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Abstract

We revisit the work of Bourgain on the invariance of the Gibbs measure for the cubic,
defocusing nonlinear Schrédinger equation in 2D on a square torus, and we prove the
equivalent result on any tori.
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1 Introduction

The purpose of this work is to revisit the famous work of Bourgain on the invariance
of the Gibbs measure for the 2D defocusing cubic nonlinear Schrédinger equation
(NLS) on a square torus T2, [4], and extend his proof to any torus. Since later we
often use the definition of rational or irrational torus, we readily give it here. Assume
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that a 2D torus T2 has periods 71 and T». If 71 /T, is rational we call T2 a rational
torus, otherwise irrational. As one can see from the proof for Strichartz estimates
on rational tori [2], Bourgain uses a fundamental property of the linear solution of
the Schrodinger equation defined on a rational torus, the fact that the solution is also
periodic in time. In the proof this fact is used in reducing the Strichartz inequality to
estimating the cardinality of a set of lattice points (x, y) € Z? that satisfy a quadratic
equation x2 —i—ay2 = R?, where a, R are natural numbers. Then an well known theorem
from number theory is invoked to give a sharp bound in terms of R, see [1], see also
(2.43), page 117 in [2]. If one wants to repeat Bourgain’s proof for generic tori one
has to obtain the same sharp bound when counting the lattice points in a region such
as {(x,y) / x2+ay* < R+ O(1)}, where now y, R? > 0. In general, this number
of lattice points is larger than the sharp bound above. Intuitively though the same
type of Strichartz estimates available for rational tori should be available for irrational
one. In fact one expects even better ones since the irrationality of the torus should
translate into fewer interactions among linear Schrédinger solutions. After almost two
decades the full range of Strichartz estimates on any torus were proved by Bourgain
and Demeter [5], who obtained them as a corollary of their proof of the I decoupling
conjecture, hence without invoking any number theory. Shortly later Deng, Germain
and Guth [7] proved that indeed Strichartz estimates on a generic irrational torus are
better, in the sense that they live for a longer interval of time.

Letus now go back to Bourgain’s work on the invariance of the Gibbs measure in [4].
If one considers the nonlinear Schrodinger equation with solution # and Hamiltonian
H (u) in the frequency space instead of the physical space, then it can be recast as
an infinite dimensional Hamiltonian system with variables (g, (?), p,(¢)) such that
u(t,n) = q,(t) + ip,(t) for frequencies n € 72. For this infinite dimensional system
one can define a Gibbs measure that formally can be written as dju = 1/Ze®du,
where Z is a normalizing factor to make it a probability measure, and its support lives
in H*(T?), s < 0, see [9,10]. Bourgain had already proved [3] that for the 1D quintic
NLS, where a similar measure can be defined with support in H*(T), s < 1/2 [10],
the Schrodinger flow indeed leaves the measure invariant, meaning for any set A in
the support of the measure, its evolution with respect to the Schrodinger flow at any
later times has the same measure as A itself. Moreover using this invariance he proved
that the flow can be defined globally almost surely. Clearly such a question could have
been asked in 2D for the cubic defocusing NLS! as well. The issue that Bourgain
faced was that while in the 1D case the flow was (deterministically) defined, at least
locally, for any data in H*(T), s > 0, and hence on the whole support of the Gibbs
measure, which as recalled is in H®, s < 1/2, for the cubic 2D case also the flow was
only known to be defined for data in H*(T?), s > 0, hence missing the support of the
Gibbs measure, which is in H*, s < 0. To overcome this, and other serious analytic
obstacles along the way, Bourgain used probabilistic tools, such as Wick ordering and
large deviation estimates, combined with more deterministic ones, such as Strichartz
type estimates and counting lemmata similar to the ones recalled above. This brings
us to the motivation of our paper. Indeed here we prove new counting lemmata, see

! 1t is known that while for the 1D quintic focusing NLS the Gibbs measure can be defined as long as the
L2 norm is smaller than a certain absolute constant, in 2D no Gibbs measure can be defined for the focusing
case [10].
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Sect. 4, that hold more generally for any torus, and we rework the local almost sure
well-posedness in details® to show that the bounds obtained in the counting lemmata,
although weaker than the ones in [4] still are enough to conclude the proof. Although
our paper follows the scheme of Bourgain’s proof, we decided to add full details for
the convenience of the reader and because along the way we could point out with
remarks where special care needed to be put in place in order to treat the general case
and rationality cannot be invoked.

Finally, we recently learned that Deng, Nahmod and Yue [8] have extended Bour-
gain’s result in [4] for any nonlinearity 2r + 1, where r € N. This is a remarkable feat
since the high order of nonlinear interactions was previously considered an almost
insurmountable obstacle in obtaining an almost sure local flow in the support of the
Gibbs measure.

1.1 Statement of main result

In this paper, we study the 2D cubic Wick ordered NLS equation on irrational or
rational tori. We will pose the NLS on a rectangular torus and rescale the A. Let
y € (1, 2) be any real number (possibly irrational) that determines on T2 = [0, 2712
the operator

1
. 2 2
Ay = E)X + ;By.

The free solution to the linear Schrodinger initial value problem

(1.1)

in-x

iuy — Ayu =0,
Uo =Y ,cz2 ane

is of the form
. . .2
S(ug = " ug = Z ape" e,
neZ?
where we let

n? :=n~n=(n,n),,=n%+yn%.

Following the set up of Bourgain [4] we revisit the Wick ordered truncated NLS with
random initial data

iduy — Ayuy = —P<y[(Jun|* — My)uy],

gn(@) ein~x’ x € TZ’

(1.2)
UON = D jnj<N

2 Here we will not repeat the argument that upgrades the local well-posedness to the global since the
rationality or not of the torus plays no role.
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where {g,(w) : n € Z*} are independent L2-normalized complex Gaussians and

My :=2f lun (1, x)|> dx = 2/ luo.n|°.
T2 T2

The operator P<y here denotes the projection onto frequencies |n| < N. By definition
of My, one may rewrite (1.2) as

&n(w) mx X € T2 (13)

10iuy — AyMN = —P<NN(“N)
UON = Djn<N ST

by defining the Wick ordered nonlinearity

N(f. g @) Y Fangmhnz)e M
n,~eZ2,nz;én1,n3
— Y Fmgmh(me™ (1.4)

neZ?

NS, g, h) + Na(f, g, h),

and we write N'(f) := N (f, f, f), similarly for V;, i =1, 2.

One may also study the formal limit equation of (1.3)

idu — Ayu = —N(u),
MO_Z gn(w) einx xeTz (1.5)
For every w and every N fixed, equation (1.3) is finite dimensional and thus an ODE. It
hence has alocal solution, and in fact also a global solution due to the mass conservation
law. Therefore, one is mainly interested in a local theory for (1.3) that is independent
of N. More precisely, the main result of the paper is the following

Theorem 1.1 Let u$, be the solution to (1.3),

t
u‘fv(:,x)ze”ﬁyuw—i/ TRy p_ N (un)ds, YO<t<t,  (16)
0

There exists so > 0,€9 > 0, so that for almost every w € X, there exists a t,
independent of N, such that

lufy (1) = " o Nl iy S 1- (1.7)

tA

Moreover, for any 0 < s" < so, w§y = uf(t, x) — e Yug,N converges strongly in

X5 2+€0 [0, 1,,] o some limit w. Furthermore, the limit u® := w + €' uq (called the
solution to the Wick ordered NLS (1.5)) satisfies the Duhamel formula
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t
u®(t, x) = " uy —i/ TN W) ds, YO <t <t,. (1.8)
0

We refer the reader to Sect. 3.1 for the definition of the X** space and its related
properties. In the following, when the dependence on the parameter w € 2 is clear
from the context, we sometimes will drop the superscript in u® and write u for short.

Theorem 1.1 follows from the following quantitative version (independent of )
of the main result.

Theorem 1.2 Let u$, be as in Theorem 1.1, there exists sy > 0, €y, ap, 19 > 0 s0

that for every t < ty, up to a set of probability measure e ' one has that wy =

uy — e'"®uq y satisfies ||u)N||X < 1. Furthermore, for all 0 < s’ < so, wy

SO'%+EO[0,[]
s 1 .

converges to some limit w in X* 27 and u = w + €'"®ruq solves the wick ordered

NLS in the sense that Duhamel formula (1.8) is satisfied.

1.2 Duhamel formula, Picard iteration and main propositions

The proof follows from a Picard iteration scheme. One would like to write (1.3) into its
Duhamel form, (1.6). It is convenient to introduce an extra time cut off ¢5(t) = ¢ (¢/3),
where ¢ € C3°(R) is equal to 1 on [—1/2, 1/2] and O outside [—1, 1], and consider
instead the following slightly modified version of (1.6):

t
Uy (t, x) = g5 (1)e" A ug y — ihs (1) fo IR (PN (@ (Duly)ds.  (1.9)

Note that whent < §/2, u;\, is no different from u . In what follows, for convenience
we will not distinguish uy and u/y . Let

t
Tn.su = —igs(t) / e/ IRy Py N (s (tu) ds, (1.10)
0
and consider its formal limit as N — oo:
t .
Tsu = is(1) / &8 N (s (H)u) dis. (1.11)
0
From the perturbative viewpoint, let
un = gs()e" M ug y + wy (x, 1). (1.12)
Then (1.9) is equivalent to

wy(x, 1) = Ty s(ps (e 2 ug y + wy (x, 1)), (1.13)

which reduces Theorem 1.2 to the following three propositions,

@ Springer



Stoch PDE: Anal Comp

Proposition 1.3 There exists a sufficiently small 50 > 0 and so > €¢g > 0, and some
ap > 0, such that for every 0 < 8 < 8o, up to a set of measure e=° " for some o
depending on €, the map

itA

w = Ty s(ds(0)e” ™ uo n +wix, 1)) (1.14)
is a contraction map on the space
{w: |lwll yso.o < 1} forall N. (1.15)

where by = 1/2 + €.

Proposition 1.4 There exists a sufficiently small 5o > 0 and so > €9 > 0, and agy > 0
s.t. for every 0 < 8 < 8o, up to a set of measure e=° " for some oy depending on €,
the map

w > T (@s(0)e ™ ug + w(x, 1)) (1.16)

is a contraction map on the space
{w: wllysgeo <1}, (1.17)

where bg = 1/2 + €.

Proposition 1.5 Ler &y, so, €9 be as in Proposition 1.3 and 1.4. Let wy be the unique
Sunction (fixed point) in {w : |wl| ysg.50 < 1} such that

wy = Ty s(@s(t)e 2 ug y +wy(x, 1)), (1.18)

and let w* be the unique function (fixed point) in {w : ||w||ysg.bo < 1} such that
w* = Ts(¢s (e ug v + w*(x, 1)). (1.19)

Then one has for all s' < sg and as N — oo that
wy — w* in X5 3t (1.20)

Remark 1.6 Note that Proposition 1.3 is stated uniformly over all N > 0. In particular,
it can be seen from the proof that, the exceptional set, does not depend on N. We
are following [4] here, see also discussions in [8,13]. Thus to prove Proposition 1.3
is equivalent to prove Proposition 1.4. For those who are familiar with the Picard
iteration scheme, Proposition 1.5 is a stability argument that is essentially equivalent
to the local existence argument giving Proposition 1.3 and 1.4. However, to take into
account the difference between P<y N (uy) and N'(uy), one will need to use extra
derivative, which is the reason why the convergence in Proposition 1.5 only holds for
s’ < s9. One may also see [8],
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We will focus on the proof of Proposition 1.4, which is the same as the one for
Proposition 1.3, then Proposition 1.5 follows by using the same argument as in Section
5 of [4]. One may also use the invariance of the Gibbs measure to upgrade the local
well-posedness to a global one as in [4].

2 Proof of Proposition 1.4: initial reduction and structure of the proof

In this section, we outline the proof of Proposition 1.4. To begin with, fix w, one has
by definition that

t
T (s (1)e 27 ug +w) = is(t) / TR N (p ()€™ ug+ ¢ (1)w) ds =: A+ B,
0

2.1
where, according with (1.4), A corresponds to N and B to N, respectively. We also
use ¢(t)p(t/8) = ¢(t). The estimate for part B follows from standard xs:b space
estimates, which we present in the end of Sect. 3.2 for the sake of completeness. In
order to study part A, we consider the Wick ordered nonlinearity N7 as a trilinear
expression, replacing the w above by three functions w1, wy, w3.

Using X** smoothing (3.8) and duality, Proposition 1.4 will follow from

Proposition 2.1 There exist §, 8y, o, €0, b as in Proposition 1.4 satisfying ) < €] <
50, so that for any h(x,t) with ||h|l yoa-sy < 1, ho(x,1) := ¢(t/8)h(x,t), one has
estimate

f < D >% (N (uy, uz, u3))ho dxdt| < 8, (2.2)
RxT?2
/ < D >% (Na(uy, uz, uz))hodxdt| < 8, (2.3)
RxT2
where u; is either ¢s (1)e'" v ug or w.

Here < - > is the Japanese bracket, < D >:=4/1 — A.

Remark 2.2 We will neglect any loss of €€ throughout the proof, since eventually
all such loss will be compensated by the gain of §¢!. In particular, one should not be
concerned about the loss in X localization by multiplying ¢ (1/8).

In the two estimates above, (2.3) follows easily from deterministic estimates, whose
proof will be given at the end of Sect. 3.2. The majority of the rest of the paper is
devoted to proving (2.2).

More precisely, the proof of (2.2) splits into eight different cases depending on
whether the input functions u; are of the regular (in the space X*0-20) or probabilisitic
forms. In addition, we further decompose each u; into pieces corresponding to different
spatial Fourier frequencies (i.e. replacing u; with Py, u; for some dyadic numbers N;),
then the desired result follows from a case by case study depending on the relative
sizes of the spatial frequencies N, N2, N3. Note that the roles of Ny and N3 are
completely symmetric as shown in the definition of N\, so without loss of generality
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we may assume N1 > N3 throughout. There are thus two main cases: Ny > Nj > N3
and N; > N,.

The first case Ny > N; > N3 turns out to be easier, which we treat in Sect. 5. The
second case needs to be further decomposed depending on the relative sizes of Na, N3
and where the random terms appear. Following Bourgain’s notation, we will use 7/ to
denote the regular case (i.e. u; = w;) and [ to denote the probabilistic case (i.e. u; is
the cutoff of the free solution with random initial data ug). In Sects. 6 and 7, we will
first estimate two typical cases: N1 (/1) > Np(I) > N3(II) (corresponding to “case
(a)’of [4])and N1(I) > No(II) > N3(II) (corresponding to “case (c)” of [4]). These
two cases are typical in the sense that all essential elements of the proof and ideas will
be displayed in the study of these two cases. Essentially this is because in the two cases,
the random term appears in relatively higher frequencies hence there is less decay in
terms of Np that one would expect; there is also no additional random term present
which prevents one to fully exploit the cancellation brought by randomization. Note
that these two sections are the main part of our proof. We will discuss the treatment
of other cases in Sect. 8.

2.1 Alist of cases

Following Bourgain, we need to study

Case (0): No > Ny;

Case (a): N1 (II) = N»(I) = N3(I11);
Case (b): Ny(I1) = N3(I) = No(I1);
Case (¢): Ni(I) = No(I1) = N3(11);
Case (d): Ni(I) = N3(I1) = No(11);
Case (e): N1(I1) = Na(I) = N3(1);
Case (f): N1(I1) = N3(I) = Na(I);
Case (g): N1(I) = No(I) = N3(ID);
Case (h): N1(1) = N3(I) = N2(I1);
Case (i): Ni(1) = N2(11) = N3(I);
Case (j): N1(I) = N3(I) = No(I1);
Case (k): N1(I) = Na(I) = N3(I);
Case (I): N1(I) = N3(I) = Na(1).

Remark 2.3 Strictly speaking, one will need to study, for example in case (a), Na <
N1, No > N3. The analysis will be the same as for N; > Ny > N3, we neglect this
issue.

2.2 Notation

For the sake of notational convenience, we will denote {, ),, by (, ) in short. We use
Py, P<y to denote Littlewood Paley projections in the physical space (x variable),
as mentioned above. We will use Pj;|<y as Littlewood Paley projections in the time
space (¢ variable). We will also use Pj;_,2 ) to denote space time Littlewood Paley
projections with respect to paraboloids.
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For the sake of convenience, we sometimes abuse notation by identifying P2 = Py,
¢ (1)? = ¢(t). Throughout the paper, we use several parameters, and we always require

1>50>> 51 >€ >e€ >0. (2.4)

3 Preliminaries
3.1 The X*:? space
In this subsection, we recall the definition of the X*-? space and summarize some
classical estimates that will be used in the proof. One may refer to [2,5,6] for more

details.
Let v(z, x) be a function on R x T2, Let D be the Fourier transform of v, i.e.

v(t, x) = / D(n, )" e dr,
D>

neZ?

and the X*** norm can be defined as

Wik = [ D <n>*<t—n>>% [0 ) dr, (3.1)
R

neZ?

where < n >:= +/1 + n? is the Japanese bracket.
Note that another convenient way to define the X** norm is via the ansatz

v(t, x) = / Z a(n, M)e" "M gy (3.2)
R 2
nez
which gives
vol1%s., :/ D lam )P <n =< > da (3.3)
R
nez?

The X**? space is very useful in dispersive PDE for at least two reasons: first, it inherits
the Strichartz estimates enjoyed by free solutions of the Schrodinger equation; second,
it exploits the smoothing effect of the Duhamel formula.

We now recall the Strichartz estimates on tori, rational or irrational, [2,5],

1€ (P )2 qqo.1x12) Se NIS N2, (3.4)

where Pjp is the Littlewood-Paley projection onto the spatial frequency ball B of radius
N (not necessarily centered at the origin).
By the Minkowski inequality and Cauchy—Schwarz, this implies that
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1 /
Lemma 3.1 Forany u € X%2%€ | there holds
IPulls o 1xm2) See NNull o340 (3.5)

Via an interpolation with the Hausdorff—Young inequality, the estimate above can be
upgraded to

||PBM||L;{X([0,1]><’]1‘2) Se NGH"‘”XO%,% . (3.6)

We also record another estimate, which follows immediately by interpolating (3.5)
with the trivial bound

lullz2 (10,1712 S llull xoo.
1
Lemma 3.2 Forany u € X3, there holds
”PBMHL?’X([OJ]X']IQ) ,Se NGHMHXU_% . 3.7

As mentioned earlier, the X*? space also exploits the smoothing effect of the
Duhamel formula, which can be made precise by the following estimate.

Lemma3.3 Foralls >0,b > % and time cut-off function ¢ as above, there holds

S vl gs.e-b - (3.8)
Xs.b

t
Hqs(r)/ =R y(s) ds
0

Before ending this subsection, we also record the following localization properties
of the X**? space:

Lemma3.4 Letu € X%, then

llae|l 5.5 0<b<i,
Hu S, 5 39
930t S0 {aébuunxs.b, p<b<l o
Moreover, for all 0 < b’ < b < 1/2, there holds
t , < ghb—e 3.10
lps ull s Se llull xs.5- (3.10)

3.2 Deterministic estimates

In this subsection, we collect several by now standard deterministic estimates. All of
them were introduced when studying standard local theory of deterministic NLS on
tori. We start with an estimate that exploits the time localization. One may refer to
[2,6] for proof. We provide a brief sketch of proof of the lemma in Appendix A for
the convenience of the reader.
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Lemma 3.5 Let Pg be the Littlewood-Paley projection onto the spatial frequency ball
B of radius N and 0 < s < 1. Then one has for all € < s that

@) Poul s Se Nl yora-e, (3.11)

s

s (Pp)llys, Se N Qull 8. (3.12)

The number 1/8 is not meant to be sharp, one can for example upgrade it to 1/4—.
Throughout the rest of the section, we write

fi(x, 1) = Z fitn, 0", i=1,2,3, (3.13)

neZ?

i.e. fi(n,t) is the space Fourier transform of f;. For the sake of brevity, we abbreviate
fin, 1) as fi(n).

We summarize below several standard estimates that will be frequently used in the
proofs that will come later. One may refer to [2,4,6]. We will also sketch them in
Appendix B for the convenience of the reader.

Lemma3.6 Let N = Ny, N3, 1 > s1 > €, and Y (t) be a Schwartz function.

Decompose Py, = Zjej P;, where J € J are finitely overlapping balls in the
region |n| ~ Ny with radius ~ max(N3, N3). then one has

/VI(Z‘)EPN1 fl PN2f2pN3f3

< (max(Na. N3) 1l yo1-s0 [ [ 1PN, fill 020 (3.14)

1

/W(t)ﬁNl(PNl f1. Pns f2, Pny f3)

< (max(Na, N3) 1l xou-s [ [ I1Pn; fill oo (3.15)

1

fW(f/5)EPN1f1PN2f2PN3f3

< 851/ (max(No, N3))" O h | gousy [ [I1Pw; £ill youo- (3.16)

1

/ Y (t/HRNI(Py, fi, Py, f2, Py f3)

< 88 max(Na. N3) Ol o [ TP, fill yoso. G-17)

1

/ Y (ORNI (PN, f1, Py, f2. PNy f3)

c
< (max(Na, N3)“ il xo.sllll f21l o3| 31l xo.1/3 sup 1 Py fill Lgs,
; :

N~ 3, | Pry Sl oo 1 Pay f2llx0.03 11 Povs f3 1 x0.13 | Py Bl 073
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F1n,~ N3 1Py f1ll x00 1P, f2 1l 5003 1| P, f3 11 0,173 | Py Bl 0,173

1IN ~Ny~N; mm Il Py ol xo.1-6 Il fill xo.00 sUP H”f;(n)emxﬂxoho ;
[n|~N lJ;ﬁl
(3.18)

’/ Y (ORNI(Py, f1, Py, f2. PNy f3)

c

< Ny Ao/ Py, Jillze L2l xos 1 f3 1 x0.1/3
F1n,~n, 1Py f1ll x00 1Py f2 1l 5003 1 Prs f3 1 x0.1/3 | Pag Rl x0.1/3
F1n,~ N3 1Py f1ll 00 | P, f2 1l x0.03 1 Py f3 1l 0.3 | Py Bl x0.1/3

F1vy o~y min | 1PNl o | flloso sup [T lix000 | -
I~ N ot
(3.19)

‘ / Y(ORNI (PN, f1, Py, fo, PNy f3)

c
< (max(Na, N3)™ Ikl xo.1/3 | Pn, fallLos | Pny fillxo./3 1 Prs f31 x0.1/3
Fy ~n, Py f1llxoss | Pay f2 1l xo.eo | Py 31 x0.173 | Pys Bl o,
F1n,~ N3 1Py f 1 x0.1/3 | Py f21l x0.00 | Py f3 1 x0.13 [ Povy B Ll 0,173

ANy~ Np~ws min | P ol oa-so [ fill oo Sup [ 115 eme™ lxon |
N o
(3.20)

’ / Y (ORNI(Py, f1, Py, fo. PNy f3)

c
< (max(Na, N3)“ | hll o311 Pn, follxo.u | Pay fill xo.s3 | Povs f3lLgs,
F1n,~n 1Py f1llxoa3 1 Pay f21x0.173 | Pag f31] 0.0 | Prs 2l x0.1/3
F1n~ N3 1Py Sl 0.3 | Py f21 0173 [ Pov, 31l 0.0 | Povy BN x0.173

Ly min | Pyl ol fillyos sup [T 15 00e™ o | -
[n|~Ni Ujti
(3.21)

where with 1y, ~N; we denote the indicator 1y, ~N; = L if Ni ~ Nj, 0 other-
wise. Moreover, estlmate (3.18), (3.19), (3.20), (3. 21) are also valid if one replaces

Ni(Pw, f1., Pn, f2, PNy f3) by Py, f1 Pn, f2Pns 3.

Similarly, one also has
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Lemma3.7 If N» = N| > N3, one has

/ 6 (1/8)i Py, £ Prs J2 P f

S8 VENTINT Nl oo [ ] I1Pw, fill oo (3.22)

i

/¢(t)f_lPN. S1PN, f2 PNy f3

< NEOUhlyors Py, fillezs, [T 12w fillgors, i=1,23.  (3.23)
J#i

We also record the following deterministic estimate which will (almost directly)
handle the A7 part in the Wick ordered nonlinearity.

Lemma3.8 Let by = % + €o, then

‘ffﬁ(f/ts)f_l/\/z(l’m f1, Py, f2, Py, f3)

S min | 841 Py, hll o L fill oo sup [T IE5 0™ xom | - (3.24)
[n|~N)
J#

We sketch the proofs of Lemma 3.6, 3.7 and 3.8 in Appendix B for the convenience
of the reader. In the following, we provide a proof of the easier estimate in our main
result Proposition 2.1.

Proof of (2.3) of Proposition 2.1 We choose Ny large, up to dropping a set of probability

sy

e~ Mo, we have

w)| < N3', |n| < No,
|gn(@)] = 0 In| < No (3.25)

|gn(@)] < [n|*", [n] = No.
And in particular, no matter whether #; = w; such that |w;[l ysony S 1 oru; =

o) ZlnhM g’i’(l‘l")el" Tei"* we always have
I Pyuilyon, S Ng's N < No, (3.26)
I Pyuillxon, S N*', IN| = No,

Observe that

f¢(1/5)fl/\f2(u1,u2, u3z) = Z/‘p(t/S)PNBNZ(PN”l» Pyuy, Pyu3z)  (3.27)
N

Letd = N, 100, applying estimate (3.24), we have

@ Springer



Stoch PDE: Anal Comp

e N<Ny
f ¢ (t/8) PyhN2(Pyuy, Pyuz, Pyuz) S 84N, (3.28)

e N > Ny,
/¢(l/5)PNf_1N2(PNu1, Pyuy, Pyuz) < NCSINT2, (3.29)
Sum all N, (when so small enough), and desired estimate follow. O

3.3 Probabilistic estimates

We collect the elementary but crucial probabilistic estimates here.

Lemma 3.9 Let {g,(w)} be i.i.d complex Gaussian on the probability space 2, and
{Cny....n, } be a sequence of complex numbers for some integer k > 1. Define

Fi(w) = Z Cny,...n8n18ny " " 8ny -
Rl ooy Mk

Then one has forall 1 < p < o0
IFellzr@) S Ve +1(p = D211 Fill 20 (3.30)

Moreover, there holds the associated large deviation type estimate

—C2k

2/k ’
” Fk ||L2(Q)

P{|Fr| > A} <exp Vi > 0. (3.31)

In the lemma above, it is very important that {c,,
random variables. One may refer to [11,12].
The following lemma will also be frequently used.

n} are numbers instead of

.....

Lemma 3.10 Let {g,(w)} be i.i.d complex Gaussian on the probability space <2, and
assume that

D lanl S 1.

neZ?

Then, for any integer N > 0, up to a set of probability measure e N* for some a > 0
depending on €, there holds

> angn(@)e™ < N€, Ve >0. (3.32)
neZ?,|n|<N L%°(T2)
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Proof 1Tt is easy to see that for any fixed x, the function is bounded as desired outside a
small exceptional set, so the key point is to show that the exceptional set can be made
independent of x. To do this, given € > 0, first note that T2 can be covered by a mesh
of size 1/NM x 1/NM centered at ~ N?M lattice points for a large number M to
be determined later. We first bound the function at the lattice points, which is easy as
the function at each lattice point has size < N€ (for some €y < €) up to probability
e~ NV according to Lemma 3.9, and there are only N> many points. Therefore, one
has that the function satisfies the desired bound outside an exceptional set of measure
up to ~ e N7,

To pass from here to the bound of the function on the entire T2, it suffices to obtain
a uniform control of the derivative of the function (independent of x):

N " lanllga(@)] S N* sup |ga ()], (3.33)
In|<N "

The probability of the derivative being larger than N* is smaller than e~V N 2 as the

probability of |g, (w)| > N? for each n is controlled by e~V 2, Hence, by removing
this additional exceptional set and recalling that every point x lies within the distance
of 1/N™ from some lattice point, one has that the function at x is bounded by N0 +
N*.1/N™ < N€ as long as M is chosen sufficiently large. O

4 Counting lemma

One of the key ingredients in the proof of our main theorem is an extension of the
lattice counting argument of Bourgain, [4] to the irrational setting. We present them
in this section. We start with two auxiliary lemmata. The first has a geometric flavor,
while the second is an elementary number theoretical result.

Lemma4.1 Let A be the 0(%)-neighborh00d of a circle of radius ~ N, and A =
7. x y 7 for some real number y € (1,2). Suppose A1 C Aisthe 0(%) neighborhood
of an arc of the circle of length No» < N. Then, A\ contains at most max (% l)

points of A.

Proof Let C C A be the 0(%)-neighborhood of any arc of the circle of angular size

6 = TlooN —2/3 then it suffices to show that C contains at most O (1) points from
A. Indeed, if Ny > NV 3.0A 1 corresponds to an arc of angular size % which can be

decomposed into ~ % smaller arcs each of which containing at most O (1) points
from A.

Denote B; the circular sector bounded by the outer arc of C, and B> the triangle
with vertices being the center of the circle and the two endpoints of the inner arc of C.
Observe that any triangle Py P> P3 with P; € A N C must be contained in the region
B1 — B>. Moreover, it is easy to see that annulus A can contain straight line of length at
most O(1). Therefore, suppose C contains more than O (1) points from A, then there
must exist three points Pj, P>, P3 € A N C that formulate a non-degenerate triangle.
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By definition of A, the area of the triangle is at least %, hence the area of B; — B
needs to be at least % as well.

On the other hand, via Taylor expansion, the area of B; — B; is bounded by %N 20—
sinf) + 0(%)N€ < N203 +0 < 11—0, which is a contradiction. Therefore, C must
contain at most O (1) points from A and the proof is complete. O

Lemma 4.2 Given an integer M # 0, then
#(a,b) €Z X Z: ab= M} < C|M|, Ve > 0.

Proof Without loss of generality we assume that M > 0. As an integer, M has an
unique representation by its prime factors:

M=pl'p?-p}, pr<pr<--<pg ri>0, Vi

Then, the total number of pairs of integers whose productis M is bounded by ]_[f=1 (ri+
1). For any fixed € > 0, there exists a smallest integer N such that N© > 2. Let p; be
the first factor that is larger than N, then there holds

14

4 4
H(r,- +1) < 1_[2” < Hp;"é < M°€.
i=j i=j

i=j

On the other hand, there are only O, (1) many p; that are smaller than N. Therefore,
write M = ™, one has

j-1
l_[(ri +1) < (log M) %D = jp OV

i=1

There exists a large number Mo = Mg (¢) so that m (D) < ¢ whenever M = ™ >

M, hence the desired estimate follows if M > M. If M < M, one can simply take

Ce = Mg. The proof is complete. O
We now fix @ and Ny, No, N3 > 0, and we let

S :={(ny,n2,n3) : |nij| ~ Nj, ny #ny,n3, and (ny —ny,ny —n3) = u+ O(1)}.

We observe here that in the rational case S is a curve while in the general case, since

4+ O(1) appears the set is thick.
Define

S(ny) = {(n2,n3) : (n1,n2,n3) € S},

and similarly for other S(n;), if n; is fixed and S(n;, n;), if n;, n; are fixed. We have
the following counting lemmata regarding the size of these sets. In the following, we
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sometimes use N1, N2, N3 to denote Ni, N2, N3 rearranged in the non-increasing
order and assume u = O(N1).

Lemma4.3 #S(ny, ny) < Nz and #S(np, n3) < Np.

Compared to the rational case studied by Bourgain, this estimate is equally good,
since ultimately it is a linear estimate.

Proof We will only prove the first estimate, as the second one follows from the same
argument. Fixing n| # ny, one has from

(na —ni,ny —n3) =+ 0(1)
that n3 lies in an O(m) < O(1) neighborhood of a straight line. Since |n3| ~ N3,
there are at most ~ N3 choices of n3. O

It is in the next lemmata that one sees a difference with respect to the estimates of
Bourgain that are generated by the possible irrationality of the torus.

Lemma 4.4 Assume Ni > Nj, N3. Then,

N, if Ny ~ N3 > N,
#S(n1,n3) S x, .
max (W 1) , otherwise.

Proof From the definition of the set S, with n;, n3 fixed, n, must lie in an annulus
given by the formula

_n1+n3
2

2
I —naf?
4

no +u+ O(1).

Denote the inner and outer radius of the annulus by R, R; respectively and recall that
w < Ni

Therefore, when N; >> N3, both the inner and outer radius are roughly ~
V(N1)2 + o ~ Ni. In order to determine the thickness of the annulus, one observes
from R? — R? = O(1) and Ry, R, ~ Nj that there holds R; — R, < O(Nil), hence
the thickness is bounded by O(NLI). Then, the desired estimate max(%, 1) follows
immediately from |ny| ~ Ny < N and Lemma 4.1 above. 1

When N; ~ N3, assume that the inner and outer radius are roughly ~ R > 1 (if
R < O(1), the estimate is trivial). Note that R < Nj. Then n; lies inside an annulus
of radius ~ R and thickness bounded by 0(%). Suppose N1 ~ N> ~ N3, then again
by Lemma 4.1 above, the total number of 7, is bounded by

R 2/3 2/3 Ny
max (W 1> =max(R“", 1) < max(N;"", 1) ~ max W, 1].
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On the other hand, if N; ~ N3 > N, still denoting R as roughly the inner and
outer radius of the annulus, one has

in(Na, R
#S(n1, n3) < max (M 1) < N2,

RL/3

m}

Lemma 4.4 above can be extended to estimate other sets of similar type. For exam-
ple, let n := n; — ny 4+ n3 and suppose that Ny = N. Then for any fixed n; and n,
via a similar argument, one has the following estimate:

2/3
#ny: il ~ Ni, ny #n1,na, and (n —n,ng —np) = e+ O(1)} S NP2

Indeed, suppose N1 >> N», then n; in the above lies in an annulus of radius
~ N and thickness ~ O(NL]). Hence by Lemma 4.1, the total number is at most

max(%, 1) = N12/3. Otherwise, if N1 ~ N3, one has R, the radius of the annulus,
1

is bounded by N;. Hence, the total possible number of n; is at most < R?/3 < N 12 3,

Similarly, when N1 >> N3, one also has the following counting

N
#{n3: (n3 —na,n3 —n) = u+ O(1)} < max (NT% 1) .
1

Moreover, from the two lemmata above, one can already obtain some estimate for
sets S(n;). For instance, by first fixing n, and applying Lemma 4.3, one can show that
#S(n1) S N22N3. Depending on the relative sizes the N;, sometimes such estimates
are already good enough. However, in some other cases one needs to use a more
sophisticated argument, and this is the contents of the following counting lemma.

Lemma4.5 #S(n;)) < (NH NaN3, #S(na) < (NYN|N3, and #S(n3) <
(NHYEN|N-.

Proof We only prove the estimate of #S(n1) as the other two can be treated very
similarly. Write no — ny = r(a, yb), where r € N, a,b € Z and (a,b) = 1.
Decompose all choices of n; into dyadic scales. In other words, at each scale, we
have dyadic number A, B € Z fixed such that |a|] ~ A, |b| ~ B, and there holds
A, B < max(Ny, Np). We also write np —n3z = (x, yy),x,y € Z.

Assume a,b # 0 and fix A, B, r. We want to count the number of (a, b, x, y)
satisfying

r(ax +y?by) = w4+ O(1), and |a| ~ A, |b| ~ B.

Note that r # 0 because n; # ny, and x, y cannot both be zero as ny # n3. Without
loss of generality, suppose y # 0, then the equality above can be rewritten as

ax 5 % 1
— = — O .
oy T T T (|byr|>
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Since a, b, x, y € 7Z, for any fixed value H = by, the value of ax is inside an O(1)-
neighborhood of an integer G = G(H).

Moreover, observe that the number of possible values of H is bounded by ~ B N3,
as for each fixed b (hence the second coordinate of n; is fixed) there are ~ N3 many
choices of y. Then, by a simple number theory observation (Lemma 4.2 below) one
has for any € > 0 that

#(a,b,x,y) SHH}-|H|-|G|® < BN3(B max(N2, N3)) (A max(Na, N3))*
< max(A, B)!7¢ N3 max(N,, N3)¢.

It is thus left to sum over r and then A, B. Note that for fixed A, B,

N
g —2
max(A, B)

therefore, one has in this case that

#S(n1) < Z max(A, B)'T€ N3 max(N2, N3)¢

A B
< log(NHY2(NHYEN,N3 < (NYHENaN3.

%)
max (A, B)

Assume now that a = 0 (then b # 0 as ny # ny). This means n1, ny have the same
first coordinate, hence the total number of choices of n, is bounded by N,. Moreover,
one has that the first coordinate of n3 is free and its second coordinate is determined
by

(ny —ny,ny —n3) =pu+ O(D),

hence is inside an O (1)-neighborhood of a determined value. Indeed, the formula
above can be written as

ryzby =pn+0Q1)

which implies

o
VD BZVA

Therefore, in this case one has #S(n1) < NaN3. The b = 0 case can be treated in the
same way which we omit. O
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5 Proof of Proposition 2.1: case by case study, case 0

In this section, we treat the case: N> > Nj > N3. We will prove

Z Ny’ /NI(PNlul, Pryuz, Pyuz)he(t/8)| < 8!, for some €1 > eo,
N2>N1>N3
.1)
where u; is either w; with [|w; || yspby < 1 or

gn(w) i

, X€ ’]Tz,
|n|

ui = ¢ ug = pr)e’"

and || h]| yo.1-pp < 1.

First observe that, in this case, the Wick ordered nonlinearity is the same as the
usual cubic nonlinearity, i.e. ' = N and AV, = 0. We only need to prove (up to an
exceptional set of probability e %) that

) NSO/ Pyyuy Pyyuz Pysuzhe (t/8)| < 81 for some €1 > €. (5.2)
N2>»>N1=N3 RT

There are several subcases. We start with subcase 1 : u; = w;,i = 1,2, 3. Let 5y
be chosen such that g < 51 < s9. Via (3.22) and observing that one has &1 = Py, h
in the being in this case, we obtain

/ PN1u1PN2M2PN3u3ﬁ¢(t/8)
RxT?2

2s SL 5.3)

S N] ! ”PNlul ||x0‘b0 ”PNz“Z”XOJ’o ||PN3”3||XOJ70 ||PN2h||X0,1—b05 8
—50/2

,S N] / [lzey ||x-f0-b0 [lue3 ||x-f0-b0 ||PN2M2||XU-170 ||PN2h||x0<b0 .

Sum over N» >> N; > N3, and the desired estimate follows.
. . . P . 2
Next we discuss subcase 2: at least one u; is ¢ (¢) Zlni I~N; %e”’w e'"i’. We only
1

n . .2 ..
study the case u1 = ¢ () 3, |, %e‘”“‘ €'’ as other cases can be treated simi-
larly.

Let N2, be a large parameter such that N21 %0 = %. Note that up to an exceptional

set of probability e ~ eM20, we have

lgn (@) < N3lg, Inl < Nao,

2. (5.4)
lgn(@)| < N, , |n|~ Na=>= Nypo.
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In particular, one always has for all #; that

(5.5)

I Pruillyon S N3lge N < Na.
I Pyuillxos SN, N = Nag.

and, dropping another exceptional set of probability e =% * if necessary, one has
IPvutlipee < Ny's N1 <Nz, Nag < Na. (5.6)

Now we split the subcase 2 further into the following subsubcases.
In subsubcase 2.1, we restrict ourselves to the regime Na < N> o, and use estimate
(3.22) to derive

/ Py, uy Py, upuszh(t/8)
RxT?
2 2
< 8VENT lunll oo lluallyoro sl oo 1]l o1 S 8 NE™. (5.7)

Summing over Nj, N3 < N < Nj ¢, one obtains < 831N23S6 and the desired estimate

follows.
We are left with subsubcase 2.2, where No > N, ¢. We will prove

—1/10
2 ’

‘/R - PN1¢(I)M1PN2¢(I)M2¢(I)PN3M3¢(Z)E‘ SN (5-8)

which will then imply the desired estimate by summing (5.8) over Ny, N2, N3.
As remarked above, we only prove estimate (5.8) for the case that u; is random.
Using (3.23) and Lemma 3.10, one derives

f Pry ¢ (0uy Py (01626 (1) Pavy s (1)
RxT?2 (5.9)

< N (1) Pyua 013116 (1) Povyus o731 (2) Pry bl o

Let F;(t;, n;) be the space-time Fourier transform of ¢ (f)u;, i = 1,2,3, and
F4(t4, n4) be the Fourier transform of ¢ (¢)h, the integral being estimated is non-zero
only if

(5.10)

ny—ny+ny—ng =0,
T1—T+13—14=0,

which implies

Z(—l)i(ti—n%):n%—n%—i—n%—nﬁ:—Z(nz—n],nz—ng) ~ N3, since N > Ny, N3.
i

(5.11)
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Observe that the Fourier transform of ¢ (#)u is essentially supported on |71 — n%| <
1, thus, at least for one i € {2, 3, 4}, one has N22 <t — ni2|, hence one can upgrade
estimate (5.9) to

‘/ Pn,d (D)1 Py, (12 (1) Pysusep (t)h
RxT?2

2 2(—=1/6—
< NEUNFTYOTO 6 (1) Py s || youro 1l (8) Pagtas | oo 160 (£) Pry | o5

Cs \=1/6 ~ 5;—1/10
SN'N, P SN, .
(5.12)
To make the above argument rigorous, one may decompose ¢ (¢)u| into
(Pirj<n, @ (0)ur + (Pej>n, ¢ (1)ur, (5.13)

where the first term corresponds to frequency localization at | —n% | < N» K N, 2, and
hence the above argument can be applied. For the second term, one simply observes
that

P> nyd Ol e S Ny ' (5.14)

This concludes the proof.

6 Proof of Proposition 2.1: case by case study, case (a)

In this section, we consider case (a): Nao(I) < Ni(I1), N»(I) = N3(II). We aim
to prove for all wy, v2, w3 satisfying

() ;
lwillgore ST lwslxon S 1, v2=¢@e"™ (Zg’ll;|
2

< 1 that, up to an exceptional set

~

and || ]| 50.1-5g

Z N‘fo /Nl(Plel, Py, v2, PN3w3)ﬁ¢(t/8) < 81, for some €1 > €.
N2<SNi,N2>N3
6.1)
Fix NJ% = } and recall that any loss of §~€< will be irrelevant in the analysis.
The values of the parameters €y < s < so will be determined later.
e,

By dropping a set of probability e , we will assume the following throughout

the whole section:

(6.2)

lgn(@)| < Najo, In| < N2y,
lgn(w)| < |nl*t, |n| > Nap.
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And one has in particular

1PNy @ (D2l x000 S Nalgs N2 < Nao, 63)
| Py (Dv2ll g0 S N5', N > Nap.

6.1 Standard reduction

The goal in this subsection is to reduce the estimates of this case to Lemma 6.4 and
Lemma 6.5, which will be stated at the end of this subsection.

Note that in the discussion of all the cases (b)—(1), there will be a similar reduction
argument. We will present the full details of the reduction in this case, and only sketch
it in other cases.

We first split the summation ZN25N1,N22N3 into two parts No < Ny g and Np >
Na .

6.1.1 The low frequency part: N, < N, o

We aim to prove

2 Ny

N2<N30.N2SN1.N2=N3
€1
< §1, for some €] > €. (6.4)

/Nl(Plel, Py, v2, Pnyw3)hep(t/5)

Observe that, when Nj >> N>, one can replace the £ in (6.4) by Py, &, and when
N1 ~ N, h can be replaced by P_y, h.
Thus, via estimate (3.17) and (6.3), one has

e If N; ~ N, (in particular, N < N2 o),

S0
Nl

/ Ni(Py, w1, Pz, PN3w3)ﬁ¢(r/a)'

' ” 6.5
N 3$1/8N2“ Py will so.20 1| Py 021l 0.0 | Ps w3 ll 0.0 [T 21l 0.1 ©)
S S‘YI/SNE‘JV()I 1Py willso.00 Ny
[ ] If Nl >> N2’
Ny° le(Plel, Py, 2, PN3w3)E¢(t/8)'
(6.6)

01/8 A72S
f, 5A1/ Nz : ||PN1 w1 ||X~V0v”0 ||PN2U2||X0-bo ||w3||X0<1’0 ||PN1h||X0v1—b0

51/8 A73S
< 8BNS Py, wi Nl gso oo 1| Py Bl 0.1 -

The desired estimate will follow if one sums over the associated N1, N», N3 and apply
Cauchy inequality in the sum on Nj.
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Remark 6.1 We point out that the low frequency case is always the easier part in
random data problems, and essentially follows from deterministic estimates usually
used in the local well-posedness argument, we will not repeat this part in the rest of
the article.

6.1.2 Reduction to resonant part

Now we are left with the case N2 > N3 o, we aim to prove

Ny°
N1=N2=N3,Ny>N3

SNy (6.7)

/dJ(I/B)ﬁN] (PN @(t/8)wy, Pny¢(D)va, Pnyd(1/8)w3) dxdt

for some €1 > €.

We will not explore the time localization ¢ (¢ /§) in this part. Observe that ¢ (t)h =
¢(t)p(t/5)h, we may hence define h as ¢(t/8)h and use ¢(t)ﬁ in the following
estimate. Note that we still have ||/ || x01-by < 1. For the sake of brevity, we still
denote £ as h.

Our aim is to prove for fixed N1, N2, N3 satisfying No < Ny, N2 > N3, N2 > Na g
that

o If Ny > N»,
Ny° /¢(I)EN1(PN1¢(I)U)1, P, ¢ (1)v2, Pnyd (H)w3) dxdt
< Ny PNy willgso.ro | Py el o150 6.8)
o if N ~ N,,
Ny /d’(t)ﬁf\/l(l’zvl(b(l)wl, Py, ¢ (H)va, Pnyd(H)w3) dxdt
< N;EI | Py w Il xs0.20 ||P<N1h||X0v1*b0- (6.9)

We will focus on the proof of (6.8), and it will be easy to see that (6.9) follows
similarly (almost line by line).
Observe that, since N > N, > N3, one has

50
Nl

/ S(ORN (Py, (w1, Pryd (v, Py (0Yw3) dxdi

(6.10)
=N’

/¢(1)PN1hN1(PN1¢(l)w1, P, ¢ (t)va, Pny¢p (1) w3) dxdt
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To carry on the proof of (6.8), we introduce another parameter M = N2l 951 One
may split w;, i = 1, 3, and v, as

¢Ow; = P2 ¢ Owi + P2y dOwi,
D v2(1) = Prj<m@ (v + Pirj> e (0)va, (6.11)

and the same for 4.

Remark 6.2 with such a splitting one may lose the time localization. This can be
overcome by writing for example P ¢ (t) as & (t) P~ p¢, such that ¢, ¢ are Schwarz
uniform in M. Or, one may further require ¢ (1) = @(t)‘*, and indeed split as ¢ (1) =
¢1(t)+¢pr(t) where ¢ (1) = | P|,|<M&(t) |*. To make the proof clean, we leave further
details to the interested reader, and allow ourselves to freely multiplying an extra time
localization ¥ (¢) in the proof.

Via (6.11), one can naturally split the left hand side of (6.8) into 2* parts. Each part is
of the form Ny° | [ N1(P, fi. Pn, f2. Pn, f3) P, fa|, where f; = P w21 <m® O wis
or P2 y®@wi fori = 1,3, fo = Prj<m@@)v2 or Prj=m@(1)v2, and f4 =

Pl 2=y ®@Oh or P _2. (.
Then, applying (3.20), one has for some Schwartz function ¥ (¢) that

50
Nl

/NI(Pleh Py, f2, PNy f3) Pn, fa

SNY

/ NPy, fis Prs for Pr f3) P Favr (0)

< NI Pw, fillxsou17 1PN, f2ll e I Py f3 1 xo.13 I fall g0/

PNy fill xso.13 11 Py f2 1 x0.60 | P, f3 1 x0.1/3 | Py fall x0.1/3.

(6.12)

(In the second line, we add a time localization v (¢), following Remark 6.2. Also recall
we have 51 > €q.)

Unless f; = P|r,-—n’.2|<M¢(t)wi’ i = 1,3, fa = P_yod@)h, and f» =
Pirj<m@(t)vy, at least one of the following estimates will be true (after dropping
an extra set of probability e~ 2 if necessary):

—10s
I Pny fillxsos S Ny TPy fill xso.0 5

[ ]
—10
o |1Pn, fallLgs + I1Ph, fallgorg S Ny s
—10s
o || Py; f3llx0.1/3 < N, 51 | Prvs 131l x0.00 »
—10:s
o [I1Py, fallxoas S Ny Py fall xo1-0

and we always have
1PN, f2ll o0 + 1 Prs f2llgs, S Ns' (6.13)

@ Springer



Stoch PDE: Anal Comp

The desired estimate follows by inserting the above ones into (6.12).

Remark 6.3 The numerology in the above calculation is in fact very simple modulo
lower order terms. The term f Ni(Py,u1, Pyyuz, Pyyu3)hip (1) can essentially be
thought as f Pnu 1PN2u2PN3u3}_11//(t), and will only miss the desired estimate by
at most a factor sz‘” via (3.14). On the other hand, when there is some u; = v;,
which is hence already essentially localized at |t — n?| < 1, then for all the rest of
the functions h, u j, one can gain at least 1/2 — €g — 1/3 derivative. Therefore, unless
all the other terms have space-time frequency localization in |t — n?| < N;OOSl, the
desired estimate will automatically follow.

Now, we are left with the case where f; = P|r,-—ni2|<M¢(t)wi’ i =13, f1 =
Po_p2icpy@h, and fo = Prj<pm (t)va.

Letd|(n,t), r2(n,t),d3(n, t), H(n, t)be the space Fourier transform of Pm —n2|<M
@ (Owy, Pirj<m@p (v, P|r3—n%\<M¢(t)w3’ P‘r_nsz(p(t)PNlh. We abbreviate d; (n,
t),ra(n,t),ds(n,t), H(n,t) as dy(n), ra(n), d3(n), H(n) respectively. Observe that

25 —in} 2
N7 Lo i e g S 1PN Wi S

ra(na, ) = ¥ (t) f;l for some Schwartz function v, (6.14)

—in2 2
Z\n|~N1 | H (n)e™" t”Htl—bo 5 ”PNlh”XO,l—bO'

.2 .

(One may observe, for example, that ||d; (1, t)e """ || o ™~ ldi (n, £)e"™ || xso.00 - We
t

also point out that we have estimated Pj;|< ¢ () just as some Schwartz function v/ ().

: a2 .
Furthermore, one may observe that ||d; (1, t)e™"""! ||L{; = ||d;(n, 1) L .) We will show
that

50
N

/¢(t)ﬁN1(PN1¢(t)w1, P, ¢ (t)va, Pny¢p(1)w3) dxdt

v Y [aenmmae A (6.15)

[nj|~N;,ny—na+n3=n

SN, PN, willysoobo 1PNy BLy0.1-50 [| Py w3l ysobo, fOT some €1 3> €.

Observe further that dy(n1, t), r2(n2, t), d3(n3, t), and H(n,t) are Fourier sup-
ported in |t; — ni2| < M,i = 1,2,3 and |n — t%| < M. Thus for the integral
f di(n1)ry(ny)dz(n3) H(n) dt to be non-zero, one necessarily has
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n} —n3 +n} —n? = 0N,"). (6.16)

We thus have

Ny? Z /dl(”l)rz(nz)d3(n3)H(n)dt

[ni|~N;,n1—nz+n3=n

< N} >

[nj|~N;,n1—na+n3—nyg=0,

22,2 2 1005
ni—n3+n3—n-=0(N, )

6.17)

/ dy(n))ra 2 ds (n3) F ) di |

To summarize, to prove (6.8), we are left with showing the following:

Lemma 6.4 Let N1 > N> > N3, then one has for some €1 > € that

Nfo Z / dy(n1)ra(n2)ds(n3)H(n) dt‘
[ni|~Nj,ny—na+n3—ng=0,
n%—n%+n%—n2=0(N2100s1) (6.18)

—€
5 Nz ! ||PN1 w1 ||x50,b0 ||PN1h||x0»1*b0 ||PN3 w3||x501b0~

We also write down the corresponding lemma that will imply (6.9).

Lemma 6.5 Let N1 ~ N> > N3, then the same estimate (6.18) holds if one replaces
the Py h by P_n,h.

One can easily check that the proof of Lemma 6.4 also works for Lemma 6.5 (almost
line by line).

6.2 Random data type estimate: Proof of Lemma 6.4

Recall that we always assume (6.2) and that we are in the regime N1 > N> > N3.
First note that for all n3 ~ N3, we have
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—in? —in? -
ld3(n3)ll e = lda(nz)e™ " oo < lld3(n3)e™ "] o ~ lld3(n3)e"™>™ || 0.
t

< I Pnyw3ll o, -

Now, for all |n3| ~ N3 fixed, we have

2

[ni|~N;,i=1,2, n—n2+n3—n=0,

/ dy () P22 ds () F ) dit

n%—n%+n§—n2:0(N2100S1)
S 1PNy w3l g0 > ldi )l 2 lr2(n2) | = | H ()] .2

|nj|~N;,i=1,2,n1—ny+n3—n=0,
n3—n2+n3 7r12=0(N21005l )
172

2
S I Pwywslixon [ D IH®I,

|n|~Ny
1/2
2
<[ 3] 3 I )22 22) e |
|n|~Ny |ni|~N;,i=1,2,n1—na+n3—n=0,
n%—lz%—&-n%—nz:O(NleOSl )
S Py ws | go.e0 [l Py Il g0.1-5g
172
14100s 2
Ny > {ldi (D)l 22 ()| o)
|nj|~N;,i=1,2,n1—ny+n3—n=0,
n%—n%+n§—nz=0(N2100Sl)
S PNy w3l 0.0 | Pavy Al 0.6
12
14100 2 aAr—242s
N, > ldy ()17, Ny 220
Lt
i |~Nii=1,2,(ny—ny,na—n3) =0 (N, 1)
(6.19)

In the second step above, we used Cauchy inequality in n, while in the second to
last step, we used Lemma 4.3. Observe as well that || H (n) ”L? < ||H(n)e " ||H1—b0,
t

o . _in2
lr2(n2) |l Lo < |N2|“’1uptoanexceptlonalset, and ||dl(nl)||L,2 < |ldi(ny)e ”’1’||Ltz.
Furthermore, by the counting lemma (Lemma 4.4), one has for n1, n3 fixed that

tlnal ~ Na: (2 —nyi,na—n3) = O(N;*")} < N,"" max 1). 6.20)

2
N
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To summarize, we derived that

vy 2

[ni|~Nj.ny—na+n3—ng=0,
100s
n%fn%+n§7n2:0(N2 1 )

/dl (n)ra(n2)d3(n3)H(n) dt

N 2
< NYON3 1Py w3l 40,60 I Pavy ol go,1-1

1/2

—142s 200s No

(N2 Ty ndl(nl)nitzzvz ‘lmax<N1/3,1>)
[n1|~Ny 1

172
Csy —1/2 N
S N32N2 N, / |:max <N1/3 , 1):| I Py will gsg.bg | PNy I 0.1-00 1| Phg w3l psg.bg -
1

(6.21)
It is easy to see that the desired estimate will follow if there holds Nzl /100 > N3.

1
When N3 > N,”, we may directly go back to (6.8). Applying (3.15) and using
(6.3), we have

50
N

/ (VRN (Py, (w1, Pryd ()0, Py (Dw3) dxdi

Cs — 5
S Ny PN wi oo | Py @ ()02 x0.00 N30l Paws [l s | Py Bl 0,150

Cv —
f/ N2 . N3 A0||PN1 wi ||X50v”0 ”PNlh”XOvl—ho-
(6.22)

Estimate (6.8) then follows since N3 > Nzl/100 and 51 < 5p.

7 Proof of Proposition 2.1: case by case study, case (c)

In this case, we have Ni(I) = Nx(II) > Niz(II), and we aim to prove for all
V1, Wy, w3 satisfying

&n () ;
vl =¢<r>2|i‘1—|e’"”, lwall g S 1, llwsllyos S 1,
ny 1
and ||i]| X0,1-, < 1, that (up to an exceptional set)

S0
Nl

/d)(t/S)ﬁNl(Pval, Pn,w, Pyyw3) dxdt| < 8¢, forsome € > €. (7.1)

7.1 Standard reduction: a (detailed) sketch
We first sketch a reduction, with an argument similar to the one in Sect. 6.1. There is
indeed some difference between the reduction process in case (a) and case (c), mainly

due to the difference of the form of the first term (with the highest frequency). Hence,
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we will still provide a rather detailed sketch. In all the remaining cases, we only briefly
sketch the reduction.
We may fix N o large satisfying % =N 11%0. By dropping a set of probability up to

—cs;

—N
e 1.0 we have

=< NS] k) =< N ’
lgn(@)] < Lo In| < Ni,0 (7.2)
|gn(@)| = Ny*,  [n[ ~ N1 = Nyp.
By further dropping a set of probability e Mo 1 if necessary, one has
1PN @@ vill g0 S Ny, N1 = N1, (7.3)
1PN @@ v1llgoro + I1Pvd@vills S Ny's Ni= Nio.

We will assume (7.2) and (7.3) thoughout this section. Now, split into two parts Nj >
N1 and N; < Nj . For the low frequency part N < Njp o, we may use (7.3) and
apply the deterministic estimate (3.17), one thus derives the analogues of (6.5) and
(6.6) below

50
N 1

/ N1 (P, v1, Py, w2, Pn,w3)he(t/8)

50/8 A750+C€Q 75 7.4
< BOBNTFCONI 6 (1) o w2l oo W3 gt Mllorsg O

S SUINHCONPNT),

(Note that here we only need one estimate rather than two estimates as in (6.5), (6.6).)
Summing over N; < Nj and the associated Ny, N3, and using the fact that

sl=nN 11 %O, we derive the desired estimate

2 vy

N1<N1,0.N1ZN2=N3

/./\f] (P, V1, Prywa, Pyyw3)he(t/8)| < 6€1, for some €] > €.
(7.5)

For the remaining part N1 > Njp o, we will write ¢(¢/8)h as ¢(t)¢(t/5)h and
note that one still has [|¢(¢/8)h| yo.1-5, < 1. For notational convenience, we will still

~

denote ¢ (¢/8)h by h, and will prove for all N; = N> > N3 with N; > Nj o that

S0
Nl

/Nl(Pval, P, w2, PN3w3)l_zq)(t) < Nl_el, for some €1 > €. (7.6)

Then (7.1) will follow from summing (7.6) over Ny, N2, N3.
To see (7.6), we first introduce a parameter M = N 11 0050,

Remark 7.1 If one wants to get a rather large so < 1, one may need to choose M more

carefully. The following argument should still be fine if one chooses M = O (N 1(6+)S°),

where 6+ denotes any number larger than 6. However, it is unclear to us whether further

improvement is possible. We don’t further discuss this issue here.
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As in Sect. 6.1.2, we may split the functions ¢(H)vi = Pr<m@(@)v +
Pre=md (Ov1, d(Owi = P2 _y$Owi + P2y @Owi, i = 2,3, and
d(t)h = P|r,nz|<M¢(t)h + P|,,n2|>M¢(t)h. Applying the deterministic estimate
(3.19), we reduce the proof of (7.6) to the following estimate

50
Ny

[N @01 Py Py SO0 P2y 0Py

SNy (1.7)

for some €1 >> €p. Here ¥ (t) = Pj;|<pm¢(¢) is a Schwartz function.
Write

V(D= Y rin, D¢, P (Ow; = Y di(n, e, i =2,3,
ni

ny

Pre_p2icy®Oh =Y H(n, )e™*, (7.8)

and abbreviate the coefficients as ri(n1), d; (n;) and H (n) as before, one has

50
Ny

f NN OO, Py Py 9O PP b 0wn) B0

(7.9)

=N > [ r1 () (n2)d3 (n3 Hn) dr |
nj~Nj,ny n2+nz—n np#ny,n3
nl—n2+n3—n —O(M) O(NIOOSO)

Observe that one has in this case the following estimates:

N2 - .
N0, ldi (e |2 o S 12w, willZ 0 S 1.0 =23,
ri(ny, t) = ¥ (t)=— 8 (@) ”“ Ainit , where ¥ Schwartz, (7.10)

|”1|

— 2
S o, I1H e PR UL

We also point out that || £ ()% | = WAl P Thus, it remains to prove the following
lemma:

Lemma 7.2 Assuming (7.10), for N1 > N0, one has (up to an extra exceptional set
of probability eV 1) that

Ny 3 [ nondGd e b

ni~N;,ni—ny+n3=n, ny#ny,n3

n2—n2+n2—n2=0(M)=0(N,"")

< N[, for some €1 > €. (7.11)
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7.2 Random data type estimate: Proof of Lemma 7.2
We derive three different estimates, which, combined together, will imply the desired

bound.
First, one can directly go back to (7.6), and use estimate (3.15) and (7.3) to derive

50
Nl

/Nl(Pval, Py, w2, Pyyw3)he (1)

50 ArS1+C — — (7.12)
S N]YONFI 60||PN1U1 ||X0,hoN2 Y0||PN21112||XS0~b0N3 YO||PN3w3||Xso~b0

/S (N Nz—lN?’—l)SONICSl .

One can see easily that the same bound works for the left hand side of (7.11) as
well. When Nj ~ N3, one can directly use (7.12) to derive the desire estimate unless
In N3 < In Nj. In particular, There is no need to consider the subcase N; ~ Ny ~ Nj3.

Next, by applying Cauchy inequality in 7, one obtains

Ny’ Z /71 (n1)da(n2)d3(n3) H (n) dt

ni~Nj,ny—na+n3=n, no#ny,n3
100s
n2—n3+nj—n>=0(M)=0(N, °)

1/2
SN (Z ||H(n>||i;)
n

1/2
(7.13)
2
> 3 R (m)ds ()|
n ni~N;,ny—ny+n3=n,ny#n|,n3 !
n%—n%—i—n%—nz:O(NllOOSO)
172
2
sae (Y] 3 Ny nds ()|
t

n n;~N;,n1—ny+n3=n, np#n1,n3

2_.2,.2_ 2 100s()
ni—n3+n3—n“=0(N, )

In all the summations below, we always have |n;| ~ N;, n1 — ny + n3 = n, n% —

n% + n% —n? = O(M),ny # ny,n3, and we sometimes omit them for notational
convenience.
One also observes that ny — n, + n3 = n and n% — n% + n% —n?= O (M) imply

(np —ni,ny —n3) = OM), (n3—n,n3—nz)=O0M). (7.14)
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We have the following further estimate:

Z H Z r (nl)dz(nz)ds(m)‘

ni~Nj,ny—ny+n3=n, np#ny,n3

100s
n%—n%+n§—n2:0(Nl 0)

2
< (Z 2tz 3 rindsna)| Lz)
n ny np,n3 !
5 (Z ||dz(nz>||ifc) > > s ity o))
na

nny - ny,n3#Eng, (na—ny,ny—n3)=0(M)

2
L

2
L

(7.15)
where we used Cauchy inequality in ny in the last line. Since ||d2(n2)| o <

lld2(n2)e’™>* || yo.6y, when Ny 3> Ny, the above is further bounded by

SUSD )3 Bnr gty o) ()|

n
n,ny nl,nz#nz,(nrnu,nzfn3)=0(M)| tl

S NZ_ZSO sup i{n3 : (n3 —ny,n3 —n) = O(NIIOOSO)}

2
L7

n,ny
2
> lr1(n)d3(n3) 17
niiny#nyi,n3,
100s(
(n3—na,n3—n)=0(N; ")
< N2 10050 o N3 1
~ 2 1 /3’
Nl
—242s 2
> Ny s () 7
niiny7#Eng,ng,
(n3—nz.n3—m)=0(N, ")

n3

N
N NlcsoNfz max (NT% 1) sup i{(n1,n2) : (n2 —ny,ny —n3z) = 0(N11°0~‘0)’
1

ny #ni.n3} ) llds(n3)7

n3

N
< NEONT? max (%/3 1) NN
Nl
(7.16)

In the above sequence of estimates, we used Holder’s inequality in the second line,
and a variant of the counting Lemma 4.4 in the third line (note that we assume N; >
N, thus one necessarily has |n| ~ Np). In the last line we applied the counting
Lemma 4.5. Moreover, note that the v (¢) in ri(ny) gives enough decay in ¢, hence

_n? _n?
one has [|d; (n)ll e = di(ni)e ™" e S Nidi (ni)e™ " | b
t
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To summarize, when N > N3, one has the second estimate

Ny? Z ‘/ ri(ny)da(n2)ds(n3) H(n) dt
ni~Nj,n\—ny+n3=n, np#ny,n3

n2—n3+4n2—n?=0(M)=0(N,*")

12 12

N N

< NICSOZT/2 max <3Tm 1) . (7.17)
Nl Nl

One may also make use of the Frobenius norm that is more suitable when one deals
with random data since it exploits better the independence of the random variables
involved. The Frobenius norm together a version of the Cauchy—Schwarz inequality
recalled in (C.7) will give the third estimate. We start from (7.13) again. By the same
argument in (7.15), one has

2
> H > Vl(n1)d2(n2)d3(n3)‘ 2
n nj~Nj,n1—ny+n3=n, no#ny,n3 !
n2—n2+n2—n2=0(N,"0) (7.18)
g .9 2
sy 3 ety da ()|
t

n.n3 - ny,n3#Eng, (na—ny,ny—n3)=0(M)

and by applying the recalled Cauchy—Schwarz inequality (C.7), we can further bound
this expression by

sy Sao, i),

, 172 (7.19)
< N sup (m}gx (Z lAG, nz>||i;>o) + (Z |2 . "WWWHLoo) ) :
n3 ny n#n' !

ny
where we defined

_ if (n — _ e = O(N 1005
A(n,nz):A(n,nz,t)z{rl(n+n2 n3), if {n —n3, ny —ns) (N0,

0, otherwise.
(7.20)
In the last line we also used ), , lld2(n2) ||i2 < 1. For the sake of convenience, we
also define t
o(n,n2) = {“N% i (1 =y = n3) = OO, (7.21)
0, otherwise

for later use.
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Remark 7.3 By dropping an extra set of probability e~V I, one can in fact estimate

1/2

mr?x (Z [|A(n, n2)||it00> + Z H ZA(H’ n2) A, HZ)Hi,“
na

n#n’ N2
as

1/2

max (Z lo(n, n2)|2> + Z ’Za(n, np)o (n', ny) ?
ny

n#n' N2

To see this, observe that N1 ~ |n1| = (n2 — n3 + n|, and for any fixed ¢ € [0, 1],
the estimate of

1/2

2
max (Z |An, n2)<r)|2) S DD CEB YIS0
ny

n#n’ N2

is just the same as

1/2

max (Z lo(n, n2)|2> + Z ‘Za(n, np)o (n', ny) ?

n2 n#n’ N2

Now one can simply mimic the argument in the proof of Lemma 3.10 to go from a
single ¢ to a collection of {,} in [0, 1] so that |£; — ;] < N1_3. and then go to L°[0, 1].
Then, finally, one can use the fact that there is a Schwartz function v (¢#) multiplied
inside each ry to go from L{°[0, 1] to L°(R). We omit the details.

In the following and throughout the rest of the article, we will estimate instead the
term

1/2

max (Z Ia(n,nz)lz> +| X | Y ommewm) o
ny

n#n’ N2

and we don’t repeat the similar reduction in the rest of the article.

We fix n3. Note that for each n, there are at most ~ No N 11 0050 choices of ny so that

|n2] ~ N and (n3 —n, n3 —ns) = O(NIIOO‘YO). Hence,

2 < Cso nr—2
max (Z|a(n,n2)| ) < NaN{ONT2 (7.22)

na
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For the non-diagonal term, we first observe that for all n # n’ fixed, up to an
exceptional set of probability eV I, one can apply Lemma 3.9 to derive

12
2
< NE (‘Za(n,nz)a(n’,ng)‘ ) (123
ny

> o )o@ ny)
ny

This implies that

2

> o n)o ()

naz

R )
Se NFE‘ Zo(n, na)o (n', nz)’ (7.24)
ny

~ N % {na : (n3 — na, n3 —n) = O(N; "),

100sq

(n3 —ny,n3 —n') = O(N; "), na # ny, n3}.

N

Therefore, dropping an exceptional set of probability N fe_N 1~ e I, we have

Z ‘ Za(n, ny)o (n’, ny) ?

n#n’ N2
NS {(nyn' na) s n# 0, (n3 —no,n3 —n) = O(N,*),

(n3 —na,n3 —n') = O(NIIOOSO), ny # ni, n3}.

(7.25)

Counting first all the possible pairs of (n, n2) by N 11 +Cso N> (Lemma 4.5), and by the

N11+CS0

Wick ordered condition n3 # n», which further gives at most ~ possible n’,

we derive
/2

1
-2
3 ) > o (nno nz)‘ < Ny HCoN12, (7.26)

n#n’ N2

which obviously dominates the bound (7.22) for the diagonal term.
To summarize, we can go back to (7.18) and derive our third estimate

Ny Z ‘/ ri(ny)dz(n2)dsz(n3) H(n) dt

ni~Nj,ni—ny+n3=n, ny#ny,n3
100:s
n%—n%—i—n%—nzzO(M):O(Nl Y0)

S NEONTVEN NG, (7.27)

To complete the argument, note that the case Ni ~ N, will follow from estimates
(7.12) and (7.27). Indeed, consider two subcases. In the case N > N3100, we use
estimate (7.27), and when N| < N3100, we use estimate (7.12). When N; > N,
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(hence estimate (7.17) also holds), we also consider several subcases. In subcase
NaN3 = N0, we use estimate (7.12). In the case NaN3 < N /' and N3 > N, 7,
we use estimate (7.17). In the case NyN3 < N1 0 and N3 < Nl/ if Ny < Ng/lO
we use estimate (7.17). Finally, if No N3 < N“/lo N3 < Nll/ but N, > Nl/ , there
must hold N3 < Nl/ , hence one can use estimate (7.27).

8 Proof of Proposition 2.1: Remaining cases

We present the proof of the remaining cases. Note that in each case, the desired estimate
will be reduced to the resonant part similarly as in the previous two sections, and we
will only briefly sketch the reduction. It is unclear whether Case (a) and Case (c) are
the hardest two cases, however, all the essential arguments required to treat the rest of
the cases have already appeared in the previous two sections.

We will use the following notations throughout the section. Let [|w; || ys.b0

i = 1’ 27 37 Vi = ¢(t) Z|n:|NN1 gn‘n(clo) in; )C+l}’l t and ||h||X0~17b0 g 1
Let M be a parameter that will be spec1ﬁed in each of the cases, r;(n;,t) be
the space Fourier transform of (Pj;j<p¢(?))v;, and d;(n;, t) be the space Fourier

transform of P‘ri_ntngq)(t)w,-, i =1,2,3,and H(n,t) be the space Fourier trans-

<1,

~

form? of P|,_n2|5M¢(t)h. We will sometimes abbreviate r; (n;, t), d;(n;, t), H(n,t)
as ri(n;), d;(n;), H(n) respectively.
Similarly to (6.14) and (7.10), one always has the following estimates:

2 _
NP0 S, lldi(n)e ™| o S 12w wi P S 1
ri(ni,t) = w(t)g'i ©) yini win? i’ where ¥ is a Schwartz function, (8.1)
_ 2
Dy NH @ 1y S NP AN 0100

8.1 Case (b): N1 (Il) > N3(I) > Ny (I
This part is similar to Case (a). After handling the low-frequency part using deter-

ministic estimates and localization in time, we aim to prove for all N3 > N3 (where
N31%0 = 8~1), one has up to an exceptional set of probability e ~N5 that

e when Ni ~ N3,

50
1

/Nl(Plel, Pn,wa, Pnyv3)hep (1)

_ 8.2
< NPy, w1 oo | Py Bl o1 (8:2)

~ Nl_el ||PN| wi ||Xso,b0 ||P<N1h||X0-1*bo§

3 As one sees in the previous two sections, the function % here is actually ¢ (¢/8)h, whose X 0.1-b0 norm
is also bounded uniformly in §.
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e when N| > N3,

50
Nl

/M(mel, Py, w2, Pryv3)hep (1) S Ny I Paywill oo o | Py ol oo
(8.3)

Note that up to an exceptional set of probability e~ 5, we can assume that

|gns (@)| + | Pn; ¢ (1) v3ll oy < N3' (8.4)

for all N3 > N3, [n3| ~ Ns.
It also suffices to assume
N3 > N3O, (8.5)

Indeed, if N3 < N21000, from the deterministic estimate (3.15) and the bound (8.4),
one obtains

50
N,

/Nl(Plel, Py, w2, Pyyv3) fo(t)| < Ngcxl Ny N Pnywill ysoobo | 1 0.1-50.»

(8.6)

where f = Py, h or Py, h, hence (8.2) and (8.3) follow.
In the following, we will only prove (8.2), as estimate (8.3) follows similarly (almost
line by line). Note that in all the summations below we always have |n;| ~ N;, which
we sometimes omit from the notation. Let M = N31 OOS', similarly as in Case (a), one

can reduce (8.2) to the following estimate:

Ny’ Z di(n1)dx(n2)r3(n3) H (n) dt
ny—na+n3=n,ny#ny,n3
n%-"%*-n%—ni:O(M)

(8.7)

—€
5 N3 ! ||PN1 wi ||X501h0 ||P<N|h||xo-lfb0 ||PN2w2||Xsovb0'

To see this, note that one automatically has |n] < Nj, and recall that

an ||dz(nz)||%OO < 1. By first applying Cauchy—Schwarz in n and then in n;, one
has
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Ny? Z /dl (n1)da(n2)r3(n3)H(n) dt
ny—na+n3=n,ny#ni,n3
ni—n3+n3—n3=0(M)

172
; R 2
S NP IP<ni el xo.-0 ZH > dl(nl)dz(nz)r3(n3)‘ ,
n ny—ny—+n3=n,ny#n,n3 L
n%—n%—t—n%—n%:O(M)
1/2
2
S NPIP Lo | D > dimyrss)|
n,n2  npy—ny+n3=n,n2#ni,n3, Li
n?—n2+n}-n3=0(M)
(8.8)

Recall also n? — n2 +n% —n? = O (M) together with n| — ny +n3 = n imply that
1 2 3 4 g
(n3 —ny,n3 —n) = O(M). (8.9)

By applying Cauchy—Schwarz in n3 (note that the inner sum can be viewed as over

n3 only) and recalling ||r3(n3) || L® < Ny I+s1 (outside an exceptional set), the above

can be further bounded as

12
—1
S NP Py hll x0.-0 ldimollz, | Ny
Lt

n,ny,n3

12
(sup#{n3 t (n3 —na,n3 —n) = O(M)}>

n,ny

Cs —-2/3
S IP<ny Bl go.-p0 [l Pnywi Il ysobo N3 ' Ny /

12
(Sup#{nz,m :{ny —ny,np —n3) = O(M), ny #nl,m}) ,

ny
where in the second step above, we have applied a variant of Lemma 4.4 to conclude

sup#{n3 : (n3 —ny,n3 —n) = O(M)} < N32/3+100S1_

n,nz

Indeed, since N1 ~ N3, after dividing into < N3l 00s1 parts, all the n3 lie in an annulus
of radius ~ R < N3 with thickness ~ 0(%). By Lemma 4.1, there are at most
~ R?3 < N§/3 such points.

Furthermore, we apply Lemma 4.3 to count

sup#{na, n3 : (np —ny,ny —n3) = O(M), ny #ny,n3} S N22N31+1003',
ni
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which implies that

Ny’ Z di(n1)dx(n2)r3(n3)H(n) dt
n1—n2+n3=n,na7#n|,n3
ni=n3+n3—ni=0(M)

C —1/6
S NPy 1l go.-b0 | Py wi | guobo NS Na NG 0.

Recall that we have reduced to the case N3 > N21000, hence the desired estimate is
obtained.

8.2 Case (d): Ny () = N3(Il) = Ny (I

This case is almost identical to Case (c). By the deterministic estimates, it suffices
to show for all Ny > N o (where Ny = 8~1), one has up to an exceptional set of
probability e N1 that

Ny 3 [ nondGd e d
ni~Nj,n1—ny+n3=n, ny#ny,n3
n2—n2+n2—n2=0(M)=0(N,"")

< N[ !, for some € > €. (8.10)

51
Note that by removing an exceptional set of probability e Moo if necessary, we
will assume in this subsection that

gn, (@) + | Pn, @ (Dv1ll g0, + 1Py, @ DvillLe S Ny Vini] ~ Ni > Nio.
(8.11)
There still holds the same bound (7.12) as in Case (c). Moreover, one still has
(7.15), as it has nothing to do with the relative sizes of N>, N3, and when Nj > N3,
the bound (7.17) still holds true as well (with the choice M = N{°**). Indeed, the

only step that one needs to check here is that

N
sup#{n3 : (n3 — na,n3 —n) = O(M)} < N1 max (NT% 1) ,

n,n
2 1

which follows from the same proof of Lemma 4.4 and the assumption that N1 > N3.
We claim that the desired bound follows from (7.12) and (7.17). To see this, when

N1 ~ Nz, if one further has N, > N31/9 ~ N11/9’ one can apply (7.12). Otherwise,
Ny < N31 / 9, (7.17) suffices. When N; > N3, we address two difference subcases.

/3 1/3

If we are in the subcase that N 11 > N3, then one automatically has No < N |
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hence (7.17) implies the desired estimate. In the subcase that Nll < N3, suppose in

10
addition one has NyN3 > N, , then we apply (7.12), otherwise the desired decay in
N follows from (7.17). The proof of Case (d) is complete.

8.3 Case (e): N1 (I) = No() > N3()

By a similar reduction process as in Case (a), let N2 o be a large parameter satisfying
Nzl_%o = 87!, we will focusing on proving for all Ny > N ¢ that, up to an exceptional
: NS

set of probability of ¢e~"2 and a common exceptional set independent of N», with

probability ¢ M0, we have

e when Ni ~ N»,

S0
Nl

/ ¢ (1)AN1(Py, w1, Py,va, Pyyv3)

SN{EI NNI_EI, (8.12)
e when N > N,

Ny° /45(1‘)}_1/\/1(1’1\/1101, Py, v2, Pnyv3)

5 Nz_él ”PN] wi ||X5'01b0 ”PN]h”XOJ*bO'
(8.13)

As usual, the part No < N> will be handled by the purely deterministic estimate
(3.15), and by localizing in time ~ N, | (1)00

One may assume, by dropping a set of probability e N 26,0, that

< N5\, < Ny,
{|gn|_ So. Inl < N 1

lgnl < N5', |n| ~ N2> Nao.

Remark 8.1 In the original paper of Bourgain [4], Case (e) is not the hardest case,
however, one should be particularly careful in our irrational setting. This is because
our counting lemma in the irrational case is weaker compared to the ones in [4], hence
any loss of N} will be unfavorable. Since the random data argument can gain at most
a (negative) power of N3, our counting Lemma 4.5 becomes useless in Case (e).

Remark 8.2 One should also be very careful about dropping exceptional sets of small
probability when the highest frequency is of type (II). For example, in our current Case
(e), all large deviation type arguments require one to drop a set of probability ¢~ 2,
thus one cannot apply random data type argument for too many times. For instance, if
one drops N ]2 different sets with probability e~ 2, one immediately loses control of
the total probability. Moreover, in Case (), one also needs to sum in Nj. Therefore, it
is crucial that, for a fixed N; and for all N1, one can apply at most N2C times essentially
different random data type arguments. This is an issue existing even in the rational
tori case. We will add some more details along the proof for the convenience of the

reader.
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From the remark above, one observes that the potentially most troublesome situation
will be when In N1 > In N;. Hence, in the following we will only focus on proving
(8.13), and only briefly comment on necessary changes needed for proving (8.12).

Let M = Nzloosl , we may further reduce (8.13) to the following estimate:

Ny’ Z / dy(n)ra(n2)rs(n3)H(n) dt
|nj|~N;, ny—ny+n3—n=0
nj—n3+n3—n=0(M)

(8.15)

—€
S Ny PN will oo | Py L0150 -

By applying Cauchy—Schwarz in n, we have

Ny’ Z /dl (n)r2(n2)ra(nz)H(n) dt
|nj|~Nji, ni—ny4+n3—n=0
n—n3+n3—n>=0(M)
172

< NPyl | 3 3 dy ()72 (1) (13)|
n np—ny+n3=n,npF#n|,n3
n}—n}+n3—n3=0(M)

2
L

(8.16)

For the sake of brevity, in the following we oftentimes omit the condition |n;| ~ N;

in the summation. Dividing {n; : |n1| ~ N} into finitely overlapping balls {J} of

radius ~ N, we are left with showing for each J that, up to some exceptional set of
small probability e~ 2,

> > denmnsns)|

neJ niy—ny+n3=n,ny#ni,n3
n% —n%—i—n% —ni:O(M)

< NPy |2 (8.17)

XO,hO ’

2
L

where we have observed that n; € J implies n € J (a doubling of J) and we still
denote J as J for the sake of notational convenience. Moreover, we will prove the
above estimate for some s >> s;. In particular, any loss of NZC .
be irrelevant.

Note that for each fixed Ny, there are ~ N 12 / sz such J, hence one should be careful
when applying random data type argument to avoid dropping too many exceptional
sets. Observe, every time one applies large deviation type argument to estimate sums of
Gaussians and multiple Gausssians, one needs to drop an exceptional set of probability
¢~M1, and such set, a priori may depend on J. If one naively drops all such sets, a

in the estimate will

.. . - N? ¢ .
priori one may need to drop in total a set of probability ~ N—lzefN 2, which could be

2
enormous when Ni >> N». Also recall we also need to sum for all Ny > N,. This
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problem will even arise when one studies the problem on rational tori. We will explain
how to address this issue in detail in Sect. 8.3.1, and other cases will follow similarly.
Note that for the case N1 ~ N3, the decomposition into {J} is unnecessary.
To prove (8.17), we first define

Zn17n2+n3=n,n27én1,n3 ra(n2)r3(n3), ifni,neJ,

An,ny) = A(n,n)(t) = n%—n%—i—n%—ni:O(M)
0, otherwise,
and
8ny (@)gny (@) .
Zn1—n2+n3:n,n2;ﬁn1,n3 s N21\733 , ifn,nel,
o(n,ny) = n2—n3+n3—n3=0(M)
0, otherwise.

Then, similarly as in Remark 7.3, one has the left hand side of (8.17) bounded by

1/2
2
SUPswilos [max Y ot + [ 32| 3 o no @ ,
nieJ n#n’ nieJ
(8718)
where we have applied (C.7) and recalled that Y, _; lld) (n])||i2 < ||[Pywy ||§(0,h0.
t

In the following, it suffices to bound the two terms in the brackets by N, .
The diagonal term is easier. Note that if no # n3, for n € J fixed, one has

Y o, n))?

nieJ

< (NaN3) 2N3 " sup#{(na. n3) © n = ny — ny +n3, ny # niy, n3, (8.19)
n

(n3 —na,n —n3) = O(M)}
5 (N2N3)—2N2CSl N32N2 — N2—1+C51.

In the first step above, we applied Lemma 3.9 to get | 3" gn,2n51> < Nfs' > 1,by
dropping an exceptional set if necessary, and in the second step, we counted 73 naively
and then n, using Lemma 4.3.

We are thus left with the non-diagonal term. Expanding o (n, n1) and o (n’, ny), our
goal is to show that

1/2

Z ‘ Z o(n,ny)o(n',ny) ?

n#n’ niel
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1/2

2
=N Y Y Tmtngng| | SN (8.20)
n#n’ (%)

for some number s > s1. Here we have simplified the notation by using (x) to denote
the set of (n1, na, n3, n, n%) satisfying

ny e J,
n=ny—ny+n3, ny #ny,n3, (n—ny,n—n3z)=0M), (8.21)
n' =ny —n, +ny, nh #ny,ng, (0 —np,n’ —nf) = 0(M).

In the following, we will prove (8.20) case by case.

8.3.1 Casel:ny, n3, n’z, n’3 are distinct

Denoting the corresponding summation in Z(*) by Z(*)’ 1 and applying again

Lemma 3.9 up to dropping a set of measure e~ "2, one has

2
R JE— C.
’ E gnzgn3gn’2gng SNz ! E L.
(),1 (), 1

Hence, denoting the corresponding contribution of Case I in the left hand side of (8.20)
by (8.20)1, one obtains

_ s 172
(8.20)1 < (NaN3)2NE™ (#{n1, na, n3, nly, ny = (e)})'? (8.22)
where (%%) denotes the conditions
neJ,
ny #ny,n3, nh #ny,nj, (8.23)

(ny —ni,ny —n3) = O(M), (n, —ny,ny, —nfy) = O(M).

By first counting naively n; € J, one has

2
N
#{n1,na, n3, nh, 0y (k%)) < N22 (N32max (Tz/%’ 1)) ,
N1 -

where we have then counted n3 naively, and applied Lemma 4.4 (recalling that Nj >
N3). Therefore,
(8.20); < NZC‘“ max(Nf1/3, N271) < N;1/3+cs] .
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Note that in the case N; ~ N, the same estimate remains true, as the counting
Lemma 4.4 still implies the same bound. Similarly, in Case II, IIL, IV, V below, Lemma
4.4 always provides the same counting result.

Before we go to the next case, we explain the issue about not dropping too many
exceptional sets. This needs to be taken care of since the relation

ny € J,
n=ny —ny+n3, np #Fny,n3, (n—np,n—n3)=0M), (8.24)
n' =ny —n, +ny, nh #nyp,ng, (0 —np,n’ —nf) =0(M).

a priori depends on J. Note that we need only to worry about the case N > N, N3.
Without loss of generality, we may assume also n € J. We write J = a; + By,,
n=ay+m,n =ay +m',n =ay +m, and relation (8.24) as

my € By,,
m—m1—n2/+n3 ny # ni,n3, {mo—my,m—n3) =—(m—mi,ay)+ OM),
m' =mq n2+n3, nzyénl n3, (m' —my,m —n3) —(m" —my,ay)+ OM).

(8.25)
The point is, though, there are potentially many choice of ay, the above relation is
empty unless

—(m —my,a;)+ O(M) = O(N3), —(m' —mi,a;)+ O(M)=O(N3).
Thus, we can always write relation (8.25) into O (M) many union of the following,

mi GBNz,
m=m1 —ny+n3, np #ni,n3, (m—my,m—n3)=a-+ 0(1), (8.26)
m' =my —ny +nf, ny #ny,ny, (m' —my,m' —nl) =b+ 0(1),

where a, b € Z and |a|, |b] < N22. Thus, the total exceptional set one needs to drop,

for all Ny and J, will be at most N22e_N’f, which is allowed.
We don’t repeat this discussion of the exceptional set in the later part of the article.

8.3.2 Case ll: n; = ), (n3 # nj)

Denote the corresponding summationin ), as ), 5, one has fromny = n, (8.14)
and Lemma 3.9 that, up to dropping an exceptional set

2
| Trgnsgn | S NS Y @G sy, (8.27)

(),2 n3,nj

where by Lemma 4.3
#S(n,n',n3, ny) = #{ny, na: (n1, na, n3, ny, ny) satisfies (x)} < N21+CS‘.
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Hence, remember the definition of (k) in (8.23), one further has

(8.20)2 < (N2N3)72N2CS1 N2l/2 (#{nl,nz, n3, n/3 1 (ny,np,n3,n7, n/3) satisfies (**)})1/2 .

(8.28)
By counting n1 € J naively first, then counting (n2, n3) using Lemma 4.4, lastly
counting n’3 via Lemma 4.3, one obtains

. N
#n1, o, 3, nh 1 (n1, na, n3, o, 1) satisfies (+%)} < N2N2 max | —2=, 1) N3NE*1,
3 3 ~ 43 N1/3 2
1

which implies that

6 1/6+Cs

(8.2002 < NS*'N; 2 max(Ny VO, Ny V) < Ny (8.29)

8.3.3 Caselll:n3 = n}j (ny # )

Denoting the corresponding summation in Z(*) as Z(*),S’ similarly as in Case II, one
has

2
| Bogm | S NS Y @S, n)), (8.30)

(%),3 na,n

where by trivially counting n3,
#S(n,n', na, ny) == #{ny, n3 : (n1, na, n3, ny, n3) satisfies (x)} < N3.

Hence, remember the definition of (k) in (8.23)
(8.20)3 < (N2N3)72N2CS1N3 (#{nl, no, ”/27 n3: (ny, na, n3, "/27 n3) satisfies (**)})1/2.
(8.31)
By trivially counting 1 € J, n3, and applying Lemma 4.4 to n; and n, one obtains

. N3
#{n1,na, nh, n3 : (n1, na, n3, nh, n3) satisfies (x%)} < NZC‘Y1N22N32 max (Tz/y 1) .
N
1

Therefore,

(8.20)3 < NS max (Nl_w, N2_1> < Ny e (8.32)

8.3.4 CaseIV:ny = nj, n3 # )

Denoting the corresponding summation in Z(*) asy. (x).4> Similarly as above, one has

2
| > G| S NS Y SO ), (8.33)

(x),4 n3,n
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where by Lemma 4.3,
#S(n,n', n3, ny) = #{ny, na: (n1, na, n3, nh, ny) satisfies (x)} < N21+CS‘.

Plugging into the above, one obtains, again remember the definition of («x) in (8.23)

(8.20)4 S (NaN3)“2NS “IN)/2 (#ny, na, n3, nhy © (n1, na, n3, b, o) satisfies (+)}) /2. (8.34)

Same as in Case III, by trivially counting n; € J, n3, and applying Lemma 4.4 to ny
and n,, one obtains

N3

. N3
#{n1, na, n3, 0 1 (n1,ny, n3, nh, ny) satisfies (xx)} < NZCS1 N3 N3 max (—2 1.
1

Therefore, observing that in this case one must have N, ~ N3,

— N — —
(8.20)4 5 NZCSIN;INZ 1/2 max (NT%v 1) 5 N2 1/2+Csy max(Nl 1/3, N;l)
1

< N;5/6+Cs1 '

(8.35)
8.3.5 CaseV:n3 = n}, ny # nj
This case can be treated in the exact same way as Case IV.

8.3.6 CaseVl:n3 = n), ny = nj

In this case we again have N, ~ N3. Denoting as Z(*)’é the corresponding sum in
Z(*), one has

2
< NS (#S(non))?, (8.36)

> Trgn @
(%),6

where
S(n,n') :={ny,n2,n3 : (n1, na, n3, n3, ny) satisfies (x)},

and in this case means thatn, ny, n3 are distinct,n = ny —np+nsz, n’ = ny —n3+nos,
and

(n—ni,n—n3)=0M), n —ni,n —ny)=0WM).

The above implies that n + n’ = 2ny, hence #S(n, n’) < N2]+CS‘ by Lemma 4.3.
As aresult, again remember the definition of (:x) in (8.23)

(8.20)6 < (N2N3)2NS " N, 2 (#{n1. na 3 = (1. na. n3, n3, ny) satisfies (o) })'/.
(8.37)
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From (xx), one has
(np —ny,ny —n3) = O(M), (n3—ny,n3 —nz) = O(M),

hence |ny — n3|?> = O(M). Trivially counting ny, n3, and applying Lemma 4.3 to
count ny € J, one has

#{n1,na, n3 : (ny, na, n3, n3, ny) satisfies (x%)} < N2C”N22N32N2,

thus
(8.20)6 < Ny "Ny 1 < Ny O (8.38)

This concludes the proof of Case (e).

8.4 Case (f): Ny (ID > N3(I) = Na()

By the same reduction as in Case (e), let N5 100 =8 land M = N3] 00s1 1t suffices
to consider the high frequency part N3 > N3 0. Our goal is to show that, up to an
exceptional set of probability ~ e~ N5 and a common exceptional set (independent of

N3) of probability e ~Ns0, there hold
e when Ni ~ N3,

S0
1

SNy~ N (8.39)

/ ¢ (1)AN1(Py, w1, Py,yva, Pyyv3)

e when N1 > N3,

leo /¢(I)h~/\/l(PN1wl7 Py, v2, PN3U3) S N3 “ ”PN]wl ||x30 b()”PNlh”xOl bo -
(8.40)
We will also assume, by dropping a set of probability ¢ M50 that
< N3l < N3,
lgnl < }10 In] < N3 (8.41)
lgn| < N3', [n| ~ N3 > N3p.

Again, we will focus on proving (8.40). By a similar reduction as for Case (c), it
suffices to show

Nfo Z / di(ny)ra(n2)r3(n3)H(n) dt (8.42)

[n;|~Nj, nj—nz+n3—n=0
n% 7n%+n§ 7n2=0(M)

—c
5 N3 1”Plel ||x50~170 ”PNlh”xOJ—bOv
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which, by the same argument as in Case (e), will follow from showing for each J (of

size ~ N3) that, up to some exceptional set of small probability e N,
- 2
> Y denmsms)| L SN IPwile,  (843)

nelJ ni1—ny+n3=n,ny#ni,n3
22,2 2
ni—ns+n3—nz=0(M)

for some constance s >> s1. We will derive two different bounds, each of which works
better in different regimes of Ny, N, N3.

First, by applying Holder’s inequality to the inner sum, one obtains that the left
hand side of (8.43) is bounded by

<D sup#{ny.ny: n=n; —ny+n3, (n3—ny.n—n3z) = 0(M)}
net "

Y. ldie)ra(rs@s)l,

np,na,n3

N3 o
< NS NZ max (W 1) Z Ny N2y (n1)||it2 (8.44)

1 n,ni,n2,n3

) N3 _
< N3CM max <N1/3’ ) N; 2||ijl||XOb0 sulp#{nz,m I ny #ni,n3,
1
(n2 —ny,n2 —n3) = O(M)}.

In the second line above, we applied (8.41) and Lemma 4.4 (the estimate holds true
in both cases N1 > N3 and N; ~ N3). One can then trivially count n, and apply
Lemma 4.3 to count n3 to further bound the above by

N

Cs 3

< NS max <N1/3’ ) N3 Pywi 504, N3 N3
1

< NENZ max(N; PN

N3 OIPrw o, - (8.45)

We now turn to a different estimate of the left hand side of (8.43). In fact, we claim
that by the same argument as in Case (e), one also obtains in our current case that

> X LS NSNS NP w1
neJ nip—ny+n3=n,ny#ni,n3
n%ﬂz%Jrngfrli:O(M)
(8.46)

We first explain how to complete the proof of (8.43) using the two estimates (8.45)
1_ 1
and (8.46) above. In the case Ny > N ' the desired estimate follows from (8.46).

Now suppose Ny < N" 100 IfN; < Nl/ the boundin (8.45) becomes N3 1N2 N_

Hence, in the subcase when N> < N; 3100 , this is good enough. If Ny > N3 ‘°°,
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one can again apply (8.46) to obtain the desired bound. It is left to check the case

N3 > N11/3, where (8.45) becomes N3CS1 N22N1_1/3. Observe that this does imply the

11
desired result, since we are already in the regime N, < N '?.

It thus suffices to verify (8.46). Note that most of the estimates in Case (e) still hold,
as they do not depend on the relative sizes of N, N3. More precisely, the estimate
(8.19) for the diagonal term, and the final bounds obtained in Case VI, V, VI for
the non-diagonal term still hold true (with an extra factor N3C 1). We are now left to
examine Case I, II, III.

8.4.1 Case I: ny, n3, nj, nj are distinct

We start with estimate (8.22), which still holds true in Case (f). Note that
#{n1, na, n3, ny, nly 0 (k%)) = #{n, na, n3, nh, 0y (k% %)),

where (%) is in Case (e), given in (8.23), and ( * *) denotes the conditions

nelJd,
n3 #n,na, ny #n,nj, (8.47)
(n3 —na,n—n3=0(M), (ny—njn—nj)=O0M).

We first count n € J naively (recalling that |J| ~ N3), we then count n, naively and
n3 using Lemma 4.4, and repeat for (n), n%y). This leads to

2
) N

#{n, na, n3, nh,n: (xxx)} < N3CA1N§ <N22 max (%/3 l)) .
N,

Note that this bound holds true in both cases N; > N3 and N; ~ N3. Hence, one
obtains

_ 1/2
(8.20)1 S (NaN3) 2N (#{ny, na, n3, ny, ny = (x)})"

N
< (N2N3)"2NE N2 N3 max (% 1) (8.48)
; N
< N30s1 max(Nl_l/3,N3_1) < N3—1/3+Cs1 < N3CSIN2—1/3.

8.4.2 Casell:ny = n), (n3 # nj)

In our current case, after dropping an exceptional set, one still has estimate (8.22),
where

#S(n,n', n3, ny) ;= #{n1, ny : (n1, na, n3, ny, n}) satisfies (x)}

S#n2: (3 —na,n —n3) = O(M)} S Ny *' N
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Hence, remembering the definition of (sx) in (8.23), one has
(8202 S (NaN3) 2NSUNY 2 (#(ny, na, na, nl = (n1, na, n3, na, ) satisfies (0)}) /2. (8.49)

By counting 7, first naively, then n3 naively, then n by Lemma 4.3, and lastly n’ by
Lemma 4.3 as well, one obtains

#{n1,n2,n3,ny : (n1, na, n3, na, nfy) satisfies (x#)} < N3CSI N3N3N;3N3,
which implies

(8.20), < NN, /2, (8.50)

8.4.3 Caselll:n3 = n}; (ny # )

Note that after dropping an exceptional set, estimate (8.30) still holds true in Case
(f). But this time, we count #S(n, n’, n», n/z) more carefully. It suffices to count n3
satisfying (n3 — na, n —n3) = O(M). By Lemma 4.4, one has

NESINZP, if N ~ N3,

#S(n,n',na,nh) <
( 2:17) S NfslmaX(%’l)a if N1 > Nj.
1

In the second estimate above, we used the fact that |n| ~ N| when N > N3. Same
as before, where remembering the definition of () in (8.23),

(8.20)3 S (N2N3) 2NE™ (#S(n, ', na, i)' 2

. 1/2
(#{n1, n2, b, n3 = (n1, na, n3, b, n3) satisfies o0)})/>. (8.51)
By counting n1, ns, n/2 trivially, and then n3 using Lemma 4.3, one has
#{n1,na, nh,n3 : (n1, na, n3, nhy, n3) satisfies Gx*)} < N3C”N32N§N3.

Combining the above bounds together, one obtains
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(8.20)3 S (NaN3) NS (#S(n, ', na, ny))'* N> N3

Ny, if Ny ~ N3,

< N3C“ N;1/2 _ 72
max

) , (8.52)
W,l , if Ny > N3

S N:SSIN;]/6 < N?’CSINz—l/G.

The proof of Case (f) is thus complete.

8.5 Case (g): N1 (I) > Na() > N3 (Il

By deterministic estimates, it suffices to show for all N; > Nj o (where Ny g = s,
one has up to an exceptional set of probability e~V that

N Z /Vl(nl)”z(nz)d3(n3)H(n) dt

ni~Nj,ni—nz+n3=n, ny#n,n3
100sy
n3—n3+n3—n’=0(M)=0(N, °)

< NI_EI, for some €1 > €, (8.53)

where M = O(N,*%).
By dropping an exceptional set of probability ¢ N0, one may assume that

Ign@)| S NY', Vin| ~ Ny = Njp. (8.54)

Our goal is to show that, up to an exceptional set of probability e~ i, there holds

50
Nl

/d’(t)ﬁ/\/l(Pval, Py, vz, Pyyw3)| S Ny (8.55)

Apparently, (8.55) can be reduced to the following estimate:

Ny Z frl (n1)ra(n2)ds(n3)H(n)dr| < Ny °'. (8.56)
|ni|~Nj, ni—na+n3—n=0
ni—n3+n3—n*=0(M)
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. . . . 1—-ks .
We first derive an estimate that will handle the regime N3 < N, '. To see this,
applying Cauchy—Schwarz in n, one obtains

Ny’ Z / r1(n1)r2(n2)dz(n3) H(n) dt
|ni|~N;, ny—nz+n3—n=0
n%—n%-kn%—nz:O(M)

1/2
1/2 )
SN (Z ||H<n)||i;) > 3 nonRdm)|
n n ny—na+n3=n,ny#ni,n3 !
n%7n%+n§7n£:0(M)
12
- 2
S b d
SN Y > ri(nra(n2)dz(n3) L2
n ny—ny+n3=n, nyF#ni,n3
n%—n%-ﬁ—n%—ni:O(M)
(8.57)
Then, applying Cauchy—-Schwarz again to the inner sum above, one has, after drop-
ping an exceptional set of probability e i,
1/2
2
—1 571
SR DY 3 Ids(n3)l 2

n ny—ny+n3=n,nyF#ni,n3
n% —n%—i—n%—nﬁ:O(M)

1/2
SNPONTING! (Z > ||d3(n3)||itz> (8.58)

n np,nz,n3

n

12
(Sup#{nz,m : (n3 —n2,n —n3) = O(M)})

Cs0 =1 ni—1 A71/2 2,1/2
S NN N, NN,

12
(Sup#{nl,nz D ny #Eny,n3, (13 —np,n3 —ng) = O(M)}) ,

n3

where in the last step above, we have applied Lemma 4.5. Another application of
Lemma 4.5 implies that

1/2 3,172 3,1/2 —1/2 4,12

C - - 1/2 Cs
SNEONTINTINGPNSPNPN, P < NEONTPN, (8.59)

1

. . . 1— 5=
Hence, the desired estimate follows if N3 < N| ',

1—b . . .
The other case N3 > N, ' in fact follows directly from the estimates in Case (e).
Note that the relative sizes of Nj, N2, N3 in these two cases are the same, so all the
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counting in Case (e) remain true here. We briefly sketch the argument here. It suffices
to show, up to an exceptional set of small probability e~V1, that

) H > rl(nl)mds(m)‘

n ny—ny4n3=n,ny#ni,n3
ni—n3+n—ni=0(M)

2
LENTT (8.60)

We would like to apply again version of the Cauchy—Schwarz inequality in (C.7),
but this time with
B 8, (@)gny (@)
o(n,n3) = Z NiN, .
n1—ny+n3=n, np7#ni,n3
n%—n%+n§—n£=0(M)

For the diagonal term, the exact same counting as in (8.19) gives, for any fixed n,

> o n3)* < (NN 2N ONIN, S NEON3 (8.61)

n3

1
which is good enough since N, > N3 > Nll_m.

The six cases for the non-diagonal term work similarly. In particular, Case I (all
ni, n'y, ny, n distinct), Case Ill (ny = n), ny # n}), and Case VI (ny = n), np = n))
can be carried out in the exact same way.

In Case II (ny = n), ny # n')), one has up to an exceptional set that

2
\ Y TmemuBn| SN @S’ i n))? (8.62)

(%),2 ni,n

Here, by Lemma 4.3,
#S(n,n', ny, ny) :=#{na, n3 : ny, na, n3, n}, ny satisfies (+')} < N1CS°N3,
with (%") denotes conditions
ny e J,
n=mny—ny+n3, ny #ny,n3 (n—ny,n—n3)=0M), (8.63)

n' =n| —n,+n3, n, #n|,n3, (0 —nj,n —n3)=0M).

The rest of the argument proceeds in the exact same way as Case II in Case (e).

Since Case IV and V can be dealt with in the same way, we only briefly discuss Case
IV (ny = n!, n1 # n) here. By dropping an exceptional set, one has the following
analogue of(8.33):
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2
| G B | S NEY Y S G ), (8.64)

(%),4 ni.n

where by Lemma 4.3,
#S(n,n',n1,ny) = #{na, n3 : (n1, na, n3, na, nh) satisfies (x')} < NICSON3.

The rest of the argument again proceeds in the same way as in Case IV of Case (e),
which is left to the reader. The proof of Case (g) is complete.

8.6 Case (h): N1 () > N3 (Il > Nx(I)

. . . . 1-1k5
This case can be estimated in the same way as Case (g), where again if N3 > N; ',
the bounds in Case (f) apply. Note that, compared to Case (f), one can think about
Ni(I), in Case (h), as Ni(II), except one suffers a loss le 0 The computation in

Case (f) gives a gain of N5 s", where s* can be computed explicitly. Thus, when s is

1 .
small enough and N3 > N,'%, the extra loss of N 12“) can be neglected. We omit the
details.

8.7 Case (i), (j): N1 (1) = N2 (Il) = N3(I) or N+ (I) = N3(I) = N2(Il)

As before, we focus on showing for all Ny > Nj o (where Nj g = 8‘1), up to an
exceptional set of probability eV I, there holds

Ny 3 [ nodGanm Haar

ni~N;,ni—ny+n3=n, ny#ny,n3

n2—nd4+n—n2=0(M)=0(N,"")

< N[, for some € > €, (8.65)

where M = O(N,"%).
We may assume dropping an exceptional set of probability e Nio that

Ign@)| S Ny', Vin| ~ Ny = Npp. (8.66)

We aim to show that, up to an exceptional set of probability eV I, there holds

50
Nl

/ ¢ (RN (Py,v1, Py,wa, Pyyv3)| S N (8.67)
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Similarly as before, (8.67) will follow from the following estimate:

Ny’ > / r(n) s Hm di| S N7 (8.68)
|ni|~Nji, n1—n2+n3—n=0
ni—n3+n3—n*=0(M)

We will first introduce an estimate that allows one to reduce to the regime N, >

1— s . . .
N, '".Toseethis, following the same Cauchy—Schwarz argument as in (8.57), (8.58),
one obtains, after dropping a set of probability e~V i

Ny’ Z /rl(nl)dz(nz)m(m)H(n) dt
|ni|~Nj, ny—ny+n3—n=0
n}—n3+nj—n’=0(M)

Cso nr—1 Ar—1 A7 1/2 2,172 (8.69)
5N150N1 N3 Ny "Ny

12
<Sup#{n1,n3 D ny #Eny,n3, (13 —np,n3 —ng) = O(M)})
ny

S N]CsoNl—lN3—lN21/2N31/2N11/2N31/2 S, NICSONI_I/ZNZI/Z,

1
where in the last two steps we have applied Lemma 4.5. Hence, if N < N 11 1% the
desired estimate follows.

Next, we may apply the same estimate as in Case (c) to deal with the case N3 <
N 11 s, Indeed, introducing an extra factor of N;O (since the third input function in the
current case is random) to (7.27), one has

Ny > /rl(nl)dz(nz)rg(m)H(n)dt SNEONTVENY AN,
|ni|~Nji, n1—ny+n3—n=0
nf—n3+n3—n’=0(M)

(8.70)

which is enough to handle the case N3 < N 11 / 5.

1

. . . . 1— 55
To summarize, we have reduced the desired estimate to the regime N, > N 1 100

and N3 > Nl1 /3. The rest of the argument is essentially repeating that of Case (e).
Define

3 81 (@)8ns (@)

o(n,ny) = NiN

ny—ny+n3=n, ny#ny,n3
nz—n2+n2—n2—0(M)
1 2 3 4=
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Then, one has

Ny’ Z /rl (n1)dz(n2)r3(n3)H(n) dt
[nj|~Nj, ni—nz+n3—n=0
nf=n3+n3—n?=0(M)

1212
2
§N1CS° m’?x2|a(n,n2)|2+ Z ‘Za(n,nz)o(n/,nz)
ny

n#n’ N2
(8.71)
Again, the diagonal term is easier to deal with. After dropping a set of small prob-
ability and applying Lemma 4.5, one has

2< Cso n7—2 A7—2 < —14Csg
m’?xzw(n,nz)l SNIONTENT2NoN3 S N . (8.72)

no
For the non-diagonal term, rewrite

2 1/2

1/
2 2
S Y et | = @iN DD g an :

n#n N2 n#n' (%)
(8.73)
where (") denotes the set of (n1, n2, n3, n'}, n}) satisfying

{n=n1 —ny +n3, np #ny,n3, (n —ny,n—n3) = 0(M), (8.74)

n' =n| —ny+nf, ny #n,ng, (0 —nj,n" —nf) =0M).

We discuss three subcases in the following, and omit the symmetric ones. Note that
they proceed very similarly as the corresponding cases in Case (e).

8.7.1 Case l: ny, n3, n’, n} are distinct
By dropping an exceptional set, one obtains
(8.73)1 < NN N3) 2 (#8) /2, (8.75)

where S denotes the set (n1, nz, n3, n, n%y) satisfying

ny #ny,n3, ny,ns,

/ / (8.76)
(ny —ni,np —n3) = OM), (ny—ny,ny—n3)=0M).

Counting n trivially first, then applying Lemma 4.5 twice, one has
#S < NEONZ(NiN3)?,
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which implies

(8.73)1 S NEONTINoNGE S N1 PHE, (8.77)
8.7.2 Casell: ny = n’ (n3 # nj)
Similarly as in Case II of Case (e), one obtains
_ 1/2
(8.73)2 < N (NiN3) 2 (#S(n, 0, n3, ny)) 2 #8)1/2 (8.78)

where remembering the definition of (x”) in (8.74)
#S(n,n',n3, ny) = #{n1,n2: (n1,n2, n3, ny, nh) satisfies (x”)} < N1CS°N1
by Lemma 4.3, and S denotes the set of (ny, na, n3, né) satisfying (8.76). Hence, by
counting ny trivially, then counting n, n3 via Lemma 4.5, and finally counting n
according to Lemma 4.3, one obtains
#S < NFONaNi N3N,
Combining together, one has

(8.73)2 S NEO (N1 N3) 2NN PNy PNy S NEONTIN, PN < vy e,
(8.79)

8.7.3 Caselll:ny = nj (n3 # n)

Following the same calculation as in Case III of Case (e), one has, up to a small
exceptional set,

(8.73)2 S NN N3) 2 (#S(n, ', n3, n)) > @$)1/2, (8.80)
where
#S(n,n',n3, n) = #{ny, ny . (n1,n2, n3, ny, ny) satisfies (+”)} < N1CSON1

according to Lemma 4.3. In the above, S consists of (nl,ng,n3,n/l) so that
(n1, n2, n3, ny, ny) satisfies (8.76). One thus has

#S < NANEYT NN

by Lemma 4.5 and 4.3 similarly as before. Therefore,

(8.73)2 S NEO(NIN3) 2N P NN, PNy S NEONTPNY PN < vy oHese,
(8.81)

This concludes the proof of Case (i) and (j).
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8.8 Case (k), (): N1(h) = N2 (1) = N3 (/) or Ny (1) = N3 (/) = N> ()

Considering only the case Nj > N o, where N’ = 6~!. Our goal is to show that

)
N 1

/./\/] (Pn,v1, Pnyv2, Py v3)ho(1)| < Nl_ﬂ, for some €1 > € (8.82)

up to an exceptional set of probability e~V i
Let M = O(N 11 OOSO), by a similar reduction argument as in Case (c), it suffices to
prove that

Ny > ri(n)ra(n2)r3(n3) H(n) dt
ni~Nj,n1—ny+n3=n, na#ni,n3
l’l%*ﬂ%*l’l’l%*nz:O(M)

< N; €, for some €] > €. (8.83)

Following the same argument in (8.57), one has

S N Tr/N
Ny > ri(n)ra(n2)r3(n3) H(n) di
ni~Nj,n1—ny+n3=n, ny#n,n3
n%fn%ﬂl%fnz:O(M)

" (8.84)

s PR
s |2 3 PR m M)
n ny—nz—+n3=n,ny#n,n3
n%—n%—i—n%—ni:O(M)

2
L7

Suppose n1, na, n3 are all distinct, then by dropping a set of probability e I and

recalling the presence of Schwartz function v (¢) in each r; (n;, t), one can bound the
above by

S NEO(NININ3) ™ (#ny # o # 03t (n2 — ny,ny —n3) = O(M))'/2

S NUONINN) T (NFNEND'Y? S N,

(8.85)
where in the second line above we trivially counted 5, n3 and applied Lemma 4.3 to
countnj.

Now, suppose n1 = n3. For fixed n, one thus has n = 2n3 — n» and |n3 — n2|2 =
O(M), hence |n3 — n|* = O(M). By losing a factor of NICSO, we can assume that
[n3 —n|*> = w4+ O(1), where < NICSO, in other words, n3 lies in an annulus of
radius ~ R and thickness ~ 0(%), with R S N lc % Applying Lemma 4.1, one sees

that the total number of such n3 is at most < R?/3 < N ]C %0,
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Therefore, by Cauchy—Schwarz, outside an exceptional set of probability e~V i

one has

(8.84) S NE® (#{ns : fixing n})'/% (N{NaN3) ™! (#{na, n3))!/?

(8.86)
< NEO(NINaN3) T Na N < Ny e
by trivially counting ny, n3.
The proof of Case (k) and (1) is hence complete, so is the proof of Proposition 2.1.

Appendix A: Time localization of X*-°

In this section, we summarize several standard time localization facts for the X5-?
space, and also briefly recall the proof of Lemma 3.5. The presentation mainly follows
that from [6]. Here ¢ is a fixed time cut off function. There are several basic facts about
the X*? space that we can recall below. We have

1
g @/Oullxse Sp llullixse, 0<b< 3 (A.D)

1-2b

1
N /Sullxsp Sp 82 |lullyss 3 <b<l. (A.2)

Also, Hausdorff—Young inequality gives the following estimate which is useful in the
interpolation
I¢@ulzs, Se lull ot (A3)

which can be compared to estimates (95), (96) on page 26 of [6].
In what follows, one should think 1 > s, > € > 0. We will only do proof for
(3.12) in Lemma 3.5.
Via Strichartz estimate and interpolation of Hausdorff Young inequality, one can
obtain
l6@ullzs, Se lull oy, (A4)

(One may change the 3 in the above to any number larger than 2.) Similarly, for p > 4,
one can obtain
lp@ulipp Se llullysprioee (A.5)

There are the following two Holder inequalities,

(D
0 1-6
||¢(l/3)u||L;{X < ||¢>(t/8)u||L’;2 ||¢(t)u||L’,, ’, (A.6)
where one has % = % + l_pg”. 0, = li"sp > %s,,
(2) 1/4
||¢(t/8)“||L,%X <Y ||¢(t)”||L?,x (A7)
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One derives

g /Sull s

0 1-6,
<l aSul)s 1 Wull,,”
9, 16 (A.8)
< llgadull s 3% *p@ull,,”
t,x t,x
6, 1-6, bp
56 “u”X}'e.%—e”u”XSp-HOe,%—e ¢
Note that
0 B (A.9)
frd —S5H. .
P l4s, —27°
Thus, to summarize, when s < 1, and € < s, one has
I¢/3ull s, Se lull ey (A.10)
which, for convenience, can be written as
I/l s Se llul 3-8, (A.11)

Localizing at frequency N, this gives Lemma 3.5 for balls B of radius N, which
are centered at origin point. To prove general B centered at ng, one simply observes

. R P Lo coo 2, . . 2
§ :anetnxetn l‘el),l — § : anet(n no)(x+2n0)el(n np) tet)»temoxe ingt (A12)

neB [n—ng|<N

. .. . . . i _in2 .
and the Lf’x norm of a function is invariant under multiplying e'"0*¢~""0" and doing
space translation in x variable by ng. This ends the proof.

Appendix B: Proof of Lemma 3.6, 3.7, 3.8
We briefly sketch the proof of those three Lemmata here.

We start with Lemma 3.8. Let h(n, 1), fi(n, t) be space of h, f;, and we will also
short handedly write them as h(n), f;(n). We only prove

‘f¢(l/5)hN2(PN1 1, Py f2, Pny f3)

S VPN Al L fillgone sup Tzt £5me™ l1x,,)- (B.1)
[n|~Ny

To see this, observe
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‘ / $(/RN>(Py, fi. Pa, 2. Py f3)| = | Y / $(t/8)h(n) fi(n) fo(n) f3(n)

[n|~Nj

S @/l 2l Ohm) 2119 @) fillLee ‘ Slul?v el fill e

(B.2)
Now we have, (note that one only has one mode in all the estimates below)

¢ Ohrm 2 S 1A ()e™ | go.1-p, Il fi () L2 S 11 fi ()™ [l go.n (B.3)

then, (B.1) will follow from (B.2) by Cauchy Schwarz.

We turn to Lemma 3.6. We start with (3.14) to (3.17). Estimates (3.14), (3.16)
follows from (3.11), (3.12) via Holder inequality. We point out that the naive loss
will be Nlce rather than max(N>, N3)€€, but this can be handled by a standard L?
orthogonality argument, See, for example,[2,6] for more details. Now we show how
to derive (3.17) from (3.16). We shall see that (3.15) can be derived similarly form
(3.14).

Recall that we used the notation

fie.y =" fitn.ne™, i=1,23 (B.4)

Le. fi(n, 1) is the space Fourier transform. For the sake of convenience, we denote
fi(n, t) with f;(n). Similarly, we wrtie h = ) _ h(n, t)e'"*.
Given (3.16), in order to derive (3.17), we need to further prove

e If N ~ N,

2

n1~|Ny|,n3~N3

< 8110 (max(Ny, N3) S\l yoa-s [ [ 1Py fill o0 (B.5)

1

f G (t/8h(ny) f1(n1) f2(n3) f3(n3)

o If Ny ~ N3

2

ni~Ni,na~N

< 8110 (max (N2, N3) @kl goi-w [ [I1Pw; fill yor, — (B.6)

1

/¢(f/5)f_l(n1)f1(nl)fz(nz)fa(nz)

o If Ny ~ N, ~ N3,

/ ¢ (/RN (P, f1, Pn, f2, P, f3)

< 8110 max(Na. Na)lhllxg y [ TIP3 fillyors (BT

1

@ Springer



Stoch PDE: Anal Comp

Estimate (B.7) follows from Lemma 3.8. The proof of estimates (B.5) and (B.6) are
similar, and we only work on (B.5). Note that the integration on the left side is only
in ¢. One has, (by Sobolev embedding in the 7 variable if necessary), that

1)l 2 S IhDe™ [ xo1-n,
If D lzse S NF@me™ | xon, (B.8)

I1fi 3) e < ILfi (3)e™ [ oo -

Then the desired estimates follow from a Holder inequality in # and Cauchy Schwarz
inequality in n1, n3. Estimates (3.18), (3.20), (3.21) are of similar flavor. We prove
(3.18) and leave the rest to the interested readers. Estimate (3.18) follows from the
following four estimates.

[ ]
‘ / V(O Py, fi Py, oPn, f3
< (max(Na, N3)“ ||| yo.s51| sup [| Py fill . Il fall o311 £31l o3 (B.9)
J
o If Ny ~ N,
> / Y (Oh(n) f1(n1) f2(n3) f3(n3)
ni~|Ny|,n3~N3
S NP, fill o | Py follxo.us5 1| Py f3ll 50 | Pashllxo.5,  (B.10)
o If Ny ~ N3,

2

n1~Ny,n2~N>
S Py fllx00 | PNy f2ll 0.3 | P, S5l x0.3 1 Py Bl g0 (B.11)

/ S ORGD f1 (1) fatna) f3(n3)

o If Ny ~ Ny ~ N3

‘/1ﬁ(t)f_lN2(PN1f1PN2f2PN3f3)

< min(|| Py, 2l xo.1-0 |l fill xo.n, sup ||||fj(n)€inx||xo-bo (B.12)
[nI~N1 5 4
J#

Again estimate (B.12) follows from Lemma 3.8. We will only prove estimate (B.9),
(B.10). The proof of (B.11) is similar to that for (B.10).

We start with (B.9). We may only consider the case N> > N3, as the case N» < N3
can be proved similarly.
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We may further only consider the case N1 3> Nj, otherwise one may replace Py
by P_y,. Observe that (using L? orthogonality),

/W(I)BPlelPszzPNgﬁ

= Z/w(t)ﬁPJflPszzPNgﬁ
7

= Z/l//(t)P/ﬁPJfl Py, f Pn; f3. (B.13)
J

For each J, we may estimate as follows,

'//Iﬂ(t)PJﬁPJflPszPN3.f3

S o Py 16OPs fillgs 1) Py, ol 3 160 P, f3ll 3 (B.14)

where without loss of generality assumed ¥ (1) = ¢ (1)* for some well localized o (1).
Using Estimate (3.7) to control the L3 norm in (B.14) and applying a Cauchy

Schwarz in J, the desired estimate then follows.
Lemma 3.7 can be proved similarly as Lemma 3.6.

Appendix C: A Cauchy-Schwarz type inequality

We summarize a (deterministic) Cauchy—Schwarz type inequality, that is often used
in random data type problems. For simplicity, let a;;, b; be real numbers, assume that

Yo s, (C.1)
J
which of course implies
2,2
ijbj/ <1. (C.2)
JsJ

Then, we have

Z | Zal’jbj|2 = Z Zaija,-j/bjbjr = Z Za,-ja,'jbﬁ + Z Z ai.,'a,-j/bjbjf
i i i

i J#E
(C.3)
Z | Zaija,-jbﬂz S quza?j (C.4)
i I

and, by Cauchy inequality,

Note that
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Z Z clijclij/bjbj/ = Z bjbj/ Za,-jaij/ S Zb?b?/ Z |Za,’ja,'j|2

iJ#E J#J i i’ J#E i
(C5)
To summarize, and by simple generalization to the complex case, one has

Lemma C.1 Assume Zj |bj|2 < 1, then

1/2
D1 by S max ) a4 | Y1) il (C.6)
i i T
One can also easily write down, via the dual estimate,
Lemma C.2 Assume Zj |bj|2 < 1, then
1/2
Xi:|;aijbj|2§ml?x;|aij|2+ §|;ai’j&zj|2 (C.7
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