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Abstract
We revisit the work of Bourgain on the invariance of the Gibbs measure for the cubic,
defocusing nonlinear Schrödinger equation in 2D on a square torus, and we prove the
equivalent result on any tori.

Keywords Random Data · NLS · LWP

1 Introduction

The purpose of this work is to revisit the famous work of Bourgain on the invariance
of the Gibbs measure for the 2D defocusing cubic nonlinear Schrödinger equation
(NLS) on a square torus T2, [4], and extend his proof to any torus. Since later we
often use the definition of rational or irrational torus, we readily give it here. Assume
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that a 2D torus T2 has periods T1 and T2. If T1/T2 is rational we call T2 a rational
torus, otherwise irrational. As one can see from the proof for Strichartz estimates
on rational tori [2], Bourgain uses a fundamental property of the linear solution of
the Schrödinger equation defined on a rational torus, the fact that the solution is also
periodic in time. In the proof this fact is used in reducing the Strichartz inequality to
estimating the cardinality of a set of lattice points (x, y) ∈ Z

2 that satisfy a quadratic
equation x2+ay2 = R2, where a, R are natural numbers. Then anwell known theorem
from number theory is invoked to give a sharp bound in terms of R, see [1], see also
(2.43), page 117 in [2]. If one wants to repeat Bourgain’s proof for generic tori one
has to obtain the same sharp bound when counting the lattice points in a region such
as {(x, y) / x2 + αy2 ≤ R2 + O(1)}, where now γ, R2 > 0. In general, this number
of lattice points is larger than the sharp bound above. Intuitively though the same
type of Strichartz estimates available for rational tori should be available for irrational
one. In fact one expects even better ones since the irrationality of the torus should
translate into fewer interactions among linear Schrödinger solutions. After almost two
decades the full range of Strichartz estimates on any torus were proved by Bourgain
and Demeter [5], who obtained them as a corollary of their proof of the l2 decoupling
conjecture, hence without invoking any number theory. Shortly later Deng, Germain
and Guth [7] proved that indeed Strichartz estimates on a generic irrational torus are
better, in the sense that they live for a longer interval of time.

Let us nowgoback toBourgain’swork on the invariance of theGibbsmeasure in [4].
If one considers the nonlinear Schrödinger equation with solution u and Hamiltonian
H(u) in the frequency space instead of the physical space, then it can be recast as
an infinite dimensional Hamiltonian system with variables (qn(t), pn(t)) such that
û(t, n) = qn(t) + i pn(t) for frequencies n ∈ Z

2. For this infinite dimensional system
one can define a Gibbs measure that formally can be written as dμ = 1/ZeH(u)du,
where Z is a normalizing factor to make it a probability measure, and its support lives
in Hs(T2), s < 0, see [9,10]. Bourgain had already proved [3] that for the 1D quintic
NLS, where a similar measure can be defined with support in Hs(T), s < 1/2 [10],
the Schrödinger flow indeed leaves the measure invariant, meaning for any set A in
the support of the measure, its evolution with respect to the Schrödinger flow at any
later times has the same measure as A itself. Moreover using this invariance he proved
that the flow can be defined globally almost surely. Clearly such a question could have
been asked in 2D for the cubic defocusing NLS1 as well. The issue that Bourgain
faced was that while in the 1D case the flow was (deterministically) defined, at least
locally, for any data in Hs(T), s > 0, and hence on the whole support of the Gibbs
measure, which as recalled is in Hs, s < 1/2, for the cubic 2D case also the flow was
only known to be defined for data in Hs(T2), s > 0, hence missing the support of the
Gibbs measure, which is in Hs, s < 0. To overcome this, and other serious analytic
obstacles along the way, Bourgain used probabilistic tools, such as Wick ordering and
large deviation estimates, combined with more deterministic ones, such as Strichartz
type estimates and counting lemmata similar to the ones recalled above. This brings
us to the motivation of our paper. Indeed here we prove new counting lemmata, see

1 It is known that while for the 1D quintic focusing NLS the Gibbs measure can be defined as long as the
L2 norm is smaller than a certain absolute constant, in 2D no Gibbs measure can be defined for the focusing
case [10].
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Sect. 4, that hold more generally for any torus, and we rework the local almost sure
well-posedness in details2 to show that the bounds obtained in the counting lemmata,
although weaker than the ones in [4] still are enough to conclude the proof. Although
our paper follows the scheme of Bourgain’s proof, we decided to add full details for
the convenience of the reader and because along the way we could point out with
remarks where special care needed to be put in place in order to treat the general case
and rationality cannot be invoked.

Finally, we recently learned that Deng, Nahmod and Yue [8] have extended Bour-
gain’s result in [4] for any nonlinearity 2r + 1, where r ∈ N. This is a remarkable feat
since the high order of nonlinear interactions was previously considered an almost
insurmountable obstacle in obtaining an almost sure local flow in the support of the
Gibbs measure.

1.1 Statement of main result

In this paper, we study the 2D cubic Wick ordered NLS equation on irrational or
rational tori. We will pose the NLS on a rectangular torus and rescale the �. Let
γ ∈ (1, 2) be any real number (possibly irrational) that determines on T

2 = [0, 2π ]2
the operator

�γ := ∂2x + 1

γ
∂2y .

The free solution to the linear Schrödinger initial value problem

{
iut − �γ u = 0,

u0 = ∑
n∈Z2 anein·x (1.1)

is of the form

S(t)u0 ≡ eit�γ u0 ≡
∑
n∈Z2

ane
in·x ein2t ,

where we let

n2 := n · n = 〈n, n〉γ = n21 + γ n22.

Following the set up of Bourgain [4] we revisit the Wick ordered truncated NLS with
random initial data{

i∂t uN − �γ uN = −P≤N [(|uN |2 − MN )uN ],
u0,N = ∑

|n|≤N
gn(ω)
|n| ein·x , x ∈ T

2,
(1.2)

2 Here we will not repeat the argument that upgrades the local well-posedness to the global since the
rationality or not of the torus plays no role.
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where {gn(ω) : n ∈ Z
2} are independent L2-normalized complex Gaussians and

MN := 2
∫
T2

|uN (t, x)|2 dx = 2
∫
T2

|u0,N |2.

The operator P≤N here denotes the projection onto frequencies |n| ≤ N . By definition
of MN , one may rewrite (1.2) as

{
i∂t uN − �γ uN = −P≤NN (uN ),

u0,N = ∑
|n|≤N

gn(ω)
|n| ein·x , x ∈ T

2 (1.3)

by defining the Wick ordered nonlinearity

N ( f , g, h)(x) =
∑

ni∈Z2, n2 �=n1,n3

f̂ (n1)ĝ(n2)̂h(n3)e
i〈n1−n2+n3,x〉

−
∑
n∈Z2

f̂ (n)ĝ(n)̂h(n)ein·x

=: N1( f , g, h) + N2( f , g, h),

(1.4)

and we write N ( f ) := N ( f , f , f ), similarly for Ni , i = 1, 2.
One may also study the formal limit equation of (1.3)

{
i∂t u − �γ u = −N (u),

u0 = ∑
n

gn(ω)
|n| ein·x , x ∈ T

2.
(1.5)

For everyω and every N fixed, equation (1.3) is finite dimensional and thus an ODE. It
hence has a local solution, and in fact also a global solution due to themass conservation
law. Therefore, one is mainly interested in a local theory for (1.3) that is independent
of N . More precisely, the main result of the paper is the following

Theorem 1.1 Let uω
N be the solution to (1.3),

uω
N (t, x) = eit�γ u0,N − i

∫ t

0
ei(t−s)�γ P≤NN (uN ) ds, ∀0 ≤ t < tω. (1.6)

There exists s0 > 0, ε0 > 0, so that for almost every ω ∈ 	, there exists a tω
independent of N , such that

‖uω
N (t, x) − eit�γ u0,N‖

Xs0, 12+ε0
� 1. (1.7)

Moreover, for any 0 < s′ < s0, wω
N := uω

N (t, x) − eit�γ u0,N converges strongly in

Xs′, 12+ε0 [0, tω] to some limit w. Furthermore, the limit uω := w + ei�t u0 (called the
solution to the Wick ordered NLS (1.5)) satisfies the Duhamel formula
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uω(t, x) = eit�γ u0 − i
∫ t

0
ei(t−s)�γ N (uω) ds, ∀0 ≤ t < tω. (1.8)

We refer the reader to Sect. 3.1 for the definition of the Xs,b space and its related
properties. In the following, when the dependence on the parameter ω ∈ 	 is clear
from the context, we sometimes will drop the superscript in uω and write u for short.

Theorem 1.1 follows from the following quantitative version (independent of N )
of the main result.

Theorem 1.2 Let uω
N be as in Theorem 1.1, there exists s0 > 0, ε0, α0, t0 > 0 so

that for every t < t0, up to a set of probability measure e−t−α0 , one has that wN :=
uN − eit�u0,N satisfies ‖wN‖

Xs0, 12+ε0 [0,t] � 1. Furthermore, for all 0 < s′ < s0, wN

converges to some limit w in Xs′, 12+ε0 and u = w + eit�γ u0 solves the wick ordered
NLS in the sense that Duhamel formula (1.8) is satisfied.

1.2 Duhamel formula, Picard iteration andmain propositions

The proof follows from a Picard iteration scheme. One would like to write (1.3) into its
Duhamel form, (1.6). It is convenient to introduce an extra time cut offφδ(t) = φ(t/δ),
where φ ∈ C∞

0 (R) is equal to 1 on [−1/2, 1/2] and 0 outside [−1, 1], and consider
instead the following slightly modified version of (1.6):

u′
N (t, x) = φδ(t)e

it�γ u0,N − iφδ(t)
∫ t

0
ei(t−s)�γ (P≤NN (φ(t)u′

N ) ds. (1.9)

Note that when t < δ/2, u′
N is no different from uN . In what follows, for convenience

we will not distinguish uN and u′
N . Let

�N ,δu = −iφδ(t)
∫ t

0
ei(t−s)�γ P≤NN (φδ(t)u) ds, (1.10)

and consider its formal limit as N → ∞:

�δu = iφδ(t)
∫ t

0
ei(t−s)�γ N (φδ(t)u) ds. (1.11)

From the perturbative viewpoint, let

uN = φδ(t)e
it�γ u0,N + wN (x, t). (1.12)

Then (1.9) is equivalent to

wN (x, t) = �N ,δ(φδ(t)e
it�γ u0,N + wN (x, t)), (1.13)

which reduces Theorem 1.2 to the following three propositions,
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Proposition 1.3 There exists a sufficiently small δ0 > 0 and s0 
 ε0 > 0, and some
α0 > 0, such that for every 0 < δ < δ0, up to a set of measure e−δ−α0 for some α0
depending on ε0, the map

w �→ �N ,δ(φδ(t)e
it�γ u0,N + w(x, t)) (1.14)

is a contraction map on the space

{w : ‖w‖Xs0,b0 ≤ 1} for all N . (1.15)

where b0 = 1/2 + ε0.

Proposition 1.4 There exists a sufficiently small δ0 > 0 and s0 
 ε0 > 0, and α0 > 0
s.t. for every 0 < δ < δ0, up to a set of measure e−δ−α0 for some α0 depending on ε0,
the map

w �→ �δ(φδ(t)e
it�γ u0 + w(x, t)) (1.16)

is a contraction map on the space

{w : ‖w‖Xs0,b0 ≤ 1}, (1.17)

where b0 = 1/2 + ε0.

Proposition 1.5 Let δ0, s0, ε0 be as in Proposition 1.3 and 1.4. Let wN be the unique
function (fixed point) in {w : ‖w‖Xs0,b0 ≤ 1} such that

wN = �N ,δ(φδ(t)e
it�γ u0,N + wN (x, t)), (1.18)

and let w∗ be the unique function (fixed point) in {w : ‖w‖Xs0,b0 ≤ 1} such that

w∗ = �δ(φδ(t)e
it�γ u0,N + w∗(x, t)). (1.19)

Then one has for all s′ < s0 and as N → ∞ that

wN → w∗ in Xs′, 12+ε0 . (1.20)

Remark 1.6 Note that Proposition 1.3 is stated uniformly over all N > 0. In particular,
it can be seen from the proof that, the exceptional set, does not depend on N . We
are following [4] here, see also discussions in [8,13]. Thus to prove Proposition 1.3
is equivalent to prove Proposition 1.4. For those who are familiar with the Picard
iteration scheme, Proposition 1.5 is a stability argument that is essentially equivalent
to the local existence argument giving Proposition 1.3 and 1.4. However, to take into
account the difference between P≤NN (uN ) and N (uN ), one will need to use extra
derivative, which is the reason why the convergence in Proposition 1.5 only holds for
s′ < s0. One may also see [8],
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We will focus on the proof of Proposition 1.4, which is the same as the one for
Proposition 1.3, then Proposition 1.5 follows by using the same argument as in Section
5 of [4]. One may also use the invariance of the Gibbs measure to upgrade the local
well-posedness to a global one as in [4].

2 Proof of Proposition 1.4: initial reduction and structure of the proof

In this section, we outline the proof of Proposition 1.4. To begin with, fix w, one has
by definition that

�δ(φδ(t)e
it�γ u0 +w) = iφδ(t)

∫ t

0
ei(t−s)�γ N (φ(t)eit�γ u0 +φ(t)w) ds =: A+ B,

(2.1)
where, according with (1.4), A corresponds to N1 and B to N2 respectively. We also
use φ(t)φ(t/δ) = φ(t). The estimate for part B follows from standard Xs,b space
estimates, which we present in the end of Sect. 3.2 for the sake of completeness. In
order to study part A, we consider the Wick ordered nonlinearity N1 as a trilinear
expression, replacing the w above by three functions w1, w2, w3.

Using Xs,b smoothing (3.8) and duality, Proposition 1.4 will follow from

Proposition 2.1 There exist δ, δ0, α0, ε0, b as in Proposition 1.4 satisfying ε0 � ε1 �
s0, so that for any h(x, t) with ‖h‖X0,1−b0 ≤ 1, h0(x, t) := φ(t/δ)h(x, t), one has
estimate ∣∣∣∣

∫
R×T2

< D >s0 (N1(u1, u2, u3))h0 dxdt

∣∣∣∣ � δε1 , (2.2)∣∣∣∣
∫
R×T2

< D >s0 (N2(u1, u2, u3))h0 dxdt

∣∣∣∣ � δε1 , (2.3)

where ui is either φδ(t)eit�γ u0 or wi .

Here < · > is the Japanese bracket, < D >:= √
1 − �.

Remark 2.2 We will neglect any loss of δ−Cε0 throughout the proof, since eventually
all such loss will be compensated by the gain of δε1 . In particular, one should not be
concerned about the loss in Xs,b localization by multiplying φ(t/δ).

In the two estimates above, (2.3) follows easily from deterministic estimates, whose
proof will be given at the end of Sect. 3.2. The majority of the rest of the paper is
devoted to proving (2.2).

More precisely, the proof of (2.2) splits into eight different cases depending on
whether the input functions ui are of the regular (in the space Xs0,b0 ) or probabilisitic
forms. In addition,we further decompose each ui into pieces corresponding to different
spatial Fourier frequencies (i.e. replacing ui with PNi ui for some dyadic numbers Ni ),
then the desired result follows from a case by case study depending on the relative
sizes of the spatial frequencies N1, N2, N3. Note that the roles of N1 and N3 are
completely symmetric as shown in the definition of N , so without loss of generality
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we may assume N1 ≥ N3 throughout. There are thus two main cases: N2 ≥ N1 ≥ N3
and N1 ≥ N2.

The first case N2 ≥ N1 ≥ N3 turns out to be easier, which we treat in Sect. 5. The
second case needs to be further decomposed depending on the relative sizes of N2, N3
and where the random terms appear. Following Bourgain’s notation, we will use I I to
denote the regular case (i.e. ui = wi ) and I to denote the probabilistic case (i.e. ui is
the cutoff of the free solution with random initial data u0). In Sects. 6 and 7, we will
first estimate two typical cases: N1(I I ) ≥ N2(I ) ≥ N3(I I ) (corresponding to “case
(a)” of [4]) and N1(I ) ≥ N2(I I ) ≥ N3(I I ) (corresponding to “case (c)” of [4]). These
two cases are typical in the sense that all essential elements of the proof and ideas will
be displayed in the study of these two cases. Essentially this is because in the two cases,
the random term appears in relatively higher frequencies hence there is less decay in
terms of N1 that one would expect; there is also no additional random term present
which prevents one to fully exploit the cancellation brought by randomization. Note
that these two sections are the main part of our proof. We will discuss the treatment
of other cases in Sect. 8.

2.1 A list of cases

Following Bourgain, we need to study

• Case (0): N2 
 N1;
• Case (a): N1(I I ) ≥ N2(I ) ≥ N3(I I );
• Case (b): N1(I I ) ≥ N3(I ) ≥ N2(I I );
• Case (c): N1(I ) ≥ N2(I I ) ≥ N3(I I );
• Case (d): N1(I ) ≥ N3(I I ) ≥ N2(I I );
• Case (e): N1(I I ) ≥ N2(I ) ≥ N3(I );
• Case (f): N1(I I ) ≥ N3(I ) ≥ N2(I );
• Case (g): N1(I ) ≥ N2(I ) ≥ N3(I I );
• Case (h): N1(I ) ≥ N3(I ) ≥ N2(I I );
• Case (i): N1(I ) ≥ N2(I I ) ≥ N3(I );
• Case (j): N1(I ) ≥ N3(I ) ≥ N2(I I );
• Case (k): N1(I ) ≥ N2(I ) ≥ N3(I );
• Case (l): N1(I ) ≥ N3(I ) ≥ N2(I ).

Remark 2.3 Strictly speaking, one will need to study, for example in case (a), N2 �
N1, N2 ≥ N3. The analysis will be the same as for N1 ≥ N2 ≥ N3, we neglect this
issue.

2.2 Notation

For the sake of notational convenience, we will denote 〈, 〉γ by 〈, 〉 in short. We use
PN , P≤N to denote Littlewood Paley projections in the physical space (x variable),
as mentioned above. We will use P|τ |<M as Littlewood Paley projections in the time
space (t variable). We will also use P|τ−n2|<M to denote space time Littlewood Paley
projections with respect to paraboloids.
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For the sake of convenience,we sometimes abuse notation by identifying P2
N = PN ,

φ(t)2 = φ(t). Throughout the paper, we use several parameters, andwe always require

1 ≥ s0 
 s1 ≥ ε1 
 ε0 > 0. (2.4)

3 Preliminaries

3.1 The Xs,b space

In this subsection, we recall the definition of the Xs,b space and summarize some
classical estimates that will be used in the proof. One may refer to [2,5,6] for more
details.

Let v(t, x) be a function on R × T
2. Let v̂ be the Fourier transform of v, i.e.

v(t, x) =
∫
R

∑
n∈Z2

v̂(n, τ )ein·x eiτ t dτ,

and the Xs,b norm can be defined as

‖v‖2Xs,b :=
∫
R

∑
n∈Z2

< n >2s< τ − n2 >2b |̂v(n, τ )|2 dτ, (3.1)

where < n >:= √
1 + n2 is the Japanese bracket.

Note that another convenient way to define the Xs,b norm is via the ansatz

v(t, x) =
∫
R

∑
n∈Z2

a(n, λ)ein·x ein2t eiλt dλ, (3.2)

which gives

‖v‖2Xs,b =
∫
R

∑
n∈Z2

|a(n, λ)|2 < n >2s< λ >2b dλ. (3.3)

The Xs,b space is very useful in dispersive PDE for at least two reasons: first, it inherits
the Strichartz estimates enjoyed by free solutions of the Schrödinger equation; second,
it exploits the smoothing effect of the Duhamel formula.

We now recall the Strichartz estimates on tori, rational or irrational, [2,5],

‖eit�γ (PB f )‖L4
t,x ([0,1]×T2) �ε N ε‖ f ‖L2

x
, (3.4)

where PB is the Littlewood-Paley projection onto the spatial frequency ball B of radius
N (not necessarily centered at the origin).

By the Minkowski inequality and Cauchy–Schwarz, this implies that
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Lemma 3.1 For any u ∈ X0, 12+ε′
, there holds

‖PBu‖L4
t,x ([0,1]×T2) �ε,ε′ N ε‖u‖

X0, 12+ε′ . (3.5)

Via an interpolation with the Hausdorff–Young inequality, the estimate above can be
upgraded to

‖PBu‖L4
t,x ([0,1]×T2) �ε N ε‖u‖

X0, 12− ε
4
. (3.6)

We also record another estimate, which follows immediately by interpolating (3.5)
with the trivial bound

‖u‖L2
t,x ([0,1]×T2) � ‖u‖X0,0 .

Lemma 3.2 For any u ∈ X0, 13 , there holds

‖PBu‖L3
t,x ([0,1]×T2) �ε N ε‖u‖

X0, 13
. (3.7)

As mentioned earlier, the Xs,b space also exploits the smoothing effect of the
Duhamel formula, which can be made precise by the following estimate.

Lemma 3.3 For all s ≥ 0, b > 1
2 and time cut-off function φ as above, there holds

∥∥∥∥φ(t)
∫ t

0
ei(t−s)�γ v(s) ds

∥∥∥∥
Xs,b

� ‖v‖Xs,(b−1) . (3.8)

Before ending this subsection, we also record the following localization properties
of the Xs,b space:

Lemma 3.4 Let u ∈ Xs,b, then

‖φδ(t)u‖Xs,b �b

{
‖u‖Xs,b , 0 < b < 1

2 ,

δ
1
2−b‖u‖Xs,b , 1

2 < b < 1.
(3.9)

Moreover, for all 0 ≤ b′ ≤ b < 1/2, there holds

‖φδ(t)u‖Xs,b′ �ε δb−b′−ε‖u‖Xs,b . (3.10)

3.2 Deterministic estimates

In this subsection, we collect several by now standard deterministic estimates. All of
them were introduced when studying standard local theory of deterministic NLS on
tori. We start with an estimate that exploits the time localization. One may refer to
[2,6] for proof. We provide a brief sketch of proof of the lemma in Appendix A for
the convenience of the reader.
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Lemma 3.5 Let PB be the Littlewood-Paley projection onto the spatial frequency ball
B of radius N and 0 < s � 1. Then one has for all ε � s that

‖φ(t)PBu‖L4
t,x

�ε NCε‖u‖X0,1/2−ε , (3.11)

‖φδ(t)(PBu)‖L4
t,x

�ε Ns+Cε‖u‖
X0, 12−ε

δ
s
8 . (3.12)

The number 1/8 is not meant to be sharp, one can for example upgrade it to 1/4−.
Throughout the rest of the section, we write

fi (x, t) =
∑
n∈Z2

fi (n, t)ein·x , i = 1, 2, 3, (3.13)

i.e. fi (n, t) is the space Fourier transform of fi . For the sake of brevity, we abbreviate
fi (n, t) as fi (n).
We summarize below several standard estimates that will be frequently used in the

proofs that will come later. One may refer to [2,4,6]. We will also sketch them in
Appendix B for the convenience of the reader.

Lemma 3.6 Let N1 � N2, N3, 1 
 s1 
 ε0, and ψ(t) be a Schwartz function.
Decompose PN1 = ∑

J∈J PJ , where J ∈ J are finitely overlapping balls in the
region |n| ∼ N1 with radius ∼ max(N2, N3). then one has∣∣∣∣

∫
ψ(t)h̄ PN1 f1PN2 f2PN3 f3

∣∣∣∣
� (max(N2, N3))

Cε0‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 , (3.14)

∣∣∣∣
∫

ψ(t)h̄N1(PN1 f1, PN2 f2, PN3 f3)

∣∣∣∣
� (max(N2, N3))

Cε0‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 , (3.15)

∣∣∣∣
∫

ψ(t/δ)h̄ PN1 f1PN2 f2PN3 f3

∣∣∣∣
� δs1/8(max(N2, N3))

s1+Cε0‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 , (3.16)

∣∣∣∣
∫

ψ(t/δ)h̄N1(PN1 f1, PN2 f2, PN3 f3)

∣∣∣∣
� δs1/8(max(N2, N3))

s1+Cε0‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 , (3.17)

∣∣∣∣
∫

ψ(t)h̄N1(PN1 f1, PN2 f2, PN3 f3)

∣∣∣∣
� (max(N2, N3))

Cε0‖h‖X0,1/3‖‖ f2‖X0,1/3‖ f3‖X0,1/3 sup
J

‖PJ f1‖L∞
t,x

+1N1∼N2‖PN1 f1‖X0,b0 ‖PN1 f2‖X0,1/3‖PN3 f3‖X0,1/3‖PN3h‖X0,1/3
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+1N2∼N3‖PN1 f1‖X0,b0 ‖PN2 f2‖X0,1/3‖PN2 f3‖X0,1/3‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i

⎛
⎝‖PN1h‖X0,1−b0 ‖ fi‖X0,b0 sup

|n|∼N1

∏
j �=i

‖ f j (n)ein·x‖X0,b0

⎞
⎠ ,

(3.18)∣∣∣∣
∫

ψ(t)h̄N1(PN1 f1, PN2 f2, PN3 f3)

∣∣∣∣
� NCε0

1 ‖h‖X0,1/3‖PN1 f1‖L∞
t,x

‖ f2‖X0,1/3‖ f3‖X0,1/3

+1N1∼N2‖PN1 f1‖X0,b0 ‖PN1 f2‖X0,1/3‖PN3 f3‖X0,1/3‖PN3h‖X0,1/3

+1N2∼N3‖PN1 f1‖X0,b0 ‖PN2 f2‖X0,1/3‖PN2 f3‖X0,1/3‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i

⎛
⎝‖PN1h‖X0,1−b0 ‖ fi‖X0,b0 sup

|n|∼N1

∏
j �=i

‖ f j (n)ein·x‖X0,b0

⎞
⎠ ,

(3.19)∣∣∣∣
∫

ψ(t)h̄N1(PN1 f1, PN2 f2, PN3 f3)

∣∣∣∣
� (max(N2, N3))

Cε0‖h‖X0,1/3‖PN2 f2‖L∞
t,x

‖PN1 f1‖X0,1/3‖PN3 f3‖X0,1/3

+1N1∼N2‖PN1 f1‖X0,1/3‖PN1 f2‖X0,b0 ‖PN3 f3‖X0,1/3‖PN3h‖X0,1/3

+1N2∼N3‖PN1 f ‖X0,1/3‖PN2 f2‖X0,b0 ‖PN2 f3‖X0,1/3‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i

⎛
⎝‖PN1h‖X0,1−b0 ‖ fi‖X0,b0 sup

|n|∼N1

∏
j �=i

‖ f j (n)ein·x‖X0,b0

⎞
⎠ ,

(3.20)∣∣∣∣
∫

ψ(t)h̄N1(PN1 f1, PN2 f2, PN3 f3)

∣∣∣∣
� (max(N2, N3))

Cε0‖h‖X0,1/3‖PN2 f2‖X0,1/3‖PN1 f1‖X0,1/3‖PN3 f3‖L∞
t,x

+1N1∼N2‖PN1 f1‖X0,1/3‖PN1 f2‖X0,1/3‖PN3 f3‖X0,b0 ‖PN3h‖X0,1/3

+1N2∼N3‖PN1 f ‖X0,1/3‖PN2 f2‖X0,1/3‖PN2 f3‖X0,b0 ‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i

⎛
⎝‖PN1h‖X0,1−b0 ‖ fi‖X0,b0 sup

|n|∼N1

∏
j �=i

‖ f j (n)ein·x‖X0,b0

⎞
⎠ ,

(3.21)

where with 1Ni∼N j we denote the indicator 1Ni∼N j = 1 if Ni ∼ N j , 0 other-
wise. Moreover, estimate (3.18), (3.19), (3.20), (3.21) are also valid if one replaces
N1(PN1 f1, PN2 f2, PN3 f3) by PN1 f1PN2 f2PN3 f3.

Similarly, one also has
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Lemma 3.7 If N2 � N1 ≥ N3, one has∣∣∣∣
∫

φ(t/δ)h̄ PN1 f1PN2 f2PN3 f3

∣∣∣∣
� δs1/8Ns1

1 NCε0
1 ‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 , (3.22)

∣∣∣∣
∫

φ(t)h̄ PN1 f1PN2 f2PN3 f3

∣∣∣∣
� NCε0

1 ‖h‖X0,1/3‖PNi fi‖L∞
t,x

∏
j �=i

‖PNi fi‖X0,1/3 , i = 1, 2, 3. (3.23)

We also record the following deterministic estimate which will (almost directly)
handle the N2 part in the Wick ordered nonlinearity.

Lemma 3.8 Let b0 = 1
2 + ε0, then

∣∣∣∣
∫

φ(t/δ)h̄N2(PN1 f1, PN1 f2, PN1 f3)

∣∣∣∣
� min

i

⎛
⎝δ1/4‖PN1h‖X0,1−b0 ‖ fi‖X0,b0 sup

|n|∼N1

∏
j �=i

‖ f j (n)ein·x‖X0,b0

⎞
⎠ . (3.24)

We sketch the proofs of Lemma 3.6, 3.7 and 3.8 in Appendix B for the convenience
of the reader. In the following, we provide a proof of the easier estimate in our main
result Proposition 2.1.

Proof of (2.3) of Proposition 2.1 Wechoose N0 large, up to dropping a set of probability

e−N
cs1
0 , we have {

|gn(ω)| ≤ Ns1
0 , |n| ≤ N0,

|gn(ω)| ≤ |n|s1 , |n| ≥ N0.
(3.25)

And in particular, no matter whether ui = wi such that ‖wi‖Xs0,b0 � 1 or ui =
φ(t)

∑
|n|∼Ni

gn(ω)
|n| ein

2t einx , we always have

{
‖PNui |X0,b0 � Ns1

0 , N ≤ N0,

‖PNui‖X0,b0 � Ns1 , |N | ≥ N0,
(3.26)

Observe that∫
φ(t/δ)h̄N2(u1, u2, u3) =

∑
N

∫
φ(t/δ)PN h̄N2(PNu1, PNu2, PNu3) (3.27)

Let δ = N−100
0 , applying estimate (3.24), we have
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• N ≤ N0 ∫
φ(t/δ)PN h̄N2(PNu1, PNu2, PNu3) � δ1/4NCs1 , (3.28)

• N ≥ N0, ∫
φ(t/δ)PN h̄N2(PNu1, PNu2, PNu3) � NCs1N−2, (3.29)

Sum all N , (when s0 small enough), and desired estimate follow. ��

3.3 Probabilistic estimates

We collect the elementary but crucial probabilistic estimates here.

Lemma 3.9 Let {gn(ω)} be i.i.d complex Gaussian on the probability space 	, and
{cn1,...,nk } be a sequence of complex numbers for some integer k ≥ 1. Define

Fk(ω) =
∑

n1, ..., nk

cn1,...,nk gn1gn2 · · · gnk .

Then one has for all 1 < p < ∞

‖Fk‖L p(	) �
√
k + 1(p − 1)k/2‖Fk‖L2(	). (3.30)

Moreover, there holds the associated large deviation type estimate

P{|Fk | > λ} ≤ exp

⎛
⎝ −Cλ2/k

‖Fk‖2/kL2(	)

⎞
⎠ , ∀λ > 0. (3.31)

In the lemma above, it is very important that {cn1,...,nk } are numbers instead of
random variables. One may refer to [11,12].

The following lemma will also be frequently used.

Lemma 3.10 Let {gn(ω)} be i.i.d complex Gaussian on the probability space 	, and
assume that

∑
n∈Z2

|an|2 � 1.

Then, for any integer N > 0, up to a set of probability measure e−Nα
for some α > 0

depending on ε, there holds

∥∥∥∥∥∥
∑

n∈Z2,|n|≤N

angn(ω)ein·x
∥∥∥∥∥∥
L∞(T2)

� N ε, ∀ε > 0. (3.32)
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Proof It is easy to see that for any fixed x , the function is bounded as desired outside a
small exceptional set, so the key point is to show that the exceptional set can be made
independent of x . To do this, given ε > 0, first note that T2 can be covered by a mesh
of size 1/NM × 1/NM centered at ∼ N 2M lattice points for a large number M to
be determined later. We first bound the function at the lattice points, which is easy as
the function at each lattice point has size � N ε0 (for some ε0 < ε) up to probability
e−Nα(ε0)

according to Lemma 3.9, and there are only N 2M many points. Therefore, one
has that the function satisfies the desired bound outside an exceptional set of measure
up to ∼ e−Nα−

.
To pass from here to the bound of the function on the entire T2, it suffices to obtain

a uniform control of the derivative of the function (independent of x):

N
∑

|n|≤N

|an||gn(ω)| � N 2 sup
n

|gn(ω)|. (3.33)

The probability of the derivative being larger than N 4 is smaller than e−N2
N 2, as the

probability of |gn(ω)| > N 2 for each n is controlled by e−N2
. Hence, by removing

this additional exceptional set and recalling that every point x lies within the distance
of 1/NM from some lattice point, one has that the function at x is bounded by N ε0 +
N 4 · 1/NM � N ε as long as M is chosen sufficiently large. ��

4 Counting lemma

One of the key ingredients in the proof of our main theorem is an extension of the
lattice counting argument of Bourgain, [4] to the irrational setting. We present them
in this section. We start with two auxiliary lemmata. The first has a geometric flavor,
while the second is an elementary number theoretical result.

Lemma 4.1 Let A be the O( 1
N )-neighborhood of a circle of radius ∼ N, and � =

Z×γZ for some real number γ ∈ (1, 2). Suppose A1 ⊂ A is the O( 1
N ) neighborhood

of an arc of the circle of length N2 ≤ N. Then, A1 contains at most max
(

N2
N1/3 , 1

)
points of �.

Proof Let C ⊂ A be the O( 1
N )-neighborhood of any arc of the circle of angular size

θ = 1
1000N

−2/3, then it suffices to show that C contains at most O(1) points from

�. Indeed, if N2 > N 1/3, A1 corresponds to an arc of angular size N2
N , which can be

decomposed into ∼ N2
N1/3 smaller arcs each of which containing at most O(1) points

from �.
Denote B1 the circular sector bounded by the outer arc of C , and B2 the triangle

with vertices being the center of the circle and the two endpoints of the inner arc of C.
Observe that any triangle P1P2P3 with Pi ∈ � ∩ C must be contained in the region
B1−B2. Moreover, it is easy to see that annulus A can contain straight line of length at
most O(1). Therefore, suppose C contains more than O(1) points from �, then there
must exist three points P1, P2, P3 ∈ � ∩ C that formulate a non-degenerate triangle.
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By definition of �, the area of the triangle is at least 1
2 , hence the area of B1 − B2

needs to be at least 1
2 as well.

On the other hand, via Taylor expansion, the area of B1−B2 is bounded by 1
2N

2(θ−
sin θ) + O( 1

N )Nθ � N 2θ3 + θ ≤ 1
10 , which is a contradiction. Therefore, C must

contain at most O(1) points from � and the proof is complete. ��
Lemma 4.2 Given an integer M �= 0, then

#{(a, b) ∈ Z × Z : ab = M} ≤ Cε |M |ε, ∀ε > 0.

Proof Without loss of generality we assume that M > 0. As an integer, M has an
unique representation by its prime factors:

M = pr11 pr22 · · · pr�� , p1 < p2 < · · · < p�, ri > 0, ∀i .

Then, the total number of pairs of integerswhose product isM is bounded by
∏�

i=1(ri+
1). For any fixed ε > 0, there exists a smallest integer N such that N ε > 2. Let p j be
the first factor that is larger than N , then there holds

�∏
i= j

(ri + 1) ≤
�∏

i= j

2ri <

�∏
i= j

pri εi < Mε .

On the other hand, there are only Oε(1) many pi that are smaller than N . Therefore,
write M = em , one has

j−1∏
i=1

(ri + 1) ≤ (logM)Oε (1) = mOε (1).

There exists a large number M0 = M0(ε) so that mOε (1) ≤ eεm whenever M = em >

M0, hence the desired estimate follows if M > M0. If M ≤ M0, one can simply take
Cε = M2

0 . The proof is complete. ��
We now fix μ and N1, N2, N3 ≥ 0, and we let

S := {(n1, n2, n3) : |ni | ∼ Ni , n2 �= n1, n3, and 〈n2 − n1, n2 − n3〉 = μ + O(1)}.

We observe here that in the rational case S is a curve while in the general case, since
+O(1) appears the set is thick.

Define

S(n1) = {(n2, n3) : (n1, n2, n3) ∈ S},

and similarly for other S(ni ), if ni is fixed and S(ni , n j ), if ni , n j are fixed. We have
the following counting lemmata regarding the size of these sets. In the following, we
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sometimes use N 1, N 2, N 3 to denote N1, N2, N3 rearranged in the non-increasing
order and assume μ = O(N 1).

Lemma 4.3 #S(n1, n2) � N3 and #S(n2, n3) � N1.

Compared to the rational case studied by Bourgain, this estimate is equally good,
since ultimately it is a linear estimate.

Proof We will only prove the first estimate, as the second one follows from the same
argument. Fixing n1 �= n2, one has from

〈n2 − n1, n2 − n3〉 = μ + O(1)

that n3 lies in an O( 1
|n1−n2| ) ≤ O(1) neighborhood of a straight line. Since |n3| ∼ N3,

there are at most ∼ N3 choices of n3. ��
It is in the next lemmata that one sees a difference with respect to the estimates of

Bourgain that are generated by the possible irrationality of the torus.

Lemma 4.4 Assume N1 ≥ N2, N3. Then,

#S(n1, n3) �
{
N 2/3
2 , if N1 ∼ N3 
 N2,

max
(

N2
(N1)1/3

, 1
)

, otherwise.

Proof From the definition of the set S, with n1, n3 fixed, n2 must lie in an annulus
given by the formula

∣∣∣∣n2 − n1 + n3
2

∣∣∣∣
2

= |n1 − n3|2
4

+ μ + O(1).

Denote the inner and outer radius of the annulus by R1, R2 respectively and recall that
μ � N1.

Therefore, when N1 
 N3, both the inner and outer radius are roughly ∼√
(N1)2 + μ ∼ N1. In order to determine the thickness of the annulus, one observes

from R2
1 − R2

2 = O(1) and R1, R2 ∼ N1 that there holds R1 − R2 ≤ O( 1
N1

), hence

the thickness is bounded by O( 1
N1

). Then, the desired estimate max( N2

N1/3
1

, 1) follows

immediately from |n2| ∼ N2 ≤ N1 and Lemma 4.1 above.
When N1 ∼ N3, assume that the inner and outer radius are roughly ∼ R 
 1 (if

R ≤ O(1), the estimate is trivial). Note that R � N1. Then n2 lies inside an annulus
of radius ∼ R and thickness bounded by O( 1

R ). Suppose N1 ∼ N2 ∼ N3, then again
by Lemma 4.1 above, the total number of n2 is bounded by

max

(
R

R1/3 , 1

)
= max(R2/3, 1) � max(N 2/3

1 , 1) ∼ max

(
N2

N 1/3
1

, 1

)
.
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On the other hand, if N1 ∼ N3 
 N2, still denoting R as roughly the inner and
outer radius of the annulus, one has

#S(n1, n3) � max

(
min(N2, R)

R1/3 , 1

)
� N 2/3

2 .

��
Lemma 4.4 above can be extended to estimate other sets of similar type. For exam-

ple, let n := n1 − n2 + n3 and suppose that N1 = N 1. Then for any fixed n2 and n,
via a similar argument, one has the following estimate:

#{n1 : |ni | ∼ Ni , n2 �= n1, n3, and 〈n1 − n, n2 − n1〉 = μ + O(1)} � N 2/3
1 .

Indeed, suppose N1 
 N2, then n1 in the above lies in an annulus of radius
∼ N1 and thickness ∼ O( 1

N1
). Hence by Lemma 4.1, the total number is at most

max( N1

N1/3
1

, 1) = N 2/3
1 . Otherwise, if N1 ∼ N2, one has R, the radius of the annulus,

is bounded by N1. Hence, the total possible number of n1 is at most � R2/3 � N 2/3
1 .

Similarly, when N1 
 N2, one also has the following counting

#{n3 : 〈n3 − n2, n3 − n〉 = μ + O(1)} � max

(
N3

N 1/3
1

, 1

)
.

Moreover, from the two lemmata above, one can already obtain some estimate for
sets S(ni ). For instance, by first fixing n2 and applying Lemma 4.3, one can show that
#S(n1) � N 2

2 N3. Depending on the relative sizes the Ni , sometimes such estimates
are already good enough. However, in some other cases one needs to use a more
sophisticated argument, and this is the contents of the following counting lemma.

Lemma 4.5 #S(n1) � (N 1)εN2N3, #S(n2) � (N 1)εN1N3, and #S(n3) �
(N 1)εN1N2.

Proof We only prove the estimate of #S(n1) as the other two can be treated very
similarly. Write n2 − n1 = r(a, γ b), where r ∈ N, a, b ∈ Z and (a, b) = 1.
Decompose all choices of n2 into dyadic scales. In other words, at each scale, we
have dyadic number A, B ∈ Z fixed such that |a| ∼ A, |b| ∼ B, and there holds
A, B � max(N1, N2). We also write n2 − n3 = (x, γ y), x, y ∈ Z.

Assume a, b �= 0 and fix A, B, r . We want to count the number of (a, b, x, y)
satisfying

r(ax + γ 2by) = μ + O(1), and |a| ∼ A, |b| ∼ B.

Note that r �= 0 because n1 �= n2, and x, y cannot both be zero as n2 �= n3. Without
loss of generality, suppose y �= 0, then the equality above can be rewritten as

ax

by
+ γ 2 = μ

byr
+ O

(
1

|byr |
)

.
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Since a, b, x, y ∈ Z, for any fixed value H = by, the value of ax is inside an O(1)-
neighborhood of an integer G = G(H).

Moreover, observe that the number of possible values of H is bounded by ∼ BN3,
as for each fixed b (hence the second coordinate of n2 is fixed) there are ∼ N3 many
choices of y. Then, by a simple number theory observation (Lemma 4.2 below) one
has for any ε > 0 that

#(a, b, x, y) � #{H} · |H |ε · |G|ε � BN3(Bmax(N2, N3))
ε(Amax(N2, N3))

ε

� max(A, B)1+εN3 max(N2, N3)
ε.

It is thus left to sum over r and then A, B. Note that for fixed A, B,

#r � N2

max(A, B)
,

therefore, one has in this case that

#S(n1) �
∑
A,B

N2

max(A, B)
max(A, B)1+εN3 max(N2, N3)

ε

� log(N 1)2(N 1)εN2N3 � (N 1)εN2N3.

Assume now that a = 0 (then b �= 0 as n2 �= n1). This means n1, n2 have the same
first coordinate, hence the total number of choices of n2 is bounded by N2. Moreover,
one has that the first coordinate of n3 is free and its second coordinate is determined
by

〈n2 − n1, n2 − n3〉 = μ + O(1),

hence is inside an O(1)-neighborhood of a determined value. Indeed, the formula
above can be written as

rγ 2by = μ + O(1)

which implies

y = μ

rγ 2b
+ O

(
1

|rγ 2b|
)

.

Therefore, in this case one has #S(n1) � N2N3. The b = 0 case can be treated in the
same way which we omit. ��
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5 Proof of Proposition 2.1: case by case study, case 0

In this section, we treat the case: N2 
 N1 ≥ N3. We will prove

∣∣∣∣∣∣
∑

N2
N1≥N3

Ns0
2

∫
N1(PN1u1, PN2u2, PN3u3)h̄φ(t/δ)

∣∣∣∣∣∣ � δε1, for some ε1 
 ε0,

(5.1)
where ui is either wi with ‖wi‖Xs0,b0 ≤ 1 or

ui = φ(t)eit�γ u0 = φ(t)eit�γ
∑
n

gn(ω)

|n| ein·x , x ∈ T
2,

and ‖h‖X0,1−b0 ≤ 1.
First observe that, in this case, the Wick ordered nonlinearity is the same as the

usual cubic nonlinearity, i.e. N = N1 and N2 = 0. We only need to prove (up to an
exceptional set of probability e−δ−c

) that

∣∣∣∣∣∣
∑

N2
N1≥N3

Ns0
2

∫
R×T2

PN1u1PN2u2PN3u3h̄φ(t/δ)

∣∣∣∣∣∣ � δε1 for some ε1 
 ε0. (5.2)

There are several subcases. We start with subcase 1 : ui = wi , i = 1, 2, 3. Let s1
be chosen such that ε0 � s1 � s0. Via (3.22) and observing that one has h = PN2h
in the being in this case, we obtain

∣∣∣∣
∫
R×T2

PN1u1PN2u2PN3u3h̄φ(t/δ)

∣∣∣∣
� N 2s1

1 ‖PN1u1‖X0,b0 ‖PN2u2‖X0,b0 ‖PN3u3‖X0,b0 ‖PN2h‖X0,1−b0 δ
s1
8

� N−s0/2
1 ‖u1‖Xs0,b0 ‖u3‖Xs0,b0 ‖PN2u2‖X0,b0 ‖PN2h‖X0,b0 .

(5.3)

Sum over N2 
 N1 ≥ N3, and the desired estimate follows.
Next we discuss subcase 2: at least one ui is φ(t)

∑
|ni |∼Ni

gni|ni |e
inix ein

2
i t . We only

study the case u1 = φ(t)
∑

|n1|∼N1

gn1|n1|e
inix ein

2
1t , as other cases can be treated simi-

larly.
Let N2,0 be a large parameter such that N 100

2,0 = 1
δ
. Note that up to an exceptional

set of probability e−δ−c ∼ e−Nc′
2,0 , we have

{
|gn(ω)| ≤ Ns1

2,0, |n| ≤ N2,0,

|gn(ω)| ≤ Ns1
2 , |n| ∼ N2 ≥ N2,0.

(5.4)
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In particular, one always has for all ui that

{
‖PNui‖X0,b0 � Ns1

2,0, N ≤ N2,0,

‖PNui‖X0,b0 � Ns1 , N ≥ N2,0.
(5.5)

and, dropping another exceptional set of probability e−δ−c
if necessary, one has

‖PN1u1‖L∞
t,x

≤ Ns1
1 , N1 ≤ N2, N2,0 ≤ N2. (5.6)

Now we split the subcase 2 further into the following subsubcases.
In subsubcase 2.1, we restrict ourselves to the regime N2 ≤ N2,0, and use estimate

(3.22) to derive

∣∣∣∣
∫
R×T2

PN1u1PN2u2u3h̄φ(t/δ)

∣∣∣∣
� δs1/8N 2s1

1 ‖u1‖X0,b0 ‖u2‖X0,b0 ‖u3‖X0,b0 ‖h‖X0,1−b0 � δs1N 2s1
1 . (5.7)

Summing over N1, N3 ≤ N2 ≤ N2,0, one obtains � δs1N 3s1
2,0 and the desired estimate

follows.
We are left with subsubcase 2.2, where N2 ≥ N2,0. We will prove

∣∣∣∣
∫
R×T2

PN1φ(t)u1PN2φ(t)u2φ(t)PN3u3φ(t)h̄

∣∣∣∣ � N−1/10
2 , (5.8)

which will then imply the desired estimate by summing (5.8) over N1, N2, N3.
As remarked above, we only prove estimate (5.8) for the case that u1 is random.

Using (3.23) and Lemma 3.10, one derives

∣∣∣∣
∫
R×T2

PN1φ(t)u1PN2φ(t)u2φ(t)PN3u3φ(t)h̄

∣∣∣∣
� N 2s1

2 ‖φ(t)PN2u2‖X0,1/3‖φ(t)PN3u3‖X0,1/3‖φ(t)PN2h‖X0,1/3 .

(5.9)

Let Fi (τi , ni ) be the space-time Fourier transform of φ(t)ui , i = 1, 2, 3, and
F4(τ4, n4) be the Fourier transform of φ(t)h, the integral being estimated is non-zero
only if {

n1 − n2 + n3 − n4 = 0,

τ1 − τ2 + τ3 − τ4 = 0,
(5.10)

which implies

∑
i

(−1)i (τi−n2i )=n21−n22+n23−n24=−2〈n2−n1, n2−n3〉 ∼ N 2
2 , since N2 
 N1, N3.

(5.11)
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Observe that the Fourier transform of φ(t)u1 is essentially supported on |τ1−n21| �
1, thus, at least for one i ∈ {2, 3, 4}, one has N 2

2 � |τi − n2i |, hence one can upgrade
estimate (5.9) to

∣∣∣∣
∫
R×T2

PN1φ(t)u1PN2φ(t)u2φ(t)PN3u3φ(t)h̄

∣∣∣∣
� N 2s1

2 N 2(−1/6−ε0)
2 ‖φ(t)PN2u2‖X0,b0 ‖φ(t)PN3u3‖X0,b0 ‖φ(t)PN2h‖X0,1−b0

� NCs1
2 N−1/6

2 � N−1/10
2 .

(5.12)
To make the above argument rigorous, one may decompose φ(t)u1 into

(P|τ |≤N2φ(t))u1 + (P|τ |>N2φ(t))u1, (5.13)

where the first term corresponds to frequency localization at |τ1−n21| ≤ N2 � N 2
2 , and

hence the above argument can be applied. For the second term, one simply observes
that

‖P|τ |>N2φ(t)‖L∞
t

� N−100
2 . (5.14)

This concludes the proof.

6 Proof of Proposition 2.1: case by case study, case (a)

In this section, we consider case (a): N2(I ) � N1(I I ), N2(I ) ≥ N3(I I ). We aim
to prove for all w1, v2, w3 satisfying

‖w1‖Xs0,b0 � 1, ‖w3‖Xs0,b0 � 1, v2 = φ(t)eit�γ

(∑
n2

gn2(ω)

|n2| ein2·x
)

,

and ‖h‖X0,1−b0 � 1 that, up to an exceptional set

∣∣∣∣∣∣
∑

N2�N1,N2≥N3

Ns0
1

∫
N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)

∣∣∣∣∣∣ � δε1, for some ε1 
 ε0.

(6.1)
Fix N 100

2,0 = 1
δ
and recall that any loss of δ−Cε0 will be irrelevant in the analysis.

The values of the parameters ε0 � s1 � s0 will be determined later.
By dropping a set of probability e−δ

−cs1 , we will assume the following throughout
the whole section: {

|gn(ω)| ≤ N2,0, |n| ≤ N2,0,

|gn(ω)| ≤ |n|s1 , |n| > N2,0.
(6.2)
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And one has in particular

{
‖PN2φ(t)v2‖X0,b0 � Ns1

2,0, N2 ≤ N2,0,

‖PN2φ(t)v2‖X0,b0 � Ns1
2 , N2 > N2,0.

(6.3)

6.1 Standard reduction

The goal in this subsection is to reduce the estimates of this case to Lemma 6.4 and
Lemma 6.5, which will be stated at the end of this subsection.

Note that in the discussion of all the cases (b)–(l), there will be a similar reduction
argument. We will present the full details of the reduction in this case, and only sketch
it in other cases.

We first split the summation
∑

N2�N1,N2≥N3
into two parts N2 ≤ N2,0 and N2 >

N2,0.

6.1.1 The low frequency part: N2 ≤ N2,0

We aim to prove

∑
N2≤N2,0,N2�N1,N2≥N3

Ns0
1

∣∣∣∣
∫

N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)

∣∣∣∣
� δε1 , for some ε1 
 ε0. (6.4)

Observe that, when N1 
 N2, one can replace the h in (6.4) by PN1h, and when
N1 ∼ N2, h can be replaced by P<N1h.

Thus, via estimate (3.17) and (6.3), one has

• If N1 ∼ N2 (in particular, N1 � N2,0),

Ns0
1

∣∣∣∣
∫

N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)

∣∣∣∣
� δs1/8N 2s1

2 ‖PN1w1‖Xs0,b0 ‖PN2v2‖X0,b0 ‖PN3w3‖X0,b0 ‖h‖X0,1−b0

� δs1/8N 4s1
2,0 ‖PN1w1‖Xs0,b0 N

−s1
1 .

(6.5)

• If N1 
 N2,

Ns0
1

∣∣∣∣
∫

N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)

∣∣∣∣
� δs1/8N 2s1

2 ‖PN1w1‖Xs0,b0 ‖PN2v2‖X0,b0 ‖w3‖X0,b0 ‖PN1h‖X0,1−b0

� δs1/8N 3s1
2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(6.6)

The desired estimate will follow if one sums over the associated N1, N2, N3 and apply
Cauchy inequality in the sum on N1.
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Remark 6.1 We point out that the low frequency case is always the easier part in
random data problems, and essentially follows from deterministic estimates usually
used in the local well-posedness argument, we will not repeat this part in the rest of
the article.

6.1.2 Reduction to resonant part

Now we are left with the case N2 > N2,0, we aim to prove

∑
N1≥N2≥N3,N2>N2,0

N
s0
1

∣∣∣∣
∫

φ(t/δ)h̄N1(PN1φ(t/δ)w1, PN2φ(t)v2, PN3φ(t/δ)w3) dxdt

∣∣∣∣
� N

−ε1
2,0 (6.7)

for some ε1 
 ε0.
We will not explore the time localization φ(t/δ) in this part. Observe that φ(t)h =

φ(t)φ(t/δ)h, we may hence define h̃ as φ(t/δ)h and use φ(t)h̃ in the following
estimate. Note that we still have ‖h̃‖X0,1−b0 � 1. For the sake of brevity, we still
denote h̃ as h.

Our aim is to prove for fixed N1, N2, N3 satisfying N2 � N1, N2 ≥ N3, N2 > N2,0
that

• If N1 
 N2,

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt

∣∣∣∣
� N−ε1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 , (6.8)

• if N1 ∼ N2,

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt

∣∣∣∣
� N−ε1

2 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0 . (6.9)

We will focus on the proof of (6.8), and it will be easy to see that (6.9) follows
similarly (almost line by line).

Observe that, since N1 
 N2 ≥ N3, one has

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt

∣∣∣∣
= Ns0

1

∣∣∣∣
∫

φ(t)PN1hN1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt

∣∣∣∣ .
(6.10)
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To carry on the proof of (6.8), we introduce another parameter M = N 100s1
2 . One

may split wi , i = 1, 3, and v2 as

φ(t)wi := P|τi−n2i |<Mφ(t)wi + P|τi−n2i |>Mφ(t)wi ,

φ(t)v2(t) = P|τ |<Mφ(t)v2 + P|τ |>Mφ(t)v2, (6.11)

and the same for h.

Remark 6.2 with such a splitting one may lose the time localization. This can be

overcome by writing for example P<Mφ(t) as φ̃(t)P<M
˜̃
φ, such that φ, φ̃ are Schwarz

uniform in M . Or, one may further require φ(t) = ψ̃(t)4, and indeed split as φ(t) =
φ1(t)+φ2(t)where φ1(t) = |P|τ |<M ψ̃(t)|4. Tomake the proof clean, we leave further
details to the interested reader, and allow ourselves to freely multiplying an extra time
localization ψ(t) in the proof.

Via (6.11), one can naturally split the left hand side of (6.8) into 24 parts. Each part is
of the form Ns0

1

∣∣∫ N1(PN1 f1, PN2 f2, PN3 f3)PN1 f4
∣∣, where fi = P|τi−n2i |<Mφ(t)wi ,

or P|τi−n2i |>Mφ(t)wi for i = 1, 3, f2 = P|τ |<Mφ(t)v2 or P|τ |>Mφ(t)v2, and f4 =
P|τ−n2|<Mφ(t)h or P|τ−n2|>Mφ(t)h.

Then, applying (3.20), one has for some Schwartz function ψ(t) that

Ns0
1

∣∣∣∣
∫

N1(PN1 f1, PN2 f2, PN3 f3)PN1 f4

∣∣∣∣
� Ns0

1

∣∣∣∣
∫

N1(PN1 f1, PN2 f2, PN3 f3)PN1 f4ψ(t)

∣∣∣∣
� Ns1

2 ‖PN1 f1‖Xs0,1/3‖PN2 f2‖L∞
t,x

‖PN3 f3‖X0,1/3‖ f4‖X0,1/3

+‖PN1 f1‖Xs0,1/3‖PN2 f2‖X0,b0 ‖PN2 f3‖X0,1/3‖PN1 f4‖X0,1/3 .

(6.12)

(In the second line, we add a time localizationψ(t), following Remark 6.2. Also recall
we have s1 
 ε0.)

Unless fi = P|τi−n2i |<Mφ(t)wi , i = 1, 3, f4 = P<Mφ(t)h, and f2 =
P|τ |<Mφ(t)v2, at least one of the following estimates will be true (after dropping
an extra set of probability e−Nc

2 if necessary):

• ‖PN1 f1‖Xs0,1/3 � N−10s1
2 ‖PN1 f1‖Xs0,b0 ,

• ‖PN2 f2‖L∞
t,x

+ ‖PN2 f2‖X0,b0 � N−10s1
2 ,

• ‖PN3 f3‖X0,1/3 � N−10s1
2 ‖PN3 f3‖X0,b0 ,

• ‖PN1 f4‖X0,1/3 � N−10s1
2 ‖PN1 f4‖X0,1−b0 ,

and we always have
‖PN2 f2‖X0,b0 + ‖PN2 f2‖L∞

t,x
� Ns1

2 . (6.13)
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The desired estimate follows by inserting the above ones into (6.12).

Remark 6.3 The numerology in the above calculation is in fact very simple modulo
lower order terms. The term

∫ N1(PN1u1, PN2u2, PN3u3)hψ(t) can essentially be
thought as

∫
PN1u1PN2u2PN3u3h̄ψ(t), and will only miss the desired estimate by

at most a factor N 10s1
2 via (3.14). On the other hand, when there is some ui = vi ,

which is hence already essentially localized at |τ − n2| � 1, then for all the rest of
the functions h, u j , one can gain at least 1/2− ε0 − 1/3 derivative. Therefore, unless
all the other terms have space-time frequency localization in |τ − n2| < N 100s1

2 , the
desired estimate will automatically follow.

Now, we are left with the case where fi = P|τi−n2i |<Mφ(t)wi , i = 1, 3, f4 =
P|τ−n2|<Mφ(t)h, and f2 = P|τ |<Mφ(t)v2.

Letd1(n, t), r2(n, t), d3(n, t), H(n, t)be the spaceFourier transformof P|τ1−n21|<M
φ(t)w1, P|τ |<Mφ(t)v2, P|τ3−n23|<Mφ(t)w3, P|τ−n2|<Mφ(t)PN1h. We abbreviate d1(n,

t), r2(n, t), d3(n, t), H(n, t) as d1(n), r2(n), d3(n), H(n) respectively. Observe that

⎧⎪⎪⎨
⎪⎪⎩
N 2s0
i

∑
n∼Ni

‖di (n)e−in2i t‖
H

b0
t

� ‖PN1wi‖2Xs0,b0
,

r2(n2, t) = ψ(t)
gn2|n2| , for some Schwartz function ψ,∑

|n|∼N1
‖H(n)e−in2t‖

H
1−b0
t

� ‖PN1h‖2
X0,1−b0

.

(6.14)

(One may observe, for example, that ‖di (n, t)e−in2t‖
H

b0
t

∼ ‖di (n, t)ein·x‖Xs0,b0 . We

also point out that we have estimated P|τ |<Mφ(t) just as some Schwartz functionψ(t).

Furthermore, one may observe that ‖di (n, t)e−in2t‖L p
t

= ‖di (n, t)‖L p
t
.) We will show

that

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt

∣∣∣∣
= Ns0

1

∣∣∣∣∣∣
∑

|ni |∼Ni ,n1−n2+n3=n

∫
d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣
� N−ε1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 ‖PN3w3‖Xs0,b0 , for some ε1 
 ε0.

(6.15)

Observe further that d1(n1, t), r2(n2, t), d3(n3, t), and H(n, t) are Fourier sup-
ported in |τi − n2i | � M, i = 1, 2, 3 and |n − τ 2| � M . Thus for the integral∫
d1(n1)r2(n2)d3(n3)H(n) dt to be non-zero, one necessarily has
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n21 − n22 + n23 − n2 = O(N 100s1
2 ). (6.16)

We thus have

Ns0
1

∣∣∣∣∣∣
∑

|ni |∼Ni ,n1−n2+n3=n

∫
d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣
≤ Ns0

1

∑
|ni |∼Ni ,n1−n2+n3−n4=0,

n21−n22+n23−n2=O(N
100s1
2 )

∣∣∣∣
∫

d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣ . (6.17)

To summarize, to prove (6.8), we are left with showing the following:

Lemma 6.4 Let N1 
 N2 ≥ N3, then one has for some ε1 
 ε0 that

Ns0
1

∑
|ni |∼Ni ,n1−n2+n3−n4=0,

n21−n22+n23−n2=O(N
100s1
2 )

∣∣∣∣
∫

d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣
� N−ε1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 ‖PN3w3‖Xs0,b0 .

(6.18)

We also write down the corresponding lemma that will imply (6.9).

Lemma 6.5 Let N1 ∼ N2 ≥ N3, then the same estimate (6.18) holds if one replaces
the PN1h by P<N1h.

One can easily check that the proof of Lemma 6.4 alsoworks for Lemma 6.5 (almost
line by line).

6.2 Random data type estimate: Proof of Lemma 6.4

Recall that we always assume (6.2) and that we are in the regime N1 
 N2 ≥ N3.
First note that for all n3 ∼ N3, we have
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‖d3(n3)‖L∞
t

= ‖d3(n3)e−in23t‖L∞
t

� ‖d3(n3)e−in23t‖
H

b0
t

∼ ‖d3(n3)ein3·x‖X0,b0

≤ ‖PN3w3‖X0,b0 .

Now, for all |n3| ∼ N3 fixed, we have

∑
|ni |∼Ni ,i=1,2, n1−n2+n3−n=0,

n21−n22+n23−n2=O(N
100s1
2 )

∣∣∣∣
∫

d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣

� ‖PN3w3‖X0,b0

∑
|ni |∼Ni ,i=1,2, n1−n2+n3−n=0,

n21−n22+n23−n2=O(N
100s1
2 )

‖d1(n1)‖L2
t
‖r2(n2)‖L∞

t
‖H(n)‖L2

t

� ‖PN3w3‖X0,b0

⎛
⎝ ∑

|n|∼N1

‖H(n)‖2
L2
t

⎞
⎠

1/2

×

⎛
⎜⎜⎜⎜⎝

∑
|n|∼N1

{ ∑
|ni |∼Ni ,i=1,2, n1−n2+n3−n=0,

n21−n22+n23−n2=O(N
100s1
2 )

‖d1(n1)‖L2
t
‖r2(n2)‖L∞

t

}2
⎞
⎟⎟⎟⎟⎠

1/2

� ‖PN3w3‖X0,b0 ‖PN1h‖X0,1−b0

×

⎛
⎜⎜⎜⎜⎝N 1+100s1

2

∑
|ni |∼Ni ,i=1,2, n1−n2+n3−n=0,

n21−n22+n23−n2=O(N
100s1
2 )

{‖d1(n1)‖L2
t
‖r2(n2)‖L∞

t
}2

⎞
⎟⎟⎟⎟⎠

1/2

� ‖PN3w3‖X0,b0 ‖PN1h‖X0,1−b0

×
⎛
⎜⎝N 1+100s1

2

∑
|ni |∼Ni ,i=1,2,〈n2−n1,n2−n3〉=O(N

100s1
2 )

‖d1(n1)‖2L2
t
N−2+2s1
2

⎞
⎟⎠

1/2

.

(6.19)
In the second step above, we used Cauchy inequality in n, while in the second to
last step, we used Lemma 4.3. Observe as well that ‖H(n)‖L2

t
≤ ‖H(n)e−int‖

H
1−b0
t

,

‖r2(n2)‖L∞
t

� |N2|s1−1 up to an exceptional set, and ‖d1(n1)‖L2
t

≤ ‖d1(n1)e−in21t‖L2
t
.

Furthermore, by the counting lemma (Lemma 4.4), one has for n1, n3 fixed that

�{|n2| ∼ N2 : 〈n2 − n1, n2 − n3〉 = O(N 100s1
2 )} � N 100s1

2 max

(
N2

N 1/3
1

, 1

)
. (6.20)
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To summarize, we derived that

N
s0
1

∑
|ni |∼Ni ,n1−n2+n3−n4=0,

n21−n22+n23−n2=O(N
100s1
2 )

∣∣∣∣
∫

d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣

� N
s0
1 N2

3 ‖PN3w3‖X0,b0 ‖PN1h‖X0,1−b0⎛
⎝N

−1+2s1
2

∑
|n1|∼N1

‖d1(n1)‖2L2t N
200s1
2 max(

N2

N1/3
1

, 1)

⎞
⎠
1/2

� N2
3 N

Cs1
2 N−1/2

2

[
max

(
N2

N1/3
1

, 1

)]1/2
‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 ‖PN3w3‖Xs0,b0 .

(6.21)
It is easy to see that the desired estimate will follow if there holds N 1/100

2 ≥ N3.

When N3 ≥ N
1

100
2 , we may directly go back to (6.8). Applying (3.15) and using

(6.3), we have

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt

∣∣∣∣
� NCs1

2 ‖PN1w1‖Xs0,b0 ‖PN2φ(t)v2‖X0,b0 N
−s0
3 ‖P3w3‖Xs0,b0 ‖PN1h‖X0,1−b0

� NCs1
2 N−s0

3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(6.22)
Estimate (6.8) then follows since N3 ≥ N 1/100

2 and s1 � s0.

7 Proof of Proposition 2.1: case by case study, case (c)

In this case, we have N1(I ) � N2(I I ) ≥ N3(I I ), and we aim to prove for all
v1, w2, w3 satisfying

v1 = φ(t)
∑
n1

gn1(ω)

|n1| ein1x , ‖w2‖Xs0,b0 � 1, ‖w3‖Xs0,b0 � 1,

and ‖h‖X0,1−b0
� 1, that (up to an exceptional set)

Ns0
1

∣∣∣∣
∫

φ(t/δ)h̄N1(PN1v1, PN2w2, PN3w3) dxdt

∣∣∣∣ � δε1 , for some ε1 
 ε. (7.1)

7.1 Standard reduction: a (detailed) sketch

We first sketch a reduction, with an argument similar to the one in Sect. 6.1. There is
indeed some difference between the reduction process in case (a) and case (c), mainly
due to the difference of the form of the first term (with the highest frequency). Hence,
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wewill still provide a rather detailed sketch. In all the remaining cases, we only briefly
sketch the reduction.

We may fix N1,0 large satisfying 1
δ

= N 100
1,0 . By dropping a set of probability up to

e−N
−cs1
1,0 , we have {

|gn(ω)| ≤ Ns1
1,0, |n| ≤ N1,0,

|gn(ω)| ≤ Ns1
1 , |n| ∼ N1 ≥ N1,0.

(7.2)

By further dropping a set of probability e−N
−cs1
1,0 if necessary, one has

{
‖PN1φ(t)v1‖X0,b0 � Ns1

1,0, N1 ≤ N1,0,

‖PN1φ(t)v1‖X0,b0 + ‖PN1φ(t)v1‖L∞
t,x

� Ns1
1 , N1 ≥ N1,0.

(7.3)

We will assume (7.2) and (7.3) thoughout this section. Now, split into two parts N1 >

N1,0 and N1 ≤ N1,0. For the low frequency part N1 ≤ N1,0, we may use (7.3) and
apply the deterministic estimate (3.17), one thus derives the analogues of (6.5) and
(6.6) below

Ns0
1

∣∣∣∣
∫

N1(PN1v1, PN2w2, PN3w3)h̄φ(t/δ)

∣∣∣∣
� δs0/8Ns0+Cε0

1,0 Ns0
2 ‖φ(t)v1‖X0,b0 ‖w2‖Xs0,b0 ‖w3‖Xs0,b0 ‖h‖X0,1−b0

� δs0/8Ns0+Cε0
1,0 Ns0

2 Ns1
1,0.

(7.4)

(Note that here we only need one estimate rather than two estimates as in (6.5), (6.6).)
Summing over N1 ≤ N1,0 and the associated N2, N3, and using the fact that

δ−1 = N 100
1,0 , we derive the desired estimate

∑
N1≤N1,0,N1�N2≥N3

N
s0
1

∣∣∣∣
∫

N1(PN1v1, PN2w2, PN3w3)h̄φ(t/δ)

∣∣∣∣ � δε1 , for some ε1 
 ε0.

(7.5)

For the remaining part N1 > N1,0, we will write φ(t/δ)h as φ(t)φ(t/δ)h and
note that one still has ‖φ(t/δ)h‖X0,1−b0 � 1. For notational convenience, we will still
denote φ(t/δ)h by h, and will prove for all N1 � N2 ≥ N3 with N1 > N1,0 that

Ns0
1

∣∣∣∣
∫

N1(PN1v1, PN2w2, PN3w3)h̄φ(t)

∣∣∣∣ � N−ε1
1 , for some ε1 
 ε0. (7.6)

Then (7.1) will follow from summing (7.6) over N1, N2, N3.
To see (7.6), we first introduce a parameter M = N 100s0

1 .

Remark 7.1 If one wants to get a rather large s0 < 1, one may need to choose M more
carefully. The following argument should still be fine if one choosesM = O(N (6+)s0

1 ),
where 6+denotes any number larger than 6.However, it is unclear to uswhether further
improvement is possible. We don’t further discuss this issue here.
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As in Sect. 6.1.2, we may split the functions φ(t)v1 = P|τ |<Mφ(t)v1 +
P|τ |>Mφ(t)v1, φ(t)wi = P|τi−n2i |<Mφ(t)wi + P|τi−n2i |>Mφ(t)wi , i = 2, 3, and
φ(t)h = P|τ−n2|<Mφ(t)h + P|τ−n2|>Mφ(t)h. Applying the deterministic estimate
(3.19), we reduce the proof of (7.6) to the following estimate

N
s0
1

∣∣∣∣
∫

N1(PN1ψ(t)v1, PN2 P|τ2−n22|≤Mφ(t)w2, PN3 P|τ3−n23|≤Mφ(t)w3)P|τ−n2|≤Mφ(t)h

∣∣∣∣
� N

−ε1
1 , (7.7)

for some ε1 
 ε0. Here ψ(t) = P|τ |<Mφ(t) is a Schwartz function.
Write

ψ(t)v1 =
∑
n1

r1(n1, t)e
in1·x , P|τi−n2i |φ(t)wi =

∑
ni

di (ni , t)e
ini ·x , i = 2, 3,

P|τ−n2|<Mφ(t)h =
∑
n

H(n, t)ein·x , (7.8)

and abbreviate the coefficients as r1(n1), di (ni ) and H(n) as before, one has

N
s0
1

∣∣∣∣
∫

N1(PN1ψ(t)v1, PN2 P|τ2−n22|≤Mφ(t)w2, PN3 P|τ3−n23|≤Mφ(t)w3)P|τ−n2|≤Mφ(t)h

∣∣∣∣

≤ N
s0
1

∣∣∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∫
r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣∣∣
.

(7.9)

Observe that one has in this case the following estimates:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N 2s0
i

∑
ni ‖di (ni )e−n2i t‖2

H
b0
t

� ‖PNi wi‖2Xs0,b0
� 1, i = 2.3,

r1(n1, t) = ψ(t)
gn1 (ω)

|n1| ein1·x+in21t , where ψ Schwartz,∑
n∼N1

‖H(n)e−in2t‖2
H

1−b0
t

� ‖PN1h‖2
X0,1−b0

.

(7.10)

We also point out that ‖ f (t)eiθ t‖L p
t

= ‖ f ‖L p
t
. Thus, it remains to prove the following

lemma:

Lemma 7.2 Assuming (7.10), for N1 > N1,0, one has (up to an extra exceptional set
of probability e−Nc

1 ) that

Ns0
1

∣∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∫
r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣∣
� N−ε1

1 , for some ε1 
 ε0. (7.11)
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7.2 Random data type estimate: Proof of Lemma 7.2

We derive three different estimates, which, combined together, will imply the desired
bound.

First, one can directly go back to (7.6), and use estimate (3.15) and (7.3) to derive

Ns0
1

∣∣∣∣
∫

N1(PN1v1, PN2w2, PN3w3)h̄φ(t)

∣∣∣∣
� Ns0

1 Ns1+Cε0
1 ‖PN1v1‖X0,b0 N

−s0
2 ‖PN2w2‖Xs0,b0 N

−s0
3 ‖PN3w3‖Xs0,b0

� (N1N
−1
2 N−1

3 )s0NCs1
1 .

(7.12)

One can see easily that the same bound works for the left hand side of (7.11) as
well. When N1 ∼ N2, one can directly use (7.12) to derive the desire estimate unless
ln N3 � ln N1. In particular, There is no need to consider the subcase N1 ∼ N2 ∼ N3.

Next, by applying Cauchy inequality in n, one obtains

Ns0
1

∣∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∫
r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣∣
� Ns0

1

(∑
n

‖H(n)‖2
L2
t

)1/2

⎛
⎜⎜⎜⎜⎝
∑
n

∥∥∥ ∑
ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(N

100s0
1 )

r1(n1)d2(n2)d3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎟⎠

1/2

� Ns0
1

⎛
⎜⎜⎜⎜⎝
∑
n

∥∥∥ ∑
ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(N

100s0
1 )

r1(n1)d2(n2)d3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎟⎠

1/2

(7.13)

In all the summations below, we always have |ni | ∼ Ni , n1 − n2 + n3 = n, n21 −
n22 + n23 − n2 = O(M), n2 �= n1, n3, and we sometimes omit them for notational
convenience.

One also observes that n1 − n2 + n3 = n and n21 − n22 + n23 − n2 = O(M) imply

〈n2 − n1, n2 − n3〉 = O(M), 〈n3 − n, n3 − n2〉 = O(M). (7.14)
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We have the following further estimate:

∑
n

∥∥∥ ∑
ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(N

100s0
1 )

r1(n1)d2(n2)d3(n3)
∥∥∥2
L2
t

�
∑
n

(∑
n2

‖d2(n2)‖L∞
t

∥∥∥ ∑
n1,n3

r1(n1)d3(n3)
∥∥∥
L2
t

)2

�
(∑

n2

‖d2(n2)‖2L∞
t

)∑
n,n2

∥∥∥ ∑
n1,n3 �=n2,〈n2−n1,n2−n3〉=O(M)

gn1
|n1|e

in21tψ(t)d3(n3)
∥∥∥2
L2
t

,

(7.15)
where we used Cauchy inequality in n2 in the last line. Since ‖d2(n2)‖L∞

t
�

‖d2(n2)ein2·x‖X0,b0 , when N1 
 N2, the above is further bounded by

� N−2s0
2

∑
n,n2

∥∥∥ ∑
n1,n3 �=n2,〈n2−n1,n2−n3〉=O(M)

gn1
|n1|e

in21tψ(t)d3(n3)
∥∥∥2
L2
t

� N−2s0
2 sup

n,n2
�{n3 : 〈n3 − n2, n3 − n〉 = O(N 100s0

1 )}
∑

ni : n2 �=n1,n3,

〈n3−n2,n3−n〉=O(N
100s0
1 )

‖r1(n1)d3(n3)‖2L2
t

� N−2s0
2 N 100s0

1 max(
N3

N 1/3
1

, 1)

∑
ni : n2 �=n1,n3,

〈n3−n2,n3−n〉=O(N
100s0
1 )

N−2+2s1
1 ‖d3(n3)‖2L2

t

� NCs0
1 N−2

1 max

(
N3

N 1/3
1

, 1

)
sup
n3

�{(n1, n2) : 〈n2 − n1, n2 − n3〉 = O(N 100s0
1 ),

n2 �= n1, n3}
∑
n3

‖d3(n3)‖2L2
t

� NCs0
1 N−2

1 max

(
N3

N 1/3
1

, 1

)
N1N2.

(7.16)
In the above sequence of estimates, we used Hölder’s inequality in the second line,
and a variant of the counting Lemma 4.4 in the third line (note that we assume N1 

N2, thus one necessarily has |n| ∼ N1). In the last line we applied the counting
Lemma 4.5. Moreover, note that the ψ(t) in r1(n1) gives enough decay in t , hence
one has ‖di (ni )‖L∞

t
= ‖di (ni )e−n2i t‖L∞

t
� ‖di (ni )e−n2i t‖

H
b0
t
.
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To summarize, when N1 
 N2, one has the second estimate

Ns0
1

∑
ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∣∣∣∣
∫

r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣

� NCs0
1

N 1/2
2

N 1/2
1

max

(
N 1/2
3

N 1/6
1

, 1

)
. (7.17)

One may also make use of the Frobenius norm that is more suitable when one deals
with random data since it exploits better the independence of the random variables
involved. The Frobenius norm together a version of the Cauchy–Schwarz inequality
recalled in (C.7) will give the third estimate. We start from (7.13) again. By the same
argument in (7.15), one has

∑
n

∥∥∥ ∑
ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(N

100s0
1 )

r1(n1)d2(n2)d3(n3)
∥∥∥2
L2
t

�
∑
n,n3

∥∥∥ ∑
n1,n3 �=n2,〈n2−n1,n2−n3〉=O(M)

gn1
|n1|e

in21tψ(t)d2(n2)
∥∥∥2
L2
t

,

(7.18)

and by applying the recalled Cauchy–Schwarz inequality (C.7), we can further bound
this expression by

� N2
3 sup

n3

∑
n

∥∥∥∑
n2

A(n, n2)d2(n2)
∥∥∥2
L2t

� N2
3 sup

n3

⎛
⎜⎝max

n

⎛
⎝∑

n2

‖A(n, n2)‖2L∞
t

⎞
⎠+

⎛
⎝∑
n �=n′

∥∥∥∑
n2

A(n, n2)A(n′, n2)
∥∥∥2
L∞
t

⎞
⎠
1/2

⎞
⎟⎠ ,

(7.19)

where we defined

A(n, n2) = A(n, n2, t) =
{
r1(n + n2 − n3), if 〈n − n3, n2 − n3〉 = O(N 100s0

1 ),

0, otherwise.
(7.20)

In the last line we also used
∑

n2 ‖d2(n2)‖2L2
t

� 1. For the sake of convenience, we

also define

σ(n, n2) =
{ gn+n2−n3

N1
, if 〈n − n3, n2 − n3〉 = O(N 100s0

1 ),

0, otherwise
(7.21)

for later use.
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Remark 7.3 By dropping an extra set of probability e−Nc
1 , one can in fact estimate

max
n

(∑
n2

‖A(n, n2)‖2L∞
t

)
+
⎛
⎝∑

n �=n′

∥∥∥∑
n2

A(n, n2)A(n′, n2)
∥∥∥2
L∞
t

⎞
⎠

1/2

as

max
n

(∑
n2

|σ(n, n2)|2
)

+
⎛
⎝∑

n �=n′

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2
⎞
⎠

1/2

.

To see this, observe that N1 ∼ |n1| = (n2 − n3 + n|, and for any fixed t ∈ [0, 1],
the estimate of

max
n

(∑
n2

|A(n, n2)(t)|2
)

+
⎛
⎝∑

n �=n′

∣∣∣∑
n2

A(n, n2)(t)A(n′, n2)(t)
∣∣∣2
⎞
⎠

1/2

.

is just the same as

max
n

(∑
n2

|σ(n, n2)|2
)

+
⎛
⎝∑

n �=n′

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2
⎞
⎠

1/2

.

Now one can simply mimic the argument in the proof of Lemma 3.10 to go from a
single t to a collection of {tn} in [0, 1] so that |ti − t j | ≤ N−3

1 . and then go to L∞
t [0, 1].

Then, finally, one can use the fact that there is a Schwartz function ψ(t) multiplied
inside each r1 to go from L∞

t [0, 1] to L∞
t (R). We omit the details.

In the following and throughout the rest of the article, we will estimate instead the
term

max
n

(∑
n2

|σ(n, n2)|2
)

+
⎛
⎝∑

n �=n′

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2
⎞
⎠

1/2

,

and we don’t repeat the similar reduction in the rest of the article.
We fix n3. Note that for each n, there are at most ∼ N2N

100s0
1 choices of n2 so that

|n2| ∼ N2 and 〈n3 − n, n3 − n2〉 = O(N 100s0
1 ). Hence,

max
n

(∑
n2

|σ(n, n2)|2
)

� N2N
Cs0
1 N−2

1 . (7.22)
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For the non-diagonal term, we first observe that for all n �= n′ fixed, up to an
exceptional set of probability e−Ncε

1 , one can apply Lemma 3.9 to derive

∣∣∣∣∣
∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣∣∣ �ε N ε/2

1 E

(∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2
)1/2

. (7.23)

This implies that

∣∣∣∣∣
∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣∣∣
2

�ε N ε
1E

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2

∼ N ε−4
1 �{n2 : 〈n3 − n2, n3 − n〉 = O(N 100s0

1 ),

〈n3 − n2, n3 − n′〉 = O(N 100s0
1 ), n2 �= n1, n3}.

(7.24)

Therefore, dropping an exceptional set of probability N 4
1 e

−Ncε
1 ∼ e−Nc

1 , we have

∑
n �=n′

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2

� N ε−4
1 �{(n, n′, n2) : n �= n′, 〈n3 − n2, n3 − n〉 = O(N 100s0

1 ),

〈n3 − n2, n3 − n′〉 = O(N 100s0
1 ), n2 �= n1, n3}.

(7.25)

Counting first all the possible pairs of (n, n2) by N 1+Cs0
1 N2 (Lemma 4.5), and by the

Wick ordered condition n3 �= n2, which further gives at most ∼ N 1+Cs0
1 possible n′,

we derive ⎛
⎝∑

n �=n′

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2
⎞
⎠

1/2

� N−1+Cs0
1 N 1/2

2 , (7.26)

which obviously dominates the bound (7.22) for the diagonal term.
To summarize, we can go back to (7.18) and derive our third estimate

Ns0
1

∑
ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∣∣∣∣
∫

r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣

� NCs0
1 N−1/2

1 N 1/4
2 N3. (7.27)

To complete the argument, note that the case N1 ∼ N2 will follow from estimates
(7.12) and (7.27). Indeed, consider two subcases. In the case N1 ≥ N 100

3 , we use
estimate (7.27), and when N1 < N 100

3 , we use estimate (7.12). When N1 
 N2
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(hence estimate (7.17) also holds), we also consider several subcases. In subcase
N2N3 ≥ N 11/10

1 , we use estimate (7.12). In the case N2N3 < N 11/10
1 and N3 ≥ N 1/3

1 ,

we use estimate (7.17). In the case N2N3 < N 11/10
1 and N3 < N 1/3

1 , if N2 ≤ N 9/10
1 ,

we use estimate (7.17). Finally, if N2N3 < N 11/10
1 , N3 < N 1/3

1 but N2 > N 9/10
1 , there

must hold N3 ≤ N 1/5
1 , hence one can use estimate (7.27).

8 Proof of Proposition 2.1: Remaining cases

Wepresent the proof of the remaining cases.Note that in each case, the desired estimate
will be reduced to the resonant part similarly as in the previous two sections, and we
will only briefly sketch the reduction. It is unclear whether Case (a) and Case (c) are
the hardest two cases, however, all the essential arguments required to treat the rest of
the cases have already appeared in the previous two sections.

We will use the following notations throughout the section. Let ‖wi‖Xs0,b0 � 1,

i = 1, 2, 3, vi = φ(t)
∑

|ni |∼Ni

gni (ω)

|ni | eini ·x+in2i t , and ‖h‖X0,1−b0 � 1.
Let M be a parameter that will be specified in each of the cases, ri (ni , t) be

the space Fourier transform of (P|τ |<Mφ(t))vi , and di (ni , t) be the space Fourier
transform of P|τi−n2i |<Mφ(t)wi , i = 1, 2, 3, and H(n, t) be the space Fourier trans-

form3 of P|τ−n2|≤Mφ(t)h. We will sometimes abbreviate ri (ni , t), di (ni , t), H(n, t)
as ri (ni ), di (ni ), H(n) respectively.

Similarly to (6.14) and (7.10), one always has the following estimates:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N 2s0
i

∑
ni ‖di (ni )e−n2i t‖2

H
b0
t

� ‖PNi wi‖2Xs0,b0
� 1,

ri (ni , t) = ψ(t)
gni (ω)

|ni | eini ·x+in2i t , where ψ is a Schwartz function,∑
n∼N1

‖H(n)e−in2t‖2
H

1−b0
t

� ‖PN1h‖2
X0,1−b0

.

(8.1)

8.1 Case (b): N1(II) ≥ N3(I) ≥ N2(II)

This part is similar to Case (a). After handling the low-frequency part using deter-
ministic estimates and localization in time, we aim to prove for all N3 ≥ N3,0 (where
N 100
3,0 = δ−1), one has up to an exceptional set of probability e−Nc

3 that

• when N1 ∼ N3,

Ns0
1

∣∣∣∣
∫

N1(PN1w1, PN2w2, PN3v3)h̄φ(t)

∣∣∣∣
� N−ε1

3 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0

∼ N−ε1
1 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0 ;

(8.2)

3 As one sees in the previous two sections, the function h here is actually φ(t/δ)h, whose X0,1−b0 norm
is also bounded uniformly in δ.
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• when N1 
 N3,

Ns0
1

∣∣∣∣
∫

N1(PN1w1, PN2w2, PN3v3)h̄φ(t)

∣∣∣∣ � N−ε1
3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(8.3)

Note that up to an exceptional set of probability e−Nc
3 , we can assume that

|gn3(ω)| + ‖PN3φ(t)v3‖X0,b0 ≤ Ns1
3 (8.4)

for all N3 ≥ N3,0, |n3| ∼ N3.
It also suffices to assume

N3 ≥ N 1000
2 . (8.5)

Indeed, if N3 < N 1000
2 , from the deterministic estimate (3.15) and the bound (8.4),

one obtains

Ns0
1

∣∣∣∣
∫

N1(PN1w1, PN2w2, PN3v3) f̄ φ(t)

∣∣∣∣ � NCs1
3 N−s0

2 ‖PN1w1‖Xs0,b0 ‖ f ‖X0,1−b0 ,

(8.6)
where f = PN1h or P<N1h, hence (8.2) and (8.3) follow.

In the following,wewill only prove (8.2), as estimate (8.3) follows similarly (almost
line by line). Note that in all the summations below we always have |ni | ∼ Ni , which
we sometimes omit from the notation. Let M = N 100s1

3 , similarly as in Case (a), one
can reduce (8.2) to the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

∫
d1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� N−ε1

3 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0 ‖PN2w2‖Xs0,b0 .

(8.7)

To see this, note that one automatically has |n| � N1, and recall that∑
n2 ‖d2(n2)‖2L∞ � 1. By first applying Cauchy–Schwarz in n and then in n2, one

has
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Ns0
1

∣∣∣∣∣∣∣∣∣
∑

n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

∫
d1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

� Ns0
1 ‖P<N1h‖X0,1−b0

⎛
⎜⎜⎜⎝
∑
n

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

d1(n1)d2(n2)r3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎠

1/2

� Ns0
1 ‖P<N1h‖X0,1−b0

⎛
⎜⎜⎜⎝
∑
n,n2

∥∥∥ ∑
n1−n2+n3=n,n2 �=n1,n3,
n21−n22+n23−n24=O(M)

d1(n1)r3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎠

1/2

.

(8.8)
Recall also n21 − n22 + n23 − n24 = O(M) together with n1 − n2 + n3 = n imply that

〈n3 − n2, n3 − n〉 = O(M). (8.9)

By applying Cauchy–Schwarz in n3 (note that the inner sum can be viewed as over
n3 only) and recalling ‖r3(n3)‖L∞

t
� N−1+s1

3 (outside an exceptional set), the above
can be further bounded as

� Ns0
1 ‖P<N1h‖X0,1−b0

( ∑
n,n2,n3

‖d1(n1)‖2L2
t

)1/2

N−1+s1
3

(
sup
n,n2

#{n3 : 〈n3 − n2, n3 − n〉 = O(M)}
)1/2

� ‖P<N1h‖X0,1−b0 ‖PN1w1‖Xs0,b0 N
Cs1
3 N−2/3

3(
sup
n1

#{n2, n3 : 〈n2 − n1, n2 − n3〉 = O(M), n2 �= n1, n3}
)1/2

,

where in the second step above, we have applied a variant of Lemma 4.4 to conclude

sup
n,n2

#{n3 : 〈n3 − n2, n3 − n〉 = O(M)} � N 2/3+100s1
3 .

Indeed, since N1 ∼ N3, after dividing into � N 100s1
3 parts, all the n3 lie in an annulus

of radius ∼ R � N3 with thickness ∼ O( 1
R ). By Lemma 4.1, there are at most

∼ R2/3 � N 2/3
3 such points.

Furthermore, we apply Lemma 4.3 to count

sup
n1

#{n2, n3 : 〈n2 − n1, n2 − n3〉 = O(M), n2 �= n1, n3} � N 2
2 N

1+100s1
3 ,
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which implies that

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

∫
d1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� ‖P<N1h‖X0,1−b0 ‖PN1w1‖Xs0,b0 N

Cs1
3 N2N

−1/6
3 .

Recall that we have reduced to the case N3 ≥ N 1000
2 , hence the desired estimate is

obtained.

8.2 Case (d): N1(I) ≥ N3(II) ≥ N2(II)

This case is almost identical to Case (c). By the deterministic estimates, it suffices
to show for all N1 ≥ N1,0 (where N1,0 = δ−1), one has up to an exceptional set of
probability e−Nc

1 that

Ns0
1

∣∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∫
r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣∣
� N−ε1

1 , for some ε1 
 ε0. (8.10)

Note that by removing an exceptional set of probability e−N
−cs1
1,0 if necessary, we

will assume in this subsection that

|gn1(ω)| + ‖PN1φ(t)v1‖X0,b0 + ‖PN1φ(t)v1‖L∞
t,x

� Ns1
1 , ∀|n1| ∼ N1 > N1,0.

(8.11)
There still holds the same bound (7.12) as in Case (c). Moreover, one still has

(7.15), as it has nothing to do with the relative sizes of N2, N3, and when N1 
 N3,
the bound (7.17) still holds true as well (with the choice M = N 100s0

1 ). Indeed, the
only step that one needs to check here is that

sup
n,n2

#{n3 : 〈n3 − n2, n3 − n〉 = O(M)} � N 100s0
1 max

(
N3

N 1/3
1

, 1

)
,

which follows from the same proof of Lemma 4.4 and the assumption that N1 
 N3.
We claim that the desired bound follows from (7.12) and (7.17). To see this, when

N1 ∼ N3, if one further has N2 > N 1/9
3 ∼ N 1/9

1 , one can apply (7.12). Otherwise,

N2 ≤ N 1/9
3 , (7.17) suffices. When N1 
 N3, we address two difference subcases.

If we are in the subcase that N 1/3
1 ≥ N3, then one automatically has N2 � N 1/3

1
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hence (7.17) implies the desired estimate. In the subcase that N 1/3
1 < N3, suppose in

addition one has N2N3 > N
10
9
1 , then we apply (7.12), otherwise the desired decay in

N1 follows from (7.17). The proof of Case (d) is complete.

8.3 Case (e): N1(II) ≥ N2(I) ≥ N3(I)

By a similar reduction process as in Case (a), let N2,0 be a large parameter satisfying
N 100
2,0 = δ−1, we will focusing on proving for all N2 ≥ N2,0 that, up to an exceptional

set of probability of e−Nc
2 and a common exceptional set independent of N2, with

probability e−Nc
2,0 , we have

• when N1 ∼ N2,

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)

∣∣∣∣ � N−ε1
2 ∼ N−ε1

1 , (8.12)

• when N1 
 N2,

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)

∣∣∣∣ � N−ε1
2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(8.13)

As usual, the part N2 ≤ N2,0 will be handled by the purely deterministic estimate
(3.15), and by localizing in time ∼ N−100

2,0 .

One may assume, by dropping a set of probability e−Nc
2,0 , that

{
|gn| ≤ Ns1

2,0, |n| ≤ N2,0,

|gn| ≤ Ns1
2 , |n| ∼ N2 ≥ N2,0.

(8.14)

Remark 8.1 In the original paper of Bourgain [4], Case (e) is not the hardest case,
however, one should be particularly careful in our irrational setting. This is because
our counting lemma in the irrational case is weaker compared to the ones in [4], hence
any loss of N ε

1 will be unfavorable. Since the random data argument can gain at most
a (negative) power of N2, our counting Lemma 4.5 becomes useless in Case (e).

Remark 8.2 One should also be very careful about dropping exceptional sets of small
probability when the highest frequency is of type (II). For example, in our current Case
(e), all large deviation type arguments require one to drop a set of probability e−Nc

2 ,
thus one cannot apply random data type argument for too many times. For instance, if
one drops N 2

1 different sets with probability e−Nc
2 , one immediately loses control of

the total probability. Moreover, in Case (e), one also needs to sum in N1. Therefore, it
is crucial that, for a fixed N2 and for all N1, one can apply at most NC

2 times essentially
different random data type arguments. This is an issue existing even in the rational
tori case. We will add some more details along the proof for the convenience of the
reader.
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From the remark above, one observes that the potentiallymost troublesome situation
will be when ln N1 
 ln N2. Hence, in the following we will only focus on proving
(8.13), and only briefly comment on necessary changes needed for proving (8.12).

Let M = N 100s1
2 , we may further reduce (8.13) to the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
d1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� N−ε1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(8.15)

By applying Cauchy–Schwarz in n, we have

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
d1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

� Ns0
1 ‖PN1h‖X0,1−b0

⎛
⎜⎜⎜⎝
∑
n

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎠

1/2

.

(8.16)
For the sake of brevity, in the following we oftentimes omit the condition |ni | ∼ Ni

in the summation. Dividing {n1 : |n1| ∼ N1} into finitely overlapping balls {J } of
radius ∼ N2, we are left with showing for each J that, up to some exceptional set of
small probability e−Nc

2 ,

∑
n∈J

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥2
L2
t

� N−s
2 ‖PJw1‖2X0,b0

, (8.17)

where we have observed that n1 ∈ J implies n ∈ J̃ (a doubling of J ) and we still
denote J̃ as J for the sake of notational convenience. Moreover, we will prove the
above estimate for some s 
 s1. In particular, any loss of NCs1

2 in the estimate will
be irrelevant.

Note that for each fixed N1, there are∼ N 2
1 /N 2

2 such J , hence one should be careful
when applying random data type argument to avoid dropping too many exceptional
sets. Observe, every time one applies large deviation type argument to estimate sums of
Gaussians andmultiple Gausssians, one needs to drop an exceptional set of probability
e−Nc

2 , and such set, a priori may depend on J . If one naively drops all such sets, a

priori one may need to drop in total a set of probability ∼ N2
1

N2
2
e−Nc

2 , which could be

enormous when N1 
 N2. Also recall we also need to sum for all N1 ≥ N2. This
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problem will even arise when one studies the problem on rational tori. We will explain
how to address this issue in detail in Sect. 8.3.1, and other cases will follow similarly.

Note that for the case N1 ∼ N2, the decomposition into {J } is unnecessary.
To prove (8.17), we first define

A(n, n1) = A(n, n1)(t) =
⎧⎨
⎩
∑

n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

r2(n2)r3(n3), if n1, n ∈ J ,

0, otherwise,

and

σ(n, n1) =
⎧⎨
⎩
∑

n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

gn2 (ω)gn3 (ω)

N2N3
, if n1, n ∈ J ,

0, otherwise.

Then, similarly as in Remark 7.3, one has the left hand side of (8.17) bounded by

� ‖PJw1‖2X0,b0

⎡
⎢⎣max

n∈J

∑
n1∈J

|σ(n, n1)|2 +
⎛
⎝∑

n �=n′

∣∣∣ ∑
n1∈J

σ(n, n1)σ (n′, n1)
∣∣∣2
⎞
⎠

1/2
⎤
⎥⎦ ,

(8.18)
where we have applied (C.7) and recalled that

∑
n1∈J ‖d1(n1)‖2L2

t
� ‖PJw1‖2X0,b0

.

In the following, it suffices to bound the two terms in the brackets by N−s
2 .

The diagonal term is easier. Note that if n2 �= n3, for n ∈ J fixed, one has

∑
n1∈J

|σ(n, n1)|2

� (N2N3)
−2NCs1

2 sup
n

#{(n2, n3) : n = n1 − n2 + n3, n2 �= n1, n3,

〈n3 − n2, n − n3〉 = O(M)}
� (N2N3)

−2NCs1
2 N 2

3 N2 = N−1+Cs1
2 .

(8.19)

In the first step above, we applied Lemma 3.9 to get |∑ gn2gn3 |2 � NCs1
2

∑
1 , by

dropping an exceptional set if necessary, and in the second step, we counted n3 naively
and then n2 using Lemma 4.3.

We are thus left with the non-diagonal term. Expanding σ(n, n1) and σ(n′, n1), our
goal is to show that

⎛
⎝∑

n �=n′

∣∣∣ ∑
n1∈J

σ(n, n1)σ (n′, n1)
∣∣∣2
⎞
⎠

1/2
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= (N2N3)
−2

⎛
⎝∑

n �=n′

∣∣∣∑
(∗)

gn2gn3gn′
2
gn′

3

∣∣∣2
⎞
⎠

1/2

� N−s
2 (8.20)

for some number s 
 s1. Here we have simplified the notation by using (∗) to denote
the set of (n1, n2, n3, n′

2, n
′
3) satisfying

⎧⎪⎨
⎪⎩
n1 ∈ J ,

n = n1 − n2 + n3, n2 �= n1, n3, 〈n − n1, n − n3〉 = O(M),

n′ = n1 − n′
2 + n′

3, n
′
2 �= n1, n′

3, 〈n′ − n1, n′ − n′
3〉 = O(M).

(8.21)

In the following, we will prove (8.20) case by case.

8.3.1 Case I: n2, n3, n′
2, n

′
3 are distinct

Denoting the corresponding summation in
∑

(∗) by
∑

(∗),1 and applying again

Lemma 3.9 up to dropping a set of measure e−Nc
2 , one has

∣∣∣∑
(∗),1

gn2gn3gn′
2
gn′

3

∣∣∣2 � NCs1
2

∑
(∗),1

1.

Hence, denoting the corresponding contribution of Case I in the left hand side of (8.20)
by (8.20)1, one obtains

(8.20)1 � (N2N3)
−2NCs1

2

(
#{n1, n2, n3, n′

2, n
′
3 : (∗∗)})1/2 , (8.22)

where (∗∗) denotes the conditions

⎧⎪⎨
⎪⎩
n1 ∈ J ,

n2 �= n1, n3, n′
2 �= n1, n′

3,

〈n2 − n1, n2 − n3〉 = O(M), 〈n′
2 − n1, n′

2 − n′
3〉 = O(M).

(8.23)

By first counting naively n1 ∈ J , one has

#{n1, n2, n3, n′
2, n

′
3 : (∗∗)} � N 2

2

(
N 2
3 max

(
N2

N 1/3
1

, 1

))2

,

where we have then counted n3 naively, and applied Lemma 4.4 (recalling that N1 

N2). Therefore,

(8.20)1 � NCs1
2 max(N−1/3

1 , N−1
2 ) ≤ N−1/3+Cs1

2 .
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Note that in the case N1 ∼ N2, the same estimate remains true, as the counting
Lemma 4.4 still implies the same bound. Similarly, in Case II, III, IV, V below, Lemma
4.4 always provides the same counting result.

Before we go to the next case, we explain the issue about not dropping too many
exceptional sets. This needs to be taken care of since the relation

⎧⎪⎨
⎪⎩
n1 ∈ J ,

n = n1 − n2 + n3, n2 �= n1, n3, 〈n − n1, n − n3〉 = O(M),

n′ = n1 − n′
2 + n′

3, n
′
2 �= n1, n′

3, 〈n′ − n1, n′ − n′
3〉 = O(M).

(8.24)

a priori depends on J . Note that we need only to worry about the case N1 
 N2, N3.
Without loss of generality, we may assume also n ∈ J . We write J = aJ + BN2 ,
n = aJ + m, n′ = aJ + m′, n1 = aJ + m1, and relation (8.24) as{

m1 ∈ BN2 ,
m = m1 − n2 + n3, n2 �= n1, n3, 〈m − m1,m − n3〉 = −〈m − m1, aJ 〉 + O(M),
m′ = m1 − n′

2 + n′
3, n

′
2 �= n1, n

′
3, 〈m′ − m1,m

′ − n′
3〉 = −〈m′ − m1, aJ 〉 + O(M).

(8.25)
The point is, though, there are potentially many choice of aJ , the above relation is
empty unless

−〈m − m1, aJ 〉 + O(M) = O(N 2
2 ), −〈m′ − m1, aJ 〉 + O(M) = O(N 2

2 ).

Thus, we can always write relation (8.25) into O(M) many union of the following,

⎧⎪⎨
⎪⎩
m1 ∈ BN2 ,

m = m1 − n2 + n3, n2 �= n1, n3, 〈m − m1,m − n3〉 = a + O(1),

m′ = m1 − n′
2 + n′

3, n
′
2 �= n1, n′

3, 〈m′ − m1,m′ − n′
3〉 = b + O(1),

(8.26)

where a, b ∈ Z and |a|, |b| � N 2
2 . Thus, the total exceptional set one needs to drop,

for all N1 and J , will be at most N 2
2 e

−Nc
2 , which is allowed.

We don’t repeat this discussion of the exceptional set in the later part of the article.

8.3.2 Case II: n2 = n′
2 (n3 �= n′

3)

Denote the corresponding summation in
∑

(∗) as
∑

(∗),2, one has from n2 = n′
2, (8.14)

and Lemma 3.9 that, up to dropping an exceptional set

∣∣∣∑
(∗),2

gn2gn3gn′
2
gn′

3

∣∣∣2 � NCs1
2

∑
n3,n′

3

(#S(n, n′, n3, n′
3))

2, (8.27)

where by Lemma 4.3

#S(n, n′, n3, n′
3) := #{n1, n2 : (n1, n2, n3, n2, n

′
3) satisfies (∗)} � N 1+Cs1

2 .
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Hence, remember the definition of (∗∗) in (8.23), one further has

(8.20)2 � (N2N3)
−2NCs1

2 N1/2
2

(
#{n1, n2, n3, n′

3 : (n1, n2, n3, n2, n
′
3) satisfies (∗∗)})1/2 .

(8.28)
By counting n1 ∈ J naively first, then counting (n2, n3) using Lemma 4.4, lastly
counting n′

3 via Lemma 4.3, one obtains

#{n1, n2, n3, n′
3 : (n1, n2, n3, n2, n

′
3) satisfies (∗∗)} � N2

2 N
2
3 max

(
N2

N1/3
1

, 1

)
N3N

Cs1
2 ,

which implies that

(8.20)2 � NCs1
2 N−1/2

3 max(N−1/6
1 , N−1/2

2 ) ≤ N−1/6+Cs1
2 . (8.29)

8.3.3 Case III: n3 = n′
3 (n2 �= n′

2)

Denoting the corresponding summation in
∑

(∗) as
∑

(∗),3, similarly as in Case II, one
has ∣∣∣∑

(∗),3

gn2gn3gn′
2
gn′

3

∣∣∣2 � NCs1
2

∑
n2,n′

2

(#S(n, n′, n2, n′
2))

2, (8.30)

where by trivially counting n3,

#S(n, n′, n2, n′
2) := #{n1, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗)} � N 2

3 .

Hence, remember the definition of (∗∗) in (8.23)

(8.20)3 � (N2N3)
−2NCs1

2 N3
(
#{n1, n2, n′

2, n3 : (n1, n2, n3, n
′
2, n3) satisfies (∗∗)})1/2 .

(8.31)
By trivially counting n1 ∈ J , n3, and applying Lemma 4.4 to n2 and n′

2, one obtains

#{n1, n2, n′
2, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗∗)} � NCs1

2 N 2
2 N

2
3 max

(
N 2
2

N 2/3
1

, 1

)
.

Therefore,
(8.20)3 � NCs1

2 max
(
N−1/3
1 , N−1

2

)
≤ N−1/3+Cs1

2 . (8.32)

8.3.4 Case IV: n2 = n′
3, n3 �= n′

2

Denoting the corresponding summation in
∑

(∗) as
∑

(∗),4, similarly as above, one has

∣∣∣∑
(∗),4

gn2gn3gn′
2
gn′

3

∣∣∣2 � NCs1
2

∑
n3,n′

2

(#S(n, n′, n3, n′
2))

2, (8.33)
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where by Lemma 4.3,

#S(n, n′, n3, n′
2) := #{n1, n2 : (n1, n2, n3, n

′
2, n2) satisfies (∗)} � N 1+Cs1

2 .

Plugging into the above, one obtains, again remember the definition of (∗∗) in (8.23)

(8.20)4 � (N2N3)
−2N

Cs1
2 N1/2

2
(
#{n1, n2, n3, n′

2 : (n1, n2, n3, n
′
2, n2) satisfies (∗∗)})1/2 . (8.34)

Same as in Case III, by trivially counting n1 ∈ J , n3, and applying Lemma 4.4 to n2
and n′

2, one obtains

#{n1, n2, n3, n′
2 : (n1, n2, n3, n

′
2, n2) satisfies (∗∗)} � NCs1

2 N 2
2 N

2
3 max

(
N 2
2

N 2/3
1

, 1

)
.

Therefore, observing that in this case one must have N2 ∼ N3,

(8.20)4 � NCs1
2 N−1

3 N−1/2
2 max

(
N2

N 1/3
1

, 1

)
� N−1/2+Cs1

2 max(N−1/3
1 , N−1

2 )

≤ N−5/6+Cs1
2 . (8.35)

8.3.5 Case V: n3 = n′
2, n2 �= n′

3

This case can be treated in the exact same way as Case IV.

8.3.6 Case VI: n3 = n′
2, n2 = n′

3

In this case we again have N2 ∼ N3. Denoting as
∑

(∗),6 the corresponding sum in∑
(∗), one has ∣∣∣∑

(∗),6

gn2gn3gn′
2
gn′

3

∣∣∣2 � NCs1
2

(
#S(n, n′)

)2
, (8.36)

where

S(n, n′) := {n1, n2, n3 : (n1, n2, n3, n3, n2) satisfies (∗)},

and in this case means that n1, n2, n3 are distinct, n = n1−n2+n3, n′ = n1−n3+n2,
and

〈n − n1, n − n3〉 = O(M), 〈n′ − n1, n
′ − n2〉 = O(M).

The above implies that n + n′ = 2n1, hence #S(n, n′) � N 1+Cs1
2 by Lemma 4.3.

As a result, again remember the definition of (∗∗) in (8.23)

(8.20)6 � (N2N3)
−2NCs1

2 N 1/2
2 (#{n1, n2, n3 : (n1, n2, n3, n3, n2) satisfies (∗∗)})1/2 .

(8.37)
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From (∗∗), one has

〈n2 − n1, n2 − n3〉 = O(M), 〈n3 − n1, n3 − n2〉 = O(M),

hence |n2 − n3|2 = O(M). Trivially counting n2, n3, and applying Lemma 4.3 to
count n1 ∈ J , one has

#{n1, n2, n3 : (n1, n2, n3, n3, n2) satisfies (∗∗)} � NCs1
2 N 2

2 N
2
3 N2,

thus
(8.20)6 � NCs1

2 N−1
3 � N−1+Cs1

2 . (8.38)

This concludes the proof of Case (e).

8.4 Case (f): N1(II) ≥ N3(I) ≥ N2(I)

By the same reduction as in Case (e), let N 100
3,0 = δ−1 and M = N 100s1

3 . It suffices
to consider the high frequency part N3 ≥ N3,0. Our goal is to show that, up to an
exceptional set of probability ∼ e−Nc

3 and a common exceptional set (independent of
N3) of probability e−Nc

3,0 , there hold

• when N1 ∼ N3,

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)

∣∣∣∣ � N−ε1
3 ∼ N−ε1

1 , (8.39)

• when N1 
 N3,

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)

∣∣∣∣ � N−ε1
3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(8.40)

We will also assume, by dropping a set of probability e−Nc
3,0 that

{
|gn| ≤ Ns1

3,0, |n| ≤ N3,0,

|gn| ≤ Ns1
3 , |n| ∼ N3 ≥ N3,0.

(8.41)

Again, we will focus on proving (8.40). By a similar reduction as for Case (c), it
suffices to show

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
d1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� N−ε1

3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 ,

(8.42)

123

Author's personal copy



Stoch PDE: Anal Comp

which, by the same argument as in Case (e), will follow from showing for each J (of
size ∼ N3) that, up to some exceptional set of small probability e−Nc

3 ,

∑
n∈J

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥2
L2
t

� N−s
3 ‖PJw1‖2X0,b0

(8.43)

for some constance s 
 s1. We will derive two different bounds, each of which works
better in different regimes of N1, N2, N3.

First, by applying Hölder’s inequality to the inner sum, one obtains that the left
hand side of (8.43) is bounded by

�
∑
n∈J

sup
n

#{n2, n3 : n = n1 − n2 + n3, 〈n3 − n2, n − n3〉 = O(M)}
∑

n1,n2,n3

‖d1(n1)r2(n2)r3(n3)‖2L2
t

� NCs1
3 N 2

2 max

(
N3

N 1/3
1

, 1

) ∑
n,n1,n2,n3

N−2
2 N−2

3 ‖d1(n1)‖2L2
t

� NCs1
3 max

(
N3

N 1/3
1

, 1

)
N−2
3 ‖PJw1‖2X0,b0

sup
n1

#{n2, n3 : n2 �= n1, n3,

〈n2 − n1, n2 − n3〉 = O(M)}.

(8.44)

In the second line above, we applied (8.41) and Lemma 4.4 (the estimate holds true
in both cases N1 
 N3 and N1 ∼ N3). One can then trivially count n2 and apply
Lemma 4.3 to count n3 to further bound the above by

� NCs1
3 max

(
N3

N 1/3
1

, 1

)
N−2
3 ‖PJw1‖2X0,b0

N 2
2 N3

≤ NCs1
3 N 2

2 max(N−1/3
1 , N−1

3 )‖PJw1‖2X0,b0
. (8.45)

We now turn to a different estimate of the left hand side of (8.43). In fact, we claim
that by the same argument as in Case (e), one also obtains in our current case that

∑
n∈J

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥2
L2
t

� NCs1
3 N−1/6

2 ‖PJw1‖2X0,b0
.

(8.46)
We first explain how to complete the proof of (8.43) using the two estimates (8.45)

and (8.46) above. In the case N2 > N
1
6− 1

100
1 , the desired estimate follows from (8.46).

Nowsuppose N2 ≤ N
1
6− 1

100
1 . If N3 ≤ N 1/3

1 , the bound in (8.45) becomes NCs1
3 N 2

2 N
−1
3 .

Hence, in the subcase when N2 ≤ N
1
2− 1

100
3 , this is good enough. If N2 > N

1
2− 1

100
3 ,
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one can again apply (8.46) to obtain the desired bound. It is left to check the case
N3 > N 1/3

1 , where (8.45) becomes NCs1
3 N 2

2 N
−1/3
1 . Observe that this does imply the

desired result, since we are already in the regime N2 ≤ N
1
6− 1

100
1 .

It thus suffices to verify (8.46). Note that most of the estimates in Case (e) still hold,
as they do not depend on the relative sizes of N2, N3. More precisely, the estimate
(8.19) for the diagonal term, and the final bounds obtained in Case VI, V, VI for
the non-diagonal term still hold true (with an extra factor NCs1

3 ). We are now left to
examine Case I, II, III.

8.4.1 Case I: n2, n3, n′
2, n

′
3 are distinct

We start with estimate (8.22), which still holds true in Case (f). Note that

#{n1, n2, n3, n′
2, n

′
3 : (∗∗)} = #{n, n2, n3, n

′
2, n

′
3 : (∗ ∗ ∗)},

where (∗∗) is in Case (e), given in (8.23), and (∗ ∗ ∗) denotes the conditions

⎧⎪⎨
⎪⎩
n ∈ J ,

n3 �= n, n2, n′
3 �= n, n′

2,

〈n3 − n2, n − n3 = O(M), 〈n′
3 − n′

2, n − n′
3〉 = O(M).

(8.47)

We first count n ∈ J naively (recalling that |J | ∼ N3), we then count n2 naively and
n3 using Lemma 4.4, and repeat for (n′

2, n
′
3). This leads to

#{n, n2, n3, n
′
2, n

′
3 : (∗ ∗ ∗)} � NCs1

3 N 2
3

(
N 2
2 max

(
N3

N 1/3
1

, 1

))2

.

Note that this bound holds true in both cases N1 
 N3 and N1 ∼ N3. Hence, one
obtains

(8.20)1 � (N2N3)
−2NCs1

3

(
#{n1, n2, n3, n′

2, n
′
3 : (∗∗)})1/2

� (N2N3)
−2NCs1

3 N 2
2 N3 max

(
N3

N 1/3
1

, 1

)

� NCs1
3 max(N−1/3

1 , N−1
3 ) ≤ N−1/3+Cs1

3 � NCs1
3 N−1/3

2 .

(8.48)

8.4.2 Case II: n2 = n′
2 (n3 �= n′

3)

In our current case, after dropping an exceptional set, one still has estimate (8.22),
where

#S(n, n′, n3, n′
3) := #{n1, n2 : (n1, n2, n3, n2, n

′
3) satisfies (∗)}

� #{n2 : 〈n3 − n2, n − n3〉 = O(M)} � NCs1
3 N2.
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Hence, remembering the definition of (∗∗) in (8.23), one has

(8.20)2 � (N2N3)
−2N

Cs1
3 N1/2

2
(
#{n1, n2, n3, n′

3 : (n1, n2, n3, n2, n
′
3) satisfies (∗∗)})1/2 . (8.49)

By counting n2 first naively, then n3 naively, then n1 by Lemma 4.3, and lastly n′
3 by

Lemma 4.3 as well, one obtains

#{n1, n2, n3, n′
3 : (n1, n2, n3, n2, n

′
3) satisfies (∗∗)} � NCs1

3 N 2
2 N

2
3 N3N3,

which implies
(8.20)2 � NCs1

3 N−1/2
2 . (8.50)

8.4.3 Case III: n3 = n′
3 (n2 �= n′

2)

Note that after dropping an exceptional set, estimate (8.30) still holds true in Case
(f). But this time, we count #S(n, n′, n2, n′

2) more carefully. It suffices to count n3
satisfying 〈n3 − n2, n − n3〉 = O(M). By Lemma 4.4, one has

#S(n, n′, n2, n′
2) �

⎧⎨
⎩
NCs1
3 N 2/3

3 , if N1 ∼ N3,

NCs1
3 max

(
N3

N1/3
1

, 1

)
, if N1 
 N3.

In the second estimate above, we used the fact that |n| ∼ N1 when N1 
 N3. Same
as before, where remembering the definition of (∗∗) in (8.23),

(8.20)3 � (N2N3)
−2NCs1

3

(
#S(n, n′, n2, n′

2)
)1/2

(
#{n1, n2, n′

2, n3 : (n1, n2, n3, n
′
2, n3) satisfies (∗∗)})1/2 . (8.51)

By counting n1, n2, n′
2 trivially, and then n3 using Lemma 4.3, one has

#{n1, n2, n′
2, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗∗)} � NCs1

3 N 2
3 N

4
2 N3.

Combining the above bounds together, one obtains
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(8.20)3 � (N2N3)
−2NCs1

3

(
#S(n, n′, n2, n′

2)
)1/2

N 3/2
3 N 2

2

� NCs1
3 N−1/2

3 ·
⎧⎨
⎩
N 1/3
3 , if N1 ∼ N3,

max

(
N1/2
3

N1/6
1

, 1

)
, if N1 
 N3

� NCs1
3 N−1/6

3 ≤ NCs1
3 N−1/6

2 .

(8.52)

The proof of Case (f) is thus complete.

8.5 Case (g): N1(I) ≥ N2(I) ≥ N3(II)

By deterministic estimates, it suffices to show for all N1 ≥ N1,0 (where N1,0 = δ−1),
one has up to an exceptional set of probability e−Nc

1 that

Ns0
1

∣∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∫
r1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣∣
� N−ε1

1 , for some ε1 
 ε0, (8.53)

where M = O(N 100s0
1 ).

By dropping an exceptional set of probability e−Nc
1,0 , one may assume that

|gn(ω)| � Ns1
1 , ∀|n| ∼ N1 ≥ N1,0. (8.54)

Our goal is to show that, up to an exceptional set of probability e−Nc
1 , there holds

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1v1, PN2v2, PN3w3)

∣∣∣∣ � N−ε1
1 . (8.55)

Apparently, (8.55) can be reduced to the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
r1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� N−ε1

1 . (8.56)
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We first derive an estimate that will handle the regime N3 ≤ N
1− 1

100
1 . To see this,

applying Cauchy–Schwarz in n, one obtains

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
r1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

� Ns0
1

(∑
n

‖H(n)‖2
L2
t

)1/2

⎛
⎜⎜⎜⎝
∑
n

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

r1(n1)r2(n2)d3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎠

1/2

� Ns0
1

⎛
⎜⎜⎜⎝
∑
n

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

r1(n1)r2(n2)d3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎠

1/2

.

(8.57)
Then, applying Cauchy–Schwarz again to the inner sum above, one has, after drop-

ping an exceptional set of probability e−Nc
1 ,

� Ns0
1 N−1

1 N−1
2

⎛
⎜⎜⎜⎝
∑
n

∣∣∣ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

‖d3(n3)‖L2
t

∣∣∣2
⎞
⎟⎟⎟⎠

1/2

� Ns0
1 N−1

1 N−1
2

(∑
n

∑
n1,n2,n3

‖d3(n3)‖2L2
t

)1/2

(
sup
n

#{n2, n3 : 〈n3 − n2, n − n3〉 = O(M)}
)1/2

� NCs0
1 N−1

1 N−1
2 N 1/2

2 N 1/2
3(

sup
n3

#{n1, n2 : n2 �= n1, n3, 〈n3 − n1, n3 − n2〉 = O(M)}
)1/2

,

(8.58)

where in the last step above, we have applied Lemma 4.5. Another application of
Lemma 4.5 implies that

� NCs0
1 N−1

1 N−1
2 N 1/2

2 N 1/2
3 N 1/2

1 N 1/2
2 � NCs0

1 N−1/2
1 N 1/2

3 . (8.59)

Hence, the desired estimate follows if N3 ≤ N
1− 1

100
1 .

The other case N3 > N
1− 1

100
1 in fact follows directly from the estimates in Case (e).

Note that the relative sizes of N1, N2, N3 in these two cases are the same, so all the
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counting in Case (e) remain true here. We briefly sketch the argument here. It suffices
to show, up to an exceptional set of small probability e−Nc

1 , that

∑
n

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

r1(n1)r2(n2)d3(n3)
∥∥∥2
L2
t

� N−ε1
1 . (8.60)

We would like to apply again version of the Cauchy–Schwarz inequality in (C.7),
but this time with

σ(n, n3) =
∑

n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

gn1(ω)gn2(ω)

N1N2
.

For the diagonal term, the exact same counting as in (8.19) gives, for any fixed n,

∑
n3

|σ(n, n3)|2 � (N1N2)
−2NCs0

1 N 2
3 N2 � NCs0

1 N−1
2 , (8.61)

which is good enough since N2 ≥ N3 > N
1− 1

100
1 .

The six cases for the non-diagonal term work similarly. In particular, Case I (all
n1, n′

1, n2, n
′
2 distinct), Case III (n1 = n′

1, n2 �= n′
2), and Case VI (n1 = n′

2, n2 = n′
1)

can be carried out in the exact same way.
In Case II (n2 = n′

2, n1 �= n′
1), one has up to an exceptional set that

∣∣∣∑
(∗),2

gn1gn2gn′
1
gn′

2

∣∣∣2 � NCs0
1

∑
n1,n′

1

(#S(n, n′, n1, n′
1))

2 (8.62)

Here, by Lemma 4.3,

#S(n, n′, n1, n′
1) := #{n2, n3 : n1, n2, n3, n

′
1, n2 satisfies (∗′)} � NCs0

1 N3,

with (∗′) denotes conditions

⎧⎪⎨
⎪⎩
n1 ∈ J ,

n = n1 − n2 + n3, n2 �= n1, n3, 〈n − n1, n − n3〉 = O(M),

n′ = n′
1 − n′

2 + n3, n′
2 �= n′

1, n3, 〈n′ − n′
1, n

′ − n3〉 = O(M).

(8.63)

The rest of the argument proceeds in the exact same way as Case II in Case (e).
Since Case IV andV can be dealt with in the sameway, we only briefly discuss Case

IV (n2 = n′
1, n1 �= n′

2) here. By dropping an exceptional set, one has the following
analogue of(8.33):
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∣∣∣∑
(∗),4

gn1gn2gn′
1
gn′

2

∣∣∣2 � NCs0
1

∑
n1,n′

2

(#S(n, n′, n1, n′
2))

2, (8.64)

where by Lemma 4.3,

#S(n, n′, n1, n′
2) := #{n2, n3 : (n1, n2, n3, n2, n

′
2) satisfies (∗′)} � NCs0

1 N3.

The rest of the argument again proceeds in the same way as in Case IV of Case (e),
which is left to the reader. The proof of Case (g) is complete.

8.6 Case (h): N1(I) ≥ N3(II) ≥ N2(I)

This case can be estimated in the same way as Case (g), where again if N3 > N
1− 1

100
1 ,

the bounds in Case (f) apply. Note that, compared to Case (f), one can think about
N1(I ), in Case (h), as N1(I I ), except one suffers a loss N 2s0

1 . The computation in

Case (f) gives a gain of N−s∗
3 , where s∗ can be computed explicitly. Thus, when s0 is

small enough and N3 ≥ N
1

100
1 , the extra loss of N 2s0

1 can be neglected. We omit the
details.

8.7 Case (i), (j): N1(I) ≥ N2(II) ≥ N3(I) or N1(I) ≥ N3(I) ≥ N2(II)

As before, we focus on showing for all N1 ≥ N1,0 (where N1,0 = δ−1), up to an
exceptional set of probability e−Nc

1 , there holds

Ns0
1

∣∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)=O(N

100s0
1 )

∫
r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣∣
� N−ε1

1 , for some ε1 
 ε0, (8.65)

where M = O(N 100s0
1 ).

We may assume dropping an exceptional set of probability e−Nc
1,0 that

|gn(ω)| � Ns1
1 , ∀|n| ∼ N1 ≥ N1,0. (8.66)

We aim to show that, up to an exceptional set of probability e−Nc
1 , there holds

Ns0
1

∣∣∣∣
∫

φ(t)h̄N1(PN1v1, PN2w2, PN3v3)

∣∣∣∣ � N−ε1
1 . (8.67)
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Similarly as before, (8.67) will follow from the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� N−ε1

1 . (8.68)

We will first introduce an estimate that allows one to reduce to the regime N2 >

N
1− 1

100
1 . To see this, following the sameCauchy–Schwarz argument as in (8.57), (8.58),

one obtains, after dropping a set of probability e−Nc
1 ,

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� NCs0

1 N−1
1 N−1

3 N 1/2
2 N 1/2

3(
sup
n2

#{n1, n3 : n2 �= n1, n3, 〈n3 − n1, n3 − n2〉 = O(M)}
)1/2

� NCs0
1 N−1

1 N−1
3 N 1/2

2 N 1/2
3 N 1/2

1 N 1/2
3 � NCs0

1 N−1/2
1 N 1/2

2 ,

(8.69)

where in the last two steps we have applied Lemma 4.5. Hence, if N2 ≤ N
1− 1

100
1 , the

desired estimate follows.
Next, we may apply the same estimate as in Case (c) to deal with the case N3 ≤

N 1/5
1 . Indeed, introducing an extra factor of Ns0

3 (since the third input function in the
current case is random) to (7.27), one has

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� NCs0

1 N−1/2
1 N 1/4

2 N3,

(8.70)
which is enough to handle the case N3 ≤ N 1/5

1 .

To summarize, we have reduced the desired estimate to the regime N2 > N
1− 1

100
1

and N3 > N 1/5
1 . The rest of the argument is essentially repeating that of Case (e).

Define

σ(n, n2) =
∑

n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

gn1(ω)gn3(ω)

N1N3
.
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Then, one has

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

|ni |∼Ni , n1−n2+n3−n=0
n21−n22+n23−n2=O(M)

∫
r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� NCs0

1

⎡
⎢⎣max

n

∑
n2

|σ(n, n2)|2 +
⎛
⎝∑

n �=n′

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2
⎞
⎠

1/2
⎤
⎥⎦
1/2

.

(8.71)
Again, the diagonal term is easier to deal with. After dropping a set of small prob-

ability and applying Lemma 4.5, one has

max
n

∑
n2

|σ(n, n2)|2 � NCs0
1 N−2

1 N−2
3 N2N3 � N−1+Cs0

1 . (8.72)

For the non-diagonal term, rewrite

⎛
⎝∑

n �=n′

∣∣∣∑
n2

σ(n, n2)σ (n′, n2)
∣∣∣2
⎞
⎠

1/2

= (N1N3)
−2

⎛
⎝∑

n �=n′

∣∣∣∑
(∗)′′

gn1gn3gn′
1
gn′

3

∣∣∣2
⎞
⎠

1/2

,

(8.73)
where (∗′′) denotes the set of (n1, n2, n3, n′

1, n
′
3) satisfying{

n = n1 − n2 + n3, n2 �= n1, n3, 〈n − n1, n − n3〉 = O(M),

n′ = n′
1 − n2 + n′

3, n2 �= n′
1, n

′
3, 〈n′ − n′

1, n
′ − n′

3〉 = O(M).
(8.74)

We discuss three subcases in the following, and omit the symmetric ones. Note that
they proceed very similarly as the corresponding cases in Case (e).

8.7.1 Case I: n1, n3, n′
1, n

′
3 are distinct

By dropping an exceptional set, one obtains

(8.73)1 � NCs0
1 (N1N3)

−2(#S)1/2, (8.75)

where S denotes the set (n1, n2, n3, n′
1, n

′
3) satisfying{

n2 �= n1, n3, n′
1, n

′
3,

〈n2 − n1, n2 − n3〉 = O(M), 〈n2 − n′
1, n2 − n′

3〉 = O(M).
(8.76)

Counting n2 trivially first, then applying Lemma 4.5 twice, one has

#S � NCs0
1 N 2

2 (N1N3)
2,
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which implies
(8.73)1 � NCs0

1 N−1
1 N2N

−1
3 � N−1/5+Cs0

1 . (8.77)

8.7.2 Case II: n1 = n′
1 (n3 �= n′

3)

Similarly as in Case II of Case (e), one obtains

(8.73)2 � NCs0
1 (N1N3)

−2 (#S(n, n′, n3, n′
3)
)1/2

(#S)1/2 , (8.78)

where remembering the definition of (∗′′) in (8.74)

#S(n, n′, n3, n′
3) = #{n1, n2 : (n1, n2, n3, n1, n

′
3) satisfies (∗′′)} � NCs0

1 N1

by Lemma 4.3, and S denotes the set of (n1, n2, n3, n′
3) satisfying (8.76). Hence, by

counting n2 trivially, then counting n1, n3 via Lemma 4.5, and finally counting n′
3

according to Lemma 4.3, one obtains

#S � NCs0
1 N2N1N3N3.

Combining together, one has

(8.73)2 � NCs0
1 (N1N3)

−2N 1/2
1 N 1/2

1 N 1/2
2 N3 � NCs0

1 N−1
1 N 1/2

2 N−1
3 � N−1/2+Cs0

1 .

(8.79)

8.7.3 Case III: n1 = n′
3 (n3 �= n′

1)

Following the same calculation as in Case III of Case (e), one has, up to a small
exceptional set,

(8.73)2 � NCs0
1 (N1N3)

−2 (#S(n, n′, n3, n′
1)
)1/2

(#S)1/2 , (8.80)

where

#S(n, n′, n3, n′
1) = #{n1, n2 : (n1, n2, n3, n

′
1, n1) satisfies (∗′′)} � NCs0

1 N1

according to Lemma 4.3. In the above, S consists of (n1, n2, n3, n′
1) so that

(n1, n2, n3, n′
1, n1) satisfies (8.76). One thus has

#S � N 2
3 (NCs0+1

1 N2)N1

by Lemma 4.5 and 4.3 similarly as before. Therefore,

(8.73)2 � NCs0
1 (N1N3)

−2N 1/2
1 N1N

1/2
2 N3 � NCs0

1 N−1/2
1 N 1/2

2 N−1
3 � N−1/5+Cs0

1 .

(8.81)
This concludes the proof of Case (i) and (j).
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8.8 Case (k), (l): N1(I) ≥ N2(I) ≥ N3(I) or N1(I) ≥ N3(I) ≥ N2(I)

Considering only the case N1 ≥ N1,0, where N 100
1,0 = δ−1. Our goal is to show that

Ns0
1

∣∣∣∣
∫

N1(PN1v1, PN2v2, PN3v3)h̄φ(t)

∣∣∣∣ � N−ε1
1 , for some ε1 
 ε0 (8.82)

up to an exceptional set of probability e−Nc
1 .

Let M = O(N 100s0
1 ), by a similar reduction argument as in Case (c), it suffices to

prove that

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)

∫
r1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
� N−ε1

1 , for some ε1 
 ε0. (8.83)

Following the same argument in (8.57), one has

Ns0
1

∣∣∣∣∣∣∣∣∣
∑

ni∼Ni ,n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n2=O(M)

∫
r1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

� Ns0
1

⎛
⎜⎜⎜⎝
∑
n

∥∥∥ ∑
n1−n2+n3=n, n2 �=n1,n3
n21−n22+n23−n24=O(M)

r1(n1)r2(n2)r3(n3)
∥∥∥2
L2
t

⎞
⎟⎟⎟⎠

1/2

.

(8.84)

Suppose n1, n2, n3 are all distinct, then by dropping a set of probability e−Nc
1 and

recalling the presence of Schwartz function ψ(t) in each ri (ni , t), one can bound the
above by

� NCs0
1 (N1N2N3)

−1 (#{n1 �= n2 �= n3 : 〈n2 − n1, n2 − n3〉 = O(M)})1/2
� NCs0

1 (N1N2N3)
−1(N 2

2 N
2
3 N1)

1/2 � N−1/2+Cs0
1 ,

(8.85)
where in the second line above we trivially counted n2, n3 and applied Lemma 4.3 to
count n1.

Now, suppose n1 = n3. For fixed n, one thus has n = 2n3 − n2 and |n3 − n2|2 =
O(M), hence |n3 − n|2 = O(M). By losing a factor of NCs0

1 , we can assume that

|n3 − n|2 = μ + O(1), where μ � NCs0
1 , in other words, n3 lies in an annulus of

radius ∼ R and thickness ∼ O( 1
R ), with R � NCs0

1 . Applying Lemma 4.1, one sees

that the total number of such n3 is at most � R2/3 � NCs0
1 .

123

Author's personal copy



Stoch PDE: Anal Comp

Therefore, by Cauchy–Schwarz, outside an exceptional set of probability e−Nc
1 ,

one has

(8.84) � NCs0
1 (#{n3 : fixing n})1/2 (N1N2N3)

−1 (#{n2, n3})1/2
� NCs0

1 (N1N2N3)
−1N2N3 � N−1+Cs0

1

(8.86)

by trivially counting n2, n3.
The proof of Case (k) and (l) is hence complete, so is the proof of Proposition 2.1.

Appendix A: Time localization of Xs,b

In this section, we summarize several standard time localization facts for the Xs,b

space, and also briefly recall the proof of Lemma 3.5. The presentation mainly follows
that from [6]. Here φ is a fixed time cut off function. There are several basic facts about
the Xs,b space that we can recall below. We have

‖φ(t/δ)u‖Xs,b �b ‖u‖Xs,b , 0 < b <
1

2
(A.1)

‖φ(t/δ)u‖Xs,b �b δ
1−2b
2 ‖u‖Xs,b

1

2
< b < 1. (A.2)

Also, Hausdorff–Young inequality gives the following estimate which is useful in the
interpolation

‖φ(t)u‖L4
t,x

�ε ‖u‖
X1/2, 14+ε

, (A.3)

which can be compared to estimates (95), (96) on page 26 of [6].
In what follows, one should think 1 
 sp 
 ε > 0. We will only do proof for

(3.12) in Lemma 3.5.
Via Strichartz estimate and interpolation of Hausdorff Young inequality, one can

obtain
‖φ(t)u‖L4

t,x
�ε ‖u‖

X3ε, 12−ε
(A.4)

(One may change the 3 in the above to any number larger than 2.) Similarly, for p > 4,
one can obtain

‖φ(t)u‖L p
t,x

�ε ‖u‖Xsp+10ε,ε (A.5)

There are the following two Hölder inequalities,

(1)
‖φ(t/δ)u‖L4

t,x
≤ ‖φ(t/δ)u‖θp

L2
t,x

‖φ(t)u‖1−θp

L p
t,x

, (A.6)

where one has 1
4 = θp

2 + 1−θp
p . θp = sp

1+sp
≥ 1

2 sp
(2)

‖φ(t/δ)u‖L2
t,x

≤ δ1/4‖φ(t)u‖L4
t,x

(A.7)
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One derives
‖φ(t/δ)u‖L4

t,x

≤ ‖φ(tδ)u‖θp

L2
t,x

‖φ(t)u‖1−θp

L p
t,x

≤ ‖φ(tδ)u‖θp

L4
t,x

δθp/4‖φ(t)u‖1−θp

L p
t,x

�ε ‖u‖θp

X3ε, 12−ε
‖u‖1−θp

Xsp+10ε, 12−ε
δ

θp
4

(A.8)

Note that

θp = sp
1 + sp

≥ 1

2
sp. (A.9)

Thus, to summarize, when s � 1, and ε � s, one has

‖φ(t/δ)u‖L4
t,x

�ε ‖u‖
Xs+10ε, 12−ε

δ
s
4 , (A.10)

which, for convenience, can be written as

‖φ(t/δ)u‖L4
t,x

�ε ‖u‖
Xs, 12−ε

δs/8. (A.11)

Localizing at frequency N , this gives Lemma 3.5 for balls B of radius N , which
are centered at origin point. To prove general B centered at n0, one simply observes

∑
n∈B

ane
inx ein

2t eiλt =
∑

|n−n0|≤N

ane
i(n−n0)(x+2n0)ei(n−n0)2t eiλt ein0xe−in20t (A.12)

and the L4
t,x norm of a function is invariant under multiplying ein0x e−in20t and doing

space translation in x variable by n0. This ends the proof.

Appendix B: Proof of Lemma 3.6, 3.7, 3.8

We briefly sketch the proof of those three Lemmata here.
We start with Lemma 3.8. Let h(n, t), fi (n, t) be space of h, fi , and we will also

short handedly write them as h(n), fi (n). We only prove

∣∣∣∣
∫

φ(t/δ)hN2(PN1 f1, PN1 f2, PN1 f3)

∣∣∣∣
� (δ1/4‖PN1h‖X0,1−b0

‖ f1‖X0,b0 sup
|n|∼N1

� j �=1‖ f j (n)einx‖X0,b0
). (B.1)

To see this, observe
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∣∣∣∣
∫

φ(t/δ)hN2(PN1 f1, PN1 f2, PN1 f3)

∣∣∣∣ =
∣∣∣∣∣∣
∑

|n|∼N1

∫
φ(t/δ)h̄(n) f1(n) f̄2(n) f3(n)

∣∣∣∣∣∣
� ‖φ(t/δ)‖L2

t
‖φ(t)h(n)‖L2

t
‖φ(t) f1‖L∞

t
sup

|n|∼N1

� j �=1‖ f j‖L∞
t

.

(B.2)
Now we have, (note that one only has one mode in all the estimates below)

‖φ(t)h(n)‖L2
t

� ‖h(n)einx‖X0,1−b0 , ‖ fi (n)‖L∞
t

� ‖ fi (n)einx‖X0,b0 (B.3)

then, (B.1) will follow from (B.2) by Cauchy Schwarz.
We turn to Lemma 3.6. We start with (3.14) to (3.17). Estimates (3.14), (3.16)

follows from (3.11), (3.12) via Hölder inequality. We point out that the naive loss
will be NCε

1 rather than max(N2, N3)
Cε , but this can be handled by a standard L2

orthogonality argument, See, for example,[2,6] for more details. Now we show how
to derive (3.17) from (3.16). We shall see that (3.15) can be derived similarly form
(3.14).

Recall that we used the notation

fi (x, t) =
∑
n

fi (n, t)einx , i = 1, 2.3 (B.4)

i.e. fi (n, t) is the space Fourier transform. For the sake of convenience, we denote
fi (n, t) with fi (n). Similarly, we wrtie h = ∑

h(n, t)einx .
Given (3.16), in order to derive (3.17), we need to further prove

• If N1 ∼ N2

∑
n1∼|N1|,n3∼N3

∣∣∣∣
∫

φ(t/δh̄(n1) f1(n1) f̄2(n3) f3(n3)

∣∣∣∣
� δ1/10(max(N2, N3))

Cε0‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 (B.5)

• If N2 ∼ N3

∑
n1∼N1,n2∼N2

∣∣∣∣
∫

φ(t/δ)h̄(n1) f1(n1) f̄2(n2) f3(n2)

∣∣∣∣
� δ1/10(max(N2, N3))

Cε0‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 (B.6)

• If N1 ∼ N2 ∼ N3,∫
|φ(t/δ)hN2(PN1 f1, PN1 f2, PN1 f3)|

� δ1/10(max(N2, N3))
Cε0‖h‖X0,1−b0

∏
i

‖PNi fi‖X0,b0 (B.7)
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Estimate (B.7) follows from Lemma 3.8. The proof of estimates (B.5) and (B.6) are
similar, and we only work on (B.5). Note that the integration on the left side is only
in t . One has, (by Sobolev embedding in the t variable if necessary), that

‖h(n1)‖L2
t

� ‖h(n1)e
in1x‖X0,1−b0 ,

‖ f (n1)‖L∞
t

� ‖ f (n1)e
in1x‖X0,b0 ,

‖ fi (n3)‖L∞
t

� ‖ fi (n3)e
in3x‖X0,b0 .

(B.8)

Then the desired estimates follow from a Hölder inequality in t and Cauchy Schwarz
inequality in n1, n3. Estimates (3.18), (3.20), (3.21) are of similar flavor. We prove
(3.18) and leave the rest to the interested readers. Estimate (3.18) follows from the
following four estimates.

• ∣∣∣∣
∫

ψ(t)h̄ PN1 f1PN2 f̄2PN3 f3

∣∣∣∣
� (max(N2, N3))

Cε0 |h‖X0,1/3‖ sup
J

‖PJ f1‖L∞
t,x

‖ f2‖X0,1/3‖ f3‖X0,1/3 ,(B.9)

• If N1 ∼ N2,

∑
n1∼|N1|,n3∼N3

∣∣∣∣
∫

ψ(t)h(n1) f1(n1) f̄2(n3) f3(n3)

∣∣∣∣
� ‖PN1 f1‖X0,b0 ‖PN1 f2‖X0,1/3‖PN3 f3‖X0,1/3‖PN3h‖X0,1/3 , (B.10)

• If N2 ∼ N3,

∑
n1∼N1,n2∼N2

∣∣∣∣
∫

ψ(t)h(n1) f1(n1) f̄2(n2) f3(n3)

∣∣∣∣
� ‖PN1 f ‖X0,b0 ‖PN2 f2‖X0,1/3‖PN2 f3‖X0,1/3‖PN1h‖X0,1/3 (B.11)

• If N1 ∼ N2 ∼ N3∣∣∣∣
∫

ψ(t)h̄N2(PN1 f1PN2 f̄2PN3 f3)

∣∣∣∣
� min(‖PN1h‖X0,1−b0 ‖ fi‖X0,b0 sup

|n|∼N1

∏
j �=i

‖ f j (n)einx‖X0,b0 (B.12)

Again estimate (B.12) follows from Lemma 3.8. We will only prove estimate (B.9),
(B.10). The proof of (B.11) is similar to that for (B.10).

We start with (B.9). We may only consider the case N2 ≥ N3, as the case N2 ≤ N3
can be proved similarly.
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We may further only consider the case N1 
 N2, otherwise one may replace PJ

by P<N1 . Observe that (using L2 orthogonality),

∫
ψ(t)h̄ PN1 f1PN2 f̄2PN3 f3

=
∑
J

∫
ψ(t)h̄ PJ f1PN2 f̄2PN3 f3

=
∑
J

∫
ψ(t)PJ h̄PJ f1PN2 f̄ PN3 f3. (B.13)

For each J , we may estimate as follows,

∣∣∣∣
∫ ∫

ψ(t)PJ h̄PJ f1PN2 f̄ PN3 f3

∣∣∣∣
� ‖φ(t)PJh‖L

L3t,x
‖φ(t)PJ f1‖L∞

t,x
‖φ(t)PN2 f2‖L3

t,x
‖φ(t)PN3 f3‖L3

t,x
,(B.14)

where without loss of generality assumed ψ(t) = φ(t)4 for some well localized φ(t).
Using Estimate (3.7) to control the L3 norm in (B.14) and applying a Cauchy

Schwarz in J , the desired estimate then follows.
Lemma 3.7 can be proved similarly as Lemma 3.6.

Appendix C: A Cauchy–Schwarz type inequality

We summarize a (deterministic) Cauchy–Schwarz type inequality, that is often used
in random data type problems. For simplicity, let ai j , b j be real numbers, assume that

∑
j

b2j � 1, (C.1)

which of course implies ∑
j, j ′

b2j b
2
j ′ � 1. (C.2)

Then, we have

∑
i

|
∑
j

ai j b j |2 =
∑
i

∑
j, j ′

ai j ai j ′b jb j ′ =
∑
i

∑
j

ai j ai j b
2
j +

∑
i

∑
j �= j ′

ai j ai j ′b jb j ′

(C.3)
Note that ∑

i

|
∑
j

ai j ai j b j |2 � sup
j

∑
i

a2i j (C.4)

and, by Cauchy inequality,
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∑
i

∑
j �= j ′

ai j ai j ′b jb j ′ =
∑
j �= j ′

b jb j ′
∑
i

ai j ai j ′ �

⎛
⎝∑

j, j ′
b2j b

2
j ′

⎞
⎠

1/2⎧⎨
⎩
∑
j �= j ′

|
∑
i

ai j ai j |2
⎫⎬
⎭

1/2

(C.5)
To summarize, and by simple generalization to the complex case, one has

Lemma C.1 Assume
∑

j |b j |2 � 1, then

∑
i

|
∑
j

ai j b j |2 � max
j

∑
i

|ai j |2 +
⎛
⎝∑

j �= j ′
|
∑
i

ai j āi j ′ |2
⎞
⎠

1/2

(C.6)

One can also easily write down, via the dual estimate,

Lemma C.2 Assume
∑

j |b j |2 � 1, then

∑
i

|
∑
j

ai j b j |2 � max
i

∑
j

|ai j |2 +
⎛
⎝∑

i �=i ′
|
∑
j

ai ′ j āi j |2
⎞
⎠

1/2

(C.7)
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