The above arguments do not work for
under-determined regions. Instead, identify the neighbors of an
under-determined region U as regions R with recc(U) C recc(R)
(see Fig. 8b and Fig. 8d). We consider the neighbors of U that are
determined regions. The possible behavior of f on U is constrained
by the unique extensions from these regions, and we can define an
extension from U based on an averaging process. Formal definitions
and a proof of Theorem 7.1 appear in [21].
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8 COMPARISON TO CONTINUOUS CASE

In [9], the authors classified the power of output-oblivious continu-
ous CRNs to stably compute real-valued functions f : R‘io — Rxo.
We can generalize to also consider such functions by introducing
the following natural scaling:

DEFINITION 8.1. For a function f : N¢ — N, the co-scaling

feREy > Regisgiven by f(o = lim LD,
> c—00

Note this limit may not exist for arbitrary f : N? — N, but it
will exist for all obliviously-computable f.

The next theorem shows that in this scaling limit, our output-
oblivious function class exactly corresponds to the real-valued func-
tion class from [9] (see Fig. 4b). The proof appears in [21].

THEOREM 8.2. If f : N? - N is obliviously-computable, then the
W—scalingf : R‘io — R is obliviously-computable by a continuous
CRN. Furthermore, every function obliviously-computable by a contin-
uous CRN is the co-scaling of some function obliviously-computable
by a discrete CRN.
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9 LEADERLESS ONE-DIMENSIONAL CASE

In this section we show a characterization of 1D functions f : N —
N that are obliviously-computable without a leader. The general
case for leaderless oblivious computation in higher dimensions
remains open.

Note that the following observation applies to any number of
dimensions. We say f : N¢ — N is superadditive if f(x) + f(y) <
f(x+y)foralxye N4,

OBSERVATION 9.1. Every f obliviously-computable by a leaderless
CRN is superadditive.

ProOF. Let C be aleaderless CRN stably computing f. We prove
the observation by contrapositive. Suppose f is not superadditive.
Then there are x, z € N such that f(x)+ f(z) > f(x + z). Recall
I is the initial configuration of C representing input w. Let ax be
a sequence of reactions applied to I to produce f(x) copies of Y,
and let a; be a sequence of reactions applied to I to produce f(z)
copies of Y.

Since C is leaderless, Ix+; = Ix + I,. Thus we can apply ax to
Ix+z, followed by @z, producing f(x)+ f(z) copies of Y. Since this is
greater than f(x + z), to stably compute f, C must have a reaction
consuming Y, so it is not output-oblivious. Since C was arbitrary,
f cannot be obliviously-computable. O

This added condition of superadditivity gives us the 1D leaderless
characterization. The proof appears in [21].

THEOREM 9.2. Forany f : N — N, f is obliviously-computable
by a leaderless CRN <= f is semilinear and superadditive.

10 CONCLUSION

An obvious question is the computational power of output-oblivious
CRNs without an initial leader. A leaderlessly-obliviously-computable
function must be superadditive, which is a strictly stronger condi-
tion than being nondecreasing. The continuous result [9] had the
same restriction of superadditivity, so our “scaling limit” reduction
to their function class (Theorem 8.2) shows our main function class
is already “almost superadditive.” We also showed in the 1D case,
f : N — Nis leaderlessly-obliviously-computable if and only if f
is semilinear and superadditive (Theorem 9.2).

Does adding the additional constraint of superaddivity to our full
result (Theorem 5.2) classify leaderlessly-obliviously-computable
f: N9 — N? If this were true, a proof would require modifying our
construction (Section 6) to eliminate the leader L. We successfully
modified the 1D construction (Theorem 3.1) to remove the leader
in proving Theorem 9.2, but it has been difficult to extend the same
ideas to our much more complicated general construction.

An initial leader can also help make computation faster [5, 7,
19]. Many recent results in population protocols have shown time
upper and lower bounds for computational tasks such as leader
election and function/predicate computation [1, 2, 7, 16, 17, 19].
These techniques, however, are not at all designed to handle the
constraint of output-obliviousness. It would be interesting to study
how this constraint affects the time required for computation.
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