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Abstract If E C R? is acompact set of Hausdorff dimension greater than 5/4,
we prove that there is a point x € E so that the set of distances {|x — y|},ck
has positive Lebesgue measure.

1 Introduction

For a set E C R¥, define the distance set

AE)={lp—p'|:p.p € E}.

Falconer’s distance problem [11] is about the connection between the Haus-
dorff dimension of a set E and the size of A(E). Given a compact set E in R?,
d > 2, the problem is to understand how large the Hausdorff dimension of £
needs to be to ensure that the Lebesgue measure of A(FE) is positive. Falconer
proved that if dimy (E) > %, then L(A(E)) > 0. Using an example based

on the integer lattice, he showed for every s < % there exist sets of Haus-
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dorff dimension s for which L(A(E)) = 0. This led to the conjecture that if
dimy(E) > %, then the Lebesgue measure of the distance set is positive. This
is known as the Falconer Distance Conjecture.

In [36], Wolff proved that if £ C R2 is a compact set with Hausdorff
dimension greater than 4/3, then A(E) has positive Lebesgue measure. In this
paper, we improve the bound.

Theorem 1.1 If E C R? is a compact set with Hausdorff dimension greater
than 5/4, then A(E) has positive Lebesgue measure.

In higher dimensions, Erdogan proved in [9] that if dimy(E) > % + %,
then L(A(E)) > 0. Recently, these estimates were improved for all d > 3
by Du, Guth, Ou, Wang, Wilson, and Zhang [6]. In dimension 3, they showed
that the Falconer conjecture holds when dim(E) > 9/5. The estimates for
d > 4 were further improved by Du and Zhang [7]. For large d, they prove
that Falconer’s conjecture holds when dim(E) > % + 4—1‘ +o0(1). These works
brought into play the decoupling theorem of Bourgain and Demeter [3]. This
approach will also play a key role in our proof.

Returning to the planar case, there have been a number of important recent
results. Orponen [29] proved that if E is a compact Ahlfors-David regular set
of dimension s > 1, then A(E) has packing dimension 1. Note that packing
dimension 1 is only slightly weaker than positive measure. This result was
striking because in previous work on the problem, there was no evidence
that the Ahlfors-David case would be any easier than the general case. This
approach was further developed by Keleti and Shmerkin [24]. They proved
very strong estimates for sets that are even roughly like Ahlfors-David regular
sets. They also proved results about the Hausdorff dimension of A(E). For
instance, if E is a compact set with Hausdorff dimension strictly greater than
1, then they proved that the Hausdorff dimension of A(E) is at least .685....
Bourgain [2] had proven that if £ has Hausdorff dimension at least 1, then
A(E) has Hausdorff dimension at least 1/2 4 § for some § > 0. The value
of § could be made explicit but it would be very small, and so the .685... is
quite striking. We will use one of the key ideas of [29] and [24] in the proof
of Theorem 1.1.

There is a variant of the Falconer Distance Problem involving pinned dis-
tance sets. For any point x, the pinned distance set A, (E) is defined by

Ay(E) ={lx —yl:y€E}.
Peres and Schlag [31] proved that if E ¢ R, d > 2 and dimy(E) > d%,
then L(A,(E)) > 0 for every x € E except for a set of small Hausdorff

dimension. Improvements on the size of the exceptional set were obtained by
the second listed author and Liu in [19].
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On Falconer’s distance set problem in the plane

Recently, in [25], Liu showed thatif dimy(E) > 4+1,then L(A((E)) > 0
for every x € E except those in a set of small Hausdorff dimension. Using
Liu’s method, we are also able to bound the size of pinned distance sets.

Theorem 1.2 If E C R? is a compact set with Hausdorff dimension larger
than ?T’ then there is a point x € E such that its pinned distance set Ay (E)
has positive Lebesgue measure.

1.1 Other norms

The Falconer problem has also been studied for other norms. Suppose that K
is a symmetric convex body in R? and || - ||k is the norm with unit ball K. We
let Ak (E) be the set of distances ||x — y||x withx, y € E and welet Ag ,(E)
be the set of distances ||x — y||x with y € E. If K is the cube [—1, 114, then
| - || x is the I°° norm, and it is not difficult to construct a compact set E C R4
with Hausdorff dimension d so that Ag (F) has measure zero. But there are
non-trivial results if K is curved. We focus on the case that 0 K is C° smooth
and has positive Gaussian curvature. It is plausible that Falconer’s conjecture
remains true for all such norms, and most previous results on the problem
extend to this setting. For instance, Erdogan’s bound extends to this class of
norms—cf. Remark 1.6 in [9]. Our method also extends to this class of norms.

Theorem 1.3 Let K be a symmetric convex body in R*> whose boundary 9K is
C™ smooth and has strictly positive curvature. Let E C R* be a compact set
whose Hausdorff dimension is larger than 45'1' Then, there exists a point x € E
so that the pinned distance set

Ak x(E) == {llx =yl : y € E}
has positive Lebesgue measure.

Remark 1.4 One can adapt the proof of Theorems 1.1 and 1.3 to yield the
following result. Suppose that the Hausdorff dimension of a compact set E C
R? is equal to s > 1 and K is as in Theorem 1.3. Then there exists x € E

such that the upper Minkowski dimension of Ay x (E) is > %“ — % Keleti and

Shmerkin [24] obtained the lower bound %(1 + 5 4+ 4/35(2 — 5)) in the case
of the Euclidean metric. Their estimate is better than ours near s = 1, but ours
is preferable as s nears %. The sketch of this argument is given in Appendix
where we also discuss the complications of replacing the upper Minkowski
dimension by the Hausdorff dimension in the claim above.

Falconer’s distance problem can be thought of as a continuous analogue
of a combinatorial problem raised by Erd6s [10]: given a set P of N points
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in R, what is the smallest possible cardinality of A(P). A grid is the best
known example in all dimensions. In two dimensions, Guth and Katz [14]
proved a lower bound for |A(P)| which nearly matches the grid example (up
to a factor of log!'/? N). In higher dimensions, there is a larger gap, and the
best known result is due to Solymosi and Vu [34]. The Erd&s distinct distance
problem also makes sense for general norms and much less is known about
it. In the planar case, if K is smooth and has strictly positive curvature, the
best known bound says that if |P| = N, then |Ag (P)| > N3/4, with stronger
estimates established by Garibaldi in special cases [12]. There is a conversion
mechanism to go from Falconer-type results to ErdGs-type results that was
developed by the second author together with Hoffman [16], Laba [18], and
Rudnev and Uriarte-Tuero [17]. It gives estimates for point sets that are fairly
spread out. Applying the conversion mechanism to Theorem 1.3 we get the
following corollary:

Corollary 1.5 Let K be a symmetric convex body in R? whose boundary K
is C* smooth and has strictly positive curvature. Let P be a set of N points
in [0, 117 so that the distance between any two points is > N~'/2. Then there
exists x € P such that .

|Ak x(P)| Z N5. (1.1)

Note that the N ~!/?-separation condition in the above essentially says that
P is a homogeneous set, i.e. there is one point in each of the ~ N cells in
[0, 11%.

1.2 The main obstacle

The work on the Falconer problem by Wolff [36] and Erdogan [9] is based on
a framework developed by Mattila [26,27] which connects the original geo-
metric problem to estimates in Fourier analysis. Suppose that £ is a compact
set with positive o-dimensional Hausdorff measure. Then there is a probabil-
ity measure p supported on E with w(B(x, r)) < r® for every ball B(x, r).
The measure u is called a Frostman measure (cf. [37], Proposition 8.2.). Let
d(x,y) = |x — y|. Mattila considered the pushforward measure d,(u x W),
defined by

/ V(0)di(p X p) = f V(lx — yDdu(x)du(y).
R ExXE

In particular d, (i x ) is a probability measure supported on A(E). Mattila
noted that if [|di(e x )17, = [di(u x )(1)*dt is finite, then Cauchy—
Schwarz forces the Lebesgue measure of A(E) to be positive. Then he

described an interesting way to rewrite ||dy(u X )|l iz in terms of the Fourier
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On Falconer’s distance set problem in the plane

transform of w. The resulting integral is connected to restriction theory, and
Wollff used that connection to prove the bound in [36], building on earlier work
by Bourgain [1].

In [25], Liu used a different framework for the Falconer problem which
leads to estimates on pinned distance sets. For any x, define d* (y) = |x — y|.
He studied the quantity

/ Iy ()17 2d (). (1.2)

If this key quantity is finite, then for almost every x € E, ||d; | ;2 is finite,
and then a Cauchy-Schwarz argument forces the Lebesgue measure of A, (F)
to be positive. Liu introduced an interesting way to rewrite this quantity in
terms of the Fourier transform of w. It can then be studied using restriction
theory, leading to estimates on the pinned distance problem.

In the planar case, there is an obstruction to pushing either one of these
methods to dimensions below 4/3. For every o < 4/3, there is a set E of
dimension « and a Frostman measure p on E so that ||dy (w0 x @) || 72 is infinite,
and also ||d} (i) ;2 isinfinite forevery x € E.(Inthree dimensions, itis known
[9, Remark 1.5] that 5/3 is the lowest threshold one can possibly obtain for
the Falconer problem using the Mattila integral method, however, we are not
aware of similar obstructions in higher dimensions.) This set is a variation on
an example from [22]. The set E looks roughly like several parallel train tracks.
In the following figure, we show an approximation of the set E at a small scale
R~!. The measure 1 (approximated at scale R™') is just the normalized area
measure on this set.

The set E is divided among several large R~ '/“ x 1 rectangles. Within each
of these large rectangles, the set E consists of evenly spaced parallel rectangles
with dimensions R~!/2 x R~!. Each of these smaller rectangles is called a
slat. The restriction of E to one of the larger rectangles is called a train track.
The spacing between two consecutive slats is controlled by the dimension of
E, and it works out to R~/ If x and y are in the same train track, on roughly
opposite ends, and if y is M slats from x, then |x — y| lies in the interval

1/2

Iy :=[MR™? — R\, MR™*/? + R7'].

Therefore, d,(u x ) assigns a lot of mass to the union of the intervals /.
This union is quite small, and even though the mass involved is significantly
less than 1, it is still enough to force f |dy (e X pL)|2 to be very large.

There is a similar issue for d; (). If we fix any x € E, and we let T be the
large rectangle containing x, then dj (|7,) is mostly concentrated on U/,
and this forces [ |d} u|* to be very large. On the other hand, if T is a large
rectangle which is far from x, then dj (i|7) is rather evenly distributed—in
fact d; (iu|r) is close to the pushforward of the uniform measure on 7" with the
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same total mass. So if we graph d; (i), it has some peaks along Ul coming
from the rectangle T through x, but the bulk of d; (1) is spread rather evenly
and comes from rectangles 7 far from x. In particular, the support of d; (11)
indeed has positive Lebesgue measure.

This example (which will be revisited in more detail in Sect. 6) is the main
obstacle to proving the Falconer conjecture for dimensions less than 4/3. Start-
ing with a general Frostman measure, we separate out a part of it that resembles
the train tracks in the example above. Then we estimate the train-track part
and the non-train-track part in different ways.

For technical reasons, we consider two subsets E1, E» C E separated by
distance ~ 1, and we let © and @y be Frostman measures on Ep, E;. In
fact, we will show that for some x € E, the distance set A, (E) has positive
Lebesgue measure. In the example above, we can imagine that E is the bottom
third and E is the top third. We divide w1 into two pieces

KU1 = K1,g00d T K1,bad>

where (41 pqq 1S essentially the train-track-like part of 1. We always arrange,
however, that [ (11 pga = 0.

For example, if 1] is the normalized area measure on the set £ in Fig. 1
above, then 111 go0q Would be (approximately) the normalized area measure on
the union of the large rectangles. The bad part, (41 paq., 1S equal to (1 — 1, good-
so it would be large on the slats and slightly negative on the parts of the large
rectangles outside of the slats. If Ty is the large rectangle containing x, then
dy (141,g00d | 1) would be much more spread out than d; (141]7,). On the other
hand, if T is far from x, then d (1t1,gooad|7) Would be almost the same as
d; (u1|7). All together, the graph of d (141, g00a) Would look like the graph of
d; (n1) with the peaks damped out. The pushforward d; (11,4004) Would be
quite evenly spread and its L2 norm would be finite. The graph of dy (11, bad)
would include the tall thin peaks from d; (11), and it would be slightly negative
between the peaks. Since the thin peaks have small mass, the L' norm of
d; (41,paq) Would be small.

To prove Theorem 1.2, we will show that the features of 141, gooq and (i1 paa
that we just observed in the example from Fig. 1 will occur for any set
E of dimension greater than 5/4. There are two main estimates. The first
estimate, in Proposition 2.1, says that for most x € E3, ||dy (i41,pad)ll 11
is small, and so the L' distance between dy (1) and d (1t1,gooa) is small.
The bad part, 141 paq, 1S made from train track configurations, and that helps
us analyze it. Analyzing each individual train track is not difficult. How-
ever, unlike in our example above, it could happen that each point lies
in many different train tracks going in different directions. To control this
type of behavior, we use an estimate of Orponen from [30] which also
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On Falconer’s distance set problem in the plane

Fig. 1 The train track example

played a key role in Keleti and Shmerkin’s work on the Falconer problem
[24].

The second estimate says that d;; 41 ¢004 is better behaved in L? than d ;.
More precisely, Proposition 2.2 says that if « > 5/4, then sz I 1e1,good ||%2
is finite. The proof of Proposition 2.2 is based on Liu’s framework and on
decoupling. We will prove and then use a refinement of the decoupling theorem
(Theorem 4.2) which is related to the refined Strichartz estimates that appear
in [4,5], and [6]. This refinement of decoupling was proven independently
by Xiumin Du and Ruixiang Zhang (personal communication). It may be of
independent interest.

Here is an outline of the paper. In Sect. 2, we set up our framework (defining
1, g00d Precisely) and outline the main estimates. At that point, we will be able
to make some further comments about the proofs of the two main propositions.
In Sect. 3, we prove Proposition 2.1. In Sect. 4, we state and prove a refinement
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of the decoupling theorem. At that point, we will give some more context about
this result. Section 4 does not depend on any previous sections. In Sect. 5, we
prove Proposition 2.2 by combining Liu’s framework with our decoupling
tools. This will finish the proof of Theorem 1.2. In Sect. 6, we present in detail
the train track example that we introduced above. In Sect. 7, we adapt our
arguments to general metrics || - || g, proving Theorem 1.3. In Sect. 8, we prove
Corollary 1.5.

2 Setup and outline of the main estimates

Let E C R? be a compact set with positive a-dimensional Hausdorff measure.
Without loss of generality, we can suppose that E is contained in the unit disk.
Let E1 and E; be subsets of E with positive a-dimensional Hausdorff measure
so that the distance from E; to E; is 2 1. Each subset E; admits a measure
i with the following two properties:

Wi is a probability measure supported on E;. 2.1
wi(B(x,r)) Sre. 2.2)

We will explain how to define 11, gooq by removing “train-track like” pieces
from w. Before going into the details, let us explain the features of a train
track that motivate our definition of 141 gp0q- Let  be the example in Fig. 1
and let T be one of the R™!/? x 1 rectangles containing a train track of the
set E. One feature of T is that (7)) is large. Because the slats of the train
track are perpendicular to the direction of 7', the Fourier transform of w|7 is
concentrated on frequencies that are in the same direction as 7. This is a second
feature of T'. So to build 1t1,good, we will first identify rectangles T with large
u measure and call them bad rectangles. Then for each bad rectangle 7', we
will identify the part of u with physical support in 7" and frequency support
in the direction of 7', and remove that part. Here is the precise definition.

We consider a sequence of scales Ry, R, Ra, etc. Here Ry is a large number
that we will choose later and R; = 2/ Ry. Cover the annulus R;_; < |w| < R;

by rectangular blocks t with dimensions approximately R]l./ %R j- The long
direction of each block t is the radial direction. We choose a partition of unity
subordinate to this cover, so that

I=vo+ Y Vi

j=lT

Let § > 0 be a small constant that will be determined later. Note that § will
play arole in the definition of 1t1 ¢00q4 and will be eventually taken sufficiently
small in terms of « in Proposition 2.2 below.
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On Falconer’s distance set problem in the plane

For each (j, t), cover the unit disk with tubes T of dimensions approx-
imately RY21 % 2 with the long axis parallel to the long axis of 7. The
covering has uniformly bounded overlap, each T intersects at most two other
tubes. Let T ; be the collection of all these tubes, and let nr be a parti-
tion of unity subordinate to this covering, so that for each choice of j and 7,
ZTGT]'J nr is equal to 1 on the disk of radius 2 and each 5z is smooth.

Define an operator M7 associated to a tube T € T; ; by

Mrf =nrWj ).

Morally, Mt f is the part of f which has Fourier support in 7 and physical
support in 7. We also let My f := (1//0f)v. We denote T; = U, T; . and
T =U;>T;. If f is a function supported on the unit disk, then f = My f +
Y ret M7 f, up to atiny error (see Lemma 3.4 below for a precise statement).

Let c(«) > 0 be a large constant to be determined later in Lemma 3.6, and
4T denote the concentric tube of four times the radius. We call atube T € T ;
bad if

—1/24c(@)$

To get a sense of what this means, notice that the number of tubes T € T} ; is
~ R ]1 /2—8

12, then for each tube we would have ) (T) ~ Rj_l/ 28 A tube is bad, if
its neighborhood contains significantly more p, measure than this. A tube is
good if it is not bad. Now we define (11 gooq to be the sum of contributions
from all the good tubes.

.If each tube T € T, ; contained the same amount of the measure

M1,g00d ‘= MO/LI + Z MTMI-
TeT,T good

Note that in our discussion below, only those tubes that intersect both £ and
E»> matter, as otherwise they don’t make any contribution to the quantities in
Propositions 2.1 and 2.2. And according to the definition, i1 go0q is defined
with respect to w».

We describe a couple of examples to give a sense of how 111 ¢00q behaves.
If 11 is the normalized area measure on the set £ in Fig. 1 above, then 141 gpod
would be (approximately) the normalized area measure on the union of the
large rectangles. On the other hand, if we took the set E in Fig. 1 above and
we changed it by tilting the slats at a 45 degree angle while keeping the large
rectangles vertical, then 111 go0oq Would be essentially equal to ;. In general,
I1,g00d May not be real-valued, but it is a distribution (in fact, it is a complex
measure supported on the disk of radius 2).
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Our main theorem (Theorem 1.2) follows from two estimates about the
pushforward measures d i1 and d3; 41, good -

Proposition 2.1 If o > 1, and if we choose Ry large enough, then there is a
subset E5 C E» so that py(E}) > 1 — 101—00 and for each x € EJ,,

X X 1
dy (1) — d (1, gooad) I 1 < 1000°

Proposition 2.2 If « > 5/4, then for sufficiently small § in terms of «,
/ 1% (21, g00a) |22 2 () < 400
E>

In the above, we have slightly abused notation, using d; (i), d (j41,go0d) tO
denote both the pushforward measures and their densities. To be completely
rigorous, one would need to define the density as limit of approximate iden-
tity, then derive the propositions above uniformly with respect to the limiting
process. We omit the details as the process is fairly standard (for example see

[25]).
Proof of Theorem 1.2 using Proposition 2.1 and Proposition 2.2 The two pro-

positions tell us that there is a point x € E; so that

ldy (101) — dy (1e1,g00a) I 1 < 1/1000, and (2.3)
||djf(/fbl,good)||L2 < 400. 24)

Since d; (w1) is a probability measure, (2.3) guarantees that

1
/|d:(ﬂl,good)| >1- m

Note that the support of & (111) is contained in A, (E). Therefore

/ |d:lL1,good| :/|d:(ﬂl,g00d)| _/ |d:(ﬂl,good)|
Ay (E) Ax(E)¢

1 2

e — [ 1) — & =1
= 1000 /l *(/1'1) *(Ml,good)| = 1000

But on the other hand,
1/2
/ |d 11,g00a] < |Ax(E)['/? ( f |d:fm,gwd|2) )
x(E)
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On Falconer’s distance set problem in the plane

Since (2.4) tells us that f |djfu1,g(,0d|2 is finite, it follows that |A,(E)]| is
positive. O

To end this section, let us make some comments about the proofs of Propo-
sition 2.1 and Proposition 2.2. To prove Proposition 2.1, the first observation
is that if x is far from 7', then removing M7 from w; has a negligible
effect on the pushforward measure & (111). So the difference between dj |
and d (11,4004 Only comes from the bad tubes going through x. Recall that a
tube T is bad if its pp measure is too large. In general a point x could lie in
many bad tubes, and we need to know that the total i measure of all these
bad tubes is small (for most x € E»). This follows from Orponen’s radial pro-
jection theorem from [30]. This theorem plays an important role in Keleti and
Shmerkin’s work on the Falconer problem [24], which is where we learned
about it.

To discuss Proposition 2.2, we first describe the framework from [25]. Let
oy denote the normalized arc length measure on the circle of radius 7 (so the
total measure is 1). In [25], Liu proved the following remarkable identity: for
any function f,

/ |f*a;(x)|2tdz:/ | f % 6, (x)|*rdr.
0

0

It follows from this identity that

00
/ ||d:(ﬂl,good)||i2dﬂ2(x) < / (/ |11, good * 6'r|2d,u2(x)> rdr.
Ep 0 E>

Now the Fourier transform of j41 go0q * 0, is supported on the circle of radius
r, and studying such functions is the subject of restriction theory. We can
decompose [41,go0d * O aS

M1,g00d * oy = Z M7 iy * 0.
T good

The right-hand side is essentially the wave packet decomposition of (41 good *
0. This means that M7 * 6| B2(1) is essentially supported in 7 and its
Fourier transform is essentially supported in an arc of Sr1 in the direction of T'.
Since the tubes T are all good, each tube T has a small 1, measure, and we will
take advantage of this to bound the inner integral f E |11, g00d * OF 12d o (x).
Since T has a small i, measure, we can immediately get a good estimate for
sz | M7 11 * 6 |>d o But to bound sz 141, g00d * Gr|*d 12, we need to know
how the wave packets M7 * 6, interact with each other. Is it possible that
these wave packets have a lot of positive interference on the set E>? We will
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use decoupling theory to control such positive interference. We will discuss
this further in Sect. 4.

2.1 Notations and preliminaries

We write A < B if A < CB for some absolute constant C; A ~ Bif A < B
and B S A;A <S¢ Bif A<CcB;AZ Bif A < CcRB forany € > 0,
R > 1 (or with N replacing R depending on the context).

For a large parameter R, we use RapDec(R) to denote those quantities that
are bounded by a huge (absolute) negative power of R, i.e. RapDec(R) <
Cy R~ for arbitrary N > 0. Such quantities are negligible in our argument.
We say a function is essentially supported in a region if (the appropriate norm
of) the tail outside the region is RapDec(R) for the underlying parameter R.

A typical situation where such terms would appear is the following. Recall
that we have defined at the beginning of this section that M7 f = nz (.- f)",

for a tube T € T ; that has radius Rj_l/ 2+ and length 2. Hence, Mt f is

supported in 7" because of 5. In the Fourier space, write AjT\f =nr*(Yj ¢ f ),
we claim that Mt f has Fourier support essentially contained in 27, where ©
has dimension approximately R; 2% R ;j and has long axis parallel to the long
axis of T'. To see this, note that 7 is a smooth bump function supported in T
that has height 1, and it has Fourier transform

ﬁ(€)=/ nr(x)e'™ s dx=e""<T>~5/ nr () eV gy
T T

where ¢(T') denotes the center of 7. If & is in the dual rectangle 7* of T,

;/ 278 % with
short axis parallel to the long axis of 7', then |(x — ¢(T)) - §| < 1—10. Hence,
there is essentially no cancellation and |777(&)| ~ |T'|. If instead, & is outside
a R‘; neighborhood of T*, cancellation plays the primary role and from the

smoothness of 77 and integration by parts one has |77 (£)| < RapDec(R)).

i.e. the rectangle centered at the origin with dimension ~ R

In conclusion, nr is essentially supported in 7* which makes M7 f = n7 *
(¥, f) essentially supported in 27.

3 Proof of Proposition 2.1

We will study the pushforward measures d; (141) and dj (41, 4004)- Recall by
definition that

fll’(l)df(,u) =f1lf(|x—yl)du(y)-
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On Falconer’s distance set problem in the plane

In particular, if ¥ is the characteristic function of the interval fp < ¢ <
to + At, then we see that

to+At
/ di(p) = / du.
o f=|x—y|<to+At

To evaluate d; (i) at ¢, we can take the limit as Az — 0. If we think of u
as u(y)dy, then we get

& (W (1) = / L)L),

St (x,1)

where d[(y) denotes the arc length measure on the circle S L(x, ).

To control ||d} (1) — d3 (1t1,g00a) | 1 We will start by studying d (M7 1e1)
for different T. For a tube T € T, let 27 denote the concentric tube of twice
the radius. If x ¢ 27, we show that d; (M7 1) is negligible.

Lemma 3.1 IfT € T, ., and x € E, and x ¢ 2T, then
lds (M7l S RapDec(Rj).
Proof We will prove the stronger estimate that for every ¢:
dX (M7 1) () < RapDec(R)).
Recall that

dy (M7 1) () =f M7 pi (y)di(y). (3.1
S1(x,1)

We also recall that
Mrpy=nr (V11" = nr (P} * ).

Now 1//]\./,1 is concentrated on a Rj_l/ 2 % Rj_1 rectangle centered at 0 and it
decays rapidly outside that rectangle. Since x € E», the distance from x to the
support of w1 is 2 1. Therefore, df M7 (t) is tiny unless 7 ~ 1.

To study the case when ¢ ~ 1, we expand out M7 uq:

Mrpi(y) = nr (0@ 1)7 () = nr(y) / VY (@) fir (@)do.

Since |ft1(w)| < 1, and ¥; ;(w) is supported on T and bounded by 1, it
suffices to check that for each w € 1,
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fs ey TTOIETNIR) < RapDec(R)). (32)
x,t

We will prove this rapid decay by stationary phase. There are two slightly
different cases, depending on whether T intersects S!(x,7/2) or not. Let us
start with the case that T intersects S' (x, t/2), since this case is a little harder.
After a coordinate rotation, we can assume that w has the form (0, w;) with
w2 ~ Rj. Recall that a tube T € T ; has long axis in the direction of the
center of t. In particular, our tube 7" must be nearly vertical, up to an angle of
RJ._I/ 2. The tube 7T intersects S'(x, 7) in two arcs, which we deal with one at a
time. Each arc is a graph of the form y, = h(y;), where y; lies in an interval
I(T) of length ~ Rj_l/2+8. Since T intersects S'(x, t/2), and the tube T is
nearly vertical, the function 4 and all its derivatives are < 1 on I (7).

The following point is crucial for stationary phase. Since 7 is within an
angle Rj_l/ 2 of vertical, and x ¢ 2T, then the distance from T to the top or

1/2+5

bottom points of the circle is 2 Rj_ , and so we get

W' (y)| 2 R; %" on the interval 1(T).

In these coordinates, our integral becomes
f nr (1, hy)e™ O T (y)dyi,
1I(T)

where J(yp) is the Jacobian factor that relates the arclength on the circle

to dy;. Since h and all its derivatives are < 1 on I(T), the same applies
~1/2+8

to J. The function 57 is smooth at scale R , and so if we abbreviate
n(y1) == nr(y1, h(y1))J (y1), then n obeys
1/2—-6
] < (RYPTHE
and 7 is supported on /(7). We let ¢(y1) = 2w w2h(y;). We now have to
bound the following integral:

/ n(y)e?OVdy;.
1(T)

This integral can be bounded using stationary phase. The method is essen-
tially the same as in [35], Chapter 8, Proposition 1. Here is a sketch. We note
that on 1(T),

1/2+6
¢ ()l = leal [ (yD)] Z R}*™, and
0P )| = o2 |hP (1) < R;.
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Next we note that

L d g _ ison

i¢’ dy
We define D = %ddﬁ’ so our integral becomes f](T) nDNei¢dy1, where

N is an arbitrary integer. Next we expand out DV¢!? and we integrate by
parts many times so that none of the derivatives actually lands on ¢/?. Using
our lower bound on |¢’| and our upper bounds on the higher derivatives
of ¢ and the derivatives of 1, it follows that our integral is bounded by
Cy RN For instance, if all the derivatives land on 7, then we get a bound

on (RVZP)N(RY2H)=N _ R=2N a4 this is the worst case. Since N is

arbitrary we get the desired bound.

If T does not intersect S! (x, t/2),then we choose our coordinates differently
so that we can still arrange that |A’| is bounded. This time, we rotate so that
o = (w1, 0), where w; ~ R;. The tube T intersects S'(x, ) in one or two
arcs, and each arc is a graph of the form y, = h(y;) over an interval I(7),
and & and all its derivatives are < 1 on 7 (7). Our integral now has the form

/ nr(y1, h(y)J (y)e”™ M dyy.
1(T)

Since w; ~ R, and nr is smooth on the scale R -l 2+8, this integral can also

be bounded by stationary phase (in fact more simply than in the other case).
O

Next we prove a simple bound to cover the case that x € 27.

Lemma 3.2 Forany T € T; ; and any function f supported in the unit disk,

IMz flipe S W flipery + RapDec(R)Ifll -

Proof Recall that for a tube T' € T; ., we defined M7 by
Mrf = nr(j- )Y =nr (W], = f).

Now ijr is essentially supported in a rectangle of dimensions Rj_1 X R/._l/ 2

and [y}, [l,1 < 1. Since the thickness of T is R/

; , we get

[mrsis [ e [ 1+ Rappec®l L.

O
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Corollary 3.3 For any point x, and any tube T € T,
ldy Mru)lipr S u1RT) + RapDec(Rj).

Next we check carefully that w1 is very close to Mo + ZTGT Mru.

Lemma 3.4 For any L' function f supported in the unit disk

If —Mof =) Mrfli,1 < RapDec(Ro)l f1l-
TeT

Proof Recall that {/; .} is a partition of unity. We define M ; f = (¥ ¢ f)v,
sothat f =3} ;  M; . f.lItsuffices to bound

IMjof = > Mrfll,1 S RapDec(R)I| fl1-
TGTJ"-[

The left hand side is

1= > )@Y, * Ol

TETJ‘,-[

Now as we noted in the proof of Lemma 3.2, w}fr is essentially supported

on an Rj_l/ ? x Rj_l rectangle. Also, ZTGT“ nr is equal to one on the disk
of radius 2 and then decays outside it. Since f is supported in the unit disk,
ij’T * f is essentially supported in the disk of radius 2, and we get the desired
rapid decay. O

Now we can relate [|d} (141,g00a) — dy (1)1 to the geometry of the bad
rectangles. For each point x and each j, we define

Bad; (x) := U 2T.
T€T;:xe2T and T is bad

Lemma 3.5 For any point x in E»,

Id (11.go0a) — d} ()1 S Y R 1 (Badj(x)) + RapDec(Ro).
j=1

Proof Recall that 11, go0q is defined by

M1,good = Mop1 + Z Mr juy.
TeT,T good
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Using Lemma 3.4, we see that

Id (1.gooa) — A2 ()t S Y D di(Mrpn)ll 1 + RapDec(Ro).
j TeT;,T bad

If x € 2T, then we apply Corollary 3.3, and if x ¢ 2T, then we apply
Lemma 3.1. We get

ld (1.g00a) = dEuDllr S ) m1T) + RapDec(Ro).
j TeT;xe2T,T bad

Since the distance from E; to E; is 2 1, each point of E| is contained in
2T for < R? tubes T € T; with x € 2T. Therefore, the right hand side is

S R U 2T | + RapDec(Ro) = » _ R pui(Bad;(x))
j TeT;,xe2T,T bad J
+ RapDec(Ry). o

Next we need to estimate the measure of Bad;(x). We will do this using
Orponen’s radial projection theorem. Before introducing the theorem, we need
to set up a little more notation.

Bad; := {(x1, x2) : thereisabad T € T, so that 2T contains x; and x;}.

Notice that Bad; (x) is just the set of y so that (y, x) € Bad;. Therefore,

m1 X u2(Badj) = /Ml(Badj(x))duz(x)-

Our main estimate about the bad rectangles is

Lemma 3.6 For each o > 1, there exists sufficiently large c(a) > 0 (that
appears in the definition of bad tubes), so that for each j > 1,

p1 x ua(Bad) S R,
Before turning to the proof, let us use this lemma to finish the proof of

Proposition 2.1.
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Proof of Proposition 2.1 using Lemma 3.6 We want to find a set E; C E;
with 12 (ES) > 1 — ﬁ so that for each x € EJ,

”d:(ﬂl,good) - d:(MI)HLI < m

We recall that
o x pa(Bad)) = [ i (Bad (oo,

Therefore, we can choose B; C E; so that u2(Bj) < R;(l/ s and for all
x € B>\ By,

w1 (Bad; (x)) < R; /2",

We define £, = E>\ j=1Bj.-As long as Ry is sufficiently large (compared

to 8 and ), we have po(E}) > 1 — ﬁ as desired. Now for each x € E/, we
have

14 (141, good) — d (D)1 S Y Riui(Bad;(x)) + RapDec(Ry)
j=1

—(1/2)8 —(1/2)8
< S RV 4 RapDec(Ro) < Ry /27
j=1

By choosing Ry sufficiently large, we get the desired bound. |

Now we introduce Orponen’s radial projection theorem. The statement we
use appears as Proposition 3.11 in [24], and it appears as Equation (3.5) in
Orponen’s paper [30]. Define a radial projection map Py : RZ\ {y} = S! by

Theorem 3.7 (Orponen [30]) For every o > 1 there exists p(«) > 1 so that
the following holds. Suppose that 11 and o are measures on the unit disk with
disjoint supports and that for every ball B(x, r), wi(B(x,r)) < r*. Then

/ I Pypall? pd s (y) < +o0.
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Proof of Lemma 3.6 Recall that Bad () is defined to be

Bad; (y) := U 2T.
TeT;:ye2T and T is bad

In other words, Bad (y) is the set of x so that (y, x) lies in Bad;. Therefore,

o x ua(Bad)) = [ waBad; g ().

Suppose that T € T is a bad rectangle and y € 2T N Ej. Let A(T) be the

arc of the circle whose center corresponds to the direction of the long axis of

T and with length ~ R'/*™_ Since the distance from E 1to Exis 2 1, it

follows that Py(4T N E) C A(T), and so

Pyua(A(T)) = po(4T) = Ry /2T, (3.3)

So we see that Py(Bad;(y)) can be covered by arcs A(T) of length ~

R>'/*™ which each enjoy (3.3). By the Vitali covering lemma, we can choose

a disjoint subset of the arcs A(T') so that SA(T) covers Py(Bad;(y)). This
implies that the arc length measure of Py(Bad;(y)) is bounded by

- —1)é
|Py(Bad;(y)| S RV

Now we bound

i1 x pa(Bad)) = / p2(Bad; (1)d 11 ()

5/(/ Pyuz> du1(y).
Py(Bad;(y))

By Holder’s inequality and by choosing c(«) sufficiently large, this is

-1 —
< sup|Py(Bad;(y))| » / IPypzllrdp S R; 2
y

4 Refined Strichartz estimates

The proof of Proposition 2.2 will use a refined Strichartz type estimate, which
in turn is based on the decoupling theorem of Bourgain-Demeter [3].
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Theorem 4.1 ([3]) Suppose that S C R? isa strictly convex C? hypersurface
with Gaussian curvature ~ 1. Decompose the R~ -nezghborhood of S into
blocks 0 of dimensions R~V/?x- - -x R~12x R~ Suppose that dfg is supported
in6and f =Y, fo. Thenfor any p inthe range2 < p < ===,

1/2
1F e S (Z o120 )> , @.1)

where wp, is a weight which is ~ 1 on Bg and rapidly decaying.

The decoupling theorem is a remarkably strong and sharp theorem in some
situations, for instance if | fy (x)| is roughly constant on Bg for each 8. On the
other hand, if the supports of the different fy are disjoint from each other, then
one trivially gets the stronger inequality || f|lr(gz) < Qg ||f9||€,,(BR))1/p.
The idea of refined Strichartz estimates is to use the decoupling theorem where
it is strong, but also to take advantage of disjointness when it occurs. The first
version of the refined Strichartz inequality appeared in [4], and it was gener-
alized in [5]. We need here a slightly more flexible version of the inequality.
The inequality we prove here was discovered independently by Xiumin Du
and Ruixiang Zhang (personal communication).

We will state our estimate in terms of wave packets. Here is the setup. Let
S and 6 be as above. Let Ty be a finitely overlapping covering of R by tubes

T of length ~ R'*% and radius ~ R with long axis normal to the surface
S at 6. We write T = UyTy. Each T € T belongs to Ty for a single 6, and
we let 6(T) denote this 6. We say that f is microlocalized to (7', 0(T)) if
f is essentially supported in 27 and f is essentially supported in 26(7T). A
function fr which is microlocalized to (7', 0(T)) is called a wave packet. If
w € 6(T), then fr morally has the form fr ~ ayx7e*™ ¥, where a € C and
x1 denotes a smooth bump function on 7. Our theorem gives an estimate for
the constructive interference between wave packets.

Theorem 4.2 Let p be in the range 2 < p < 2([;i_+11)‘ For any € > 0, suppose
there exists 0 < § K € satisfying the following. Let W C T and suppose that
each T € W lies in Bg. Let W = |W|. Suppose that f =) oy fr, where
fr is microlocalized to (T, 0(T)). Suppose that || fr| Lr is roughly constant
among all the T € W. Let Y be a union of R'/?>-cubes in Bg each of which
intersects at most M tubes T € W. Then

}-1 172
I fllzrry S R( ) (ZIIfTIILp) . 4.2)

Tew
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On Falconer’s distance set problem in the plane

The fraction M/ W measures to what extent the wave packets of W are
disjoint from each other. If M = 1, then the wave packets are completely
disjoint, and the inequality above becomes || fllzr(v) S Oz Il fr L )17

Before proving Theorem 4.2, let us explain how it relates to the decoupling
theorem (Theorem 4.1). In Theorem 4.1, consider the special case that fp is
non-zero for N caps 6, and that for each of these caps, fo = Y ot , ST 18
a sum of P non-zero wave packets fr, and that all these wave packets have
the same amplitude. In [3], the general theorem was reduced to this special
case by pigeonholing, so it is not really so special. In this case, the decoupling
inequality (4.1) can be written in the form

1_1 1/2
1\27»
1 e sr) < (F) (§ ||fT||%p> : (4.3)

TeWw

Now if Q is any R'/%-square, then it can lie in < 1 tubes T in each direction.
Therefore, we have M < N, and W = NP, and so % < %. So we see that
(4.2) is at least as strong as (4.3), and it is stronger whenever M is much less
than N. When M is much less than N, then it means that each cube Q lies in
wave packets from only a small fraction of the different caps 6, which means
that the supports of the fs don’t intersect as much as they could. In summary,
Theorem 4.2 is like Theorem 4.1, but it gives a stronger estimate when the
supports of the fs don’t intersect too much.

Proof of Theorem 4.2 Without loss of generality, we can assume that
Il fllLr(oy ~ constant for all R'?-cubes Q C Y. 4.4)
To set up the argument, we decompose f as follows. We cover S with
larger blocks 7 of dimensions R~/% x - .. x R=1/* x R™1/2, For each t we
cover BY(R) with cylinders (J with radius R3/4 and length R, with the long
axis perpendicular to T. Each cylinder [ is associated to one t, which denote
7([). Then we define
Wo:={T eW:6(T) Cct()and T N B C [}.

We define fj =) , eWg Jfr. We note that fD is essentially supported in

7(d). An R'/?-cube Q lies in one cylinder [J associated to each cap 7. So by
applying decoupling at scale R'/%, we get

1/2
IflLro) S (Z ||fu||ip(Q)> : (4.5)
O
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(Strictly speaking, we have a weight on the right-hand side. However, if
the tail of the weight dominates for some Q C Y, then we trivially get the
conclusion of the theorem. Indeed, because the weight decays rapidly away
from Q, the total contribution of the tails from different Q’s is bounded by
R—No_ By choosing Ny sufficiently large, this is trivially bounded by the right
hand side of (4.2). Therefore, we can ignore the tail of the weight.)

The next ingredient is induction on scales. After parabolic rescaling, the
decomposition fo =) eWg fr is equivalent to the setup of the theorem at
scale R!/? instead of scale R. So by induction on the radius, we get a version
of our main inequality for each function fg. It goes as follows:

Write [ as a union of R!/?2 x R3/* cylinders running parallel to the long
axis of [J. Let Y p be the union of those cylinders that intersect ~ M’ of the
tubes T € Wr. Then

. 1/2

e MO\ 2
| follrar o < R (—) S gk . @e

W
W rewy

S =

Indeed, by shrinking the short side of [J by R'/# and the long side of it by
R'/2, one can turn [ into a cube of side length R'/2. Under the same parabolic
rescaling, the small cylinders inside [ will become small cubes of side length
R'/* and the rescaled tubes T contained in (J will have radius R'/4*% and
length R'/2.

Now we dyadically pigeonhole M’ so that

Ifler S| Y. /o

D:QCYD,M/ LP(Q)

for a fraction~ lof Q C Y.
We fix this value of M’, and from now on we abbreviate Yo = Y .
Next we dyadically pigeonhole [W|. Let By be the set of U with |[W| ~
W’. We dyadically pigeonhole W’ so that

Iflo S| Y, o : 4.7)
OeBy,:Q0CYg LP(0)

for a fraction~ 1 of Q C Y.
We fix this value of W’ and from now on we abbreviate B = By.
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We also note that for each [ € B,

W/
D e ~ 57 D0 Il (4.8)

TeWnq TeWw

Finally, we dyadically pigeonhole the cubes Q C Y according to the number
of (0 € Bsothat Q C Y. Wegetasubset Y’ C Y sothatforeachcube Q C Y/,
Q C Yo for ~ M” choices of [ € B, and Q obeys (4.7). Moreover, by dyadic
pigeonholing, we have |Y’| ~ |Y|. Since each cube Q C Y had approximately
equal L? norm, we also get || fllzryry = I fllLr(y)-

We also note that

MM <M.
because a cube Q C Y’ belongs to Yo for ~ M” different [, and if Q C Yo,

then it belongs to T for ~ M’ different T € Wp.
Similarly, we note that

W Bl < W

because for each (] € B, [Wg| ~ W', and W are disjoint subsets of W.
Now we are ready to begin our estimate. For each Q C Y’, we have

Ifllrgy S| Y. fo

OeB:Qcrg LP(0Q)

Applying decoupling as in (4.5), this is bounded by

1/2

sl D Imliee

OeB:Qc Yy

The number of terms in the sum is ~ M”. Applying Holder, we get

I/p

1_1
ST T Il

OeB:QC Yy
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We raise this inequality to the p'” power and sum over Q C Y’ to get

£-1
AT pyy S WFNE iy S M2 LAl vy
DeB

Now we can use our induction on scales—Eq. (4.6)—which gives

p/2

P
M/M// 7*1
SRPG/Z( - ) S s,

OeB \TeWq

By (4.8), this is

P_ r/2
MM\ |BIW
SRW( 7 ) 7 <§:||fr||%p> :

TeW

Since M'M"” < M and |B|W’ < W, we get

2
pej2 M g_l 2 ’
SR (5 dofrlze)

Tew

Putting everything together and taking account of  throughout, we get

11 1/2
M\2 »
£ ey S R/ (W) (Z ||fr||%p> :

TeWw
This closes the induction and finishes the proof. O

One can also apply a rescaling to this theorem. If we rescale in Fourier space
by a factor A, then each R~1/2 x - .. x R~! block 6 is replaced by a AR~ /% x
... x AR~ block. There is a corresponding rescaling in physical space so that
each R'/>%9 x ... x R tube T is replaced by a A" R1/?+% x ... x A~ R tube
T. The case of interest for us is A = R.

Corollary 4.3 Suppose that S C R? is a strictly convex C? hypersurface
with Gaussian curvature ~ 1. For any € > 0, suppose there exists 0 < § K €
satisfying the following. Suppose that the 1-neighborhood of RS is partitioned
into RY? x .. x RY2 x 1 blocks 6. For each 0, let Ty be a set of tubes of
dimensions R~/>%9 x 1 with long axis perpendicular to 0, and let T = UgTy.

Let p be in the range 2 < p < % Let W C T and suppose that each
T € W lies in the unit ball. Let W = |W|. Suppose that f =) .y fr, where
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fr is microlocalized to (T, 0(T)). Suppose that for each T € W, || fr|Lr is
roughly constant. Let Y be a union of R™/?-cubes in the unit ball each of
which intersects at most M tubes T € W. Then

1_1 1/2
M\2 »
1fllLrr) Se RS (W) (Z ||fr||%p> :

TeWw

Corollary 4.3 is the result we will actually use in our estimates about the
Falconer problem.

Theorem 4.2 is closely related to the refined Strichartz estimates from [4,5]
and [6], and we record a corollary in a similar form. To set up the statement,
we need to set up a little notation. We find it most convenient to work with the
case that S is a graph, so suppose S is defined by w; = ¢ (w1, ..., wq—1) , and
(@1, ..., w4—1) € B¥~1(1). We assume that ¢ is C? and that the eigenvalues
of the Hessian V¢ are ~ 1. Then for a function g : BY~! — C, we can define
the extension operator by

Eg(x)= POt X101 P o (1 wg_ ) dwy, . .., dwg_1.

Bd—1
(4.9)
We decompose B4~! into finitely overlapping balls 6 of radius ~ R™!/2,
and then we can decompose g as

8= Z 80,05
0,v

where

v e RI/2HS7d—1.

86.v 18 supported on ;

8o.v 1s essentially supported on a ball around v of radius R
the functions gy, are approximately orthogonal;

Egy, restricted to Bp is essentially supported on a tube Ty, of radius
~ R'/2%3 and length ~ R;

6. if we think of 6 as a cap in S, then the long axis of 7j , is normal to S. Also
Ty, intersects the plane x; = 0 at the point (v, 0).

1/2+45.

ARl e

See Section 3 of [13] for background on this wave packet decomposition,
including proofs of these standard facts.
Now we are ready to state our refined Strichartz estimate.

Theorem 4.4 Let E be the extension operator as in (4.9), where ¢ is C* and
the eigenvalues of the Hessian V¢ are ~ 1. Suppose that g - B*~! — C. For
any € > 0, suppose there exists 0 < § <K € satisfying the following. Suppose
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that g = Z(O,U)GW 80.v, where ||go vl 12 are comparable for all (6, v) € W.
Let W = |W|. Suppose Y is a union of R'/?-cubes in B% which each intersect
~ M of the tubes Ty ,, € W. Suppose that p = 2(;1;1-11)‘ Then

==

1
2

M
IEglLr(y) Se RS (W) lgllzz-
Proof Letnp, be abump function associated to the ball of radius R. We define

f@,v = 1By Eggy.

The function fy , is essentially supported in 7j , and its Fourier transform
is essentially supported in the R~'-neighborhood of 6 (viewing 6 as a cap
in S c R?). Therefore, the functions fo.v have the right microlocalization to
apply Theorem 4.2. Before doing so, we need to sort them by L”-norm. We
define

W = {0, v) € W: || foullLr ~ A}
We define g;, := Z(Q,U)GWA 80.v- and Wy = |W, |. Now Theorem 4.2 gives

12

1
M\2 » )
||Eg)»||LP(Y)§<WA) > NEgowlTrsy
0,0)eW,

Next we note that ||Egg yllzrBg) < Il80.vllz2. This is a consequence of
the Strichartz or Tomas-Stein inequality, but because E gy , is a single wave
packet, there is an even simpler argument:

IEgo,ollLrsr) S NEgowllom, ) < 1To.ulP 1 Egoyllre

< |Te,u|‘“’/|ga,v| < |To.o!"P101"%|gg vl 2.
0

Now Ty, has volume R2@=D+1+8@=1) 414 ¢ has volume R~ and so
|Tp.,|1/710]1/% < R¢?®, which is negligible since § < . Plugging in this
bound, we get

1/2

M
IEgllLr) & (Wx) > llgowl:

(0,v)eW,,

o —
S
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Since all the || g v |72 are comparable, we get

M\ (W, \ /2
||EgA||LP(Y) é (WA) <W> ||g||L2.

We have W, < W, and the total power of W, on the right-hand side is
positive, and so we get the bound

=

1
M\2
IlEgillLrry S (W) llgll2.

Since this estimate holds for every A, the theorem is proven. O

5 Proof of Proposition 2.2

In this section, we prove Proposition 2.2. The proof is based on adding a refined
Strichartz estimate (Corollary 4.3) to the framework of [25]. We want to show
that if « > 5/4, then

/ 1% (21, g00a) |22 12 () < +o00.
E;

We follow Liu’s approach from [25]. Let o, be the normalized arc length
measure on the circle of radius ¢ (normalized so that the total measure is 1).
Then

00
2 2.2
”d:(ﬂl,good)”LZ =/ IMl,good * 07 (x)|“t7dt.
0

Now we would like to make use of Liu’s identity:

Theorem 5.1 ([25]) For any function f : R? — C, and any x € R2,
o0 o0
/ | f % 0y (x)|21dt = / | f % 6, (x)|*rdr.
0 0

Notice that on the left-hand side we have rdt instead of 2dt. If x € E»,
then | % 0;(x) = O unless ¢ ~ 1 because E| and E are contained in the unit
disk and the distance between them is 2 1. Therefore, we can write

o

o0
/ |11 * oy (x)22%dr ~ f |11 * oy (x)|edr.
0 0
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We would like to write the same thing with 141 ¢00q in place of wy. To

justify this, we need to argue that (1 g004 is essentially supported in a small
neighborhood of E, which we now check.

Lemma 5.2 Let A be the complement of the R, I 2+5—nelgl’iborhood of E1.
Then

/ 11, good| = RapDec(Ro) and ma |1 gooa (0] = RapDec(Ro).
A

Proof By definition,

M1,g00d = MO/LI + Z Z MTPLI

J.T TGT_,'.T
T good

= x4 Y e, % ).

jt T

Now 7y’ is essentially supported on a ball of radius R, !and ij’T is essen-
tially supported on a rectangle of dimensions R7'? x R7' centered at the
origin. Since p| is supported on E, the result follows. O

Since 41, gooq 18 essentially supported in a thin neighborhood of £y, we can
indeed say that for any x € E»,

00 00
2.2 2
/ IMl,good * 07 (x)|“t7dt 5/ |:u1,g00d * 07 (x)|“tdt.
0 0

Now we can apply Theorem 5.1 to get

o0
/ 1 (11 go0d) Padpa(x) < / / 1. go0d * 60 () Prdrdpa(x)
E> E, JO

_ / (/ ml,gwd*&(x)ﬁdm(x))rdn 5.1)
0 E>

We will use Theorem 4.2 to estimate the inner integral for each r.

Proposition 5.3 For any o > 0, r > 0, and § sufficiently small depending on
a, €

+1

/ |41 go0d * 6, (X)Pdpa(x) < C(Ro)r="3 T€r~! / |12y, dE,
E>
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where W, is a weight function which is ~ 1 on the annulusr —1 < |§] <r+1
and decays off of it. To be precise, we could take

Yr(§) = (1+|r — &N,

The conclusion here is very similar to saying

~ _a+tl ~
/ |M1,g00d * Ur(x)|2dﬂ2(x) < C(Ro)r~ 3 +6”M1”iz(dm)~
Ey

For technical reasons, we have the bound in the form above. Before turning
to the proof of Proposition 5.3, let us see how it implies Proposition 2.2. Like
most previous work on the Falconer problem, the proof uses the idea of the
B-dimensional energy of a measure. Recall that this energy is given by

Ig(p) = / x =y ).

If a measure  on the unit ball obeys w(B(x, r)) S r*, then Ig(u) is finite
for every B < o (cf. Lemma 8.3 of [37]). In particular, Ig(1t1) < oo for every
B < a. There is also a Fourier representation for Ig(u) (cf. Proposition 8.5 of
[37]): if u is a measure on R”, then

I5(1) = cup /R RERANCT

Proof of Proposition 2.2 using Proposition 5.3 By (5.1),

/E 1 (a1 gooa) |22 2 (6) < /
2

0

00
</ |I'L1,good * 5’r(x)|2d,u2(x)) rdr.
E

(5.2)
Plugging in Proposition 5.3 to bound the inner integral, we get

<o / / ey, (&) )P dEdr
0 R2

_otl ~
S [ el R ~ 1au)
with 8 =2 — "‘TH + €. We know that Ig(iu1) < oo aslong as B < «, so we

get the desired bound as long as

o+ 1
3

2 —

< .
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This is equivalent to o > 5/4. O

Proof of Proposition 5.3 Recall that

M1,g00d = Mopy + Z Z My py.
Jj=1,t T€T; ,T good

When we convolve with &, the only terms that remain are those with Fourier
support intersecting the circle of radius r. The interesting case is when r >
10Ro. We will return at the end to the case r < 10Rp. Assuming > 10Ry,
W1,go0d * O, up to a rapidly decaying tail that is negligible for our desired
bound, is essentially equal to

Z Z Z M7 iy * 6.

Rj~r © TeT; T good
Let 11 be a bump function adapted to the unit ball. We define

fr=m (Mrui *6).

We claim that each fr is microlocalized in the way we would want to apply
Corollary 4.3.If T € T} ., then we let 6 (T') be the 1-neighborhood of 37 N Srl.

We claim that fT is essentially supported in 6 (7). First we recall that m
is essentially supported in 27. Therefore, the Fourier transform of Mt 11 * 6,
is essentially supported in 2t N Srl. Finally, the Fourier transform of f7 is
essentially supported in the 1-neighborhood of 27 N S,l, which is contained in
6. Note that 6 is a rectangular block of dimensions roughly /% x 1.

Next we claim that f7 is essentially supported in 27". We know that M7 1 is
supported in 7. Let 1/, be a smooth bump function which is 1 on 27 and rapidly
decaying. Since the Fourier transform of M7 1 is essentially supported on 27,
we have M7 * 6, is essentially equal to M7 * (1/71 o,)". It is standard to
check by stationary phase (or see [13, Lemma 3.1]) that (&, o,)” is bounded
by RapDec(r) on Bz(l) outside of a tube of radius r~1/21% in the direction of
T passing through the origin. So My i1 * (Y;0,)" is negligible on B(1)\ 2T .
So fr is essentially supported on 27'.

We have (41 g00a * 0, is essentially equal to ) s00d fr. Next we sort the
fr according to their L” norms.

Wi i=AT : I frllLr ~ A},

o= Z fr.

TeW,,
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On Falconer’s distance set problem in the plane

Since the number of scales A is < logr, it suffices to prove the bound

+1

/ P S e TN a1 -

Next we divide the unit ball into ~!/?-squares ¢ and sort them. We let
Qu = {r~1/? squares ¢q : g intersects ~ M tubes T € W, }.

We let Yy = U ge0y 4- Since there are only ~ logr choices of M, it
suffices to bound f Yy, | f 12d 2. Next we bound the measure of Yy,.

Lemma 5.4 For any M, the r~'/>~neighborhood of Yy has measure

|Wk|r_1/2+0(a)6
M

w2 (N—12(Ya)) S

Proof This is a double counting argument. Define x (¢, T) = 1ifgNT # 0,
0 otherwise. Let

J= ) wCoxeD.

qeQm.TeW,

On one hand, one has

J <100 Y pua(4T)
TeW,,

because the ¢’s have only finitely overlapping, hence we over count at most
100 times u2(2q), and if ¢ N T # (4, then 2¢ C 4T. Since a good tube T
satisfies p12(4T) < r~1/24¢@3 therefore

J <100 Y pa4T) S @ .
TeW,,

On the other hand, J 2 u2(N,-12(Yy)) - M. The desired estimate follows
by playing these two abounds against each other. O

Now we are ready to bound

f Py,
Ym

The Fourier support of f) is essentially contained in the 1-neighborhood
of S,l, and so fj is (morally) locally constant at scale ~ r~!. Therefore we
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can replace duy by us * ni/-, where 11/, is a bump function with integral
1 essentially supported on a ball of radius 1/r. Then we can use Holder to

bound
1/3 2/3
/mﬂms(f |fx|6> (/ |M2*771/r|3/2) .
Yu Ym Yy

To bound the first factor, we use Corollary 4.3 with W = |W, | wave packets
and multiplicity M. We get

1/2
Mo\ 1/3 )
FARRE (—) > i
Wyl ToW,
By Lemma 5.4, we can bound M /|W, | to get
1/2

1/3
—1/2+4c(a)s )
-
S|l—— > lfrl;
] Lo
(Mz(Nr—l/Z(YM)) Tow,

1

To bound the second factor, we note that p, of a ball of radius " is at

most r . Therefore,

2_
o s niypllpee S

And so

_g\1/2 _a
/ |M2>l<771/r|3/2 N (r2 ) / / dpa 1y ~r' 2o (N2 (Yap)).

Yy Yu
Plugging in these two bounds, we get
/ |l dpn S r0Or B (N2 (Ya)) =2
Yy

2_a
D frlls - 7375 o (N ap (Yan) .
TeW,

Notice that the powers of py(N,-12(Yyr)) cancel, leaving

1—a
/ |filPdua SrOOr 3" Y il frilge
Ym

TeW,,
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Next we record an elementary bound for || f7| ;6. Since fr is essentially
supported on 7, || frl 6 S 1T 1Vl frlizee ~ r="12| frll . Recall that

fr=mWMrp *6,) =n /1 My e, .
SV

Since m restricted to Srl is essentially supported on 6(7T'), we get

I frlieee S or @D IMr il 206, ~ ™ Mz 2246, -

Therefore

I frlie S 3 IMrpnll 2o, -

Plugging into the last bound, we get

/ flPdpa S rOOr750 N M g, -
Yu TeW,,

To finish the proof of Proposition 5.3, it just remains to take § sufficiently
small depending on « so that O (§) < € and to check that

pIPIPD [ trtde, s [1aPuds. 53

j~r T TeTj,

Morally, we are showing that the m are approximately orthogonal with
respect to do, and/or ¥,. The pieces m Is1 correspond to the wave packet
decomposition of j1| * ;. It’s a standard fact that the wave packets in a wave
packet decomposition are approximately orthogonal. (For instance, see Sec-
tion 3 of [ 13] for related orthogonality arguments.) But because of the direction
of (5.3), it takes some extra care to be completely rigorous. In particular, it
makes matters easier to put ¥, instead of do,- on the right-hand side of (5.3),
although we’re not sure whether this is necessary. Now we turn to the details.

Recall that v/, is a weight function whichis ~ 1 onthe annulusr —1 < |§] <
r+ 1 and then rapidly decaying. Similarly, define ¥ . to be a weight function
which is roughly 1 on the intersection of T with the annulusr —1 < |§] < r+1
and then rapidly decaying. We recall that if T € T ;, then m is rapidly
decaying outside of 7. Since M7 is supported in T C B?(1), its Fourier
transform is morally locally constant on scale 1. Therefore, forany 7 € T} .,
we have
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/ My Pdo, < ! / V71 P o rdE,

where the r—! comes because o, is the normalized arc-length measure on Srl,
which is equal to approximately 1/r times arc length measure. Next we expand
out

r! / \Mr i1 29 o pde = 17! / 7 % (W ADP W o dE.

1/2

Since 57 is essentially supported in a rectangle of dimensions R'/= x 1,

with the long direction parallel to S ,1 at pointsint N S rl, we can bound
-1 . AN dE < ] . b a02d
r InT * (%,rm)l 1p],r,r E§Sr InT * (W],t,r,uvl)l £,

where & jz,r 1s again rapidly decaying outside of T N {r — 1 < [§| < r}, buta
bit more slowly than v; ; ,. The point of all these adjustments is that we can
now apply Plancherel in a clean way:

f|MTm| do, <
.t T

2
/|’7T| )., % il dx.
TeT; €T, ¢

Since any point x lies in < 1 different T € T; ., the last expression is
bounded by

ST N A )

So now
Y XY [ 5 3 [ i
ji~r T TeT; Rj~rt
= [ X e |,
Rj~rt

The regions where &j rr are ~ 1 tile the annulus r — 1 < |§] < r 4+ 1,
with each point lying in < 1 regions. Therefore, Rj~rt IZJZ.JJ is ~ 1 on the
annulusr—1 < £ < r+1 andrapidly decaying elsewhere Soaweight function
¥, satisfying the desired properties can be chosen so that ) | Rj~rt U2 S < ¥y,

and we get
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> [ riido, 5071 [ \Pune.
T

This gives (5.3) and finishes the proof for the main case r > 10Ry.
If r < 10Rp, we give a more elementary estimate. It is rather lossy, but the
loss can be absorbed into the factor C(Ry). We write

~ 2 ~ 12 — 2
| Vit .67 O dia) = Vit gons %611 < VitV
Ey
— 2
= ||M1’g00d”L2(d0',)'

Recall that j41,g00q is the sum of the good M7 1 while 11 is the sum of all
Mt 1. As we discussed above, the M7 1| are approximately orthogonal with
respect to ¥, and so a similar argument to the one above shows that

VT gond 22y S 77" f |12 dE

Since r < 10Rg, we get
f 11, g00d * 67 () Pdpa(x) St / | 12y, dé
E,

< C(Royr— e / P dt.

6 Train track examples

As we mentioned in the introduction, when o < 4/3, there are examples of
measures where the Mattila integral is infinite, and the related L? integral
in Liu’s framework is also infinite. The relevant sets look like several trains
tracks. These train track examples are based on the train track example in [22]
(page 151). In this section, we discuss these measures and their properties.

Proposition 6.1 For every 1 < a < 4/3 and every B, there is a probability
measure y on B*(1) with the following properties:

1. For any ball B(x,r), u(B(x,r)) < rv.
2. Ifd(x,y) == |x — y|, then

ds(e x )l 2 > B.

3. Ifd*(y) := |x — y|, then for every x in the support of |,

lds (W2 > B.
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Proof Let R be alarge parameter. Let A g be the set of points (x, x2) € [0, 1]?
where 0 < x; < R™!/2 and where, for some integer M,

MR %?* < xy < MR™%/? 4+ R

This set is reminiscent of a train track. The slats of the train track are rectangles
with dimensions R~/ x R~!, and there are ~ R%/? slats evenly spaced inside
a vertical rectangle of dimension R~!/2 x 1. We form a set E by taking the

union of R“Z" train tracks that are evenly spread. To be definite, let us define
AR to be the translate of Ag by the vector (R_%l , 0). and then define Eg to

be the union of Ag ; as/ goes fromOto R ot . (There is considerable freedom in
how to take the union of the train tracks, and we could make similar examples
with non-parallel train tracks also.) Let i be the normalized area measure on
Er.

First we check that u(B(x, 7)) < r%. The number of R~ !-boxes in Eg is
R*T RY/2R'/2 = R.So we have to check that if r = AR~ then the number
of R~! boxes in Ex N B(x,r)is < A*. If A < RY/? then B(x,r) N Ep is
contained inside one train track. The spacing between horizontal slats is R —a/2
and so the number of horizontal slats that intersect the ball B(x, r) is at most

r _ —1 pa/2
max (1, m) =max(l, AR R%~).

Each horizontal slat intersects B(x, r) in at most A R~!-boxes. So the total
number of R~!-boxes in B(x, r) is at most

24a

max(A, A2R_T) = max(A, A“Az_“R_z%a) < A%,

where in the last inequality we used A < R'/2.

Suppose A > R!/2. Morally, since the train tracks are spaced evenly, the
estimates will be even better than for the case 5\_ = R'/2. Here are the details.
Since the spacing between train tracks is R~ 2 , the number of train tracks
that B(x, r) intersects is at most

a—1 a=3
rR2 +1=AR 72 +1.
Within each train track, the number of slats that B(x, r) intersects is at most

FRY? = AR*T
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Each slat contains R'/2 R~1-boxes. So the total number of R~!-boxes in
B(x, r) is at most

AZRa—2+AR°‘T_1 :AaAZ—aRa—2+AaA1—aRO’T_1 < A(x’

where in the last inequality we used R'/?> < A < R.

Next we estimate f |ds (0 x 1)|%. The key point is that dy (1 x ) assigns
a large measure to each interval Iy = [MR /2 —2R~Y MR~%/24+2R 1],
where M is an integer with M ~ R%/?. Indeed, if x is any point in Eg, and if
y lies in the same train track as x, in a horizontal slat which is M steps from
the horizontal slat containing x, then |x — y| € [MR®/? —2R~' MR %/ 4+
2R™1). The g measure of a single slat is R~**1/2 because the slat contains
RY2 R _l—boxes, which each have p g measure R~“. Therefore,

du(p x W)(Iy) 2 R™1.
By Cauchy-Schwarz,

—2a+1

/ dulu x p)dt > ~ R4,
" T

The number of different I, is ~ R*/%, and so
[ et x s z r3e

If ¢ < 4/3, then the power of R is positive, and [ d, (% w)?dt goes to infinity
with R.

Finally we estimate [ |d5 (w)|?. The computation is similar: dj () assigns
a large measure to each interval /), defined above. In fact, just as above,

d* () (Iyy) 2 R,

because if y lies in the slat of E lying in the same train track as x and M
horizontal slats from the horizontal slat containing x, then d*(y) = |x — y| €
Iy, and the g measure of this slat is R~*1/2. Then just as above we get

—2a+1
[1p]

/ di(widi Z RT3+,

~ R—20(+2 and

f d¥ (u)?dt >
Iy

If o < 4/3, then the right-hand side tends to infinity as desired. m|
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We can also take limits of these examples with different scalings. Suppose
that R; is a sequence of scales that goes to infinity rapidly (say, R; 11 = 2R)).
Define

J
Ej = mERi’ and
i=1

06
E =Eo=[)Er.

i=1

Define pu; to be g, restricted to E; and renormalized, and let = oo
be a weak limit of the measures ;. It is not hard to check that the Hausdorff
dimension of E is «, that u(B(x, r)) < r%, and that ||d.(n x p)|[;2 = +00
and ||df (n)||;2 = +oo foreach x € E.

7 Generalization to other norms: proof of Theorem 1.3

In this section, we consider the generalization of the Falconer problem where
the Euclidean norm is replaced by other norms. We will show that our main
theorem generalizes to other norms as long as the unit ball of the norm is
strictly convex and smooth.

Theorem 7.1 Let K be a symmetric convex body in R*> whose boundary 3 K
is C* smooth and has everywhere positive curvature bounded from above and
below. Let || - ||k denote the norm with unit ball K. Define the pinned distance
set

Ax x(E) == {llx = ylx}ycE-

If E C R? has Hausdorff dimension > 5/4, then there exists x € E so that
the pinned distance set Ay x (E) has positive Lebesgue measure.

Many parts of the proof work in the same way, and we will only discuss the
required changes. The most interesting new ingredient is a generalization of
Liu’s identity—Theorem 5.1.

Let us start by discussing the analogue of the train track examples for a
general norm. This will help us motivate the right way to decompose (| into
pieces Mru1. A train track consists of many parallel slats of dimensions
~ R™1/2 x R™! contained in a larger rectangle of dimensions ~ R™/% x 1.
In the original Euclidean case, the direction of the slats is perpendicular to
the direction of the larger rectangle. But to build an interesting example for
the norm | - ||k, the angle of the slats should be dictated by the geometry
of K in the following way. Suppose that the long axis of the large rectange
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is parallel to a vector v. By rescaling, we can assume that v € dK. Then
build a train track where the slats are rectangles with long axis parallel to the
tangent vector of K at v. In this case, if x lies in one slat in the train track,
and y1, y2 lie in the same slat at the opposite side of the train track, then
lx —villk = lx = y2llk + O(R™"). From here on, train track examples have
the same properties as in the Euclidean case.

The angles of the slats have a nice interpretation in terms of the dual norm
K*. We recall here some standard facts about dual norms. Let || - || g+ be the
dual norm to || - ||, and let K* be the unit ball of the dual norm, which will
also be smooth and strictly convex. Recall that the dual norm is defined by

lollg= = sup w - v.
vek

By strict convexity, there is a unique v € K which achieves the supremum,
which we denote by v(w). The plane w-v = w-v(w) is tangent to K at v(w), and
so we see that w is normal to 0 K at v(w). Similarly, for each vector v, there is a
unique w(v) € dK™* so that w(v) - v = ||v||x. The plane {w : - v = w(v) - v}
is tangent to K™ at w(v) and so v is normal to dK* at w (v). If ® € dK* and
v € dK,thenv-w = 1if and only if v = v(w) if and only if v = w(v).
Therefore w (v(w)) = wand v(w(v)) = v. Since w (v) isnormal to d K at v, the
mapw : 9K — 9 K*isessentially the Gauss map. Because the curvature of 9 K
is ~ 1, the map w is bilipschitz: for vy, vy € 0K, |w(v]) —w(v2)| ~ |v] —v2|.
Therefore the map v : dK* — 9K is bilipschitz. This shows that the curvature
of K*is ~ 1.

We can now generalize the decomposition 1 = ), M7 to the case
of general norms | - ||x, where M7 is designed to isolate the train track
configurations described above. We let R; and 7 and ¥ . be the same as
in the Euclidean case. But we redefine the tubes T ;. For each 7, consider
d(RK*) where R is chosen so that 9(RK™) N T is non-empty (so R ~ R;).
Then we let T ; be a set of tubes 7" with long direction perpendicular to
0(RK™*) N 1. In other words, if @ € 1, then the direction of the tubes T is
v(w). As before, the dimensions of the tubes are R~1/21% x 1 and the set of
T €T . covers B?%(2). We choose nr so that ZTeT,-,, nr is 1 on B?(2). Then
we define, foreach T € T} o,

Mrfi=nr(;. Y.

We define good and bad tubes in the same way as in the Euclidean case, and
as before we let

M1,g00d = Moy + ZZ Z Mrp.

Jj=1 © TeT;,T good
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In the Euclidean case, we studied the pushforwards d; i1 and d; j41,go0a
for x € E5. In the case of general norms, we will use a small variation of the
pushforward measure. We need the small variation because of the way that the
generalization of Liu’s identity is stated, cf. Lemma 7.5 below.

Recall that o; denotes the normalized arc length measure on the (Euclidean)
circle of radius 7. Then as we saw at the beginning of Sect. 5,

di (fdarea)(t) = to; * f(x).

Define o*tK to be the normalized (Euclidean) arc length measure on S}( (1) —
the circle of radius 7 in the norm || - || x. Then we define

Tk x(fdarea)(t) = tl/ZGtK * f(x).

We note that the support of Tk . (fdarea) is contained in Ay g (supp(f)). In
particular, if x € E5, then the support of Tk 1 is contained in A, g (E1) C
Ay g (E). For comparison, if we let dy (y) = ||x — y| x, we would have

dy (fdarea)(t) = t(ka[) x f(x),

where k(y) is a smooth positive function which only depends on the direction
of y—i.e.k(Ay) = k(y)for L #0.If x € Erandy € Eq,then ||x —y|g ~ 1.
Therefore, both d}g’ o1 and Tk are supported in 7 ~ 1, and by comparing
the two formulas, we see that Tx ,u1(¢) ~ d}‘{’ LM1(t). In particular, this
implies that [ Tk ,p1(1)dt ~ 1.

To prove Theorem 7.1, we have to prove analogues of Propositions 2.1 and
2.2

Proposition 7.2 Let K be a symmetric convex body in R*> whose boundary
K is C*° smooth and has everywhere positive curvature bounded from above
and below. If « > 1, then for sufficiently large Ry, there is a subset E, C E

so that uy(E5) > 1 — ﬁ and for each x € E),

T - T < —.
l K,xM1 K,xﬂl,gooa'”Ll 1000

Proposition 7.3 Let K be a symmetric convex body in R*> whose boundary
K is C*° smooth and has everywhere positive curvature bounded from above
and below. If a > 5/4, then for sufficiently small § in terms of «,

/ I Tk x i1, g00d I3 2d 12 (x) < +00.
E;
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7.1 Proposition 2.1 for general norms

In this section, we discuss the proof of Proposition 7.2 the analogue of Propo-
sition 2.1. We explain what needs to be modified in the proof of Proposition
2.1. The most significant part is the proof of the first lemma, Lemma 3.1. In the
context of general norms, the lemma still holds with the same statement, but
when we look at the proof we will need to use the way that v and the direction
of T € T} ; are related to each other.

Lemma 7.4 IfT € T, ;, and x € Ey, and x ¢ 2T, then
1Tk x(MruDlip1 S RapDec(R;).
Proof We will prove the stronger estimate that for every ¢:

Tk x(M7p1)(t) < RapDec(R)).

Recall that
Tiabrn ) =1 [ M ()don(y) @.1)
Sk (x.1)
where S} (x, t) is the circle around x of radius 7 in the norm || - || x and oy is

the normalized arc length measure on it.
We also recall that

Mrpy = nr(Yji1)” = nr (W}, * w).
Now wjv . 1s concentrated on a Rj_l/ % Rj_1 rectangle centered at 0 and it
decays rapidly outside that rectangle. Since x € E», the distance from x to the

support of p; is 2 1. Therefore, Tg (M7 x1)(t) is tiny unless r ~ 1.
To study the case when t ~ 1, we expand out M7 t1:

M) = nr )WDY () = nr(y) / POV (@) (@)do.

Since |f11(w)| < 1, and ¥; () is supported on 7 and bounded by 1, it
suffices to check that for each w € 7,

/ nr (»)e*™ Y do; (y) < RapDec(R}). (7.2)
IER))

We will prove this rapid decay by stationary phase. After a coordinate rota-
tion, we can assume that w has the form (0, w;) withwy ~ R;. Let Ty € T ;
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be the tube that passes through x. The tubes of T; ; have long axis perpen-
dicular to d(RK ™) at a point in 7. In other words, the long axis of a tube in
T {-,T is parallel to v(w) for w € T (up to angle R~'/2). The tube Ty intersects
Sk (x,1) in two arcs, and on these arcs, the normal vector to § }( (x, t) points
in the direction w (v(w)) = w, which is vertical. Now T is not To—we know
that x ¢ 27T, and so the distance from T to Ty is > R™!/>*%. By the strict
convexity of K, if y € S}< (x,t) N T, then the normal vector to S}( (x,t)aty
makes an angle > R™!/2+% with the vertical.

The tube T intersects S}( (x,t) in one or two arcs. We parametrize each
arc as a graph—either y, = h(y;) or y; = h(y2)—over an interval /(7). By
choosing one of these two options, we can assume that 4 and all its derivatives
are < 1 on I(T). Let us assume first that y = h(y;) since this is the more
interesting case. Our integral becomes

f nr (v, h(y1))e?™ 2RO J (y)dy;.
10

This is the same integral that appears in the proof of Lemma 3.1. If y; € I(T),

then (y1, y2) € S}< (x,t)N T, and so the normal vector to S}( (x, t) at y makes
an angle = R;I/ZH with the vertical. Therefore, for y; € I(T), |h'(y1)| =

R/ ,just like in the proof of Lemma 3.1. We can prove the desired estimate

by the same stationary phase argument as in the proof of Lemma 3.1.
If y1 = h(y»), then we have a similar but easier integral:

/ nr (h(y2), y2)€* 22 J (y2)dys.
I(T)

This integral is the same as the one appearing at the end of the proof of Lemma
3.1. O

It is also straightforward to check that if f is supported on the annulus
{y:llx —yllxk ~ 1}, then

1Tk x fllze S 1Nzt

The rest of the proof of Proposition 2.1 is unchanged.

7.2 A general curve version of Liu’s identity
In the proof of Proposition 2.2, the only ingredient that needs to be adjusted

for general norms K is Liu’s L? identity—Theorem 5.1. The argument in [25]
seemingly relies heavily on the rotation invariance of the circle. We give a
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different approach to Theorem 5.1, and we show that it extends (modulo a
negligible tail term) to more general metrics.
The analogue of Liu’s theorem is the following.

Lemma 7.5 There is a smooth (not necessarily positive) measure X~ on

0K* = S}<* (1) so that the following holds. Define a measure orK “onS }(*(r)
by setting

oK A) =X A/n).

Suppose that f(y) is supported in the annulus ||x — y||x ~ 1. Then

f|f*o—,’<<x>|2rdr Se /If*GrK*(x)Izrerr0(||f||2._1+€ + 112D
H 2 H 2

(7.3)

Proof We abbreviate
F() =Ty o f(0) = 1"/ f(x).

Note that the left-hand side of (7.3) is f F(1)%dt. Also, because of the
support condition on f, F(¢) is supported on 7 ~ 1.

We begin with an estimate for o X which was derived by Herz [15]: When
€] = 1, we have

gl?(g) — |§|—%K(S)—%62ﬂi(||$||1<*—%) + |§|—%K(_§)—%e—2ﬂi(llf||K*—%)
_3
+0(§172),
where « (&) is the Gaussian curvature of dK at v(§)—the vector with & -

v/(\é) = maxyeg & - v. Note that K is symmetric and so k (§) = «(—£&). Also
oKX (&) = oK (¢&). Therefore,

— 1 . 1 : 1 3
UtK(é) — |t§|—1/2K(§)—§(eZNI(ZIIEIIK*—g) + e—2ﬂl(f||§||1(*—g)) + O(|tE]72).
__This bound holds for |7§| 2 1.1f |t&] < 1, then we have the simpler bound
|0,K ()] < 1 which gives the same expression with a remainder term of the

form |t£|~'/? on the right-hand side.
Now we return to F(1). We have

F) =10/« f(0) =112 / oK (€) f(€)de.
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—_—

Plugging in the formula above for o/X, we get two main terms and a remain-
der term—for every t ~ 1,

F(t) = Fi(1) + F(1)
+0 </ RGIERLES +/ |f<s>||é|1/2dg),
[&1=1 [&1=<1

where
Fi(t) = e*i% /62n1x.€f(é)K(€);|§|ieZJTiz‘HEHK*ds.

B =t / P FlE ) (§) 2|82 e 2T E I g,

Notice that the 7!/2 in the expression F (1) = !/ 20l1< * f(x) cancelled the

o~

t~1/2 in front of otK (&). This cancellation is the motivation for the expression
Y ZG,K # f. It leads to a simple formula for F | and 132, which we can use to
estimate [ |Fy(1)|*> and [ |F2(1)]*.

Before turning to Plancherel, let us mention that the formula for F; (#) makes
sense for all real 7.

To find the formula for F 1(r), we will massage the definition of F(¢) into
the form Fi(t) = [5° ¢* "' G(r)dr. Then it will follow that Fi(r) = G(r)
(and that F 1 is supported in [0, 00).) Now we process the formula for F;. First,
we write £ = rf where r = ||€]|x+ and 6 € S}(* = 0K*. We can do a change
of variables d¢ = J(0)rdrd6, where dO is arc length measure on S11<,k and
J(0) is smooth and bounded. Then we get

o
Ay =t / / ezm'gf(é)K(G)_% ISI_%J(G)dHeZ”’”rdr,
0 i

where & = r6. We rewrote «(§) = «(0) since «(§) only depends on the
direction of &. Up to another smooth factor J(6), we have |§| = r, and so,
after redefining J(6), we have

K

oo .7 . o~ .
Fi(t) :/ <€_l4 /1 eanfo(é)K(e)—éJ(Q)d9r1/2> ethrdr‘
0 St
Therefore,

Fi(r) =e—l'7i/l ez’”xff(s)/c(e)—%J(e)derl/?
sk,

K
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Now define o &”

have

= k(0)"Y?J(0)db, a smooth measure on S}(*, and we

Fiiry = e T fx oK (x)r!/2.

Now by Plancherel, we get

/ P dt = / By () Pr = / VS ok () Prar.
0

A similar bound applies to F5.
Finally, we put it all together:

/|F(t)|2d;~/ |F(t)|2dz5/|F1(t)|2dt
i~1

+/ |F>(1)|*dt + Remainder,
where

. - _3 2 _1
Remainder) S [ 1F@)lel g + [ 1@ tas,
|§1=1 |§1=1
The main two terms are < fooo | f * oK (x) |2rdr. The remainder terms are
controlled by Cauchy—Schwarz:

2

< 2
SIFIR .o

2
IF @Il |5d> < |f1PE e < 1 £12 .
(/ISISI Ol : /s|§1 AR s f H™ O

We wish to apply this Lemma with f = 1 good. Our pty gp0q is rapidly
decaying outside of a tiny neighborhood of Ej, and so if x € E3, [41,good 18
essentially supported in an annulus of the form ||x —y||x ~ 1. So we can apply
Lemma 7.5, and to make use of it we just need to check that the remainder
terms are finite: in other words

STl

”Ml,good”[-'[ﬂ < 00,

fors =1/2o0r1/2 — €.
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Let us first check that ||41,go0d | —s S It g—s. Indeed,

2 -2 72
i1 goodlyy-y S RTZ Y f|MTm| :

J.T TeT; ., T good
Applying Plancherel,
> f|MTm|2= > /Iﬂlel(Wj,rﬂl)vlz
T€T) ., T good T€T),T good

5f|<w,»,f/21>V|2=/|w,-,r|2m1|2.
Plugging into the above, we see that

2 -2 21~ 12 =25\~ 12 2
1121, g00d 13-y S D R; S/|wj,f| I3 §/|s| il = Ml
J.T

The norm || 11| -5 is related to the dimension « as follows. Recall that the
B-dimensional energy of a measure u is given by

Ig(p) = / v — v P pop ).

There is also a Fourier representation for /g (1) (cf. Proposition 8.5 of [37]):
if u is a measure on R”, then

Tp(1) = cn p fR g aE) Pae.

In particular |1 [|%,_, = [ € 17251 11|12 = Ir—as(11). If a measure p on the
unit ball obeys w(B(x,r)) < r®, then Ig(w) is finite for every f < o (cf.
Lemma 8.3 of [37]). In particular, Ig(i1) < oo for every B < «. Therefore,
|1l g-s < oo whenever 2 — 2s < @ ors > 1 — /2. In particular, if @ > 1,
then the remainder terms are controlled and we get

2 K 2
1T et go0al2s = / 121 g00a % 0K (0O 2edr

~

0o —
< / l1.g00d * 0K (x)2rdr + O(1).
0
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Integrating with respect to d > (x), we get

00 —_—
/ I Tk 141, g00dll3 2 < / ( f |m,g00d*a,K*(x)Pdm(x)) rdr+ O(1).
Ep 0 E,

As in the proof in the Euclidean case, we bound the inner integral using
Corollary 4.3. The proof is essentially the same as in the Euclidean case, but
when we check that each piece fr is microlocalized correctly, we have to take
into account the angles between the tubes T € T, ; and the normal vector to
dK* in the 7 direction. Here are the details.

I1.g00d = Mop1 + ) > Mru.
J=1,t T€T; ,T good

When we convolve with orK *, the only terms that remain are those with

—

Fourier support intersecting Sk (r). So 1. good * 0 X" is essentially equal to

LY X e

j~r T TeT,; T good

Let 11 be a bump function adapted to the unit ball. We define

fr=m (MTMI *UrK*) -

We claim that each fr is microlocalized in the way we would want to apply
Corollary 4.3.If T € T, ., then we let (T) be the 1-neighborhood of 37 N

S]l<*(r). We claim that fT is essentially supported in 6(7). First we recall
that M7 is essentially supported in 2t. Therefore, the Fourier transform

of My * oKX is essentially supported in 2t N SL. (r). Finally, the Fourier
transform of f7 is essentially supported in the 1-neighborhood of 27N S }<* (r),
which is contained in 6 (7T'). Note that 6 (T') is arectangular block of dimensions
roughly r1/2 x 1

Next we claim that f7 is essentially supported in 27". We know that M7 1 is
supported in 7. Let i, be a smooth bump function which is 1 on 27 and rapidly
decaying. Since t@urier transform of Mt 1 is essentially supported on 27,
we have M7 1 0 X" is essentially equal to M7y * (Yrr0 K7)" 1t is standard
to check by stationary phase that (w, K"y~ is bounded by RapDec(r) on
B2(1) outside of a tube of radius r~!/ 245 ; in the direction which is normal to
SII(* (r) in 7. By construction, the tube 7" also goes in this direction. Therefore,
My iy s (Ye O'VK*)/\ is negligible on B2(1) \ 2T'. So fr is essentially supported
on 2T.
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The rest of the proof of Proposition 2.2 is the same as in the Euclidean case.
When we apply Theorem 4.2, the surface S that we use is d K *. Since Theorem
4.2 only requires S to be a C? hypersurface with all extrinsic curvatures ~ 1,
it applies to d K*.

7.3 Norms with some points of vanishing curvature

Theorem 7.1 applies to norms || - || ¢ where dK has strictly positive curvature
everywhere. This assumption rules out the /? norms for all p # 2. If 1 <
p < 00, and p # 2, then there are finitely many points on the boundary of the
unit ball where the curvature vanishes. Theorem 7.1 can be generalized to the
case when 0 K is smooth and the curvature vanishes at finitely many points by
a small extra trick. We first set up E1, E2, i1, and o as usual, but then we
refine them to avoid the directions where the curvature of K vanishes. Let rq
be a small radius that we can choose later. Let B be any ball of radius r¢ with
u1(B1) > 0,and replace E| by E1 N By. Then cover E; with balls of radius rg.
We call a ball B from this covering bad if there are points x; € B; and x; € B
so that the vector x, — x is parallel to a vector v € 0K where the curvature
of dK vanishes. The number of bad balls is < ro_l. Since wa(B(x,r)) < r¢
with ¢ > 1, we can find a good ball By with u>(B3) > 0. Now we replace E»
by E> N B;. We redefine 1 and ps to be supported on our new smaller sets
E| and E>.

If x; € B;, then the vector (x> — x1)/|x2 — x1] lies in an arc of d K of length
~ ro which avoids all the flat points of d K. Now we define K to be a different
symmetric convex body so that 3K includes this arc of 9K but 8K is smooth
with strictly positive curvature everywhere. We can apply our proof to |||| . It
gives us a point x € E> so that d;% (E1) has positive Lebesgue measure. But
if x; € Ey and x € Ep, then [|x — xi|lx = [lx — x1] ¢, and so dy (E1) has
positive Lebesgue measure also.

8 Applications of the main results to the Erdds distance problem for
general norms

The purpose of this section is to prove Corollary 1.5 and extend it to a more
general collection of point sets. The following definition is due to the second
listed author, Rudnev and Uriarte-Tuero [17].

Definition 8.1 Let P be a set of N points contained in [0, 11¢. Define the
measure

() =N~ - N¥ -3 xp(N5 (x — p)da, 8.1)
peP
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where yx p is the indicator function of the ball of radius 1 centered at the origin.
We say that P is s-adaptable if there exists C independent of N such that

Lun) = [ [ 1x =y dwy o < c. (82)

It is not difficult to check that if the points in set P are separated by distance
c¢N~Ys then (8.2) is equivalent to the condition

1 _
= 2 lp=riT=c (8.3)
p#p’

In dimension d = 2, it is also easy to check that if the distance between any
two points of P is = N~1/2_ then (8.3) holds for any s € [0, 2), and hence P
is s-adaptable.

We will prove that if P is s-adaptable, then for some x € P, |Ag x(P)] g
N*/3_ As a special case, this implies Corollary 1.5.

Fix s € (%, 2) and define du’, as above. Note that the support of du’p, is

1

PN"Y the N _%—neighborhood of P. Since I;(u) is uniformly bounded, the

. . . —1/s
proof of Theorem 1.3 implies that there exists xg € PV " So that

_1
LAk (PY ")) > ¢ >0,

where the constant ¢ only depends on the value of C in (8.3).
Let x be a point of P with |x —xo| < N~/% It follows that for any y, [ xo —
yllk = llx = yllk + O(N~V5). Let Ey-1s (Ag x(P)) be the smallest number

of N~ /S_intervals needed to cover Ak x(P). We know that Ag y, (PN_I/S) is
contained in the O (N~!/%) neighborhood of Ak ,(P), and so

_1
LAk 1PV ") SN Ey-1is (Ax 1 (P)).

_1
Then our lower bound on L(Ak ,(P N7y gives
En-1s (AK’X(P)) pe NS,

In other words, Ak ,(P) contains 2 N I/ different distances that are pair-
wise separated by > N ~!/5_ In particular, | Ak ,(P)| = N'/%. Since this holds
for every s > 5/4, we get |Ak x(P)| £ N*/3 as desired.
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9 Appendix: Discussion of the lower bound on the upper Minkowski
dimension of A, g (E) in Remark 1.4

Let p be a smooth cut-off function supported in the ball of radius 2 and equal
to 1 in the ball of radius 1 centered at the origin. Let ps(x) = §4 ,0(8_1x).
Following the argument in (2.5) with (11 gpoa replaced by i1 good * ps, we
see that the Lebesgue measure of the 6-neighborhood of Ay k (E) is bounded
from below by

2
(1 = o)

f |d>;)f:ul,g00d * ,05|2

Following (5.2) with 1 gooq replaced by (1 gooa * ps, We see that the

expression above is bounded from below by CS%_%“, hence there exists
x € E such that the upper Minkowski dimension of A, g (E) is bounded from

below by
5 4o 4 2
l—-l-—-—)==-a— -,
3 3 3 3
as claimed.

It would be interesting to obtain a lower bound on the Hausdorff dimension
of Ay x(E). If w1 gooa Were positive, it would be sufficient to show that

/ Iyd:(,ul,good)dMZ(x) 9.1
E>

is bounded with y < %oz — % This estimate follows from the same argument
as in (5.2) above. Unfortunately, in view of the fact that 111 gooq 1S complex
valued, the estimate (9.1) does not appear to be sufficient to draw the desired
conclusion.
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