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Abstract If E ⊂ R
2 is a compact set ofHausdorff dimension greater than 5/4,

we prove that there is a point x ∈ E so that the set of distances {|x − y|}y∈E
has positive Lebesgue measure.

1 Introduction

For a set E ⊂ R
d , define the distance set

�(E) = {|p − p′| : p, p′ ∈ E}.
Falconer’s distance problem [11] is about the connection between the Haus-
dorff dimension of a set E and the size of�(E). Given a compact set E in R

d ,
d ≥ 2, the problem is to understand how large the Hausdorff dimension of E
needs to be to ensure that the Lebesgue measure of �(E) is positive. Falconer
proved that if dimH(E) > d+1

2 , then L(�(E)) > 0. Using an example based
on the integer lattice, he showed for every s ≤ d

2 there exist sets of Haus-
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dorff dimension s for which L(�(E)) = 0. This led to the conjecture that if
dimH(E) > d

2 , then the Lebesgue measure of the distance set is positive. This
is known as the Falconer Distance Conjecture.

In [36], Wolff proved that if E ⊂ R
2 is a compact set with Hausdorff

dimension greater than 4/3, then �(E) has positive Lebesgue measure. In this
paper, we improve the bound.

Theorem 1.1 If E ⊂ R
2 is a compact set with Hausdorff dimension greater

than 5/4, then �(E) has positive Lebesgue measure.

In higher dimensions, Erdoğan proved in [9] that if dimH(E) > d
2 + 1

3 ,
then L(�(E)) > 0. Recently, these estimates were improved for all d ≥ 3
by Du, Guth, Ou, Wang, Wilson, and Zhang [6]. In dimension 3, they showed
that the Falconer conjecture holds when dimH(E) > 9/5. The estimates for
d ≥ 4 were further improved by Du and Zhang [7]. For large d, they prove
that Falconer’s conjecture holds when dimH(E) > d

2 + 1
4 +o(1). These works

brought into play the decoupling theorem of Bourgain and Demeter [3]. This
approach will also play a key role in our proof.

Returning to the planar case, there have been a number of important recent
results. Orponen [29] proved that if E is a compact Ahlfors-David regular set
of dimension s ≥ 1, then �(E) has packing dimension 1. Note that packing
dimension 1 is only slightly weaker than positive measure. This result was
striking because in previous work on the problem, there was no evidence
that the Ahlfors-David case would be any easier than the general case. This
approach was further developed by Keleti and Shmerkin [24]. They proved
very strong estimates for sets that are even roughly like Ahlfors-David regular
sets. They also proved results about the Hausdorff dimension of �(E). For
instance, if E is a compact set with Hausdorff dimension strictly greater than
1, then they proved that the Hausdorff dimension of �(E) is at least .685....
Bourgain [2] had proven that if E has Hausdorff dimension at least 1, then
�(E) has Hausdorff dimension at least 1/2 + δ for some δ > 0. The value
of δ could be made explicit but it would be very small, and so the .685... is
quite striking. We will use one of the key ideas of [29] and [24] in the proof
of Theorem 1.1.

There is a variant of the Falconer Distance Problem involving pinned dis-
tance sets. For any point x , the pinned distance set �x (E) is defined by

�x (E) = {|x − y| : y ∈ E}.

Peres and Schlag [31] proved that if E ⊂ R
d , d ≥ 2 and dimH(E) > d+1

2 ,
then L(�x (E)) > 0 for every x ∈ E except for a set of small Hausdorff
dimension. Improvements on the size of the exceptional set were obtained by
the second listed author and Liu in [19].
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On Falconer’s distance set problem in the plane

Recently, in [25], Liu showed that if dimH(E) > d
2+ 1

3 , thenL(�x (E)) > 0
for every x ∈ E except those in a set of small Hausdorff dimension. Using
Liu’s method, we are also able to bound the size of pinned distance sets.

Theorem 1.2 If E ⊂ R
2 is a compact set with Hausdorff dimension larger

than 5
4 , then there is a point x ∈ E such that its pinned distance set �x (E)

has positive Lebesgue measure.

1.1 Other norms

The Falconer problem has also been studied for other norms. Suppose that K
is a symmetric convex body in R

d and ‖ · ‖K is the norm with unit ball K . We
let�K (E) be the set of distances ‖x− y‖K with x, y ∈ E and we let�K ,x (E)

be the set of distances ‖x − y‖K with y ∈ E . If K is the cube [−1, 1]d , then
‖ · ‖K is the l∞ norm, and it is not difficult to construct a compact set E ⊂ R

d

with Hausdorff dimension d so that �K (E) has measure zero. But there are
non-trivial results if K is curved. We focus on the case that ∂K is C∞ smooth
and has positive Gaussian curvature. It is plausible that Falconer’s conjecture
remains true for all such norms, and most previous results on the problem
extend to this setting. For instance, Erdoğan’s bound extends to this class of
norms—cf. Remark 1.6 in [9]. Our method also extends to this class of norms.

Theorem 1.3 Let K be a symmetric convex body inR
2 whose boundary ∂K is

C∞ smooth and has strictly positive curvature. Let E ⊂ R
2 be a compact set

whose Hausdorff dimension is larger than 5
4 . Then, there exists a point x ∈ E

so that the pinned distance set

�K ,x (E) := {||x − y||K : y ∈ E}

has positive Lebesgue measure.

Remark 1.4 One can adapt the proof of Theorems 1.1 and 1.3 to yield the
following result. Suppose that the Hausdorff dimension of a compact set E ⊂
R
2 is equal to s > 1 and K is as in Theorem 1.3. Then there exists x ∈ E

such that the upper Minkowski dimension of �x,K (E) is ≥ 4s
3 − 2

3 . Keleti and
Shmerkin [24] obtained the lower bound 1

4(1 + s + √
3s(2 − s)) in the case

of the Euclidean metric. Their estimate is better than ours near s = 1, but ours
is preferable as s nears 5

4 . The sketch of this argument is given in Appendix
where we also discuss the complications of replacing the upper Minkowski
dimension by the Hausdorff dimension in the claim above.

Falconer’s distance problem can be thought of as a continuous analogue
of a combinatorial problem raised by Erdős [10]: given a set P of N points
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in R
d , what is the smallest possible cardinality of �(P). A grid is the best

known example in all dimensions. In two dimensions, Guth and Katz [14]
proved a lower bound for |�(P)| which nearly matches the grid example (up
to a factor of log1/2 N ). In higher dimensions, there is a larger gap, and the
best known result is due to Solymosi and Vu [34]. The Erdős distinct distance
problem also makes sense for general norms and much less is known about
it. In the planar case, if K is smooth and has strictly positive curvature, the
best known bound says that if |P| = N , then |�K (P)| � N 3/4, with stronger
estimates established by Garibaldi in special cases [12]. There is a conversion
mechanism to go from Falconer-type results to Erdős-type results that was
developed by the second author together with Hoffman [16], Laba [18], and
Rudnev and Uriarte-Tuero [17]. It gives estimates for point sets that are fairly
spread out. Applying the conversion mechanism to Theorem 1.3 we get the
following corollary:

Corollary 1.5 Let K be a symmetric convex body in R
2 whose boundary ∂K

is C∞ smooth and has strictly positive curvature. Let P be a set of N points
in [0, 1]2 so that the distance between any two points is � N−1/2. Then there
exists x ∈ P such that

|�K ,x (P)| � N
4
5 . (1.1)

Note that the N−1/2-separation condition in the above essentially says that
P is a homogeneous set, i.e. there is one point in each of the ∼ N cells in
[0, 1]2.

1.2 The main obstacle

The work on the Falconer problem by Wolff [36] and Erdoğan [9] is based on
a framework developed by Mattila [26,27] which connects the original geo-
metric problem to estimates in Fourier analysis. Suppose that E is a compact
set with positive α-dimensional Hausdorff measure. Then there is a probabil-
ity measure μ supported on E with μ(B(x, r)) � rα for every ball B(x, r).
The measure μ is called a Frostman measure (cf. [37], Proposition 8.2.). Let
d(x, y) = |x − y|. Mattila considered the pushforward measure d∗(μ × μ),
defined by

∫
R

ψ(t)d∗(μ × μ) :=
∫
E×E

ψ(|x − y|)dμ(x)dμ(y).

In particular d∗(μ × μ) is a probability measure supported on �(E). Mattila
noted that if ‖d∗(μ × μ)‖2

L2 = ∫
d∗(μ × μ)(t)2dt is finite, then Cauchy–

Schwarz forces the Lebesgue measure of �(E) to be positive. Then he
described an interesting way to rewrite ‖d∗(μ × μ)‖2

L2 in terms of the Fourier
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transform of μ. The resulting integral is connected to restriction theory, and
Wolff used that connection to prove the bound in [36], building on earlier work
by Bourgain [1].

In [25], Liu used a different framework for the Falconer problem which
leads to estimates on pinned distance sets. For any x , define dx (y) = |x − y|.
He studied the quantity ∫

‖dx∗ (μ)‖2L2dμ(x). (1.2)

If this key quantity is finite, then for almost every x ∈ E , ‖dx∗ μ‖L2 is finite,
and then a Cauchy-Schwarz argument forces the Lebesgue measure of �x (E)

to be positive. Liu introduced an interesting way to rewrite this quantity in
terms of the Fourier transform of μ. It can then be studied using restriction
theory, leading to estimates on the pinned distance problem.

In the planar case, there is an obstruction to pushing either one of these
methods to dimensions below 4/3. For every α < 4/3, there is a set E of
dimension α and a Frostmanmeasureμ on E so that ‖d∗(μ×μ)‖L2 is infinite,
and also‖dx∗ (μ)‖L2 is infinite for every x ∈ E . (In three dimensions, it is known
[9, Remark 1.5] that 5/3 is the lowest threshold one can possibly obtain for
the Falconer problem using the Mattila integral method, however, we are not
aware of similar obstructions in higher dimensions.) This set is a variation on
an example from [22]. The set E looks roughly like several parallel train tracks.
In the following figure, we show an approximation of the set E at a small scale
R−1. The measure μ (approximated at scale R−1) is just the normalized area
measure on this set.

The set E is divided among several large R−1/2 ×1 rectangles. Within each
of these large rectangles, the set E consists of evenly spaced parallel rectangles
with dimensions R−1/2 × R−1. Each of these smaller rectangles is called a
slat. The restriction of E to one of the larger rectangles is called a train track.
The spacing between two consecutive slats is controlled by the dimension of
E , and it works out to R−α/2. If x and y are in the same train track, on roughly
opposite ends, and if y is M slats from x , then |x − y| lies in the interval

IM := [MR−α/2 − R−1, MR−α/2 + R−1].

Therefore, d∗(μ × μ) assigns a lot of mass to the union of the intervals IM .
This union is quite small, and even though the mass involved is significantly
less than 1, it is still enough to force

∫ |d∗(μ × μ)|2 to be very large.
There is a similar issue for dx∗ (μ). If we fix any x ∈ E , and we let T0 be the

large rectangle containing x , then dx∗ (μ|T0) is mostly concentrated on ∪IM ,
and this forces

∫ |dx∗ μ|2 to be very large. On the other hand, if T is a large
rectangle which is far from x , then dx∗ (μ|T ) is rather evenly distributed—in
fact dx∗ (μ|T ) is close to the pushforward of the uniformmeasure on T with the
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same total mass. So if we graph dx∗ (μ), it has some peaks along ∪IM coming
from the rectangle T0 through x , but the bulk of dx∗ (μ) is spread rather evenly
and comes from rectangles T far from x . In particular, the support of dx∗ (μ)

indeed has positive Lebesgue measure.
This example (which will be revisited in more detail in Sect. 6) is the main

obstacle to proving the Falconer conjecture for dimensions less than 4/3. Start-
ingwith a general Frostmanmeasure, we separate out a part of it that resembles
the train tracks in the example above. Then we estimate the train-track part
and the non-train-track part in different ways.

For technical reasons, we consider two subsets E1, E2 ⊂ E separated by
distance ∼ 1, and we let μ1 and μ2 be Frostman measures on E1, E2. In
fact, we will show that for some x ∈ E2, the distance set �x (E1) has positive
Lebesguemeasure. In the example above, we can imagine that E1 is the bottom
third and E2 is the top third. We divide μ1 into two pieces

μ1 = μ1,good + μ1,bad ,

where μ1,bad is essentially the train-track-like part of μ1. We always arrange,
however, that

∫
μ1,bad = 0.

For example, if μ1 is the normalized area measure on the set E1 in Fig. 1
above, thenμ1,good would be (approximately) the normalized area measure on
the union of the large rectangles. The bad part,μ1,bad , is equal toμ1−μ1,good ,
so it would be large on the slats and slightly negative on the parts of the large
rectangles outside of the slats. If T0 is the large rectangle containing x , then
dx∗ (μ1,good |T0) would be much more spread out than dx∗ (μ1|T0). On the other
hand, if T is far from x , then dx∗ (μ1,good |T ) would be almost the same as
dx∗ (μ1|T ). All together, the graph of dx∗ (μ1,good) would look like the graph of
dx∗ (μ1) with the peaks damped out. The pushforward dx∗ (μ1,good) would be
quite evenly spread and its L2 norm would be finite. The graph of dx∗ (μ1,bad)

would include the tall thin peaks from dx∗ (μ1), and it would be slightly negative
between the peaks. Since the thin peaks have small mass, the L1 norm of
dx∗ (μ1,bad) would be small.

To prove Theorem 1.2, we will show that the features of μ1,good and μ1,bad
that we just observed in the example from Fig. 1 will occur for any set
E of dimension greater than 5/4. There are two main estimates. The first
estimate, in Proposition 2.1, says that for most x ∈ E2, ‖dx∗ (μ1,bad)‖L1

is small, and so the L1 distance between dx∗ (μ1) and dx∗ (μ1,good) is small.
The bad part, μ1,bad , is made from train track configurations, and that helps
us analyze it. Analyzing each individual train track is not difficult. How-
ever, unlike in our example above, it could happen that each point lies
in many different train tracks going in different directions. To control this
type of behavior, we use an estimate of Orponen from [30] which also
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Train track

R−1

R−α
2

R− 1
2 R

1
2−α

2

. . . . . .

1

Fig. 1 The train track example

played a key role in Keleti and Shmerkin’s work on the Falconer problem
[24].

The second estimate says that dx∗ μ1,good is better behaved in L2 than dx∗ μ1.
More precisely, Proposition 2.2 says that if α > 5/4, then

∫
E2

‖dx∗ μ1,good‖2L2

is finite. The proof of Proposition 2.2 is based on Liu’s framework and on
decoupling.Wewill prove and then use a refinement of the decoupling theorem
(Theorem 4.2) which is related to the refined Strichartz estimates that appear
in [4,5], and [6]. This refinement of decoupling was proven independently
by Xiumin Du and Ruixiang Zhang (personal communication). It may be of
independent interest.

Here is an outline of the paper. In Sect. 2, we set up our framework (defining
μ1,good precisely) and outline themain estimates. At that point, wewill be able
to make some further comments about the proofs of the twomain propositions.
In Sect. 3, we prove Proposition 2.1. In Sect. 4, we state and prove a refinement
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of the decoupling theorem.At that point, wewill give somemore context about
this result. Section 4 does not depend on any previous sections. In Sect. 5, we
prove Proposition 2.2 by combining Liu’s framework with our decoupling
tools. This will finish the proof of Theorem 1.2. In Sect. 6, we present in detail
the train track example that we introduced above. In Sect. 7, we adapt our
arguments to general metrics ‖·‖K , proving Theorem 1.3. In Sect. 8, we prove
Corollary 1.5.

2 Setup and outline of the main estimates

Let E ⊂ R
2 be a compact set with positive α-dimensional Hausdorff measure.

Without loss of generality, we can suppose that E is contained in the unit disk.
Let E1 and E2 be subsets of E with positive α-dimensional Hausdorff measure
so that the distance from E1 to E2 is � 1. Each subset Ei admits a measure
μi with the following two properties:

μi is a probability measure supported on Ei . (2.1)

μi (B(x, r)) � rα. (2.2)

We will explain how to defineμ1,good by removing “train-track like” pieces
from μ1. Before going into the details, let us explain the features of a train
track that motivate our definition of μ1,good . Let μ be the example in Fig. 1
and let T be one of the R−1/2 × 1 rectangles containing a train track of the
set E . One feature of T is that μ(T ) is large. Because the slats of the train
track are perpendicular to the direction of T , the Fourier transform of μ|T is
concentrated on frequencies that are in the same direction as T . This is a second
feature of T . So to build μ1,good , we will first identify rectangles T with large
μ measure and call them bad rectangles. Then for each bad rectangle T , we
will identify the part of μ with physical support in T and frequency support
in the direction of T , and remove that part. Here is the precise definition.

We consider a sequence of scales R0, R1, R2, etc. Here R0 is a large number
that we will choose later and R j = 2 j R0. Cover the annulus R j−1 ≤ |ω| ≤ R j

by rectangular blocks τ with dimensions approximately R1/2
j × R j . The long

direction of each block τ is the radial direction. We choose a partition of unity
subordinate to this cover, so that

1 = ψ0 +
∑
j≥1,τ

ψ j,τ .

Let δ > 0 be a small constant that will be determined later. Note that δ will
play a role in the definition of μ1,good and will be eventually taken sufficiently
small in terms of α in Proposition 2.2 below.
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For each ( j, τ ), cover the unit disk with tubes T of dimensions approx-
imately R−1/2+δ

j × 2 with the long axis parallel to the long axis of τ . The
covering has uniformly bounded overlap, each T intersects at most two other
tubes. Let T j,τ be the collection of all these tubes, and let ηT be a parti-
tion of unity subordinate to this covering, so that for each choice of j and τ ,∑

T∈T j,τ
ηT is equal to 1 on the disk of radius 2 and each ηT is smooth.

Define an operator MT associated to a tube T ∈ T j,τ by

MT f := ηT (ψ j,τ f̂ )
∨.

Morally, MT f is the part of f which has Fourier support in τ and physical
support in T . We also let M0 f := (ψ0 f̂ )∨. We denote T j = ∪τT j,τ and
T = ∪ j≥1T j . If f is a function supported on the unit disk, then f = M0 f +∑

T∈T
MT f , up to a tiny error (see Lemma 3.4 below for a precise statement).

Let c(α) > 0 be a large constant to be determined later in Lemma 3.6, and
4T denote the concentric tube of four times the radius.We call a tube T ∈ T j,τ
bad if

μ2(4T ) ≥ R−1/2+c(α)δ
j .

To get a sense of what this means, notice that the number of tubes T ∈ T j,τ is

∼ R1/2−δ
j . If each tube T ∈ T j,τ contained the same amount of the measure

μ2, then for each tube we would have μ2(T ) ∼ R−1/2+δ
j . A tube is bad, if

its neighborhood contains significantly more μ2 measure than this. A tube is
good if it is not bad. Now we define μ1,good to be the sum of contributions
from all the good tubes.

μ1,good := M0μ1 +
∑

T∈T,T good

MTμ1.

Note that in our discussion below, only those tubes that intersect both E1 and
E2 matter, as otherwise they don’t make any contribution to the quantities in
Propositions 2.1 and 2.2. And according to the definition, μ1,good is defined
with respect to μ2.

We describe a couple of examples to give a sense of how μ1,good behaves.
If μ1 is the normalized area measure on the set E in Fig. 1 above, then μ1,good
would be (approximately) the normalized area measure on the union of the
large rectangles. On the other hand, if we took the set E in Fig. 1 above and
we changed it by tilting the slats at a 45 degree angle while keeping the large
rectangles vertical, then μ1,good would be essentially equal to μ1. In general,
μ1,good may not be real-valued, but it is a distribution (in fact, it is a complex
measure supported on the disk of radius 2).
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Our main theorem (Theorem 1.2) follows from two estimates about the
pushforward measures dx∗ μ1 and dx∗ μ1,good .

Proposition 2.1 If α > 1, and if we choose R0 large enough, then there is a
subset E ′

2 ⊂ E2 so that μ2(E ′
2) ≥ 1 − 1

1000 and for each x ∈ E ′
2,

‖dx∗ (μ1) − dx∗ (μ1,good)‖L1 <
1

1000
.

Proposition 2.2 If α > 5/4, then for sufficiently small δ in terms of α,

∫
E2

‖dx∗ (μ1,good)‖2L2dμ2(x) < +∞.

In the above, we have slightly abused notation, using dx∗ (μ), dx∗ (μ1,good) to
denote both the pushforward measures and their densities. To be completely
rigorous, one would need to define the density as limit of approximate iden-
tity, then derive the propositions above uniformly with respect to the limiting
process. We omit the details as the process is fairly standard (for example see
[25]).

Proof of Theorem 1.2 using Proposition 2.1 and Proposition 2.2 The twopro-

positions tell us that there is a point x ∈ E2 so that

‖dx∗ (μ1) − dx∗ (μ1,good)‖L1 < 1/1000, and (2.3)

‖dx∗ (μ1,good)‖L2 < +∞. (2.4)

Since dx∗ (μ1) is a probability measure, (2.3) guarantees that

∫
|dx∗ (μ1,good)| ≥ 1 − 1

1000
.

Note that the support of dx∗ (μ1) is contained in �x (E). Therefore

∫
�x (E)

|dx∗ μ1,good | =
∫

|dx∗ (μ1,good)| −
∫

�x (E)c
|dx∗ (μ1,good)|

≥ 1 − 1

1000
−

∫
|dx∗ (μ1) − dx∗ (μ1,good)| ≥ 1 − 2

1000
.

But on the other hand,

∫
�x (E)

|dx∗ μ1,good | ≤ |�x (E)|1/2
(∫

|dx∗ μ1,good |2
)1/2

. (2.5)
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Since (2.4) tells us that
∫ |dx∗ μ1,good |2 is finite, it follows that |�x (E)| is

positive. ��
To end this section, let us make some comments about the proofs of Propo-

sition 2.1 and Proposition 2.2. To prove Proposition 2.1, the first observation
is that if x is far from T , then removing MTμ1 from μ1 has a negligible
effect on the pushforward measure dx∗ (μ1). So the difference between dx∗ μ1
and dx∗ μ1,good only comes from the bad tubes going through x . Recall that a
tube T is bad if its μ2 measure is too large. In general a point x could lie in
many bad tubes, and we need to know that the total μ1 measure of all these
bad tubes is small (for most x ∈ E2). This follows from Orponen’s radial pro-
jection theorem from [30]. This theorem plays an important role in Keleti and
Shmerkin’s work on the Falconer problem [24], which is where we learned
about it.

To discuss Proposition 2.2, we first describe the framework from [25]. Let
σt denote the normalized arc length measure on the circle of radius t (so the
total measure is 1). In [25], Liu proved the following remarkable identity: for
any function f ,

∫ ∞

0
| f ∗ σt (x)|2tdt =

∫ ∞

0
| f ∗ σ̂r (x)|2rdr.

It follows from this identity that

∫
E2

‖dx∗ (μ1,good)‖2L2dμ2(x) �
∫ ∞

0

(∫
E2

|μ1,good ∗ σ̂r |2dμ2(x)

)
rdr.

Now the Fourier transform of μ1,good ∗ σ̂r is supported on the circle of radius
r , and studying such functions is the subject of restriction theory. We can
decompose μ1,good ∗ σ̂r as

μ1,good ∗ σ̂r =
∑

T good

MTμ1 ∗ σ̂r .

The right-hand side is essentially the wave packet decomposition of μ1,good ∗
σ̂r . This means that MTμ1 ∗ σ̂r |B2(1) is essentially supported in T and its
Fourier transform is essentially supported in an arc of S1r in the direction of T .
Since the tubes T are all good, each tube T has a smallμ2 measure, andwewill
take advantage of this to bound the inner integral

∫
E2

|μ1,good ∗ σ̂r |2dμ2(x).
Since T has a smallμ2 measure, we can immediately get a good estimate for∫

E2
|MTμ1 ∗ σ̂r |2dμ2. But to bound

∫
E2

|μ1,good ∗ σ̂r |2dμ2, we need to know
how the wave packets MTμ1 ∗ σ̂r interact with each other. Is it possible that
these wave packets have a lot of positive interference on the set E2? We will
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use decoupling theory to control such positive interference. We will discuss
this further in Sect. 4.

2.1 Notations and preliminaries

We write A � B if A ≤ CB for some absolute constant C ; A ∼ B if A � B
and B � A; A �ε B if A ≤ CεB; A � B if A ≤ CεRεB for any ε > 0,
R > 1 (or with N replacing R depending on the context).
For a large parameter R, we use RapDec(R) to denote those quantities that

are bounded by a huge (absolute) negative power of R, i.e. RapDec(R) ≤
CN R−N for arbitrary N > 0. Such quantities are negligible in our argument.
We say a function is essentially supported in a region if (the appropriate norm
of) the tail outside the region is RapDec(R) for the underlying parameter R.

A typical situation where such terms would appear is the following. Recall
that we have defined at the beginning of this section that MT f = ηT (ψ j,τ f̂ )∨,
for a tube T ∈ T j,τ that has radius R−1/2+δ

j and length 2. Hence, MT f is

supported in T because ofηT . In the Fourier space,write M̂T f = η̂T ∗(ψ j,τ f̂ ),
we claim that MT f has Fourier support essentially contained in 2τ , where τ

has dimension approximately R1/2
j × R j and has long axis parallel to the long

axis of T . To see this, note that ηT is a smooth bump function supported in T
that has height 1, and it has Fourier transform

η̂T (ξ) =
∫
T

ηT (x)eix ·ξ dx = eic(T )·ξ
∫
T

ηT (x)ei(x−c(T ))·ξ dx,

where c(T ) denotes the center of T . If ξ is in the dual rectangle T ∗ of T ,
i.e. the rectangle centered at the origin with dimension ∼ R1/2−δ

j × 1
2 with

short axis parallel to the long axis of T , then |(x − c(T )) · ξ | < 1
10 . Hence,

there is essentially no cancellation and |η̂T (ξ)| ∼ |T |. If instead, ξ is outside
a Rδ

j neighborhood of T ∗, cancellation plays the primary role and from the
smoothness of ηT and integration by parts one has |η̂T (ξ)| � RapDec(R j ).

In conclusion, η̂T is essentially supported in T ∗ which makes M̂T f = η̂T ∗
(ψ j,τ f̂ ) essentially supported in 2τ .

3 Proof of Proposition 2.1

We will study the pushforward measures dx∗ (μ1) and dx∗ (μ1,good). Recall by
definition that

∫
ψ(t)dx∗ (μ) =

∫
ψ(|x − y|)dμ(y).
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In particular, if ψ is the characteristic function of the interval t0 ≤ t ≤
t0 + �t , then we see that

∫ t0+�t

t0
dx∗ (μ) =

∫
t0≤|x−y|≤t0+�t

dμ.

To evaluate dx∗ (μ) at t , we can take the limit as �t → 0. If we think of μ

as μ(y)dy, then we get

dx∗ (μ)(t) =
∫
S1(x,t)

μ(y)dl(y),

where dl(y) denotes the arc length measure on the circle S1(x, t).
To control ‖dx∗ (μ1) − dx∗ (μ1,good)‖L1 we will start by studying dx∗ (MTμ1)

for different T . For a tube T ∈ T, let 2T denote the concentric tube of twice
the radius. If x /∈ 2T , we show that dx∗ (MTμ1) is negligible.

Lemma 3.1 If T ∈ T j,τ , and x ∈ E2, and x /∈ 2T , then

‖dx∗ (MTμ1)‖L1 � RapDec(R j ).

Proof We will prove the stronger estimate that for every t :

dx∗ (MTμ1)(t) � RapDec(R j ).

Recall that

dx∗ (MTμ1)(t) =
∫
S1(x,t)

MTμ1(y)dl(y). (3.1)

We also recall that

MTμ1 = ηT (ψ j,τ μ̂1)
∨ = ηT (ψ∨

j,τ ∗ μ1).

Now ψ∨
j,τ is concentrated on a R−1/2

j × R−1
j rectangle centered at 0 and it

decays rapidly outside that rectangle. Since x ∈ E2, the distance from x to the
support of μ1 is � 1. Therefore, dx∗ MTμ1(t) is tiny unless t ∼ 1.

To study the case when t ∼ 1, we expand out MTμ1:

MTμ1(y) = ηT (y)(ψ j,τ μ̂1)
∨(y) = ηT (y)

∫
e2π iω·yψ j,τ (ω)μ̂1(ω)dω.

Since |μ̂1(ω)| ≤ 1, and ψ j,τ (ω) is supported on τ and bounded by 1, it
suffices to check that for each ω ∈ τ ,
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∫
S1(x,t)

ηT (y)e2π iω·ydl(y) ≤ RapDec(R j ). (3.2)

We will prove this rapid decay by stationary phase. There are two slightly
different cases, depending on whether T intersects S1(x, t/2) or not. Let us
start with the case that T intersects S1(x, t/2), since this case is a little harder.
After a coordinate rotation, we can assume that ω has the form (0, ω2) with
ω2 ∼ R j . Recall that a tube T ∈ T j,τ has long axis in the direction of the
center of τ . In particular, our tube T must be nearly vertical, up to an angle of
R−1/2
j . The tube T intersects S1(x, t) in two arcs, which we deal with one at a

time. Each arc is a graph of the form y2 = h(y1), where y1 lies in an interval
I (T ) of length ∼ R−1/2+δ

j . Since T intersects S1(x, t/2), and the tube T is
nearly vertical, the function h and all its derivatives are � 1 on I (T ).

The following point is crucial for stationary phase. Since T is within an
angle R−1/2

j of vertical, and x /∈ 2T , then the distance from T to the top or

bottom points of the circle is � R−1/2+δ
j , and so we get

|h′(y1)| � R−1/2+δ
j on the interval I (T ).

In these coordinates, our integral becomes∫
I (T )

ηT (y1, h(y1))e
2π iω2h(y1) J (y1)dy1,

where J (y1) is the Jacobian factor that relates the arclength on the circle
to dy1. Since h and all its derivatives are � 1 on I (T ), the same applies
to J . The function ηT is smooth at scale R−1/2+δ

j , and so if we abbreviate
η(y1) := ηT (y1, h(y1))J (y1), then η obeys

|η(k)| � (R1/2−δ
j )k,

and η is supported on I (T ). We let φ(y1) = 2πω2h(y1). We now have to
bound the following integral:∫

I (T )

η(y1)e
iφ(y1)dy1.

This integral can be bounded using stationary phase. The method is essen-
tially the same as in [35], Chapter 8, Proposition 1. Here is a sketch. We note
that on I (T ),

|φ′(y1)| = |ω2||h′(y1)| � R1/2+δ
j , and

|φ(k)(y1)| = |ω2||h(k)(y1)| � R j .
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Next we note that

1

iφ′
d

dy1
eiφ(y1) = eiφ(y1).

We define D = 1
iφ′ d

dy1
, so our integral becomes

∫
I (T )

ηDNeiφdy1, where

N is an arbitrary integer. Next we expand out DNeiφ and we integrate by
parts many times so that none of the derivatives actually lands on eiφ . Using
our lower bound on |φ′| and our upper bounds on the higher derivatives
of φ and the derivatives of η, it follows that our integral is bounded by
CN R−2δN

j . For instance, if all the derivatives land on η, then we get a bound

on (R1/2−δ
j )N (R1/2+δ

j )−N ∼ R−2δN
j , and this is the worst case. Since N is

arbitrary we get the desired bound.
If T does not intersect S1(x, t/2), thenwe choose our coordinates differently

so that we can still arrange that |h′| is bounded. This time, we rotate so that
ω = (ω1, 0), where ω1 ∼ R j . The tube T intersects S1(x, t) in one or two
arcs, and each arc is a graph of the form y2 = h(y1) over an interval I (T ),
and h and all its derivatives are � 1 on I (T ). Our integral now has the form

∫
I (T )

ηT (y1, h(y1))J (y1)e
2π iω1y1dy1.

Since ω1 ∼ R j , and ηT is smooth on the scale R−1/2+δ
j , this integral can also

be bounded by stationary phase (in fact more simply than in the other case).
��

Next we prove a simple bound to cover the case that x ∈ 2T .

Lemma 3.2 For any T ∈ T j,τ and any function f supported in the unit disk,

‖MT f ‖L1 � ‖ f ‖L1(2T ) + RapDec(R j )‖ f ‖L1 .

Proof Recall that for a tube T ∈ T j,τ , we defined MT by

MT f := ηT (ψ j,τ f̂ )
∨ = ηT (ψ∨

j,τ ∗ f ).

Nowψ∨
j,τ is essentially supported in a rectangle of dimensions R−1

j ×R−1/2
j

and ‖ψ∨
j,τ‖L1 � 1. Since the thickness of T is R−1/2+δ

j , we get

∫
|MT f | �

∫
T

|ψ∨
j,τ ∗ f | �

∫
2T

| f | + RapDec(R j )‖ f ‖L1 .

��
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Corollary 3.3 For any point x, and any tube T ∈ T,

‖dx∗ (MTμ1)‖L1 � μ1(2T ) + RapDec(R j ).

Next we check carefully that μ1 is very close to M0μ1 + ∑
T∈T

MTμ1.

Lemma 3.4 For any L1 function f supported in the unit disk

‖ f − M0 f −
∑
T∈T

MT f ‖L1 � RapDec(R0)‖ f ‖L1 .

Proof Recall that {ψ j,τ } is a partition of unity. We define Mj,τ f = (ψ j,τ f̂ )∨,
so that f = ∑

j,τ Mj,τ f . It suffices to bound

‖Mj,τ f −
∑

T∈T j,τ

MT f ‖L1 � RapDec(R j )‖ f ‖L1 .

The left hand side is

‖(1 −
∑

T∈T j,τ

ηT )(ψ∨
j,τ ∗ f )‖L1 .

Now as we noted in the proof of Lemma 3.2, ψ∨
j,τ is essentially supported

on an R−1/2
j × R−1

j rectangle. Also,
∑

T∈T j,τ
ηT is equal to one on the disk

of radius 2 and then decays outside it. Since f is supported in the unit disk,
ψ∨

j,τ ∗ f is essentially supported in the disk of radius 2, and we get the desired
rapid decay. ��

Now we can relate ‖dx∗ (μ1,good) − dx∗ (μ1)‖L1 to the geometry of the bad
rectangles. For each point x and each j , we define

Bad j (x) :=
⋃

T∈T j :x∈2T and T is bad

2T .

Lemma 3.5 For any point x in E2,

‖dx∗ (μ1,good) − dx∗ (μ1)‖L1 �
∑
j≥1

Rδ
jμ1(Bad j (x)) + RapDec(R0).

Proof Recall that μ1,good is defined by

μ1,good := M0μ1 +
∑

T∈T,T good

MTμ1.
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Using Lemma 3.4, we see that

‖dx∗ (μ1,good) − dx∗ (μ1)‖L1 �
∑
j

∑
T∈T j ,T bad

‖dx∗ (MTμ1)‖L1 + RapDec(R0).

If x ∈ 2T , then we apply Corollary 3.3, and if x /∈ 2T , then we apply
Lemma 3.1. We get

‖dx∗ (μ1,good) − dx∗ (μ1)‖L1 �
∑
j

∑
T∈T j ,x∈2T,T bad

μ1(2T ) + RapDec(R0).

Since the distance from E2 to E1 is � 1, each point of E1 is contained in
2T for � Rδ

j tubes T ∈ T j with x ∈ 2T . Therefore, the right hand side is

�
∑
j

Rδ
jμ1

⎛
⎝ ⋃

T∈T j ,x∈2T,T bad

2T

⎞
⎠ + RapDec(R0) =

∑
j

Rδ
jμ1(Bad j (x))

+RapDec(R0). ��
Next we need to estimate the measure of Bad j (x). We will do this using

Orponen’s radial projection theorem. Before introducing the theorem, we need
to set up a little more notation.

Bad j := {(x1, x2) : there is a bad T ∈ T j so that 2T contains x1 and x2}.

Notice that Bad j (x) is just the set of y so that (y, x) ∈ Bad j . Therefore,

μ1 × μ2(Bad j ) =
∫

μ1(Bad j (x))dμ2(x).

Our main estimate about the bad rectangles is

Lemma 3.6 For each α > 1, there exists sufficiently large c(α) > 0 (that
appears in the definition of bad tubes), so that for each j ≥ 1,

μ1 × μ2(Bad j ) � R−2δ
j .

Before turning to the proof, let us use this lemma to finish the proof of
Proposition 2.1.
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Proof of Proposition 2.1 using Lemma 3.6 We want to find a set E ′
2 ⊂ E2

with μ2(E ′
2) ≥ 1 − 1

1000 so that for each x ∈ E ′
2,

‖dx∗ (μ1,good) − dx∗ (μ1)‖L1 ≤ 1

1000
.

We recall that

μ1 × μ2(Bad j ) =
∫

μ1(Bad j (x))dμ2(x).

Therefore, we can choose Bj ⊂ E2 so that μ2(Bj ) ≤ R−(1/2)δ
j and for all

x ∈ E2 \ Bj ,

μ1(Bad j (x)) � R−(3/2)δ
j .

Wedefine E ′
2 = E2\⋃

j≥1 Bj . As long as R0 is sufficiently large (compared

to δ and α), we have μ2(E ′
2) ≥ 1− 1

1000 as desired. Now for each x ∈ E ′
2, we

have

‖dx∗ (μ1,good) − dx∗ (μ1)‖L1 �
∑
j≥1

Rδ
jμ1(Bad j (x)) + RapDec(R0)

�
∑
j≥1

R−(1/2)δ
j + RapDec(R0) � R−(1/2)δ

0 .

By choosing R0 sufficiently large, we get the desired bound. ��
Now we introduce Orponen’s radial projection theorem. The statement we

use appears as Proposition 3.11 in [24], and it appears as Equation (3.5) in
Orponen’s paper [30]. Define a radial projection map Py : R

2 \ {y} → S1 by

Py(x) = x − y

|x − y| .

Theorem 3.7 (Orponen [30]) For every α > 1 there exists p(α) > 1 so that
the following holds. Suppose thatμ1 andμ2 are measures on the unit disk with
disjoint supports and that for every ball B(x, r), μi (B(x, r)) � rα . Then

∫
‖Pyμ2‖p

L pdμ1(y) < +∞.
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Proof of Lemma 3.6 Recall that Bad j (y) is defined to be

Bad j (y) :=
⋃

T∈T j :y∈2T and T is bad

2T .

In other words, Bad j (y) is the set of x so that (y, x) lies in Bad j . Therefore,

μ1 × μ2(Bad j ) =
∫

μ2(Bad j (y))dμ1(y).

Suppose that T ∈ T j is a bad rectangle and y ∈ 2T ∩ E1. Let A(T ) be the
arc of the circle whose center corresponds to the direction of the long axis of
T and with length ∼ R−1/2+δ

j . Since the distance from E1 to E2 is � 1, it
follows that Py(4T ∩ E2) ⊂ A(T ), and so

Pyμ2(A(T )) ≥ μ2(4T ) ≥ R−1/2+c(α)δ
j . (3.3)

So we see that Py(Bad j (y)) can be covered by arcs A(T ) of length ∼
R−1/2+δ
j which each enjoy (3.3). By the Vitali covering lemma, we can choose

a disjoint subset of the arcs A(T ) so that 5A(T ) covers Py(Bad j (y)). This
implies that the arc length measure of Py(Bad j (y)) is bounded by

|Py(Bad j (y))| � R−(c(α)−1)δ
j .

Now we bound

μ1 × μ2(Bad j ) =
∫

μ2(Bad j (y))dμ1(y)

≤
∫ (∫

Py(Bad j (y))
Pyμ2

)
dμ1(y).

By Holder’s inequality and by choosing c(α) sufficiently large, this is

≤ sup
y

|Py(Bad j (y))|1−
1
p

∫
‖Pyμ2‖L pdμ1 � R−2δ

j . ��

4 Refined Strichartz estimates

The proof of Proposition 2.2 will use a refined Strichartz type estimate, which
in turn is based on the decoupling theorem of Bourgain-Demeter [3].
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Theorem 4.1 ([3]) Suppose that S ⊂ R
d is a strictly convex C2 hypersurface

with Gaussian curvature ∼ 1. Decompose the R−1-neighborhood of S into
blocks θ of dimensions R−1/2×· · ·×R−1/2×R−1. Suppose that f̂θ is supported
in θ and f = ∑

θ fθ . Then for any p in the range 2 ≤ p ≤ 2(d+1)
d−1 ,

‖ f ‖L p(BR) �
(∑

θ

‖ fθ‖2L p(wBR )

)1/2

, (4.1)

where wBR is a weight which is ∼ 1 on BR and rapidly decaying.

The decoupling theorem is a remarkably strong and sharp theorem in some
situations, for instance if | fθ (x)| is roughly constant on BR for each θ . On the
other hand, if the supports of the different fθ are disjoint from each other, then
one trivially gets the stronger inequality ‖ f ‖L p(BR) ≤ (

∑
θ ‖ fθ‖p

L p(BR))
1/p.

The idea of refined Strichartz estimates is to use the decoupling theoremwhere
it is strong, but also to take advantage of disjointness when it occurs. The first
version of the refined Strichartz inequality appeared in [4], and it was gener-
alized in [5]. We need here a slightly more flexible version of the inequality.
The inequality we prove here was discovered independently by Xiumin Du
and Ruixiang Zhang (personal communication).

We will state our estimate in terms of wave packets. Here is the setup. Let
S and θ be as above. Let Tθ be a finitely overlapping covering of R

d by tubes

T of length ∼ R1+δ and radius ∼ R
1+δ
2 with long axis normal to the surface

S at θ . We write T = ∪θTθ . Each T ∈ T belongs to Tθ for a single θ , and
we let θ(T ) denote this θ . We say that f is microlocalized to (T, θ(T )) if
f is essentially supported in 2T and f̂ is essentially supported in 2θ(T ). A
function fT which is microlocalized to (T, θ(T )) is called a wave packet. If
ω ∈ θ(T ), then fT morally has the form fT ≈ aχT e2π iωx , where a ∈ C and
χT denotes a smooth bump function on T . Our theorem gives an estimate for
the constructive interference between wave packets.

Theorem 4.2 Let p be in the range 2 ≤ p ≤ 2(d+1)
d−1 . For any ε > 0, suppose

there exists 0 < δ � ε satisfying the following. Let W ⊂ T and suppose that
each T ∈ W lies in BR. Let W = |W|. Suppose that f = ∑

T∈W
fT , where

fT is microlocalized to (T, θ(T )). Suppose that ‖ fT ‖L p is roughly constant
among all the T ∈ W. Let Y be a union of R1/2-cubes in BR each of which
intersects at most M tubes T ∈ W. Then

‖ f ‖L p(Y ) �ε Rε

(
M

W

) 1
2− 1

p
( ∑
T∈W

‖ fT ‖2L p

)1/2

. (4.2)
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The fraction M/W measures to what extent the wave packets of W are
disjoint from each other. If M = 1, then the wave packets are completely
disjoint, and the inequality above becomes ‖ f ‖L p(Y ) � (

∑
T ‖ fT ‖p

L p)
1/p.

Before proving Theorem 4.2, let us explain how it relates to the decoupling
theorem (Theorem 4.1). In Theorem 4.1, consider the special case that fθ is
non-zero for N caps θ , and that for each of these caps, fθ = ∑

T∈Tθ
fT is

a sum of P non-zero wave packets fT , and that all these wave packets have
the same amplitude. In [3], the general theorem was reduced to this special
case by pigeonholing, so it is not really so special. In this case, the decoupling
inequality (4.1) can be written in the form

‖ f ‖L p(BR) �
(
1

P

) 1
2− 1

p
( ∑
T∈W

‖ fT ‖2L p

)1/2

. (4.3)

Now if Q is any R1/2-square, then it can lie in � 1 tubes T in each direction.
Therefore, we have M ≤ N , and W = N P , and so M

W ≤ 1
P . So we see that

(4.2) is at least as strong as (4.3), and it is stronger whenever M is much less
than N . When M is much less than N , then it means that each cube Q lies in
wave packets from only a small fraction of the different caps θ , which means
that the supports of the fθ don’t intersect as much as they could. In summary,
Theorem 4.2 is like Theorem 4.1, but it gives a stronger estimate when the
supports of the fθ don’t intersect too much.

Proof of Theorem 4.2 Without loss of generality, we can assume that

‖ f ‖L p(Q) ∼ constant for all R1/2-cubes Q ⊂ Y. (4.4)

To set up the argument, we decompose f as follows. We cover S with
larger blocks τ of dimensions R−1/4 × · · · × R−1/4 × R−1/2. For each τ we
cover Bd(R) with cylinders � with radius R3/4 and length R, with the long
axis perpendicular to τ . Each cylinder � is associated to one τ , which denote
τ(�). Then we define

W� := {T ∈ W : θ(T ) ⊂ τ(�) and T ∩ BR ⊂ �}.

We define f� = ∑
T∈W� fT . We note that f̂� is essentially supported in

τ(�). An R1/2-cube Q lies in one cylinder � associated to each cap τ . So by
applying decoupling at scale R1/2, we get

‖ f ‖L p(Q) �
(∑

�
‖ f�‖2L p(Q)

)1/2

. (4.5)

123

Author's personal copy



L. Guth et al.

(Strictly speaking, we have a weight on the right-hand side. However, if
the tail of the weight dominates for some Q ⊂ Y , then we trivially get the
conclusion of the theorem. Indeed, because the weight decays rapidly away
from Q, the total contribution of the tails from different Q’s is bounded by
R−N0 . By choosing N0 sufficiently large, this is trivially bounded by the right
hand side of (4.2). Therefore, we can ignore the tail of the weight.)

The next ingredient is induction on scales. After parabolic rescaling, the
decomposition f� = ∑

T∈W� fT is equivalent to the setup of the theorem at

scale R1/2 instead of scale R. So by induction on the radius, we get a version
of our main inequality for each function f�. It goes as follows:

Write � as a union of R1/2 × R3/4 cylinders running parallel to the long
axis of �. Let Y�,M ′ be the union of those cylinders that intersect ∼ M ′ of the
tubes T ∈ W�. Then

‖ f�‖L p(Y�,M ′ ) � Rε/2
(

M ′

|W�|
) 1

2− 1
p

⎛
⎝ ∑

T∈W�

‖ fT ‖2L p

⎞
⎠

1/2

. (4.6)

Indeed, by shrinking the short side of � by R1/4 and the long side of it by
R1/2, one can turn� into a cube of side length R1/2. Under the same parabolic
rescaling, the small cylinders inside � will become small cubes of side length
R1/4 and the rescaled tubes T contained in � will have radius R1/4+δ and
length R1/2.

Now we dyadically pigeonhole M ′ so that

‖ f ‖L p(Q) �

∥∥∥∥∥∥
∑

�:Q⊂Y�,M ′
f�

∥∥∥∥∥∥
L p(Q)

for a fraction ≈ 1 of Q ⊂ Y .
We fix this value of M ′, and from now on we abbreviate Y� = Y�,M ′ .
Next we dyadically pigeonhole |W�|. Let BW ′ be the set of�with |W�| ∼

W ′. We dyadically pigeonhole W ′ so that

‖ f ‖L p(Q) �

∥∥∥∥∥∥
∑

�∈BW ′ :Q⊂Y�

f�

∥∥∥∥∥∥
L p(Q)

. (4.7)

for a fraction ≈ 1 of Q ⊂ Y .
We fix this value of W ′ and from now on we abbreviate B = BW ′ .
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We also note that for each � ∈ B,

∑
T∈W�

‖ fT ‖2L p ∼ W ′

W

∑
T∈W

‖ fT ‖2L p . (4.8)

Finally,we dyadically pigeonhole the cubes Q ⊂ Y according to the number
of� ∈ B so that Q ⊂ Y�.Weget a subsetY ′ ⊂ Y so that for each cube Q ⊂ Y ′,
Q ⊂ Y� for∼ M ′′ choices of� ∈ B, and Q obeys (4.7). Moreover, by dyadic
pigeonholing, we have |Y ′| ≈ |Y |. Since each cube Q ⊂ Y had approximately
equal L p norm, we also get ‖ f ‖L p(Y ′) ≈ ‖ f ‖L p(Y ).

We also note that

M ′M ′′ ≤ M.

because a cube Q ⊂ Y ′ belongs to Y� for ∼ M ′′ different �, and if Q ⊂ Y�,
then it belongs to T for ∼ M ′ different T ∈ W�.

Similarly, we note that

W ′|B| ≤ W

because for each � ∈ B, |W�| ∼ W ′, and W� are disjoint subsets of W.
Now we are ready to begin our estimate. For each Q ⊂ Y ′, we have

‖ f ‖L p(Q) �

∥∥∥∥∥∥
∑

�∈B:Q⊂Y�

f�

∥∥∥∥∥∥
L p(Q)

.

Applying decoupling as in (4.5), this is bounded by

�

⎛
⎝ ∑

�∈B:Q⊂Y�

‖ f�‖2L p(Q)

⎞
⎠

1/2

.

The number of terms in the sum is ∼ M ′′. Applying Hölder, we get

� (M ′′)
1
2− 1

p

⎛
⎝ ∑

�∈B:Q⊂Y�

‖ f�‖p
L p(Q)

⎞
⎠

1/p

.
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We raise this inequality to the pth power and sum over Q ⊂ Y ′ to get

‖ f ‖p
L p(Y ) � ‖ f ‖p

L p(Y ′) � (M ′′)
p
2 −1

∑
�∈B

‖ f�‖p
L p(Y�).

Now we can use our induction on scales—Eq. (4.6)—which gives

� Rpε/2
(
M ′M ′′

W ′

) p
2 −1 ∑

�∈B

⎛
⎝ ∑

T∈W�

‖ fT ‖2L p

⎞
⎠

p/2

.

By (4.8), this is

� Rpε/2
(
M ′M ′′

W

) p
2 −1 |B|W ′

W

( ∑
T∈W

‖ fT ‖2L p

)p/2

.

Since M ′M ′′ ≤ M and |B|W ′ ≤ W , we get

� Rpε/2
(
M

W

) p
2 −1

( ∑
T∈W

‖ fT ‖2L p

)p/2

.

Putting everything together and taking account of � throughout, we get

‖ f ‖L p(Y ) � R3ε/4
(
M

W

) 1
2− 1

p
( ∑
T∈W

‖ fT ‖2L p

)1/2

.

This closes the induction and finishes the proof. ��
One can also apply a rescaling to this theorem. If we rescale in Fourier space

by a factor λ, then each R−1/2 ×· · ·× R−1 block θ is replaced by a λR−1/2 ×
· · ·×λR−1 block. There is a corresponding rescaling in physical space so that
each R1/2+δ × · · · × R tube T is replaced by a λ−1R1/2+δ × · · · × λ−1R tube
T . The case of interest for us is λ = R.

Corollary 4.3 Suppose that S ⊂ R
d is a strictly convex C2 hypersurface

with Gaussian curvature ∼ 1. For any ε > 0, suppose there exists 0 < δ � ε

satisfying the following. Suppose that the 1-neighborhood of RS is partitioned
into R1/2 × · · · × R1/2 × 1 blocks θ . For each θ , let Tθ be a set of tubes of
dimensions R−1/2+δ ×1with long axis perpendicular to θ , and letT = ∪θTθ .

Let p be in the range 2 ≤ p ≤ 2(d+1)
d−1 . Let W ⊂ T and suppose that each

T ∈ W lies in the unit ball. Let W = |W|. Suppose that f = ∑
T∈W

fT , where
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fT is microlocalized to (T, θ(T )). Suppose that for each T ∈ W, ‖ fT ‖L p is
roughly constant. Let Y be a union of R−1/2-cubes in the unit ball each of
which intersects at most M tubes T ∈ W. Then

‖ f ‖L p(Y ) �ε Rε

(
M

W

) 1
2− 1

p
( ∑
T∈W

‖ fT ‖2L p

)1/2

.

Corollary 4.3 is the result we will actually use in our estimates about the
Falconer problem.

Theorem 4.2 is closely related to the refined Strichartz estimates from [4,5]
and [6], and we record a corollary in a similar form. To set up the statement,
we need to set up a little notation. We find it most convenient to work with the
case that S is a graph, so suppose S is defined by ωd = φ(ω1, . . . , ωd−1) , and
(ω1, . . . , ωd−1) ∈ Bd−1(1). We assume that φ is C2 and that the eigenvalues
of the Hessian∇2φ are∼ 1. Then for a function g : Bd−1 → C, we can define
the extension operator by

Eg(x)=
∫
Bd−1

e2π i(x1ω1+···+xd−1ωd−1+xdφ)g(ω1, . . . , ωd−1) dω1, . . . , dωd−1.

(4.9)
We decompose Bd−1 into finitely overlapping balls θ of radius ∼ R−1/2,

and then we can decompose g as

g =
∑
θ,v

gθ,v,

where

1. v ∈ R1/2+δ
Z
d−1;

2. gθ,v is supported on θ ;
3. ĝθ,v is essentially supported on a ball around v of radius R1/2+δ;
4. the functions gθ,v are approximately orthogonal;
5. Egθ,v restricted to BR is essentially supported on a tube Tθ,v of radius

∼ R1/2+δ and length ∼ R;
6. if we think of θ as a cap in S, then the long axis of Tθ,v is normal to S. Also

Tθ,v intersects the plane xd = 0 at the point (v, 0).

See Section 3 of [13] for background on this wave packet decomposition,
including proofs of these standard facts.

Now we are ready to state our refined Strichartz estimate.

Theorem 4.4 Let E be the extension operator as in (4.9), where φ is C2 and
the eigenvalues of the Hessian∇2φ are∼ 1. Suppose that g : Bd−1 → C. For
any ε > 0, suppose there exists 0 < δ � ε satisfying the following. Suppose
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that g = ∑
(θ,v)∈W

gθ,v , where ‖gθ,v‖L2 are comparable for all (θ, v) ∈ W.

Let W = |W|. Suppose Y is a union of R1/2-cubes in Bd
R which each intersect

∼ M of the tubes Tθ,v ∈ W. Suppose that p = 2(d+1)
d−1 . Then

‖Eg‖L p(Y ) �ε Rε

(
M

W

) 1
2− 1

p ‖g‖L2 .

Proof Let ηBR be a bump function associated to the ball of radius R.We define

fθ,v = ηBR Egθ,v.

The function fθ,v is essentially supported in Tθ,v and its Fourier transform
is essentially supported in the R−1-neighborhood of θ (viewing θ as a cap
in S ⊂ R

d ). Therefore, the functions fθ,v have the right microlocalization to
apply Theorem 4.2. Before doing so, we need to sort them by L p-norm. We
define

Wλ := {(θ, v) ∈ W : ‖ fθ,v‖L p ∼ λ}.

We define gλ := ∑
(θ,v)∈Wλ

gθ,v , andWλ = |Wλ|. Now Theorem 4.2 gives

‖Egλ‖L p(Y ) �
(

M

Wλ

) 1
2− 1

p

⎛
⎝ ∑

(θ,v)∈Wλ

‖Egθ,v‖2L p(BR)

⎞
⎠

1/2

.

Next we note that ‖Egθ,v‖L p(BR) � ‖gθ,v‖L2 . This is a consequence of
the Strichartz or Tomas-Stein inequality, but because Egθ,v is a single wave
packet, there is an even simpler argument:

‖Egθ,v‖L p(BR) � ‖Egθ,v‖L p(Tθ,v) ≤ |Tθ,v|1/p‖Egθ,v‖L∞

≤ |Tθ,v|1/p
∫

θ

|gθ,v| ≤ |Tθ,v|1/p|θ |1/2‖gθ,v‖L2 .

Now Tθ,v has volume R
1
2 (d−1)+1+δ(d−1) and θ has volume R− d−1

2 and so
|Tθ,v|1/p|θ |1/2 � Rcdδ , which is negligible since δ � ε. Plugging in this
bound, we get

‖Egλ‖L p(Y ) �
(

M

Wλ

) 1
2− 1

p

⎛
⎝ ∑

(θ,v)∈Wλ

‖gθ,v‖2L2

⎞
⎠

1/2

.
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Since all the ‖gθ,v‖L2 are comparable, we get

‖Egλ‖L p(Y ) �
(

M

Wλ

) 1
2− 1

p
(
Wλ

W

)1/2

‖g‖L2 .

We have Wλ ≤ W , and the total power of Wλ on the right-hand side is
positive, and so we get the bound

‖Egλ‖L p(Y ) �
(
M

W

) 1
2− 1

p ‖g‖L2 .

Since this estimate holds for every λ, the theorem is proven. ��

5 Proof of Proposition 2.2

In this section, we prove Proposition 2.2. The proof is based on adding a refined
Strichartz estimate (Corollary 4.3) to the framework of [25]. We want to show
that if α > 5/4, then

∫
E2

‖dx∗ (μ1,good)‖2L2dμ2(x) < +∞.

We follow Liu’s approach from [25]. Let σt be the normalized arc length
measure on the circle of radius t (normalized so that the total measure is 1).
Then

‖dx∗ (μ1,good)‖2L2 =
∫ ∞

0
|μ1,good ∗ σt (x)|2t2dt.

Now we would like to make use of Liu’s identity:

Theorem 5.1 ([25]) For any function f : R
2 → C, and any x ∈ R

2,

∫ ∞

0
| f ∗ σt (x)|2tdt =

∫ ∞

0
| f ∗ σ̂r (x)|2rdr.

Notice that on the left-hand side we have tdt instead of t2dt . If x ∈ E2,
then μ1 ∗ σt (x) = 0 unless t ∼ 1 because E1 and E2 are contained in the unit
disk and the distance between them is � 1. Therefore, we can write

∫ ∞

0
|μ1 ∗ σt (x)|2t2dt ∼

∫ ∞

0
|μ1 ∗ σt (x)|2tdt.
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We would like to write the same thing with μ1,good in place of μ1. To
justify this, we need to argue that μ1,good is essentially supported in a small
neighborhood of E1, which we now check.

Lemma 5.2 Let A be the complement of the R−1/2+δ
0 -neighborhood of E1.

Then
∫
A

|μ1,good | = RapDec(R0) and max
x∈A

|μ1,good(x)| = RapDec(R0).

Proof By definition,

μ1,good = M0μ1 +
∑
j,τ

∑
T∈T j,τ
T good

MTμ1

= ψ∨
0 ∗ μ1 +

∑
j,τ

∑
T

ηT (ψ∨
j,τ ∗ μ1).

Now ψ∨
0 is essentially supported on a ball of radius R−1

0 and ψ∨
j,τ is essen-

tially supported on a rectangle of dimensions R−1/2
j × R−1

j centered at the
origin. Since μ1 is supported on E1, the result follows. ��

Since μ1,good is essentially supported in a thin neighborhood of E1, we can
indeed say that for any x ∈ E2,

∫ ∞

0
|μ1,good ∗ σt (x)|2t2dt �

∫ ∞

0
|μ1,good ∗ σt (x)|2tdt.

Now we can apply Theorem 5.1 to get

∫
E2

‖dx∗ (μ1,good)‖2L2dμ2(x) �
∫
E2

∫ ∞

0
|μ1,good ∗ σ̂r (x)|2rdrdμ2(x)

=
∫ ∞

0

(∫
E2

|μ1,good ∗ σ̂r (x)|2dμ2(x)

)
rdr. (5.1)

We will use Theorem 4.2 to estimate the inner integral for each r .

Proposition 5.3 For any α > 0, r > 0, and δ sufficiently small depending on
α, ε:

∫
E2

|μ1,good ∗ σ̂r (x)|2dμ2(x) ≤ C(R0)r
− α+1

3 +εr−1
∫

|μ̂1|2ψr dξ,
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whereψr is a weight function which is∼ 1 on the annulus r −1 ≤ |ξ | ≤ r +1
and decays off of it. To be precise, we could take

ψr (ξ) = (1 + |r − |ξ ||)−100 .

The conclusion here is very similar to saying

∫
E2

|μ1,good ∗ σ̂r (x)|2dμ2(x) ≤ C(R0)r
− α+1

3 +ε‖μ̂1‖2L2(dσr )
.

For technical reasons, we have the bound in the form above. Before turning
to the proof of Proposition 5.3, let us see how it implies Proposition 2.2. Like
most previous work on the Falconer problem, the proof uses the idea of the
β-dimensional energy of a measure. Recall that this energy is given by

Iβ(μ) :=
∫

|x − y|−βμ(x)μ(y).

If a measure μ on the unit ball obeys μ(B(x, r)) � rα , then Iβ(μ) is finite
for every β < α (cf. Lemma 8.3 of [37]). In particular, Iβ(μ1) < ∞ for every
β < α. There is also a Fourier representation for Iβ(μ) (cf. Proposition 8.5 of
[37]): if μ is a measure on R

n , then

Iβ(μ) = cn,β

∫
Rn

|ξ |−(n−β)|μ̂(ξ)|2dξ.

Proof of Proposition 2.2 using Proposition 5.3 By (5.1),

∫
E2

‖dx∗ (μ1,good)‖2L2dμ2(x) �
∫ ∞

0

(∫
E2

|μ1,good ∗ σ̂r (x)|2dμ2(x)

)
rdr.

(5.2)
Plugging in Proposition 5.3 to bound the inner integral, we get

�R0

∫ ∞

0

∫
R2

r− α+1
3 +εψr (ξ)|μ̂1(ξ)|2dξdr

�
∫

R2
|ξ |− α+1

3 +ε |μ̂1(ξ)|2dξ ∼ Iβ(μ1)

with β = 2 − α+1
3 + ε. We know that Iβ(μ1) < ∞ as long as β < α, so we

get the desired bound as long as

2 − α + 1

3
< α.
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This is equivalent to α > 5/4. ��
Proof of Proposition 5.3 Recall that

μ1,good = M0μ1 +
∑
j≥1,τ

∑
T∈T j,τ ,T good

MTμ1.

Whenwe convolve with σ̂r the only terms that remain are those with Fourier
support intersecting the circle of radius r . The interesting case is when r >

10R0. We will return at the end to the case r < 10R0. Assuming r > 10R0,
μ1,good ∗ σ̂r , up to a rapidly decaying tail that is negligible for our desired
bound, is essentially equal to

∑
R j∼r

∑
τ

∑
T∈T j,τ T good

MTμ1 ∗ σ̂r .

Let η1 be a bump function adapted to the unit ball. We define

fT = η1
(
MTμ1 ∗ σ̂r

)
.

We claim that each fT is microlocalized in the way we would want to apply
Corollary 4.3. If T ∈ T j,τ , then we let θ(T ) be the 1-neighborhood of 3τ ∩ S1r .

We claim that f̂T is essentially supported in θ(T ). First we recall that M̂Tμ1
is essentially supported in 2τ . Therefore, the Fourier transform of MTμ1 ∗ σ̂r
is essentially supported in 2τ ∩ S1r . Finally, the Fourier transform of fT is
essentially supported in the 1-neighborhood of 2τ ∩ S1r , which is contained in
θ . Note that θ is a rectangular block of dimensions roughly r1/2 × 1.

Next we claim that fT is essentially supported in 2T .We know thatMTμ1 is
supported in T . Let ψ̃τ be a smooth bump functionwhich is 1 on 2τ and rapidly
decaying. Since the Fourier transform of MTμ1 is essentially supported on 2τ ,
we have MTμ1 ∗ σ̂r is essentially equal to MTμ1 ∗ (ψ̃τ σr )

∧. It is standard to
check by stationary phase (or see [13, Lemma 3.1]) that (ψ̃τ σr )

∧ is bounded
by RapDec(r) on B2(1) outside of a tube of radius r−1/2+δ in the direction of
τ passing through the origin. So MTμ1 ∗ (ψ̃τ σr )

∧ is negligible on B2(1)\2T .
So fT is essentially supported on 2T .

We have μ1,good ∗ σ̂r is essentially equal to
∑

T good fT . Next we sort the
fT according to their L p norms.

Wλ := {T : ‖ fT ‖L p ∼ λ}.
fλ :=

∑
T∈Wλ

fT .
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Since the number of scales λ is � log r , it suffices to prove the bound
∫

| fλ(x)|2dμ2(x) � r− α+1
3 +ε‖μ̂1‖2L2(dσr )

.

Next we divide the unit ball into r−1/2-squares q and sort them. We let

QM := {r−1/2 squares q : q intersects ∼ M tubes T ∈ Wλ}.
We let YM = ⋃

q∈QM
q. Since there are only ∼ log r choices of M , it

suffices to bound
∫
YM

| fλ|2dμ2. Next we bound the measure of YM .

Lemma 5.4 For any M, the r−1/2–neighborhood of YM has measure

μ2
(
Nr−1/2(YM)

)
� |Wλ|r−1/2+c(α)δ

M
.

Proof This is a double counting argument. Define χ(q, T ) = 1 if q ∩ T �= ∅,
0 otherwise. Let

J =
∑

q∈QM ,T∈Wλ

μ2(2q)χ(q, T ).

On one hand, one has

J ≤ 100
∑
T∈Wλ

μ2(4T )

because the q’s have only finitely overlapping, hence we over count at most
100 times μ2(2q), and if q ∩ T �= ∅, then 2q ⊂ 4T . Since a good tube T
satisfies μ2(4T ) � r−1/2+c(α)δ, therefore

J ≤ 100
∑
T∈Wλ

μ2(4T ) � r−1/2+c(α)δ|Wλ|.

On the other hand, J � μ2(Nr−1/2(YM)) · M . The desired estimate follows
by playing these two abounds against each other. ��

Now we are ready to bound
∫
YM

| fλ|2dμ2.

The Fourier support of fλ is essentially contained in the 1-neighborhood
of S1r , and so fλ is (morally) locally constant at scale ∼ r−1. Therefore we
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can replace dμ2 by μ2 ∗ η1/r , where η1/r is a bump function with integral
1 essentially supported on a ball of radius 1/r . Then we can use Hölder to
bound

∫
YM

| fλ|2dμ2 �
(∫

YM
| fλ|6

)1/3 (∫
YM

|μ2 ∗ η1/r |3/2
)2/3

.

To bound the first factor, we use Corollary 4.3 withW = |Wλ|wave packets
and multiplicity M . We get

‖ fλ‖L6(YM ) �
(

M

|Wλ|
)1/3

⎛
⎝ ∑

T∈Wλ

‖ fT ‖2L6

⎞
⎠

1/2

.

By Lemma 5.4, we can bound M/|Wλ| to get

�
(

r−1/2+c(α)δ

μ2(Nr−1/2(YM))

)1/3
⎛
⎝ ∑

T∈Wλ

‖ fT ‖2L6

⎞
⎠

1/2

.

To bound the second factor, we note that μ2 of a ball of radius r−1 is at
most r−α . Therefore,

‖μ2 ∗ η1/r‖L∞ � r2−α.

And so
∫
YM

|μ2 ∗ η1/r |3/2 �
(
r2−α

)1/2 ∫
YM

dμ2 ∗ η1/r ∼ r1−
α
2 μ2(Nr−1/2(YM)).

Plugging in these two bounds, we get

∫
YM

| fλ|2dμ2 � r O(δ)r−1/3μ2(Nr−1/2(YM))−2/3

∑
T∈Wλ

‖ fT ‖2L6 · r 2
3− α

3 μ2(Nr−1/2(YM))2/3.

Notice that the powers of μ2(Nr−1/2(YM)) cancel, leaving

∫
YM

| fλ|2dμ2 � r O(δ)r
1−α
3

∑
T∈Wλ

‖ fT ‖2L6 .
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Next we record an elementary bound for ‖ fT ‖L6 . Since fT is essentially
supported on T , ‖ fT ‖L6 � |T |1/6‖ fT ‖L∞ ∼ r−1/12‖ fT ‖L∞ . Recall that

fT = η1(MTμ1 ∗ σ̂r ) = η1

∫
S1r

M̂Tμ1e
2π i x ·ωdσr .

Since M̂Tμ1 restricted to S1r is essentially supported on θ(T ), we get

‖ fT ‖L∞ � σr (θ(T ))1/2‖M̂Tμ1‖L2(dσr )
∼ r−1/4‖M̂Tμ1‖L2(dσr )

.

Therefore

‖ fT ‖L6 � r−1/3‖M̂Tμ1‖L2(dσr )
.

Plugging into the last bound, we get

∫
YM

| fλ|2dμ2 � r O(δ)r
−1−α

3
∑
T∈Wλ

‖M̂Tμ1‖2L2(dσr )
.

To finish the proof of Proposition 5.3, it just remains to take δ sufficiently
small depending on α so that O(δ) < ε and to check that

∑
R j∼r

∑
τ

∑
T∈T j,τ

∫
|M̂Tμ1|2dσr � r−1

∫
|μ̂1|2ψr dξ. (5.3)

Morally, we are showing that the M̂Tμ1 are approximately orthogonal with
respect to dσr and/or ψr . The pieces M̂Tμ1|S1r correspond to the wave packet
decomposition of μ̂1 ∗ σ̂r . It’s a standard fact that the wave packets in a wave
packet decomposition are approximately orthogonal. (For instance, see Sec-
tion 3 of [13] for related orthogonality arguments.) But because of the direction
of (5.3), it takes some extra care to be completely rigorous. In particular, it
makes matters easier to put ψr instead of dσr on the right-hand side of (5.3),
although we’re not sure whether this is necessary. Now we turn to the details.

Recall thatψr is aweight functionwhich is∼ 1 on the annulus r−1 ≤ |ξ | ≤
r+1 and then rapidly decaying. Similarly, defineψ j,τ,r to be a weight function
which is roughly 1 on the intersection of τ with the annulus r−1 ≤ |ξ | ≤ r+1
and then rapidly decaying. We recall that if T ∈ T j,τ , then M̂Tμ1 is rapidly
decaying outside of τ . Since MTμ1 is supported in T ⊂ B2(1), its Fourier
transform is morally locally constant on scale 1. Therefore, for any T ∈ T j,τ ,
we have
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∫
|M̂Tμ1|2dσr � r−1

∫
|M̂Tμ1|2ψ j,τ,r dξ,

where the r−1 comes because σr is the normalized arc-length measure on S1r ,
which is equal to approximately 1/r times arc length measure. Next we expand
out

r−1
∫

|M̂Tμ1|2ψ j,τ,r dξ = r−1
∫

|η̂T ∗ (ψ j,τ μ̂1)|2ψ j,τ,r dξ.

Since η̂T is essentially supported in a rectangle of dimensions R1/2 × 1,
with the long direction parallel to S1r at points in τ ∩ S1r , we can bound

r−1
∫

|η̂T ∗ (ψ j,τ μ̂1)|2ψ j,τ,r dξ � r−1
∫

|η̂T ∗ (ψ̃ j,τ,r μ̂1)|2dξ,

where ψ̃ j,τ,r is again rapidly decaying outside of τ ∩ {r − 1 ≤ |ξ | ≤ r}, but a
bit more slowly than ψ j,τ,r . The point of all these adjustments is that we can
now apply Plancherel in a clean way:

∑
T∈T j,τ

∫
|M̂Tμ1|2dσr � r−1

∑
T∈T j,τ

∫
|ηT |2|ψ̃∨

j,τ,r ∗ μ1|2dx .

Since any point x lies in � 1 different T ∈ T j,τ , the last expression is
bounded by

� r−1
∫

|ψ̃∨
j,τ,r ∗ μ1|2dx = r−1

∫
|ψ̃ j,τ,r μ̂1|2dξ.

So now

∑
R j∼r

∑
τ

∑
T∈T j,τ

∫
|M̂Tμ1|2dσr �r−1

∑
R j∼r,τ

∫
|ψ̃ j,τ,r μ̂1|2dξ

=r−1
∫ ⎛

⎝ ∑
R j∼r,τ

ψ̃2
j,τ,r

⎞
⎠ |μ̂1|2dξ.

The regions where ψ̃ j,τ,r are ∼ 1 tile the annulus r − 1 ≤ |ξ | ≤ r + 1,
with each point lying in � 1 regions. Therefore,

∑
R j∼r,τ ψ̃2

j,τ,r is ∼ 1 on the
annulus r−1 ≤ ξ ≤ r+1 and rapidly decaying elsewhere. So aweight function
ψr satisfying the desired properties canbe chosen so that

∑
R j∼r,τ ψ̃2

j,τ,r � ψr ,
and we get

123

Author's personal copy



On Falconer’s distance set problem in the plane

∑
T

∫
|M̂Tμ1|2dσr � r−1

∫
|μ̂1|2ψr dξ.

This gives (5.3) and finishes the proof for the main case r > 10R0.
If r < 10R0, we give a more elementary estimate. It is rather lossy, but the

loss can be absorbed into the factor C(R0). We write
∫
E2

|μ1,good ∗ σ̂r (x)|2dμ2(x) ≤ ‖μ1,good ∗ σ̂r‖2∞ ≤ ‖μ̂1,good‖2L1(dσr )

≤ ‖μ̂1,good‖2L2(dσr )
.

Recall that μ1,good is the sum of the good MTμ1 while μ1 is the sum of all
MTμ1. As we discussed above, the MTμ1 are approximately orthogonal with
respect to ψr , and so a similar argument to the one above shows that

‖μ̂1,good‖2L2(dσr )
� r−1

∫
|μ̂1|2ψr dξ.

Since r ≤ 10R0, we get
∫
E2

|μ1,good ∗ σ̂r (x)|2dμ2(x) � r−1
∫

|μ̂1|2ψr dξ

� C(R0)r
− α+1

3 +εr−1
∫

|μ̂1|2ψr dξ. ��

6 Train track examples

As we mentioned in the introduction, when α < 4/3, there are examples of
measures where the Mattila integral is infinite, and the related L2 integral
in Liu’s framework is also infinite. The relevant sets look like several trains
tracks. These train track examples are based on the train track example in [22]
(page 151). In this section, we discuss these measures and their properties.

Proposition 6.1 For every 1 ≤ α < 4/3 and every B, there is a probability
measure μ on B2(1) with the following properties:

1. For any ball B(x, r), μ(B(x, r)) � rα .
2. If d(x, y) := |x − y|, then

‖d∗(μ × μ)‖L2 > B.

3. If dx (y) := |x − y|, then for every x in the support of μ,

‖dx∗ (μ)‖L2 > B.
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Proof Let R be a large parameter. Let AR be the set of points (x1, x2) ∈ [0, 1]2
where 0 ≤ x1 ≤ R−1/2 and where, for some integer M ,

MR−α/2 ≤ x2 ≤ MR−α/2 + R−1.

This set is reminiscent of a train track. The slats of the train track are rectangles
with dimensions R−1/2×R−1, and there are∼ Rα/2 slats evenly spaced inside
a vertical rectangle of dimension R−1/2 × 1. We form a set ER by taking the

union of R
α−1
2 train tracks that are evenly spread. To be definite, let us define

AR,l to be the translate of AR by the vector (R− α−1
2 l, 0). and then define ER to

be the union of AR,l as l goes from0 to R
α−1
2 . (There is considerable freedom in

how to take the union of the train tracks, and we could make similar examples
with non-parallel train tracks also.) Let μ be the normalized area measure on
ER .
First we check that μ(B(x, r)) � rα . The number of R−1-boxes in ER is

R
α−1
2 Rα/2R1/2 = Rα . So we have to check that if r = AR−1, then the number

of R−1 boxes in ER ∩ B(x, r) is � Aα . If A ≤ R1/2, then B(x, r) ∩ ER is
contained inside one train track. The spacing between horizontal slats is R−α/2,
and so the number of horizontal slats that intersect the ball B(x, r) is at most

max
(
1,

r

R−α/2

)
= max(1, AR−1Rα/2).

Each horizontal slat intersects B(x, r) in at most A R−1-boxes. So the total
number of R−1-boxes in B(x, r) is at most

max(A, A2R
−2+α

2 ) = max(A, AαA2−αR− 2−α
2 ) ≤ Aα,

where in the last inequality we used A ≤ R1/2.
Suppose A ≥ R1/2. Morally, since the train tracks are spaced evenly, the

estimates will be even better than for the case A = R1/2. Here are the details.
Since the spacing between train tracks is R− α−1

2 , the number of train tracks
that B(x, r) intersects is at most

r R
α−1
2 + 1 = AR

α−3
2 + 1.

Within each train track, the number of slats that B(x, r) intersects is at most

r Rα/2 = AR
α−2
2 .
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Each slat contains R1/2 R−1-boxes. So the total number of R−1-boxes in
B(x, r) is at most

A2Rα−2 + AR
α−1
2 = AαA2−αRα−2 + AαA1−αR

α−1
2 ≤ Aα,

where in the last inequality we used R1/2 ≤ A ≤ R.
Next we estimate

∫ |d∗(μ × μ)|2. The key point is that d∗(μ × μ) assigns
a large measure to each interval IM = [MR−α/2 − 2R−1, MR−α/2 + 2R−1],
where M is an integer with M ∼ Rα/2. Indeed, if x is any point in ER , and if
y lies in the same train track as x , in a horizontal slat which is M steps from
the horizontal slat containing x , then |x − y| ∈ [MR−α/2 −2R−1, MR−α/2 +
2R−1]. The μR measure of a single slat is R−α+1/2, because the slat contains
R1/2 R−1-boxes, which each have μR measure R−α. Therefore,

d∗(μ × μ)(IM) � R−α+ 1
2 .

By Cauchy–Schwarz,

∫
IM

d∗(μ × μ)2dt � R−2α+1

|IM | ∼ R−2α+2.

The number of different IM is ∼ Rα/2, and so
∫

d∗(μ × μ)2dt � R− 3
2α+2.

If α < 4/3, then the power of R is positive, and
∫
d∗(μ×μ)2dt goes to infinity

with R.
Finally we estimate

∫ |dx∗ (μ)|2. The computation is similar: dx∗ (μ) assigns
a large measure to each interval IM defined above. In fact, just as above,

dx∗ (μ)(IM) � R−α+ 1
2 .

because if y lies in the slat of ER lying in the same train track as x and M
horizontal slats from the horizontal slat containing x , then dx (y) = |x − y| ∈
IM , and the μR measure of this slat is R−α+1/2. Then just as above we get

∫
IM

dx∗ (μ)2dt � R−2α+1

|IM | ∼ R−2α+2 and
∫

dx∗ (μ)2dt � R− 3
2α+2.

If α < 4/3, then the right-hand side tends to infinity as desired. ��
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We can also take limits of these examples with different scalings. Suppose
that R j is a sequence of scales that goes to infinity rapidly (say, R j+1 = 2R j ).
Define

E j =
j⋂

i=1

ERi , and

E = E∞ =
∞⋂
i=1

ERi .

Define μi to be μRi restricted to Ei and renormalized, and let μ = μ∞
be a weak limit of the measures μi . It is not hard to check that the Hausdorff
dimension of E is α, that μ(B(x, r)) � rα , and that ‖d∗(μ × μ)‖L2 = +∞
and ‖dx∗ (μ)‖L2 = +∞ for each x ∈ E .

7 Generalization to other norms: proof of Theorem 1.3

In this section, we consider the generalization of the Falconer problem where
the Euclidean norm is replaced by other norms. We will show that our main
theorem generalizes to other norms as long as the unit ball of the norm is
strictly convex and smooth.

Theorem 7.1 Let K be a symmetric convex body in R
2 whose boundary ∂K

is C∞ smooth and has everywhere positive curvature bounded from above and
below. Let ‖ · ‖K denote the norm with unit ball K . Define the pinned distance
set

�x,K (E) := {‖x − y‖K }y∈E .

If E ⊂ R
2 has Hausdorff dimension > 5/4, then there exists x ∈ E so that

the pinned distance set �x,K (E) has positive Lebesgue measure.

Many parts of the proof work in the same way, and we will only discuss the
required changes. The most interesting new ingredient is a generalization of
Liu’s identity—Theorem 5.1.

Let us start by discussing the analogue of the train track examples for a
general norm. This will help us motivate the right way to decompose μ1 into
pieces MTμ1. A train track consists of many parallel slats of dimensions
∼ R−1/2 × R−1 contained in a larger rectangle of dimensions ∼ R−1/2 × 1.
In the original Euclidean case, the direction of the slats is perpendicular to
the direction of the larger rectangle. But to build an interesting example for
the norm ‖ · ‖K , the angle of the slats should be dictated by the geometry
of K in the following way. Suppose that the long axis of the large rectange
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is parallel to a vector v. By rescaling, we can assume that v ∈ ∂K . Then
build a train track where the slats are rectangles with long axis parallel to the
tangent vector of K at v. In this case, if x lies in one slat in the train track,
and y1, y2 lie in the same slat at the opposite side of the train track, then
‖x − y1‖K = ‖x − y2‖K + O(R−1). From here on, train track examples have
the same properties as in the Euclidean case.

The angles of the slats have a nice interpretation in terms of the dual norm
K ∗. We recall here some standard facts about dual norms. Let ‖ · ‖K ∗ be the
dual norm to ‖ · ‖K , and let K ∗ be the unit ball of the dual norm, which will
also be smooth and strictly convex. Recall that the dual norm is defined by

‖ω‖K ∗ = sup
v∈K

ω · v.

By strict convexity, there is a unique v ∈ K which achieves the supremum,
whichwe denote by v(ω). The planeω·v = ω·v(ω) is tangent to K at v(ω), and
so we see thatω is normal to ∂K at v(ω). Similarly, for each vector v, there is a
unique ω(v) ∈ ∂K ∗ so that ω(v) · v = ‖v‖K . The plane {ω : ω · v = ω(v) · v}
is tangent to K ∗ at ω(v) and so v is normal to ∂K ∗ at ω(v). If ω ∈ ∂K ∗ and
v ∈ ∂K , then v · ω = 1 if and only if v = v(ω) if and only if ω = ω(v).
Thereforeω(v(ω)) = ω and v(ω(v)) = v. Sinceω(v) is normal to ∂K at v, the
mapω : ∂K → ∂K ∗ is essentially theGaussmap.Because the curvature of ∂K
is∼ 1, the map ω is bilipschitz: for v1, v2 ∈ ∂K , |ω(v1)−ω(v2)| ∼ |v1−v2|.
Therefore the map v : ∂K ∗ → ∂K is bilipschitz. This shows that the curvature
of K ∗ is ∼ 1.

We can now generalize the decomposition μ1 = ∑
T MTμ1 to the case

of general norms ‖ · ‖K , where MTμ1 is designed to isolate the train track
configurations described above. We let R j and τ and ψ j,τ be the same as
in the Euclidean case. But we redefine the tubes T j,τ . For each τ , consider
∂(RK ∗) where R is chosen so that ∂(RK ∗) ∩ τ is non-empty (so R ∼ R j ).
Then we let T j,τ be a set of tubes T with long direction perpendicular to
∂(RK ∗) ∩ τ . In other words, if ω ∈ τ , then the direction of the tubes T is
v(ω). As before, the dimensions of the tubes are R−1/2+δ × 1 and the set of
T ∈ T j,τ covers B2(2). We choose ηT so that

∑
T∈T j,τ

ηT is 1 on B2(2). Then
we define, for each T ∈ T j,τ ,

MT f := ηT (ψ j,τ f̂ )
∨.

We define good and bad tubes in the same way as in the Euclidean case, and
as before we let

μ1,good = M0μ1 +
∑
j≥1

∑
τ

∑
T∈T j,τ ,T good

MTμ1.
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In the Euclidean case, we studied the pushforwards dx∗ μ1 and dx∗ μ1,good
for x ∈ E2. In the case of general norms, we will use a small variation of the
pushforward measure. We need the small variation because of the way that the
generalization of Liu’s identity is stated, cf. Lemma 7.5 below.

Recall that σt denotes the normalized arc length measure on the (Euclidean)
circle of radius t . Then as we saw at the beginning of Sect. 5,

dx∗ ( f darea)(t) = tσt ∗ f (x).

Define σ K
t to be the normalized (Euclidean) arc length measure on S1K (t)—

the circle of radius t in the norm ‖ · ‖K . Then we define

TK ,x ( f darea)(t) = t1/2σ K
t ∗ f (x).

We note that the support of TK ,x ( f darea) is contained in �x,K (supp( f )). In
particular, if x ∈ E2, then the support of TK ,xμ1 is contained in �x,K (E1) ⊂
�x,K (E). For comparison, if we let dxK (y) = ‖x − y‖K , we would have

dxK ,∗( f darea)(t) = t (kσ K
t ) ∗ f (x),

where k(y) is a smooth positive function which only depends on the direction
of y—i.e. k(λy) = k(y) for λ �= 0. If x ∈ E2 and y ∈ E1, then ‖x − y‖K ∼ 1.
Therefore, both dxK ,∗μ1 and TK ,xμ1 are supported in t ∼ 1, and by comparing
the two formulas, we see that TK ,xμ1(t) ∼ dxK ,∗μ1(t). In particular, this
implies that

∫
TK ,xμ1(t)dt ∼ 1.

To prove Theorem 7.1, we have to prove analogues of Propositions 2.1 and
2.2:

Proposition 7.2 Let K be a symmetric convex body in R
2 whose boundary

∂K is C∞ smooth and has everywhere positive curvature bounded from above
and below. If α > 1, then for sufficiently large R0, there is a subset E ′

2 ⊂ E2

so that μ2(E ′
2) ≥ 1 − 1

1000 and for each x ∈ E ′
2,

‖TK ,xμ1 − TK ,xμ1,good‖L1 <
1

1000
.

Proposition 7.3 Let K be a symmetric convex body in R
2 whose boundary

∂K is C∞ smooth and has everywhere positive curvature bounded from above
and below. If α > 5/4, then for sufficiently small δ in terms of α,

∫
E2

‖TK ,xμ1,good‖2L2dμ2(x) < +∞.
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7.1 Proposition 2.1 for general norms

In this section, we discuss the proof of Proposition 7.2 the analogue of Propo-
sition 2.1. We explain what needs to be modified in the proof of Proposition
2.1. The most significant part is the proof of the first lemma, Lemma 3.1. In the
context of general norms, the lemma still holds with the same statement, but
when we look at the proof we will need to use the way that τ and the direction
of T ∈ T j,τ are related to each other.

Lemma 7.4 If T ∈ T j,τ , and x ∈ E2, and x /∈ 2T , then

‖TK ,x (MTμ1)‖L1 � RapDec(R j ).

Proof We will prove the stronger estimate that for every t :

TK ,x (MTμ1)(t) � RapDec(R j ).

Recall that

TK ,x MTμ1(t) = t1/2
∫
S1K (x,t)

MTμ1(y)dσt (y), (7.1)

where S1K (x, t) is the circle around x of radius t in the norm ‖ · ‖K and σt is
the normalized arc length measure on it.

We also recall that

MTμ1 = ηT (ψ j,τ μ̂1)
∨ = ηT (ψ∨

j,τ ∗ μ1).

Now ψ∨
j,τ is concentrated on a R−1/2

j × R−1
j rectangle centered at 0 and it

decays rapidly outside that rectangle. Since x ∈ E2, the distance from x to the
support of μ1 is � 1. Therefore, TK ,x (MTμ1)(t) is tiny unless t ∼ 1.

To study the case when t ∼ 1, we expand out MTμ1:

MTμ1(y) = ηT (y)(ψ j,τ μ̂1)
∨(y) = ηT (y)

∫
e2π iω·yψ j,τ (ω)μ̂1(ω)dω.

Since |μ̂1(ω)| ≤ 1, and ψ j,τ (ω) is supported on τ and bounded by 1, it
suffices to check that for each ω ∈ τ ,

∫
S1K (x,t)

ηT (y)e2π iω·ydσt (y) ≤ RapDec(R j ). (7.2)

We will prove this rapid decay by stationary phase. After a coordinate rota-
tion, we can assume that ω has the form (0, ω2) with ω2 ∼ R j . Let T0 ∈ T j,τ
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be the tube that passes through x . The tubes of T j,τ have long axis perpen-
dicular to ∂(RK ∗) at a point in τ . In other words, the long axis of a tube in
T j,τ is parallel to v(ω) for ω ∈ τ (up to angle R−1/2). The tube T0 intersects
S1K (x, t) in two arcs, and on these arcs, the normal vector to S1K (x, t) points
in the direction ω(v(ω)) = ω, which is vertical. Now T is not T0—we know
that x /∈ 2T , and so the distance from T to T0 is � R−1/2+δ. By the strict
convexity of K , if y ∈ S1K (x, t) ∩ T , then the normal vector to S1K (x, t) at y
makes an angle � R−1/2+δ with the vertical.

The tube T intersects S1K (x, t) in one or two arcs. We parametrize each
arc as a graph—either y2 = h(y1) or y1 = h(y2)—over an interval I (T ). By
choosing one of these two options, we can assume that h and all its derivatives
are � 1 on I (T ). Let us assume first that y2 = h(y1) since this is the more
interesting case. Our integral becomes

∫
I (t)

ηT (y1, h(y1))e
2π iω2h(y1) J (y1)dy1.

This is the same integral that appears in the proof of Lemma 3.1. If y1 ∈ I (T ),
then (y1, y2) ∈ S1K (x, t) ∩ T , and so the normal vector to S1K (x, t) at y makes

an angle � R−1/2+δ
j with the vertical. Therefore, for y1 ∈ I (T ), |h′(y1)| �

R−1/2+δ
j , just like in the proof of Lemma3.1.We can prove the desired estimate

by the same stationary phase argument as in the proof of Lemma 3.1.
If y1 = h(y2), then we have a similar but easier integral:

∫
I (T )

ηT (h(y2), y2)e
2π iω2y2 J (y2)dy2.

This integral is the same as the one appearing at the end of the proof of Lemma
3.1. ��

It is also straightforward to check that if f is supported on the annulus
{y : ‖x − y‖K ∼ 1}, then

‖TK ,x f ‖L1 � ‖ f ‖L1 .

The rest of the proof of Proposition 2.1 is unchanged.

7.2 A general curve version of Liu’s identity

In the proof of Proposition 2.2, the only ingredient that needs to be adjusted
for general norms K is Liu’s L2 identity—Theorem 5.1. The argument in [25]
seemingly relies heavily on the rotation invariance of the circle. We give a
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different approach to Theorem 5.1, and we show that it extends (modulo a
negligible tail term) to more general metrics.

The analogue of Liu’s theorem is the following.

Lemma 7.5 There is a smooth (not necessarily positive) measure σ K ∗
on

∂K ∗ = S1K ∗(1) so that the following holds. Define a measure σ K ∗
r on S1K ∗(r)

by setting

σ K ∗
r (A) = σ K ∗

(A/r).

Suppose that f (y) is supported in the annulus ‖x − y‖K ∼ 1. Then

∫
| f ∗ σ K

t (x)|2tdt �ε

∫
| f ∗ σ̂ K ∗

r (x)|2rdr + O(‖ f ‖2
Ḣ− 1

2+ε
+ ‖ f ‖2

Ḣ− 1
2
).

(7.3)

Proof We abbreviate

F(t) = TK ,x f (t) = t1/2σ K
t ∗ f (x).

Note that the left-hand side of (7.3) is
∫
F(t)2dt . Also, because of the

support condition on f , F(t) is supported on t ∼ 1.
We begin with an estimate for σ̂ K which was derived by Herz [15]: When

|ξ | ≥ 1, we have

σ̂ K (ξ) = |ξ |− 1
2 κ(ξ)−

1
2 e2π i(‖ξ‖K∗− 1

8 ) + |ξ |− 1
2 κ(−ξ)−

1
2 e−2π i(‖ξ‖K∗− 1

8 )

+O(|ξ |− 3
2 ),

where κ(ξ) is the Gaussian curvature of ∂K at v(ξ)—the vector with ξ ·
v(ξ) = maxv∈K ξ · v. Note that ∂K is symmetric and so κ(ξ) = κ(−ξ). Also
σ̂ K
t (ξ) = σ̂ K (tξ). Therefore,

σ̂ K
t (ξ) = |tξ |−1/2κ(ξ)−

1
2 (e2π i(t‖ξ‖K∗− 1

8 ) + e−2π i(t‖ξ‖K∗− 1
8 )) + O(|tξ |− 3

2 ).

This bound holds for |tξ | � 1. If |tξ | � 1, then we have the simpler bound

|σ̂ K
t (ξ)| � 1 which gives the same expression with a remainder term of the

form |tξ |−1/2 on the right-hand side.
Now we return to F(t). We have

F(t) = t1/2σ K
t ∗ f (x) = t1/2

∫
e2π i x ·ξ σ̂ K

t (ξ) f̂ (ξ)dξ.
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Plugging in the formula above for σ̂ K
t , we get two main terms and a remain-

der term—for every t ∼ 1,

F(t) = F1(t) + F2(t)

+O

(∫
|ξ |≥1

| f̂ (ξ)||ξ |− 3
2 dξ +

∫
|ξ |≤1

| f̂ (ξ)||ξ |−1/2dξ

)
,

where

F1(t) = e−i π
4

∫
e2π i x ·ξ f̂ (ξ)κ(ξ)−

1
2 |ξ |− 1

2 e2π i t‖ξ‖K∗dξ.

F2(t) = ei
π
4

∫
e2π i x ·ξ f̂ (ξ)κ(ξ)−

1
2 |ξ |− 1

2 e−2π i t‖ξ‖K∗dξ.

Notice that the t1/2 in the expression F(t) = t1/2σ K
t ∗ f (x) cancelled the

t−1/2 in front of σ̂ K
t (ξ). This cancellation is the motivation for the expression

t1/2σ K
t ∗ f . It leads to a simple formula for F̂1 and F̂2, which we can use to

estimate
∫ |F1(t)|2 and

∫ |F2(t)|2.
Before turning to Plancherel, let usmention that the formula for Fi (t)makes

sense for all real t .
To find the formula for F̂1(r), we will massage the definition of F1(t) into

the form F1(t) = ∫ ∞
0 e2π ir tG(r)dr . Then it will follow that F̂1(r) = G(r)

(and that F̂1 is supported in [0, ∞).) Nowwe process the formula for F1. First,
we write ξ = rθ where r = ‖ξ‖K ∗ and θ ∈ S1K ∗ = ∂K ∗. We can do a change
of variables dξ = J (θ)rdrdθ, where dθ is arc length measure on S1K ∗ and
J (θ) is smooth and bounded. Then we get

F1(t) = e−i π
4

∫ ∞

0

∫
S1K∗

e2π i x ·ξ f̂ (ξ)κ(θ)−
1
2 |ξ |− 1

2 J (θ)dθe2π i tr rdr,

where ξ = rθ . We rewrote κ(ξ) = κ(θ) since κ(ξ) only depends on the
direction of ξ . Up to another smooth factor J̃ (θ), we have |ξ | = r , and so,
after redefining J (θ), we have

F1(t) =
∫ ∞

0

(
e−i π

4

∫
S1K∗

e2π i x ·ξ f̂ (ξ)κ(θ)−
1
2 J (θ)dθr1/2

)
e2π i tr dr.

Therefore,

F̂1(r) = e−i π
4

∫
S1K∗

e2π i x ·ξ f̂ (ξ)κ(θ)−
1
2 J (θ)dθr1/2.
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Now define σ K ∗ = κ(θ)−1/2 J (θ)dθ , a smooth measure on S1K ∗ , and we
have

F̂1(r) = e−i π
4 f ∗ σ̂ K ∗

r (x)r1/2.

Now by Plancherel, we get

∫
|F1(t)|2dt =

∫
|F̂1(r)|2dr =

∫ ∞

0
| f ∗ σ̂ K ∗

r (x)|2rdr.

A similar bound applies to F2.
Finally, we put it all together:

∫
|F(t)|2dt ∼

∫
t∼1

|F(t)|2dt �
∫

|F1(t)|2dt

+
∫

|F2(t)|2dt + Remainder,

where

|Remainder| �
∫

|ξ |≥1
| f̂ (ξ)||ξ |− 3

2 dξ +
∫

|ξ |≤1
| f̂ (ξ)||ξ |− 1

2 dξ.

The main two terms are �
∫ ∞
0 | f ∗ σ̂ K ∗

r (x)|2rdr . The remainder terms are
controlled by Cauchy–Schwarz:

(∫
|ξ |≥1

| f̂ (ξ)||ξ |− 3
2 dξ

)2

�
(∫

| f̂ (ξ)|2|ξ |−1+2εdξ

)(∫
|ξ |≥1

|ξ |−2−2εdξ

)

� ‖ f ‖2
Ḣ− 1

2+ε
.

(∫
|ξ |≤1

| f̂ (ξ)||ξ |− 1
2 dξ

)2

�
∫

|ξ |≤1
| f̂ |2|ξ |−1dξ ≤ ‖ f ‖2

Ḣ− 1
2
. ��

We wish to apply this Lemma with f = μ1,good . Our μ1,good is rapidly
decaying outside of a tiny neighborhood of E1, and so if x ∈ E2, μ1,good is
essentially supported in an annulus of the form ‖x− y‖K ∼ 1. Sowe can apply
Lemma 7.5, and to make use of it we just need to check that the remainder
terms are finite: in other words

‖μ1,good‖Ḣ−s < ∞,

for s = 1/2 or 1/2 − ε.
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Let us first check that ‖μ1,good‖Ḣ−s � ‖μ1‖Ḣ−s . Indeed,

‖μ1,good‖2Ḣ−s �
∑
j,τ

R−2s
j

∑
T∈T j,τ ,T good

∫
|M̂Tμ1|2.

Applying Plancherel,

∑
T∈T j,τ ,T good

∫
|M̂Tμ1|2 =

∑
T∈T j,τ ,T good

∫
|ηT |2|(ψ j,τ μ̂1)

∨|2

�
∫

|(ψ j,τ μ̂1)
∨|2 =

∫
|ψ j,τ |2|μ̂1|2.

Plugging into the above, we see that

‖μ1,good‖2Ḣ−s �
∑
j,τ

R−2s
j

∫
|ψ j,τ |2|μ̂1|2 �

∫
|ξ |−2s |μ̂1|2 = ‖μ1‖2Ḣ−s .

The norm ‖μ1‖Ḣ−s is related to the dimension α as follows. Recall that the
β-dimensional energy of a measure μ is given by

Iβ(μ) :=
∫

|x − y|−βμ(x)μ(y).

There is also a Fourier representation for Iβ(μ) (cf. Proposition 8.5 of [37]):
if μ is a measure on R

n , then

Iβ(μ) = cn,β

∫
Rn

|ξ |−(n−β)|μ̂(ξ)|2dξ.

In particular ‖μ1‖2Ḣ−s = ∫ |ξ |−2s |μ̂1|2 = I2−2s(μ1). If a measure μ on the
unit ball obeys μ(B(x, r)) � rα , then Iβ(μ) is finite for every β < α (cf.
Lemma 8.3 of [37]). In particular, Iβ(μ1) < ∞ for every β < α. Therefore,
‖μ1‖Ḣ−s < ∞ whenever 2 − 2s < α or s > 1 − α/2. In particular, if α > 1,
then the remainder terms are controlled and we get

‖TK ,xμ1,good‖2L2 =
∫

|μ1,good ∗ σ K
t (x)|2tdt

�
∫ ∞

0
|μ1,good ∗ σ̂ K ∗

r (x)|2rdr + O(1).
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Integrating with respect to dμ2(x), we get

∫
E2

‖TK ,xμ1,good‖2L2 �
∫ ∞

0

(∫
E2

|μ1,good ∗ σ̂ K ∗
r (x)|2dμ2(x)

)
rdr+ O(1).

As in the proof in the Euclidean case, we bound the inner integral using
Corollary 4.3. The proof is essentially the same as in the Euclidean case, but
when we check that each piece fT is microlocalized correctly, we have to take
into account the angles between the tubes T ∈ T j,τ and the normal vector to
∂K ∗ in the τ direction. Here are the details.

μ1,good = M0μ1 +
∑
j≥1,τ

∑
T∈T j,τ ,T good

MTμ1.

When we convolve with σ̂ K ∗
r , the only terms that remain are those with

Fourier support intersecting S1K ∗(r). So μ1,good ∗ σ̂ K ∗
r is essentially equal to

∑
R j∼r

∑
τ

∑
T∈T j,τ T good

MTμ1 ∗ σ̂ K ∗
r .

Let η1 be a bump function adapted to the unit ball. We define

fT = η1

(
MTμ1 ∗ σ̂ K ∗

r

)
.

We claim that each fT is microlocalized in the way we would want to apply
Corollary 4.3. If T ∈ T j,τ , then we let θ(T ) be the 1-neighborhood of 3τ ∩
S1K ∗(r). We claim that f̂T is essentially supported in θ(T ). First we recall

that M̂Tμ1 is essentially supported in 2τ . Therefore, the Fourier transform

of MTμ1 ∗ σ̂ K ∗
r is essentially supported in 2τ ∩ S1K ∗(r). Finally, the Fourier

transform of fT is essentially supported in the 1-neighborhood of 2τ ∩S1K ∗(r),
which is contained in θ(T ). Note that θ(T ) is a rectangular block of dimensions
roughly r1/2 × 1.

Next we claim that fT is essentially supported in 2T .We know thatMTμ1 is
supported in T . Let ψ̃τ be a smooth bump functionwhich is 1 on 2τ and rapidly
decaying. Since the Fourier transform of MTμ1 is essentially supported on 2τ ,

we have MTμ1 ∗ σ̂ K ∗
r is essentially equal to MTμ1 ∗ (ψ̃τ σ

K ∗
r )∧. It is standard

to check by stationary phase that (ψ̃τ σ
K ∗
r )∧ is bounded by RapDec(r) on

B2(1) outside of a tube of radius r−1/2+δ in the direction which is normal to
S1K ∗(r) in τ . By construction, the tube T also goes in this direction. Therefore,
MTμ1 ∗ (ψ̃τ σ

K ∗
r )∧ is negligible on B2(1)\2T . So fT is essentially supported

on 2T .
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The rest of the proof of Proposition 2.2 is the same as in the Euclidean case.
When we apply Theorem 4.2, the surface S that we use is ∂K ∗. Since Theorem
4.2 only requires S to be a C2 hypersurface with all extrinsic curvatures ∼ 1,
it applies to ∂K ∗.

7.3 Norms with some points of vanishing curvature

Theorem 7.1 applies to norms ‖ · ‖K where ∂K has strictly positive curvature
everywhere. This assumption rules out the l p norms for all p �= 2. If 1 <

p < ∞, and p �= 2, then there are finitely many points on the boundary of the
unit ball where the curvature vanishes. Theorem 7.1 can be generalized to the
case when ∂K is smooth and the curvature vanishes at finitely many points by
a small extra trick. We first set up E1, E2, μ1, and μ2 as usual, but then we
refine them to avoid the directions where the curvature of K vanishes. Let r0
be a small radius that we can choose later. Let B1 be any ball of radius r0 with
μ1(B1) > 0, and replace E1 by E1∩B1. Then cover E2 with balls of radius r0.
We call a ball B from this covering bad if there are points x1 ∈ B1 and x2 ∈ B
so that the vector x2 − x1 is parallel to a vector v ∈ ∂K where the curvature
of ∂K vanishes. The number of bad balls is � r−1

0 . Since μ2(B(x, r)) � rα

with α > 1, we can find a good ball B2 with μ2(B2) > 0. Now we replace E2
by E2 ∩ B2. We redefine μ1 and μ2 to be supported on our new smaller sets
E1 and E2.
If xi ∈ Bi , then the vector (x2 − x1)/|x2 − x1| lies in an arc of ∂K of length

∼ r0 which avoids all the flat points of ∂K . Now we define K̃ to be a different
symmetric convex body so that ∂ K̃ includes this arc of ∂K but ∂ K̃ is smooth
with strictly positive curvature everywhere. We can apply our proof to ‖‖K̃ . It
gives us a point x ∈ E2 so that dx

K̃
(E1) has positive Lebesgue measure. But

if x1 ∈ E1 and x ∈ E2, then ‖x − x1‖K = ‖x − x1‖K̃ , and so dxK (E1) has
positive Lebesgue measure also.

8 Applications of the main results to the Erdős distance problem for
general norms

The purpose of this section is to prove Corollary 1.5 and extend it to a more
general collection of point sets. The following definition is due to the second
listed author, Rudnev and Uriarte-Tuero [17].

Definition 8.1 Let P be a set of N points contained in [0, 1]d . Define the
measure

dμs
P(x) = N−1 · N d

s ·
∑
p∈P

χB(N
1
s (x − p))dx, (8.1)
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where χB is the indicator function of the ball of radius 1 centered at the origin.
We say that P is s-adaptable if there exists C independent of N such that

Is(μP) =
∫ ∫

|x − y|−sdμs
P(x)dμs

P(y) ≤ C. (8.2)

It is not difficult to check that if the points in set P are separated by distance
cN−1/s , then (8.2) is equivalent to the condition

1

N 2

∑
p �=p′

|p − p′|−s ≤ C. (8.3)

In dimension d = 2, it is also easy to check that if the distance between any
two points of P is � N−1/2, then (8.3) holds for any s ∈ [0, 2), and hence P
is s-adaptable.

We will prove that if P is s-adaptable, then for some x ∈ P , |�K ,x (P)| �
N 4/5. As a special case, this implies Corollary 1.5.
Fix s ∈ (54 , 2) and define dμs

P as above. Note that the support of dμs
P is

PN− 1
s , the N− 1

s -neighborhood of P . Since Is(μs
P) is uniformly bounded, the

proof of Theorem 1.3 implies that there exists x0 ∈ PN−1/s
so that

L(�K ,x0(P
N− 1

s
)) ≥ c > 0,

where the constant c only depends on the value of C in (8.3).
Let x be a point of P with |x − x0| ≤ N−1/s . It follows that for any y, ‖x0−

y‖K = ‖x− y‖K +O(N−1/s). Let EN−1/s
(
�K ,x (P)

)
be the smallest number

of N−1/s-intervals needed to cover �K ,x (P). We know that �K ,x0(P
N−1/s

) is
contained in the O(N−1/s) neighborhood of �K ,x (P), and so

L(�K ,x0(P
N− 1

s
)) � N− 1

s EN−1/s
(
�K ,x (P)

)
.

Then our lower bound on L(�K ,x0(P
N− 1

s
)) gives

EN−1/s
(
�K ,x (P)

)
� N 1/s .

In other words, �K ,x (P) contains � N 1/s different distances that are pair-
wise separated by� N−1/s . In particular, |�K ,x (P)| � N 1/s . Since this holds
for every s > 5/4, we get |�K ,x (P)| � N 4/5 as desired.
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9 Appendix: Discussion of the lower bound on the upper Minkowski
dimension of �x,K (E) in Remark 1.4

Let ρ be a smooth cut-off function supported in the ball of radius 2 and equal
to 1 in the ball of radius 1 centered at the origin. Let ρδ(x) = δ−dρ(δ−1x).
Following the argument in (2.5) with μ1,good replaced by μ1,good ∗ ρδ , we
see that the Lebesgue measure of the δ-neighborhood of �x,K (E) is bounded
from below by

(
1 − 2

1000

)2
∫ |dx∗ μ1,good ∗ ρδ|2

.

Following (5.2) with μ1,good replaced by μ1,good ∗ ρδ , we see that the

expression above is bounded from below by Cδ
5
3− 4α

3 +ε , hence there exists
x ∈ E such that the upper Minkowski dimension of�x,K (E) is bounded from
below by

1 −
(
5

3
− 4α

3

)
= 4

3
α − 2

3
,

as claimed.
It would be interesting to obtain a lower bound on the Hausdorff dimension

of �x,K (E). If μ1,good were positive, it would be sufficient to show that

∫
E2

Iγ d
x∗ (μ1,good)dμ2(x) (9.1)

is bounded with γ < 4
3α − 2

3 . This estimate follows from the same argument
as in (5.2) above. Unfortunately, in view of the fact that μ1,good is complex
valued, the estimate (9.1) does not appear to be sufficient to draw the desired
conclusion.
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