
Composable Computation in Discrete Chemical Reaction
Networks

Eric E. Severson
∗

eseverson@ucdavis.edu

University of California, Davis

Davis, California

David Haley
∗

drhaley@ucdavis.edu

University of California, Davis

Davis, California

David Doty
∗

doty@ucdavis.edu

University of California, Davis

Davis, California

ABSTRACT
We study the composability of discrete chemical reaction networks

(CRNs) that stably compute (i.e., with probability 0 of error) integer-

valued functions f : Nd → N. We consider output-oblivious CRNs
in which the output species is never a reactant (input) to any reac-

tion. The class of output-oblivious CRNs is fundamental, appearing

in earlier studies of CRN computation, because it is precisely the

class of CRNs that can be composed by simply renaming the output

of the upstream CRN to match the input of the downstream CRN.

Our main theorem precisely characterizes the functions f stably

computable by output-oblivious CRNs with an initial leader. The

key necessary condition is that for sufficiently large inputs, f is the

minimum of a finite number of nondecreasing quilt-affine functions.
(An affine function is linear with a constant offset; a quilt-affine
function is linear with a periodic offset).

CCS CONCEPTS
• Theory of computation → Distributed computing models; Dis-
tributed algorithms.

KEYWORDS
chemical reaction network, population protocol, composable com-

putation, semilinear

ACM Reference Format:
Eric E. Severson, David Haley, and David Doty. 2019. Composable Com-

putation in Discrete Chemical Reaction Networks. In 2019 ACM Sympo-
sium on Principles of Distributed Computing (PODC ’19), July 29-August
2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3293611.3331615

1 INTRODUCTION
A foundational model of chemistry commonly used in natural sci-

ences is that of chemical reaction networks (CRNs): finite sets of

chemical reactions such asA+B → A+C . The model is described as

a continuous time, discrete state, Markov process [18]. A configura-

tion of the system is a vector of non-negative integers specifying the

molecular counts of the species (e.g., A, B, C), a reaction can occur

∗
Authors supported by NSF grants 1619343 and 1844976.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331615

only when all its reactants are present, and transitions between con-

figurations correspond to reactions (e.g., when the above reaction

occurs the count of B is decreased by 1 and the count ofC increased

by 1). CRNs are widely used to describe natural biochemical sys-

tems such as the intricate cellular regulatory networks responsible

for the information processing within cells. Looking beyond the

scientific goal of understanding natural CRNs, to the engineering
goal of constructing programmable, autonomous smart molecules,

artificial CRNs have been implemented using the physical primitive

of nucleic-acid strand displacement cascades [8, 11, 22, 23].

Population protocols, a widely-studied model of distributed com-

puting with very limited agents, are a restricted subset of CRNs

(those with two reactants and two products in each reaction) that

nevertheless capture many of the interesting features of CRNs. The

key feature is the inability of agents (molecules) to control their

schedule of communication (collisions). The decision problems solv-

able by population protocols have been studied extensively: they

can simulate Turing machines with high probability in polyloga-

rithmic time (with [5] or without [19] an initial leader), whereas

requiring probability 0 of error limits the computable predicates to

being semilinear [6].

1.1 Function computation
Computation of functions f : Nd → N was discussed briefly in the

first population protocols paper [3, Section 3.4], which focusedmore

on Boolean predicate computation, and it was defined formally first

for CRNs [10, 15] and later for population protocols [7]. The class

of functions stably computable in either model is the same: the

semilinear functions [6, 10]. We use the CRN model because it is

more natural for describing functions, but our results also apply to

the population protocol model.

To represent an input x ∈ Nd , we start in a configuration with

counts x(i) of species Xi for each i ∈ {1, . . . ,d}, and count 1 of a

“leader” species L.1 A function f : Nd → N is stably computable by
a CRN if a correct and stable configuration O (i.e., on input x the

count of Y is f (x) in all configurations reachable from O) remains

reachable no matter what reactions occur.
2

See Fig. 1 for examples. It is known that a function f : Nd → N is

stably computable by a CRN if and only if it is semilinear : intuitively,
it is a piecewise affine function. (See Definition 2.5.)

1
The leader is discussed in Section 1.3. A CRN may ignore its leader, as in Fig. 1.

2
We use this definition throughout the paper, but we mention here that it is equivalent

to two other natural definitions. The first definition is that any fair sequence of reactions

will take the CRN to such a correct stable configuration, where fair means that any

configuration that is infinitely often reachable is eventually reached. The second

definition is that a correct stable configuration is actually reached with probability 1.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

14

https://doi.org/10.1145/3293611.3331615
https://doi.org/10.1145/3293611.3331615
https://doi.org/10.1145/3293611.3331615

f (x) = 2x

X → 2Y

f (x1, x2) = min(x1, x2)

X1 + X2 → Y

f (x1, x2) = max(x1, x2)

X1 → Z1 + Y
X2 → Z2 + Y

Z1 + Z2 → K
K + Y → ∅

Figure 1: Functions stably computed by CRNs. Note max is computed as
x1 + x2 −min(x1, x2).

1.2 Composability
Note a key difference between the CRNs for min and max in Fig. 1:

the former only produces the output species Y , whereas the latter
also contains reactions that consume Y . In one possible sequence of

reactions for the max CRN, the inputs can be exhausted through the

first two reactions before ever executing the last two reactions. In

doing so, the count of Y overshoots its correct value of max(x1, x2)
before the excess is consumed by the reaction K + Y → ∅.

For this reason that the min CRN is more easily composed with a

downstream CRN. For example, the function 2 ·min(x1, x2) is stably
computed by the reactions X1 + X2 →W (computingw = x1 + x2)
andW → 2Y (computing y = 2w), renaming the output of the min

CRN to match the input of the multiply-by-2 CRN. However, this

approach does not work to compute 2 ·max(x1, x2); changing Y to

W in the four-reaction max CRN and adding the reactionW → 2Y
can erroneously result in up to 2(x1+x2) copies ofY being produced.

Intuitively, the multiply-by-2 reactionW → 2Y competes with the

upstream reaction K +W → ∅ from the max CRN.

This motivates us to study the class of functions f : Nd → N
stably computable by output-oblivious CRNs: those in which the

output species Y appears only as a product, never as a reactant.

We call such a function obliviously-computable. Any obliviously-

computable function must be nondecreasing, otherwise reactions

could incorrectly overproduce output (see Observation 2.1).

Obliviously-computable functionsmust also be semilinear, so it is

reasonable to conjecture that a function is obliviously-computable

if and only if it is semilinear and nondecreasing. In fact, this is

true for 1D functions f : N → N (see Section 3). However, in

higher dimensions, the function max : N2 → N is semilinear and

nondecreasing, yet not obliviously-computable; its consumption of

output turns out to be unavoidable. Assuming there is no leader,

this is simple to prove: Since max(1, 0) = 1, starting with one X1,

a Y can be produced. Similarly, a Y can be produced starting with

one X2. Then with one X1 and one X2, these reactions can happen

in parallel and produce two Y ’s, too many since max(1, 1) = 1.

It is more involved to prove that even with a leader, it remains

impossible to obliviously compute max; see Section 4.
3

1.3 The role of the leader
Our model includes an initial leader, which is essential for our

general constructions (see Sections 3 and 6). The class of stably

3
This result was obtained independently by Chugg, Condon, and Hashemi [12].

f (x) = min(1, x)

X → Y
2Y → Y

f (x) = min(1, x)

L + X → Y

Figure 2: min(1, x) is stably computed by a leaderless non-output-oblivious
CRN (left), and an output-oblivious CRN with a single leader L (right).

computable functions is identical whether an initial leader is al-

lowed or not [15], as is the class of stably computable predicates [6].

Interestingly, the class of obliviously-computable functions we

study is provably larger when an initial leader is allowed. For exam-

ple, consider the function f (x) = min(1, x) (see Fig. 2). f is stably

computable with or without a leader, but only the construction

with a leader is output-oblivious. Without using a leader, f is not

obliviously-computable (see Observation 9.1).

Including the leader gives additional power to the model. This

gives more power to our CRN constructions, but makes our impossi-

bility results stronger. Fully classifying the obliviously-computable

functions in a leaderless model remains an open question.

1.4 Contribution
Our main result, Theorem 5.2, provides a complete characteriza-

tion of the class of obliviously-computable functions. It builds off a

key definition: a quilt-affine function is a nondecreasing function

that is the sum of a rational linear function and periodic function

(formalized as Definition 5.1). For example, functions such as ⌊ 3x
2
⌋

are quilt-affine (see Fig. 3a). Such floored division functions are

natural to the discrete CRN model (⌊ 3x
2
⌋ is stably computed by

reactions X → 3Z , 2Z → Y). Fig. 3b shows a higher-dimensional

quilt-affine function, with a “bumpy quilt” structure that motivates

the name. Quilt-affine functions are also characterized by nonnega-

tive periodic finite differences, a structure key to showing they are

obliviously-computable (see Lemma 6.1).

Theorem 5.2 states that a function f : Nd → N is obliviously-

computable if and only if

i) [nondecreasing] f is nondecreasing,

ii) [eventually-min] for sufficiently large inputs, f is the minimum

of a finite number of quilt-affine functions, and

iii) [recursive] every restriction fr : Nd−1 → N obtained by fixing

some inputs to a constant value
4
is obliviously-computable

(i.e., eventually the minimum of quilt-affine functions).

Condition (ii) characterizes f when all inputs are sufficiently

large (greater than some n ∈ Nd), whereas condition (iii) character-

izes f when some inputs are fixed to smaller values. See Fig. 4a for a

representative example of an obliviously-computable f : N2 → N.
This pictured function has arbitrary nondecreasing values in the “fi-

nite region” where x < (4, 4), has eventual 1D quilt-affine behavior

along the lines x1 = 0, 1, 2, 3 and x2 = 0, 1, 2, 3, and is the minimum

of 3 different quilt-affine functions in the “eventual region” where

x ≥ (4, 4). This behavior generalizes naturally to higher dimensions.

The most technically sophisticated part of our result is the proof

that the eventually-min condition (ii) of Theorem 5.2 is necessary;

the main ideas of this proof are outlined in Section 7.1.

4
Note that Theorem 5.2 defines fixed-input restrictions slightly differently; see Sec-

tion 5 for an explanation.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

15

(a) A 1D (single-input) quilt-affine function � 3x2 � = 3
2 x+B(x mod 2), where

B(0) = 0 and B(1) = − 12 .

(b) A 2D quilt-affine function д(x) = (1, 2) · x+ B(x mod 3), where B(x) = 0

except when x ∈ {(1, 2), (2, 2), (2, 1)}.

Figure 3: Examples of 1D and 2D quilt-affine functions.

quilt-
affine
functions

quilt-
affine

arbitrary finite
behavior

min of
quilt-affine
functions

(a) A 2D function satisfying Theorem 5.2.

linear at
linear at

min of linear
functions when

(b) The scaling limit gives a 2D real-valued obliviously-computable function
from [9].

Figure 4: Example discrete and real-valued obliviously-computable functions.

1.5 Related work

Chalk, Kornerup, Reeves, and Soloveichik [9] showed an analogous

result in the continuousmodel of CRNs inwhich species amounts are

given by nonnegative real concentrations. A consequence of their

characterization is that any obliviously-computable real-valued

function is a minimum of linear functions when all inputs are

positive. In Theorem 8.2, we demonstrate that the limit of “scalings”

of a function f : Nd → N satisfying our main Theorem 5.2 is in

fact a function f̂ : Rd≥0 → R≥0 satisfying the main theorem of [9]
(see Fig. 4b). The discrete details lost in the scaling limit constitute

precisely the unique challenges of proving Theorem 5.2 that are

not handled by [9]. In particular, our function class can contain

arbitrary finite behavior and repeated finite irregularities.

Returning to the discrete (a.k.a., stochastic) CRN model we study,

Chugg, Condon, and Hashemi [12] independently investigated the

special case of two-input functions f : N2 → N computable by

output-oblivious CRNs, obtaining a characterization equivalent to

ours when restricted to 2D. Their characterization is phrased much

differently, with specially constructed “fissure functions” to describe

the function behavior across what we describe as under-determined

regions (intuitively, thin “1D” regions bounded by parallel lines,

where f cannot be described by a unique quilt-affine function, see
Section 7). The ideas required to prove the 2D case are sophisticated

and far from simple, yet unfortunately, these ideas do not extend

straightforwardly to higher dimensions. The planarity of the 2D

input space constrains the regions induced by separating hyper-

planes (i.e., lines) in a strong way. Furthermore, the fact that there

is only one nontrivial integer dimension smaller than 2 implies that

the under-determined regions are simpler to reason about than in

the case where they can have arbitrary dimension between 1 and d .
Finally, even restricted to 2D, a notable aspect of our characteriza-

tion is expressing f a minimum of quilt-affine functions, which are
simple intrinsic building blocks that generalize immediately.

1.6 Other ways of composing computation

In Section 2.3 we show that a for a CRN C be composable with down-

stream CRN D by “concatenation” (renaming C’s output species

to match D’s input species and ensuring all other species names

are disjoint between C and D), it is (in a sense) necessary and

sufficient for C to be output-oblivious. There are other ways to

compose computations, however.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

16

A common technique (e.g. [17]) is for C to detect when its output

has changed and send a restart signal to D. However, it is not

obvious how to do this with function computation as defined in

this paper, where D changes C’s output by consuming it.

Another technique (e.g. [5]) is to set a termination signal, which

is a sub-CRN that, with high probability, creates a copy of a signal

species T , but not before C has converged. T then “activates” the
reactions of D, so that D will not consume the output of C until it

is safe to do so. However, this has some positive failure probability.

In fact, if we require T to be guaranteed with probability 1 to be
produced only after the CRNhas converged, only constant functions

can be stably computed. Worse yet, in the leaderless case, it is

provably impossible to achieve this guarantee even with positive

probability [14].

2 PRELIMINARIES

2.1 Notation

N denotes the set of nonnegative integers. For a set S (of species),

we writeNS to denote the set of vectors indexed by the elements of

S (equivalently, functions f : S → N). Vectors appear in boldface,

and we reserve uppercase A ∈ NS for such vectors indexed by

species, and lowercase a ∈ Nd ,Zd ,Qd ,Rd for vectors indexed

by integers. A(S) or a(i) denotes the element indexed by S ∈ S or

i ∈ {1, . . . ,d}. We write a ≤ b to denote pointwise vector inequality

a(i) ≤ b(i) for all i .
For p ∈ N+, Z/pZ denotes the additive group of integers modulo

p, whose elements are congruence classes. Generalizing to higher

dimensions, Zd/pZd denotes the additive group of Zd modulo p,

whose elements are congruence classes. For x ∈ Nd where d ≥ 1,

we write x mod p to denote the congruence class {x + pz : z ∈

Zd } ∈ Zd/pZd , also denoted x when p is clear from context.

2.2 Chemical reaction networks

We use the established definitions of stable function computation

by (discrete) chemical reaction networks [4, 12]:

A chemical reaction network (CRN) C = (S,R) is defined by a

finite setS of species and a finite setR of reactions, where a reaction

(R, P) ∈ NS×NS describes the counts of consumed reactant species

and produced product species.5 For example, given S = {A,B,C},
the reaction ((1, 0, 2), (0, 2, 1)) would represent A + 2C → 2B +C .

A configurationC ∈ NS specifies the integer counts of all species.

Reaction (R, P) is applicable to C if R ≤ C, and yields C′ = C−R+P,

so we write C → C′. A configuration D is reachable from C if there

exists a finite sequence of configurations such that C → C1 →

. . . → Cn → D; we write C →∗ D to denote that D is reachable

from C. Note this reachability relation is additive: if A →∗ B, then

A + C →∗ B + C. This property is key in future proofs to show the

reachability of configurations which overproduce output.

To compute a function6 f : Nd → N, the CRN C will include an

ordered subset {X1, . . . ,Xd } ⊂ S of input species, an output species

5 We do not limit ourselves to bimolecular (two input) reactions, but the higher-order
reactions we use can easily be converted to have this form. For example, 3X → Y is
equivalent to two reactions 2X ↔ X2 and X + X2 → Y .
6We consider codomain N without loss of generality, since f : Nd → Nl is stably
computable if and only if each output component is stably computable by parallel
CRNs.

Y , and a leader species L ∈ S. (Note that we consider removing the

leader in Section 9).

The computation of f (x) will start from an initial configuration
Ix encoding the input with Ix(Xi) = x(i) for all i = 1, . . . ,d , along
with a single leader Ix(L) = 1, and count 0 of all other species.
A stable configuration C has unchanged output C(Y) = D(Y) for
any configuration D reachable from C. The CRN C stably computes

f : Nd → N if for each initial configuration Ix encoding any

x ∈ Nd , and configuration C reachable from Ix, there is a stable

configuration O reachable from C with correct output O(Y) = f (x).

2.3 Composition via output-oblivious CRNs

This section formally defines our notions of “composable com-

putation with CRNs via concatenation of reactions” and “output-

oblivious” CRNs that don’t consume their output, showing these

notions to be essentially equivalent.

A CRN is output-oblivious if the output species Y is never a

reactant7: for any reaction (R, P), R(Y) = 0. A function f : Nd → N

is obliviously-computable if f is stably computed by an output-
oblivious CRN.

We begin with an easy observation:

Observation 2.1. An obliviously-computable function f : Nd →

N must be nondecreasing.

Proof. Assume a CRN C (with output species Y) stably com-
putes f , but f (a) > f (b) for a ≤ b. To stably compute f (a), input
configuration Ia →∗ O for some configuration with O(Y) = f (a).
However, since a ≤ b, that same sequence of reactions can be

applied from the input configuration Ib ≥ Ia. This overproduces

Y since f (a) > f (b). Thus to stably compute f (b), some reaction
must consume Y as a reactant, so C cannot be output-oblivious. �

A CRN being output-oblivious was shown in [9] (for continuous

CRNs) to be equivalent to being “composable via concatenation”,

meaning renaming the output species of one CRN to match the

input of another. This equivalence still holds in our discrete CRN

model. This is formalized as Observation 2.2 and Lemma 2.3.

For CRNs Cf stably computing f : N
d → N and Cд stably com-

puting д : N→ N, define the concatenated CRN Cд◦f by combining

species and reactions, with Cf ’s output species as Cд ’s input species

and no other common species, plus a reaction L → Lf +Lд creating
a copy of the leader from each of Cf and Cд .

We first observe that this composition works correctly if the

upstream CRN Cf is output-oblivious. Intuitively, the reactions

from Cд can only affect the reactions from Cf via the common

speciesW , but this output species of Cf is never used as a reactant
to stably compute f (x).

Observation 2.2. If Cf stably computes f : N
d → N, Cд stably

computes д : N→ N, and Cf is output-oblivious, then the concate-

nated CRN Cд◦f stably computes the composition д ◦ f : Nd → N.

Note that the downstream CRN Cд need not be output-oblivious,

but if two output-oblivious CRNs are composed, then the compo-

sition Cд◦f remains output-oblivious. More generally, д can take

7 A more general definition in [12] of output-monotonic CRNs just requires no reaction
to reduce the count of output species. This can be directly seen to classify the same
set of functions, see [21].

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

17

any number of inputs from output-oblivious CRNs, which act as

modules for arbitrary feedforward composition.

The converse shows that a composable CRN is essentially output-

oblivious. If Cf can be correctly composed with any downstream

Cд , then Cf must function correctly even if downstream reactions

from Cд starve it of the common speciesW . Thus Cf will still stably
compute f if we remove all reactions with outputW as a reactant,

making it output-oblivious. The proof appears in [21].

Lemma 2.3. Let Cf stably compute f : N
d → N such that for

any Cд stably computing д : N → N, the concatenated CRN Cд◦f

stably computes the composition д◦ f : Nd → N. Then Cf still stably

computes f if we remove all reactions using the output species as a
reactant, making it output-oblivious.

2.4 Semilinear functions

The functions stably computable by a CRN were shown in [10],

building from work in [4], to be precisely the semilinear functions,

which are defined based on semilinear sets8

Definition 2.4. A subset S ⊆ Nd is semilinear if S is a finite
Boolean combination (union, intersection, complement) of threshold

sets of the form {x ∈ Nd : a · x ≥ b} for a ∈ Zd ,b ∈ Z and mod sets

of the form {x ∈ Nd : a · x ≡ b mod c} for a ∈ Zd ,b ∈ Z, c ∈ N+.

A semilinear function can be concisely defined as having a semi-

linear graph, but a more useful equivalent definition comes from

Lemma 4.3 of [10]9:

Definition 2.5 ([10]). A function f : Nd → N is semilinear if

f is the finite union of affine partial functions, whose domains are

disjoint semilinear subsets of Nd .

All functions discussed have been semilinear. For example, the

function

min(x1, x2) =

{
x1, if x1 ≤ x2

x2, if x1 > x2

is semilinear with affine partial functions on disjoint domains which

are defined by a single threshold and thus semilinear.

Similarly, the function⌊
3x

2

⌋
=

{
3
2x, if x is even
3
2x − 1

2 , if x is odd

is semilinear with affine partial functions on disjoint domains which

are defined by parity (a single mod predicate) and thus semilinear.

All quilt-affine f : Nd → N are semilinear by the same argument.

Lemma 2.6 ([10]). A function f : Nd → N is stably computable

⇐⇒ f is semilinear.

3 WARM-UP: ONE-DIMENSIONAL CASE

For functions with one-dimensional input, the necessary conditions

of being nondecreasing and semilinear are also sufficient.

Theorem 3.1. f : N→ N is obliviously-computable ⇐⇒ f is
semilinear and nondecreasing.

8Semilinear sets have other common equivalent definitions [3]; the above definition is
convenient for our proof.
9Lemma 4.3 in [10] has domains that are non-disjoint linear sets. We assume the
domains are disjoint for convenience, making the domains semilinear sets.

n

p

Figure 5: Every semilinear nondecreasing f : N → N is eventually quilt-
affine, with periodic finite differences δx .

Intuitively, the proof works as follows. We show semilinear,

nondecreasing f : N → N must have the eventually quilt-affine

structure in Fig. 5. From this structure, we define a CRN that uses

auxiliary leader states to track the value of x (or x mod p once
x ≥ n), while outputting the correct finite differences from adding
each input.

Proof. =⇒ : Lemma 2.6 and Observation 2.1.

⇐= : If f : N → N is semilinear and nondecreasing, it will

eventually be quilt-affine (generalized to higher-dimensional func-

tions as Definition 5.1) and thus have periodic finite differences: for

some n ∈ N, period p ∈ N+, and finite differences δ0, . . . , δp−1 ∈ N,

then for all x ≥ n, f (x + 1) − f (x) = δ(x mod p) (see Fig. 5).

Because f is semilinear, by Definitions 2.4 and 2.5, it can be
represented as a disjoint union of affine partial functions, whose

domains are semilinear sets, and thus represented as finite Boolean

combinations of threshold {x ∈ N : x ≥ a} and mod {x ∈ N : x ≡ b
mod c} sets. Now take n ∈ N greater than all such a and p = lcm(c)
for all such c . Then for all x ≥ n, f periodically cycles between affine
partial functions. Because f is nondecreasing, these periodically-
repeated affine partial functions must all have the same slope. This

implies f is eventually quilt-affine, with periodic finite differences
for all x ≥ n as claimed.
The CRN C to stably compute f uses input species X , output

species Y , leader L, and species L0, . . . , Ln−1, P0, . . . , Pp−1 corre-

sponding to auxiliary “states” of the leader, i.e., exactly one of

L, L0, . . . , Ln−1, P0, . . . , Pp−1 is present at any time. Intuitively the

leader tracks how many input X it has seen, where the count past
n wraps around mod p, and outputs the correct finite differences.
The reactions of C are as follows

L → f (0)Y + L0

Li + X → [f (i + 1) − f (i)]Y + Li+1 for all i = 0, . . . ,n − 2

Ln−1 + X → [f (n) − f (n − 1)]Y + Pn

Pa + X → δaY + Pa+1 for all a = 0, . . . ,p − 1. �

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

18

Figure 6: Lemma 4.1 applied to f = max(x1, x2).

In the 1D case, we can also characterize the functions obliviously-

computable without a leader: they are semilinear and superadditive:

meaning f (x) + f (y) ≤ f (x + y) for all x,y. (Theorem 9.2)

4 IMPOSSIBILITY RESULT

The characterization of obliviously-computable functions as pre-

cisely semilinear and nondecreasing from Theorem 3.1 is insuffi-

cient in higher dimensions. As an example, consider the function

max : N2 → N, which is both semilinear and nondecreasing. We

prove max is not obliviously-computable via a more general lemma:

Lemma 4.1. Let f : Nd → N. If there exists an increasing sequence

(a1, a2, . . .) ∈ N
d such that for all i < j there exists some Δi j ∈ N

d

with f (ai + Δi j) − f (ai) > f (aj + Δi j) − f (aj), then f is not
obliviously-computable.

Before proving Lemma 4.1, we use it to showmax is not obliviously-

computable.

For f = max(x1, x2), we let ai = (i, 0) and Δi j = (0, j), so for
i < j, max(i, j) − max(i, 0) = j − i > max(j, j) − max(j, 0) = 0 as
desired (see Fig. 6). Adding Δi j input after computing f (ai) should
produce j − i additional output Y . However, adding Δi j input after

computing f (aj) should not. Lemma 4.1 uses this to show there
exists a reaction sequence that overproduces Y , thus max is not
obliviously-computable. We now prove Lemma 4.1.

Proof. Assume toward contradiction an output-oblivious CRN

C stably computes f . To stably compute each f (ai), the initial
configuration Iai →∗ Oi for some configuration with Oi (Y) =
f (ai), giving a sequence of configurations (Oi)

∞
i=1. By Dickson’s

Lemma [13], any sequence of nonnegative integer vectors has a

nondecreasing subsequence, so there must be Oi ≤ Oj for some

i < j. By assumption there exists Δi j ∈ N
d such that

f (ai + Δi j) − f (ai) > f (aj + Δi j) − f (aj)

Now consider the initial configuration Iai+Δi j ≥ Iai , so define

the difference D = Iai+Δi j − Iai ∈ N
S . Then the same sequence of

reactions Iai →
∗ Oi is applicable to Iai+Δi j reaching configuration

Ci = Oi +D, with Ci (Y) = Oi (Y) = f (ai). Then to stably compute
f (ai +Δi j) there must exist a further sequence of reactions α from
Ci that produce an additional f (ai + Δi j) − f (ai) copies of output
Y .
By the same argument, from initial configuration Iaj+Δi j the

configuration Cj = Oj + D is reachable, with Cj (Y) = Oj (Y) =
f (aj). Then sinceOi ≤ Oj , we have Ci ≤ Cj , so the same sequence

of reactions α is applicable to Cj , reaching some configuration C
′
j

with an additional f (ai + Δi j) − f (ai) copies of output Y , so

C′
j (Y) = f (aj) + f (ai + Δi j) − f (ai) > f (aj + Δi j)

Then Iaj+Δi j →
∗ C′

j overproduces Y , so the output-oblivious CRN

C cannot stably compute f (aj + Δi j). �

Lemma 4.1 is our main technical tool used to show that a particu-

lar semilinear, nondecreasing function is not obliviously-computable,

the key challenge in the impossibility direction of Theorem 5.2.

5 MAIN RESULT: FULL-DIMENSIONAL CASE

To formally state our main result, Theorem 5.2, we must first define

quilt-affine functions as the sum of a linear and periodic function

(see Fig. 3b):

Definition 5.1. A nondecreasing function д : Nd → Z is quilt-

affine (with period p) if there exists ∇д ∈ Qd≥0 and B : Z
d/pZd → Q

such that д(x) = ∇д · x + B(x mod p).

We call ∇д the gradient of д, and the periodic function B the
periodic offset. Without loss of generality we have the same period p
along all inputs, since p could be the least common multiple of the
periods along each input component. Note that∇д ·x and B can each
be rational, but the sum д(x) ∈ Zwill be integer-valued. We allow д
to have negative output for technical reasons10, but in the case that

д is quilt-affine with nonnegative output (i.e. д : Nd → N), there

is a simple output-oblivious CRN construction to stably compute

д. The intuitive idea is to use a single leader that reacts with every
input species sequentially, tracks the periodic value x mod p, and
outputs the correct changes in д (Lemma 6.1).
Our main result has a recursive condition where we fix the input

of a function f : Nd → N. For each i = 1, . . . ,d and j ∈ N, define

the fixed-input restriction11 f[x(i)→j] : N
d → N of f for all x ∈ Nd

by f[x(i)→j](x) = f (x(1), . . . , x(i − 1), j, x(i + 1), . . . , x(d)).
We can now formally state our main result:

Theorem 5.2. f : Nd → N is obliviously-computable ⇐⇒

i) [nondecreasing] f is nondecreasing,

ii) [eventually-min] there exist quilt-affine д1, . . . ,дm : N
d → Z

and n ∈ Nd such that for all x ≥ n, f (x) = mink (дk (x)), and
iii) [recursive] all fixed-input restrictions f[x(i)→j] are obliviously-

computable.

We first prove that these conditions imply f is obliviously-
computable via a general CRN construction in Section 6.

The nondecreasing condition (i) is necessary by Observation 2.1.

It is immediate to see the recursive condition (iii) is also necessary:

Observation 5.3. If f : Nd → N is obliviously-computable,

then any fixed-input restriction f[x(i)→j] : N
d → N is obliviously-

computable.

10 The quilt-affine functions that describe f for large inputs may be negative on inputs
close to the origin.
11 We define f[x(i)→j] to have domain N

d because it is notationally convenient to

have the same domain as f , but f[x(i)→j] only has relevant input in d − 1 of its input

components, making condition (iii) recursive.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

19

Proof. Let the output-oblivious CRN C stably compute f . We
define the output-oblivious CRN C′ to “hardcode” the input x(i) = j
by modifying the reactions of C. Replace all instances of the leader

L and input speciesXi by L
′ andX ′

i respectively, then add the initial

reaction L → jX ′
i + L

′. It is straightforward to verify that C′ stably

computes f[x(i)→j]. �

Then the remaining work (and biggest effort of this paper) is to

show the necessity of the eventually-min condition (ii): that every

obliviously-computable function can be represented as eventually

a minimum of a finite number of quilt-affine functions, which is

shown as Theorem 7.1. Its proof relies on f being semilinear, non-
decreasing, and not having any “contradiction sequences” to apply

Lemma 4.1. Thus the proof of Theorem 7.1 also yields the following

alternative characterization to Theorem 5.2:

Theorem 5.4. f : Nd → N is obliviously-computable ⇐⇒ f is
semilinear, nondecreasing, and has no sequence (a1, a2, . . .) meeting

the conditions of Lemma 4.1.

This gives a “negative characterization” identifying behavior

obliviously-computable functions must avoid, whereas Theorem 5.2,

is a “positive characterization” describing the allowable behavior of

such functions.We include Theorem 5.4, though it is less descriptive

of the function, because it may be useful in other contexts.

6 CONSTRUCTION

First we show that any quilt-affine function with nonnegative range

is stably computed by an output-oblivious CRN:

Lemma 6.1. Every quilt-affine function д : Nd → N is obliviously-

computable.

Proof. Let д : Nd → N be quilt-affine with period p (recalling
Definition 5.1). Notice thatд has periodic finite differences. For each

congruence class a ∈ Zd/pZd and input component i = 1, . . . ,d ,
where ei is the ith standard basis vector, define

δ i
a
= ∇д · ei + B(a + ei mod p) − B(a mod p) ∈ N.

Observe that for all x ∈ a, д(x + ei) − д(x) = δ i
a
. We now use these

periodic finite differences to construct an output-oblivious CRN C

to stably compute д.
The CRN C has input speciesX1, . . . ,Xd , output speciesY , leader

species L and pd additional species La for each a ∈ Zd/pZd core-
sponding to auxilliary “states” of the leader. The initial reaction

L → д(0)Y + L0 is accompanied by dp
d reactions of the form

La + Xi → δ i
a
Y + La+ei

for each i = 1, . . . ,d and a ∈ Zd/PZd . This CRN first creates д(0)
output, then sequentially outputs all finite differences, and is easily

verified to stably compute д. �

We now prove (in Lemma 6.2) one direction of Theorem 5.2:

that conditions (i), (ii), and (iii) imply an output-oblivious CRN can

stably compute f . Intuitively, by the eventually-min condition (ii)
we compute f (x) for x ≥ n by composing min and quilt-affine

functions. If x � n, then x(i) = j for some input i and j < n(i).

By the recursive condition (iii) we compute f[x(i)→j](x) = f (x) 12.
The key remaining insight is a trick (similar to a proof in [9]) to

compose these pieces using minimum and indicator functions.

The proof of Lemma 6.2 then expresses f as such a minimum of
finitely many pieces. We justify that f is obliviously-computable
by showing that each piece is obliviously-computable, since by

Observation 2.2 obliviously-computable functions are closed under

composition.

Lemma 6.2. If f : Nd → N satisfies the conditions of Theorem 5.2,

f is obliviously-computable.

Proof. Assume f : Nd → N satisfies the conditions of Theo-

rem 5.2. Then by eventually-min condition (ii), there exist quilt-

affine д1, . . . ,дm : N
d → Z and n ∈ Nd (without loss of generality

assume n = (n, . . . ,n)) such that f (x) = mink (дk (x)) for all x ≥ n.

Let x ∨ n = (max(x(1),n), . . . ,max(x(d),n)) denote the compo-

nentwise max of x and n. Let 1{x(i)>j } : N
d → {0, 1} denote the

indicator function that is 1 ⇐⇒ its input x obeys x(i) > j. Recall
f[x(i)→j] is the fixed-input restriction setting input x(i) = j. We
claim that f can be expressed as

f (x) = min

[
f (x∨n), f[x(i)→j](x) + 1{x(i)>j }(x) · f (x ∨ n)︸���︷︷���︸

i=1, ...,d
j=0, ...,n−1

]
. (1)

We first show f ≥ min[. . .] since for all x ∈ Nd , f (x) is achieved
by some term. If x ≥ n, then f (x) = f (x ∨ n). If x � n, there

must be x(i) = j for some i = 1, . . . ,d and j = 0, . . . ,n − 1, so

f (x) = f[x(i)→j](x) = f[x(i)→j](x) + 1{x(i)>j }(x) · f (x ∨ n) since

the indicator is 0.

We next show f ≤ min[. . .] since f (x) ≤ each term for all x ∈

Nd . f (x) ≤ f (x∨n) since x ≤ (x∨n) and f is nondecreasing. When
1{x(i)>j }(x) = 1, we then have f (x) ≤ f[x(i)→j](x)+1{x(i)>j }(x) ·

f (x ∨ n). If 1{x(i)>j }(x) = 0, then x(i) ≤ j so f (x) ≤ f[x(i)→j](x)

since f is nondecreasing. Thus equation 1 holds as claimed.
It remains to show that f is obliviously-computable. From Ob-

servation 2.2, output-oblivious CRNs are closed under composition,

and equation 1 gives a method to express f as a composition of
functions. Thus it suffices to show that each piece is obliviously-

computable. Specifically, we show the functions min : Nk → N

(for any k), f (x ∨ n) : Nd → N, f[x(i)→j](x) : N
d → N, and

c(a,b, x) = a + 1{x(i)>j }(x) · b : N
d+2 → N are each obliviously-

computable. Implicit in the composed CRN to stably compute f as
the composition from equation 1 is the “fan out” operation where

reactions of the form Xi → X 1i , . . . ,X
m
i create multiple copies of

species Xi to be used as independent inputs to multiple “modules”
in this composition.

min : Nk → N is obliviously-computable:

Consider the CRN with single reaction X1, . . . ,Xk → Y , the
natural generalization of two-input min from Fig. 1.

f (x ∨ n) : Nd → N is obliviously-computable:

By condition (ii), f (x∨n) = mink (дk (x∨n)) since x∨n ≥ n,

so it suffices to show for each quilt-affine дk : N
d → Z that

дk (x ∨ n) is obliviously-computable.

12As a result, this construction is recursive, with an additional input being fixed at
each level of the recursion, so the base case is simply a constant function.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

20

By condition (ii), дk (x + n) ≥ f (x + n) ≥ 0 since x + n ≥ n.

Then дk (x + n) : Nd → N is still quilt-affine since that

property is preserved by translation, but now has guaranteed

nonnegative output. Thus by Lemma 6.1,дk (x+n) : N
d → N

is obliviously-computable.

Letting (x−n)+ = (max(x(1)−n, 0), . . . ,max(x(d)−n, 0)), we

then show the function (x − n)+ : N
d → Nd is obliviously-

computable via the CRN with reactions (n+1)Xi → nXi +Yi
for each component i = 1, . . . ,d .
Finally, because x ∨ n = (x − n)+ + n, we have shown

дk (x ∨ n) = дk ((x − n)+ + n) is obliviously-computable

as the composition of obliviously-computable дk (x + n) and
(x − n)+.

f[x(i)→j](x) : N
d → N is obliviously-computable:

This is precisely the assumed recursive condition (iii).

c(a,b, x) = a + 1{x(i)>j }(x) · b : N
d+2 → N

is obliviously-computable:
Consider the output-oblivious CRN (with input species

A,B,X1, . . . ,Xd and output species Y) with two reactions
A → Y and (j + 1)Xi + B → (j + 1)Xi + Y . The A is all
converted to Y , and (j + 1) copies of input species Xi cat-
alyze the conversion of B toY , which will only happen when
1{x(i)>j }(x) = 1. Thus this stably computes c(a,b, x) as de-
sired. �

7 OUTPUT-OBLIVIOUS IMPLIES
EVENTUALLY MIN OF QUILT-AFFINE
FUNCTIONS

To complete the proof of Theorem 5.2, it remains to show the

necessity of the eventually-min condition (ii):

Theorem 7.1. If f : Nd → N is obliviously-computable, then

there exist quilt-affine д1, . . . ,дm : N
d → Z and n ∈ Nd such that

for all x ≥ n, f (x) = mink (дk (x)).

For the remainder of Section 7, we fix an obliviously-computable

f : Nd → N, and Section 7 is devoted to finding д1, . . . ,дm and n
satisfying Theorem 7.1.

7.1 Proof outline

Since f : Nd → N is obliviously-computable, f is semilinear (recall
Definition 2.5), and we first consider all threshold sets used to

define the semilinear domains of the affine partial functions that

define f . Each threshold set defines a hyperplane, and we use these
hyperplanes to define regions (see Fig. 8a and Fig. 8c). We consider

regions as subsets of Rd≥0, so they are convex polyhedra with useful

geometric properties.13

The regions partition 14 the points in the domain Nd . To prove

Theorem 7.1, for each region Rk we will identify a quilt-affine
function дk (the extension of f from region R) such that д(x) =
f (x) for all integer x ∈ R. To ensure f = mink (дk), we further
require that these quilt-affine extensions eventually dominate f
(each дk (x) ≥ f (x) for sufficiently large x). Also, because we only

13What we consider is a restricted case of a hyperplane arrangement [24], with well-
studied combinatorial properties.
14Without loss of generality, we assume that the hyperplanes do not intersect Nd , so
that the partition is well-defined (see Fig. 8a).

(a) Plot of f , whose domain has 3
regions: D1, D2, andU .

(b) д1 (green) is the unique quilt-
affine extension from region D1.

(c) д (green) is a quilt-affine exten-
sion fromU , but д < f on D1.

(d) дU (green) is a quilt-affine ex-
tension fromU , and дU ≥ f .

Figure 7: Obliviously-computable f can be expressed as a min of quilt-
affine functions.

care about sufficiently large x, we need only consider eventual

regions which are unbounded in all inputs (for example regions 3,4,

and 5 in Fig. 8a).

As a simple motivating example, consider the semilinear, nonde-

creasing function

f (x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + 1, if x1 < x2 (region D1)

x2 + 1, if x1 > x2 (region D2)

x1 if x1 = x2 (regionU)

As in Definition 2.5, f is piecewise-affine, with semilinear domains
that happen to be only defined by threshold sets. These thresh-

olds then partition the domain into three regions: D1, D2, and U
(see Fig. 7a). For region D1, there is a unique quilt-affine extension
д1(x1, x2) = x1 + 1 (note an affine function is the special case of
a quilt-affine function with period 1). Also, д1 eventually domi-
nates f as desired, since д1(x) ≥ f (x) for all x ∈ N2 (see Fig. 7b).

By symmetry, we have the same for region D2 and its extension
д2(x1, x2) = x2 + 1.
These desirable properties follow from D1 and D2 being “wide”

regions that we define to be determined (formalized later). On the

other hand, U is a “narrow” region that is under-determined. As
a result, there is not a unique quilt-affine extension from U . For
example, д(x1, x2) = x1 is a quilt-affine extension, however, we do
not have д(x) ≥ f (x) for all sufficiently large x (see Fig. 7c).
In order to identify a quilt-affine extension from U that does

eventually dominate f , we will refer to the unique extensionsд1 and
д2 from regions D1 and D2, which are neighbors of U (formalized
later). We can construct a quilt-affine function with a gradient

(12 ,
1
2) that is the average of the gradients (1, 0) of д1 and (0, 1)

of д2. In particular, we can let дU (x1, x2) = �
x1+x2
2 � (note this is

a quilt-affine function with period 2, see Fig. 7d). We then have

f (x) = min [д1(x),д2(x),дU (x)] for all x ≥ n = 0 as guaranteed by

Theorem 7.1.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

21

(a) Three threshold hyperplanes creating five regions. Regions 3 and 5 are
determined, region 4 is under-determined but still eventual (unbounded
in all input).

(b) The recession cones of all five regions. For finite regions, recc(1) =
recc(2) = {0}. Under-determined region 4 has a 1D recession cone, deter-
mined regions 3 and 5 have 2D recession cones.

(c) Two pairs of parallel threshold hyperplanes creating nine eventual
regions. Regions 1,3,7,9 are determined. Region 5 is under-determined
with 1D recession cone. Regions 2,4,6,8 are under-determined with 2D
recession cones.

(d) recc(5) ⊆ recc(6) ⊆ recc(3) so region 3 is a determined neighbor of
under-determined region 5 and under-determined region 6. Also, region
6 is a neighbor of region 5.

Figure 8: Examples with domainsN2 (top) andN3 (bottom), with threshold hyperplanes giving regions (left), which are classified by their recession cones (right).

We now describe how we formalize the notion of a determined

region, under-determined region, and neighbor, for the general case

of domain Nd , where the regions are convex polyhedra in Rd .

To formally define determined regions, we identify the recession

cone recc(R) ⊆ Rd of each region R: the set of vectors along infinite
rays in R [20] (see Fig. 8b and Fig. 8d). A determined region D is
defined as having a d-dimensional recession cone (see regions 3 and
5 in Fig. 8a and regions 1,3,7,9 in Fig. 8c). For determined regions, we

can prove there is a unique quilt-affine extension, which eventually

dominates f .
Under-determined regions are then defined as having a reces-

sion cone with dimension < d (see regions 1,2,4 in Fig. 8a and
regions 2,4,5,6,8 in Fig. 8c). The above arguments do not work for

under-determined regions. Instead, identify the neighbors of an

under-determined region U as regions R with recc(U) ⊆ recc(R)
(see Fig. 8b and Fig. 8d). We consider the neighbors of U that are
determined regions. The possible behavior of f onU is constrained
by the unique extensions from these regions, and we can define an

extension fromU based on an averaging process. Formal definitions
and a proof of Theorem 7.1 appear in [21].

8 COMPARISON TO CONTINUOUS CASE

In [9], the authors classified the power of output-oblivious continu-

ous CRNs to stably compute real-valued functions f : Rd≥0 → R≥0.
We can generalize to also consider such functions by introducing

the following natural scaling:

Definition 8.1. For a function f : Nd → N, the ∞-scaling

f̂ : Rd≥0 → R≥0 is given by f̂ (x) = lim
c→∞

f (�cx�)
c .

Note this limit may not exist for arbitrary f : Nd → N, but it

will exist for all obliviously-computable f .
The next theorem shows that in this scaling limit, our output-

oblivious function class exactly corresponds to the real-valued func-

tion class from [9] (see Fig. 4b). The proof appears in [21].

Theorem 8.2. If f : Nd → N is obliviously-computable, then the

∞-scaling f̂ : Rd≥0 → R≥0 is obliviously-computable by a continuous
CRN. Furthermore, every function obliviously-computable by a contin-

uous CRN is the∞-scaling of some function obliviously-computable

by a discrete CRN.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

22

9 LEADERLESS ONE-DIMENSIONAL CASE
In this section we show a characterization of 1D functions f : N→

N that are obliviously-computable without a leader. The general
case for leaderless oblivious computation in higher dimensions

remains open.

Note that the following observation applies to any number of

dimensions. We say f : Nd → N is superadditive if f (x) + f (y) ≤
f (x + y) for all x, y ∈ Nd .

Observation 9.1. Every f obliviously-computable by a leaderless
CRN is superadditive.

Proof. Let C be a leaderless CRN stably computing f . We prove

the observation by contrapositive. Suppose f is not superadditive.

Then there are x, z ∈ Nd such that f (x) + f (z) > f (x + z). Recall
Iw is the initial configuration of C representing input w. Let αx be

a sequence of reactions applied to Ix to produce f (x) copies of Y ,
and let αz be a sequence of reactions applied to Iz to produce f (z)
copies of Y .

Since C is leaderless, Ix+z = Ix + Iz. Thus we can apply αx to

Ix+z, followed by αz, producing f (x)+ f (z) copies of Y . Since this is
greater than f (x + z), to stably compute f , C must have a reaction

consuming Y , so it is not output-oblivious. Since C was arbitrary,

f cannot be obliviously-computable. �

This added condition of superadditivity gives us the 1D leaderless

characterization. The proof appears in [21].

Theorem 9.2. For any f : N→ N, f is obliviously-computable
by a leaderless CRN ⇐⇒ f is semilinear and superadditive.

10 CONCLUSION
An obvious question is the computational power of output-oblivious

CRNswithout an initial leader. A leaderlessly-obliviously-computable

function must be superadditive, which is a strictly stronger condi-

tion than being nondecreasing. The continuous result [9] had the

same restriction of superadditivity, so our “scaling limit” reduction

to their function class (Theorem 8.2) shows our main function class

is already “almost superadditive.” We also showed in the 1D case,

f : N→ N is leaderlessly-obliviously-computable if and only if f
is semilinear and superadditive (Theorem 9.2).

Does adding the additional constraint of superaddivity to our full

result (Theorem 5.2) classify leaderlessly-obliviously-computable

f : Nd → N? If this were true, a proof would require modifying our

construction (Section 6) to eliminate the leader L. We successfully

modified the 1D construction (Theorem 3.1) to remove the leader

in proving Theorem 9.2, but it has been difficult to extend the same

ideas to our much more complicated general construction.

An initial leader can also help make computation faster [5, 7,

19]. Many recent results in population protocols have shown time

upper and lower bounds for computational tasks such as leader

election and function/predicate computation [1, 2, 7, 16, 17, 19].

These techniques, however, are not at all designed to handle the

constraint of output-obliviousness. It would be interesting to study

how this constraint affects the time required for computation.

Acknowledgements. We thank Anne Condon, Cameron Chalk,

Niels Kornerup, Wyatt Reeves, and David Soloveichik for discussing

their related work with us and contributing early ideas.

REFERENCES
[1] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest.

Time-space trade-offs in molecular computation. In SODA 2017: Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, 2017.

[2] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in

population protocols. In SODA 2018: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2221–2239. SIAM, 2018.

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael Fischer, and René Peralta.

Computation in networks of passively mobile finite-state sensors. Distributed
Computing, 18:235–253, 2006. Preliminary version appeared in PODC 2004.

[4] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates

are semilinear. In PODC 2006: Proceedings of the twenty-fifth annual ACM sympo-
sium on Principles of distributed computing, pages 292–299, New York, NY, USA,

2006. ACM Press.

[5] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by popula-

tion protocols with a leader. Distributed Computing, 21(3):183–199, September

2008. Preliminary version appeared in DISC 2006.

[6] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The compu-

tational power of population protocols. Distributed Computing, 20(4):279–304,
2007.

[7] Amanda Belleville, David Doty, and David Soloveichik. Hardness of computing

and approximating predicates and functions with leaderless population protocols.

In ICALP, volume 80 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 141:1–141:14, 2017.

[8] Luca Cardelli. Strand algebras for DNA computing. Natural Computing, 10(1):407–
428, 2011.

[9] Cameron Chalk, Niels Kornerup, Wyatt Reeves, and David Soloveichik. Compos-

able rate-independent computation in continuous chemical reaction networks.

In Computational Methods in Systems Biology, 2018.
[10] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function com-

putation with chemical reaction networks. Natural Computing, 13(4):517–534,
2014. Preliminary version appeared in DNA 2012.

[11] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli,

David Soloveichik, and Georg Seelig. Programmable chemical controllers made

from DNA. Nature Nanotechnology, 8(10):755–762, 2013.
[12] Ben Chugg, Anne Condon, and Hooman Hashemi. Output-oblivious stochastic

chemical reaction networks. In OPODIS 2018: Proceedings of the 22nd International
Conference on Principles of Distributed Systems, 2018.

[13] Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers

with n distinct prime factors. American Journal of Mathematics, 35(4):413–422,
1913.

[14] David Doty and Mahsa Eftekhari. Efficient size estimation and impossibility of

termination in uniform dense population protocols. In PODC 2019: Proceedings of
the 38th ACM Symposium on Principles of Distributed Computing, 2019. to appear.

[15] David Doty and Monir Hajiaghayi. Leaderless deterministic chemical reaction

networks. Natural Computing, 14(2):213–223, 2015. Preliminary version appeared

in DNA 2013.

[16] David Doty and David Soloveichik. Stable leader election in population protocols

requires linear time. Distributed Computing, 31(4):257–271, 2018. Special issue of
invited papers from DISC 2015.

[17] Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election

in population protocols. In SODA 2018: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2653–2667, 2018.

[18] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.

Journal of Physical Chemistry, 81(25):2340–2361, 1977.
[19] Adrian Kosowski and Przemyslaw Uznanski. Brief announcement: Population

protocols are fast. In PODC 2018: Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, pages 475–477. ACM, 2018.

[20] Tyson Rockafeller. Convex Analysis, chapter 8. Princeton University Press, 1970.

[21] Eric Severson, David Haley, and David Doty. Composable computation in discrete

chemical reaction networks. Technical Report 1602.08032, arXiv, 2019. http:

//arxiv.org/abs/1903.02637.

[22] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal sub-

strate for chemical kinetics. Proceedings of the National Academy of Sciences,
107(12):5393, 2010. Preliminary version appeared in DNA 2008.

[23] Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Solove-

ichik. Enzyme-free nucleic acid dynamical systems. Science, 358(6369):eaal2052,
2017.

[24] Richard Stanley. An introduction to hyperplane arrangments, 2006. URL: http:

//www.cis.upenn.edu/~cis610/sp06stanley.pdf.

Session 1 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

23

http://arxiv.org/abs/1903.02637
http://arxiv.org/abs/1903.02637
http://www.cis.upenn.edu/~cis610/sp06stanley.pdf
http://www.cis.upenn.edu/~cis610/sp06stanley.pdf

	Abstract
	1 Introduction
	1.1 Function computation
	1.2 Composability
	1.3 The role of the leader
	1.4 Contribution
	1.5 Related work
	1.6 Other ways of composing computation

	2 Preliminaries
	2.1 Notation
	2.2 Chemical reaction networks
	2.3 Composition via output-oblivious CRNs
	2.4 Semilinear functions

	3 Warm-up: One-dimensional case
	4 Impossibility result
	5 Main result: Full-dimensional case
	6 Construction
	7 Output-oblivious implies eventually min of quilt-affine functions
	7.1 Proof outline

	8 Comparison to continuous case
	9 Leaderless one-dimensional case
	10 Conclusion
	References

