pubs.acs.org/JPCA

¹ Photophysics of Platinum Tetrayne Oligomers: Delocalization of ² Triplet Exciton

- ³ Yongjun Li, [†] Russell W. Winkel, [†] Nancy Weisbach, [‡] John A. Gladysz, *, [‡] and Kirk S. Schanze*, [†]
- 4 [†]Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- s [‡]Chemistry Department, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
- 6 Supporting Information

8

9

10

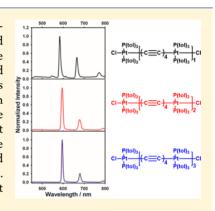
11

12

13

14

15


16

17

18

19

ABSTRACT: A series of platinum tetrayne oligomers, all-trans-Cl-Pt(P_2)-[($C \equiv C$)₄-Pt(P_2)]_n-Cl, where P = tri(p-tolyl)phosphine and n = 1-3, was subjected to a detailed photophysical investigation. The photoluminescence of each oligomer at low temperature (T < 140 K) in a 2-methyltetrahydrofuran (Me-THF) glass features an intense and narrow 0-0 phosphorescence band accompanied by a vibronic progression of sub-bands separated by ca. 2100 cm⁻¹. The emission arises from a $^3\pi$, π^* triplet state concentrated on the ($C \equiv C$)₄ carbon chain and the vibronic progression originates from coupling of the excitation to the ν ($C \equiv C$) stretch. All of the experimental data including ambient temperature absorption, low-temperature photoluminescence, and ambient temperature transient absorption spectroscopy provide clear evidence that the triplet state is localized on a chromophore consisting of approximately two $-[(C \equiv C)_4 - \text{Pt}(P_2)]$ - repeat units. Density functional theory calculations support the hypothesis that the triplet—triplet absorption arises from transitions that are delocalized over two repeat units.

o INTRODUCTION

21 Organic and organometallic oligomers that feature extended sp 22 carbon chains, for example, $R-(C \equiv C)_n-R$ and $L_vM-(C \equiv C)_n$ 23 C)_n-ML_v have attracted recent interest due to their potential 24 application in optical and optoelectronic devices. 1-10 Oligoynes 25 feature rigid rod-like structures and extended π -electron 26 delocalization, which makes them attractive building blocks 27 for the construction of linear carbon-rich materials that may 28 possess potential applications as molecular electronic wires for 29 studying exciton or charge transport on the nanoscale. 11,12 Transition metals, such as rhenium, iron, ruthenium, 31 platinum, manganese, and gold, have been incorporated as 32 end-groups on the oligoyne chains to increase the stability of 33 linear carbon chain compounds. ^{3,6,7,13–16} Most studies of these 34 transition-metal-containing carbon chain compounds have 35 focused on synthesis, structural properties, and optical 36 absorption spectroscopy. However, an important feature of 37 these compounds is that their triplet excited states are produced 38 in relatively high yield due to the strong spin-orbit coupling 39 induced by the transition metals. There are only a few reports 40 concerning this aspect. 41 Spectroscopic study of a series of platinum(II)-terpyridyl-42 capped carbon chains. 15 They found that low-temperature 43 photoluminescence of these complexes features phosphores-44 cence emission originating from the carbon chain $^3(\pi,\pi^*)$ state $_{45}$ with a vibronic progression spacing of ca. 2052 cm $^{-1}$. Che and 46 coworkers investigated a series of gold end-capped carbon 47 chain compounds. Their spectroscopic results indicate that the 48 lowest-energy electronic excited states are dominated by the 49 acetylenic ${}^{3}(\pi,\pi^{*})$ transition and a well-defined vibronic

progression with a spacing of ca. 2000 cm⁻¹ that corresponds 50 to the ν (C \equiv C) stretch in the $^3(\pi \to \pi^*)$ excited state.

We recently reported a photophysical study of a series of 52 platinum end-capped polyyne oligomers that feature increasing 53 sp carbon chain length (Scheme 1). 17 The results of this study $54\,s1$

Scheme 1. Platinum End-Capped Polyynes $Pt_2(C_2)_n$ Studied by Farley et al. 17

P(tol)₃
Pt
$$C = C$$
 $C = C$
 $C = C$

indicated that the low-temperature photoluminescence spectra 55 exhibit moderately efficient phosphorescence appearing as a 56 series of narrow vibronic bands separated by ca. 2100 cm⁻¹. 57 The emission originates from the sp carbon chain $^3(\pi,\pi^*)$ 58 transition, and the vibronic progression arises from coupling of 59 the excitation to the $\nu(C\equiv C)$ stretch. With increasing sp 60 carbon chain length, the 0–0 energy of the phosphorescence 61 decreases across the series. Moreover, a quantitative energy gap 62

Special Issue: Current Topics in Photochemistry

Received: March 1, 2014 Revised: May 9, 2014 63 law correlation was revealed through an analysis of the triplet 64 nonradiative decay rates in the series.

While there have been a number of studies of transitionmetal end-capped linear carbon chain molecules, little work has
been done on metal—carbon chain alternant oligomers, for
study of this type of structure with n > 2 and m > 1 has not
been previously reported. However, investigation of this type of
loigomer is very important because it provides a unique
platform to study triplet exciton delocalization, providing
insight that could extend to exciton transport in "molecular
wires". To allow the photophysical study of this type of
metal-bridged oligomeric carbon chains, one of our groups
synthesized and structurally characterized a series of platinumcontaining tetrayne oligomers of the type all-trans—Cl- $Pt(P_2)$ —
[$(C \equiv C)_4$ - $Pt(P_2)$] $_n$ -Cl, where P represents a phosphine ligand
and n = 1-3.

Here we report a detailed study of the photophysics of the stress of platinum tetrayne oligomers, $(PtC_8)_n$ (n = 1, 2, 3; Scheme 2). These systems feature a carbon chain of constant

Scheme 2. Platinum Tetrayne Oligomers

$$\begin{array}{c} P(\text{tol})_3 & P(\text{tol})_3 \\ \text{CI-} \dot{P}t & C & 2 \\ \dot{P}(\text{tol})_3 & \dot{P}(\text{tol})_3 \\ \textbf{(PtC_8)_1} \end{array}$$

$$\begin{array}{c} P(tol)_3 \\ CI - \overset{\bullet}{P}t - \overset{\bullet}{(-C)} C \overset{\bullet}{=} C \overset{\bullet}{\rightarrow} \overset{P(tol)_3}{\overset{\bullet}{P}(tol)_3} \\ \overset{\bullet}{P}(tol)_3 & \overset{\bullet}{P}(tol)_3 \end{array} \overset{P(tol)_3}{\overset{\bullet}{P}(tol)_3}$$

(PtC₈)₂

$$\begin{array}{c} P(\text{tol})_3 \\ \text{CI-} \overset{P}{\text{Pt}} \overset{\longleftarrow}{\leftarrow} (C \overset{\frown}{=} C) \overset{P}{\overset{\rightarrow}{\leftarrow}} \overset{P}{\text{Pt}} \overset{\longleftarrow}{\leftarrow} (C \overset{\frown}{=} C) \overset{P}{\overset{\rightarrow}{\leftarrow}} \overset{P}{\text{Pt}} \overset{\longleftarrow}{\leftarrow} (C \overset{\frown}{=} C) \overset{P}{\overset{\rightarrow}{\leftarrow}} \overset{P}{\text{Pt}} \overset{P}{\leftarrow} (C \overset{\frown}{=} C) \overset{P}{\overset{\rightarrow}{\leftarrow}} \overset{P}{\text{Pt}} \overset{P}{\leftarrow} C \overset{P}{\overset{\rightarrow}{\leftarrow}} \overset{P}{\text{Pt}} \overset{P}{\leftarrow} (C \overset{\frown}{=} C) \overset{P}{\overset{\rightarrow}{\leftarrow}} \overset{P}{\overset{\rightarrow}{\overset{\rightarrow}{\leftarrow}}} \overset{$$

83 length (C_8) in oligomeric structures linked by intervening Pt $(P(tol)_3)_2$ units. The properties of the triplet excited states in 85 the oligomers were probed by steady-state and time-resolved 86 luminescence spectroscopy and by transient absorption spectroscopy. The key objective of the work is to discover whether 88 the triplet exciton state is delocalized in the longer chain 90 oligomer sections and how the delocalization influences the 90 energy and dynamics of the excited state. The results support a 91 model in which the triplet exciton is delocalized over at least 92 two C_8 chains, as evidenced by the effect of oligomer length on 93 the triplet spectroscopy and dynamics. Interestingly, the 94 triplet—triplet absorption varies noticeably across the entire 95 series, suggesting that the optical transition accesses states $(T_2$ 96 or higher) that are more delocalized than the lowest triplet 97 state.

98 **EXPERIMENTAL SECTION**

Photophysical Measurements. Steady-state absorption spectra were recorded on a Varian Cary 100 dual-beam spectrophotometer. Corrected steady-state emission measurements were conducted on a SPEX F-112 fluorescence spectrometer. Samples were degassed by argon purging for 30 min, and concentrations were adjusted such that the solutions were optically dilute ($A_{\rm max}$ < 0.20). Low-temperature emission measurements were conducted in 1 cm diameter borosilicate

glass tubes in a liquid-nitrogen-cooled Oxford Instruments DN- 107 1704 optical cryostat connected to an Omega CYC3200 108 autotuning temperature controller. Samples were degassed by 109 three consecutive freeze-pump-thaw cycles on a high-vacuum 110 ($^{10^{-5}}$ Torr) line.

Photoluminescence quantum yields were determined by 112 relative actinometry. $Ru(bpy)_3^{2+}$ ($\Phi_F = 0.0379$ in air-saturated 113 H_2O) was used as the actinometer. Time-resolved emission 114 measurements were conducted on a previously described 115 home-built apparatus. ¹⁷ Optically dilute solutions were used. 116

Transient absorption measurements were carried out on a 117 home-built apparatus consisting of a Continuum Surelite series 118 Nd:YAG laser as the excitation source ($\lambda = 355$ nm, 10 ns 119 fwhm). Typical excitation energies were 5 mJ/pulse. The 120 source for monitoring optical transients was a Hamamatsu 121 Super-Quiet series xenon flashlamp, and the monitoring light 122 was detected by a Princeton Instruments PI-MAX intensified 123 CCD camera detector coupled to an Acton SpectroPro 150 124 spectrograph. Samples were contained in a cell with a total 125 volume of 10 mL, and the contents were continuously 126 circulated through the pump-probe region of the cell. 127 Solutions were degassed by argon purging for 30 min. Sample 128 concentrations were adjusted so that $A_{355} \approx 0.8$. Principal 129 component transient absorption difference spectra were 130 obtained by global analysis of the time-resolved absorption 131 data using Specfit32 software (Spectrum Software Associates, 132 distributed by TgK Scientific, http://www.hi-techsci.com/ 133 products/specfitglobalanalysis/).²⁰ 134

Photoluminescence Spectral Fitting. The spectral fitting 135 was carried out according to the method described by Farley.¹⁷ 136

Density Functional Theory Calculations. All calculations 137 were carried out using DFT as implemented in Gaussian 09 rev. 138 C.01 (Gaussian, Inc., Wallingford, CT, 2009). Geometries were 139 optimized using the B3LYP functional along with the 6-31G(d) 140 basis set for C, H, and Cl, the 6-31+G(d) basis set for P, and 141 the SDD basis set for Pt. To minimize computational cost, we 142 replaced Ptol₃ moieties with PMe₃ (Me: methyl). These models 143 are designated by the addition of a prime (') to their name, and 144 thus the model for $(PtC_8)_1$ is termed as $(PtC_8)_1$. All singlet 145 optimizations were started from idealized geometries and run 146 without symmetry constraints. Triplet optimizations were 147 initiated from the optimized singlet geometry and used the 148 unrestricted B3LYP functional. All optimized structures were 149 characterized by vibrational frequency calculations and were 150 shown to be minima by the absence of imaginary frequencies. 151 Time-dependent DFT calculations were performed for all 152 optimized structures at the same level of theory with the same 153 basis sets. Structures were visualized using Chemcraft version 154 1.7 (http://www.chemcraftprog.com, 2012).

■ RESULTS AND DISCUSSION

UV—visible Absorption Spectroscopy. Absorption spec- 157 tra for the series of compounds $(\text{PtC}_8)_n$ were reported 158 previously in CH_2Cl_2 solution, including molar extinction 159 coefficients. (The peak molar absorptivity values vary from 70 160 000 to 250 000 $\text{M}^{-1}\text{cm}^{-1}$, increasing with length. 19 For 161 completeness in the course of the present study, we recorded 162 the spectra in 2-methyltetrahydrofuran (Me-THF) solutions, 163 and they are shown in a normalized format in Figure 1. All 164 fthree oligomers feature two primary electronic transitions, each 165 of which appears as a manifold of vibronic bands. In general, 166 the high-energy transition occurs between 300 and 380 nm and 167 the low-energy transition occurs between 380 and 450 nm. 168

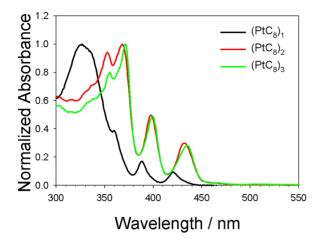


Figure 1. Absorption spectra of $(PtC_8)_n$ complexes in Me-THF solution.

169 Both transitions red-shift with increasing oligomer length. The 170 red-shift from $(PtC_8)_1$ to $(PtC_8)_2$ is evident (~10 nm, 650 171 cm⁻¹). However, the red-shift is small from $(PtC_8)_2$ to $(PtC_8)_3$, 172 indicating that the effective conjugation length for the optical 173 transition is two PtC₈ repeat units. The low-energy transition is 174 weak, whereas the higher energy transition is relatively more 175 intense. For $(PtC_8)_2$ and $(PtC_8)_3$, a well-defined vibronic 176 progression appears in both transitions. For (PtC₈)₁, the high-177 energy transition features a broad absorption band along with a weak vibronic shoulder. By comparison with previous studies, 17,21 the low-energy band originates from the π , π * 180 transition that has its basis in the π -system that interacts with 181 the Pt(II) end groups (via $d\pi - p\pi$ overlap), whereas the high-182 energy band originates from the $\pi_1\pi^*$ transition that originates 183 on the $-(C \equiv C)_4 - \pi$ -system that is orthogonal to the Pt d π 183 on the $-(C_8)_1$ to 184 orbitals. The molar extinction coefficients of $(PtC_8)_1$ to 185 $(PtC_8)_3$ are proportional to the number of tetrayne units.

Phosphorescence Emission Spectroscopy. Photolumi-187 nescence spectra for the complexes $(PtC_8)_n$ were recorded in deoxygenated Me-THF solution at temperatures ranging from 189 300 to 80 K. On the basis of the observed lifetimes (several 190 microseconds, vide infra) the photoluminescence is assigned to 191 the triplet state (phosphorescence). (An emission band 192 assignable to fluorescence is not seen in the spectra. This is 193 consistent with a relatively large intersystem crossing rate, $k_{\rm isc} \approx$ 194 10¹¹ to 10¹² s⁻¹). Figure 2 shows the phosphorescence spectra 195 at 100 K in the Me-THF solvent glass. Several features can be 196 seen from the spectra. First, all of the complexes exhibit an 197 intense and narrow 0-0 emission band followed by two 198 vibronic progression sub-bands. The 0-0 bands are assigned to 199 phosphorescence from ${}^{3}\pi,\pi^{*}$ excited states, and the vibronic 200 sub-bands in each spectrum arise due to coupling of the triplet 201 excitation to the $\nu(C \equiv C)$ stretching mode of the carbon chain. 202 Second, the 0-0 phosphorescence band is red-shifted ca. 10 203 nm (290 cm⁻¹) going from (PtC₈)₁ ($\lambda_{em} = 585 \text{ nm}$) to (PtC₈)₂ 204 ($\lambda_{\rm em}$ = 595 nm), whereas there is no shift from (PtC₈)₂ to 205 (PtC₈)₃. This indicates that the triplet exciton is delocalized 206 over two repeat units, with possible increased delocalization 207 into a third segment in the compound (PtC₈)₃. Third, the ratio 208 of the intensity of 0-1 to 0-0 bands (I_{0-1}/I_{0-0}) decreases with 209 increasing chain length. Interestingly, the ratio drops from 0.5 210 to 0.25 between $(PtC_8)_1$ and $(PtC_8)_2$ but it is then 211 approximately the same for $(PtC_8)_2$ and $(PtC_8)_3$. This 212 observation is consistent with the trends in the absorption

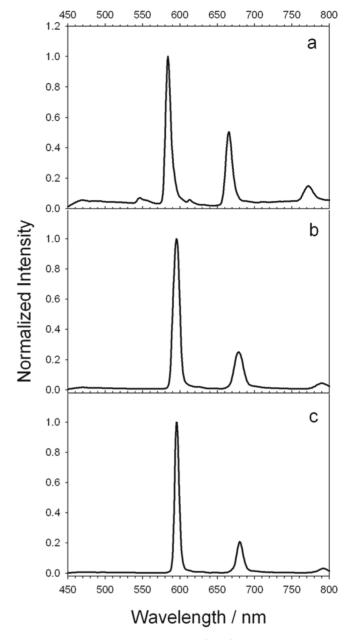


Figure 2. Photoluminescence spectra of $(PtC_8)_n$ in deoxygenated Me-THF solvent glass at 100 K. (a) $(PtC_8)_1$, $\lambda_{ex} = 327$ nm. (b) $(PtC_8)_2$, $\lambda_{ex} = 368$ nm. (c) $(PtC_8)_3$, $\lambda_{ex} = 371$ nm.

and phosphorescence maxima, which imply that the triplet state 213 is delocalized across two repeat units. The vibronic sub-bands 214 separated by ca. 2100 cm $^{-1}$ reflect the dominant vibrational 215 progression in the phosphorescence. However, a weak shoulder 216 on the red side of the 0 -0 band in $(PtC_8)_1$ is evident and also 217 can be seen in other oligomers. This is likely due to the weak 218 coupling of the excitation to carbon-chain bending modes, 219 consistent with the similar observation on the platinum end- 220 capped oligomers. 17

With increasing temperature above 100 K, the phosphor- 222 escence intensity steadily decreases. However, the spectra red- 223 shift only slightly (ca. 4 nm, $80 \rightarrow 300$ K), and the band shape 224 does not change. The temperature-dependent spectra of 225 (PtC₈)₂ are shown in Figure 3, and the spectra of the other 226 f3 two complexes follow a similar trend. The phosphorescence 227 quantum yields measured at room temperature are in the range 228

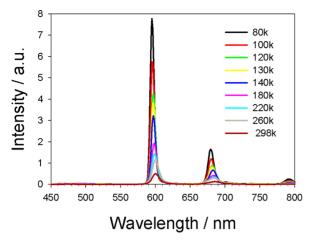
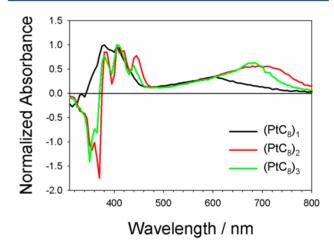


Figure 3. Variable-temperature photoluminescence spectra of $(PtC_8)_2$ in deoxygenated Me-THF, $\lambda_{ex} = 368$ nm. Spectra were obtained under identical conditions, so the relative intensities reflect the temperature dependence in the emission quantum yield.

229 of $1-4 \times 10^{-3}$, increasing with chain length. (The quantum 230 yield values are tabulated along with other photophysical 231 parameters described below in Table 2.) Excitation spectra 232 were also obtained for all of the complexes monitored at 0-0 233 emission peak at 100 K in Me-THF glass. (See Figure S-1 in the 234 Supporting Information.) The spectra are similar to the 235 absorption spectra, except that the bands in the excitation 236 spectra are better resolved, likely due to the frozen glass matrix. As previously noted, the photoluminescence spectra of all 237 238 three complexes appear as a narrow 0-0 band with two 239 vibronic sub-bands separated by ~2100 cm⁻¹. The vibronic 240 progression derives from the stretching mode of the (C≡C)₄ 241 chains. To gain further insight into the nature of the 242 luminescent triplet state, the photoluminescence spectra of 243 $(PtC_8)_1$, $(PtC_8)_2$, and $(PtC_8)_3$ at 100 K were fitted utilizing 244 methods previously described ^{17,22} by the single-mode Franck— 245 Condon expression shown in eq 1.

$$I(\overline{\nu}) = \sum_{\nu_{\rm m}=0}^{5} \left\{ \left(\frac{E_{00} - \nu_{\rm m} \hbar \omega_{\rm m}}{E_{00}} \right)^{3} \frac{(S_{\rm m})^{\nu_{\rm m}}}{\nu_{\rm m}!} \right.$$

$$\left. \exp \left[-4 \ln 2 \left(\frac{\overline{\nu} - E_{00} + \nu_{\rm m} \hbar \omega_{\rm m}}{\Delta \overline{\nu}_{0,1/2}} \right)^{2} \right] \right\}$$
(1)


247 Here $I(\nu)$ is the relative emission intensity at energy ν , E_{00} is 248 the energy of the 0–0 transition, $\nu_{\rm m}$ is the quantum number of 249 the average medium-frequency vibrational mode, $\hbar\omega_{\rm m}$ is the 250 average medium-frequency acceptor modes coupled to the 251 triplet-excited-state to ground-state transition, $S_{\rm m}$ is the 252 Huang–Rhys factor, and $\Delta\nu_{0,1/2}$ is the half-width of the 253 individual vibronic bands. The experimental emission spectra 254 were fitted using a Visual Basic macro in Microsoft Excel. The 255 fitted spectra are shown in the Supporting Information as

246

Figure S-2, and a summary of the parameters recovered from 256 the fitting is provided in Table 1.

Several interesting features emerge from Table 1 with respect 258 to the parameters recovered from the spectral fits. First, while 259 the 0–0 emission energy (E_{00}) for $(PtC_8)_1$ is ca. 350 cm⁻¹ 260 higher than that for $(PtC_8)_2$, the energy difference between 261 $(PtC_8)_2$ and $(PtC_8)_3$ is only ca. 30 cm⁻¹. Second, the Huang— 262 Rhys parameter (S_m) decreases substantially from $(PtC_8)_1$ to 263 $(PtC_8)_2$; however. it does not change significantly from the 264 latter to $(PtC_8)_3$. Both features indicate that the triplet exciton 265 delocalization is within approximately two PtC_8 repeat units. 266

Transient Absorption Spectroscopy. To provide addi- 267 tional information regarding the properties of the triplet state of 268 the oligomers, nanosecond transient absorption spectra were 269 recorded at room temperature in deoxygenated THF solution. 270 As shown in Figure 4, all three structures feature strong triplet— 271 f4

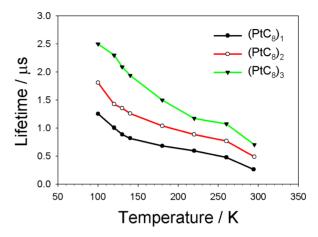
Figure 4. Normalized transient absorption spectra of $(\mathbf{PtC_8})_n$ at t=0 μs . Spectra obtained from global analysis of time-resolved multi-wavelength difference absorption spectra.

triplet absorption in the visible region combined with bleaching 272 of the ground-state absorption bands in the near-UV (also see 273 Figure S-3 in the Supporting Information for triplet absorption 274 difference spectra at various delay times). Interestingly, the 275 triplet absorption for each oligomer consists of two distinct 276 bands: the first more intense band that appears at short 277 wavelengths (370-450 nm) and a second relatively weaker 278 band that appears at longer wavelength in the red- to near- 279 infrared region. The short wavelength bands appear to have a 280 vibrational structure (especially evident in $(PtC_8)_2$ and 281 $(PtC_8)_3$). However, a clear assignment of the structure to 282 vibronic coupling is complicated due to overlap of the excited- 283 state absorption with the ground-state bleach, which itself 284 features a pronounced vibronic progression. Interestingly, the 285 shape and position of the low energy triplet-triplet absorption 286 band varies across the oligomer series (see Figure 4), suggesting 287 the triplet absorption accesses a level that is delocalized across 288 the entire oligomer structure. Lifetimes recovered from 289

Table 1. Emission Spectra Fitting Parameters for (PtC₈)_n Complexes at 100 K

	$\lambda_{ m max,em}/ m nm$	$E_{00}/{\rm cm}^{-1}$	$\hbar\omega/\mathrm{cm}^{-1}$	$\Delta\nu_{0,1/2}/\mathrm{cm}^{-1}$	S_{m}	$\Delta E_{ m ST}/{ m eV}$
$(PtC_8)_1$	584	17 123	2100	230	0.9	0.64
$(PtC_8)_2$	595	16 778	2045	250	0.5	0.50
$(PtC_8)_3$	595	16 806	2085	235	0.4	0.50

290 transient absorption spectra are on a time scale of a few 291 hundred nanoseconds and increase with the oligomer chain 292 length. (The decay profiles are shown in Figure S-4 in the 293 Supporting Information and lifetimes are shown in Table 2.) 294 Furthermore, although triplet yields ($\Phi_{\rm isc}$) were not deter-295 mined, the fact that the triplet—triplet absorptions are relatively 296 intense (the typical $\Delta A_{\rm max}$ values are >0.1; see Figure S-3 in the 297 Supporting Information) and the lack of fluorescence strongly 298 suggests that $\Phi_{\rm isc}\approx 1$ for the oligomers.


To gain insight regarding the electronic basis of the triplet-299 300 triplet absorption spectra, electronic structure calculations were carried out on $(PtC_8)_1$ to $(PtC_8)_2$ using time-dependent 302 density functional theory (TD-DFT). Tables S-1 and S-2 in the 303 Supporting Information summarize the results of these calculations for (PtC₈)₁' and (PtC₈)₂'. Careful consideration of the TD-DFT results for the triplet states reveals that the 306 high-energy triplet-triplet absorption (390-400 nm) has contributions from transitions involving orbitals that are located at energies close to the HOMO and LUMO of the ground state (Table S-2 in the Supporting Information); for example, for 310 $(PtC_8)_2$ this is LSOMO $(218\alpha) \rightarrow LUMO+1$ (220α) . This 311 explains why the high-energy triplet-triplet transition is energetically close to the low-energy singlet-ground state 313 absorption, which for $(PtC_8)_2$ is dominated by the HOMO-314 LUMO transition (218 \rightarrow 219, Table S-1 in the Supporting 315 Information). By contrast, for the low energy triplet-triplet 316 absorption band, the transitions involve excitation of the 317 unpaired electrons to levels that are in relatively closer energetic proximity (e.g., they are analogous to "mid-gap" transitions in doped conjugated polymers)²³ Specifically, for (PtC₈)₂' the calculations show that the low-energy band has substantial contributions from HOMO-2 (216 β) \rightarrow LSOMO (218 β) and 322 HSOMO (219 α) \rightarrow LUMO+2 (211 α), where the latter 323 transition involves excitation of the excited electron into a 324 unfilled orbital, which is relatively close in energy to the LUMO 325 of the ground state. Additionally, the computations show that 326 the low-energy transitions are strongly delocalized for both $(PtC_8)_1$ and $(PtC_8)_2$, confirming the sensitivity of the 328 electronic transitions to oligomer length. While the HSOMO 329 of (PtC₈)₂' is localized to one repeat unit, the LSOMO is 330 mostly delocalized.

Phosphorescence Decay Kinetics. To gain insight concerning the temperature dependence of the triplet lifetimes for the $(PtC_8)_n$ series, time-resolved emission studies were carried out in deoxygenated Me-THF solution (glass) over the 100–300 K temperature range. The lifetimes recovered from time-resolved emission by spectral decay fitting are plotted as a function of temperature, as shown in Figure 5. Several interesting features emerge from Figure 5. First, for all three oligomers, the emission lifetimes decrease with increasing temperature. In particular, the lifetimes decrease slightly more fluid transition of Me-THF (120–140 K). Second, the emission lifetimes increase with oligomer chain length in the whole temperature region.

The radiative and nonradiative decay rates (k_r and k_{nr}) of the 346 triplet state can be calculated using eqs 4 and 5, which are 347 obtained by rearrangement of eqs 2 and 3.

$$\tau_{\mathrm{T}} = \frac{1}{k_{\mathrm{r}} + k_{\mathrm{nr}}} \tag{2}$$

$$\Phi_{\rm p} = \Phi_{\rm isc} k_{\rm r} \tau_{\rm T} \tag{3}$$

Figure 5. Temperature dependence of photoluminescence lifetimes for $(PtC_8)_n$ in deoxygenated Me-THF solution (glass).

$$k_{\rm nr} = \left[1 - \left(\frac{\Phi_{\rm p}}{\Phi_{\rm isc}}\right)\right] \frac{1}{\tau_{\rm T}} \tag{4}$$

$$k_{\rm r} = \left(\frac{\Phi_{\rm p}}{\Phi_{\rm isc}}\right) \frac{1}{\tau_{\rm T}} \tag{5}$$

In these expressions $\tau_{\rm T}$ is the triplet lifetime, $\Phi_{\rm p}$ is 352 phosphorescence quantum yield, and $\Phi_{\rm isc}$ is intersystem 353 crossing efficiency. The values of $\tau_{\rm T}$, $\Phi_{\rm p}$, and $\Phi_{\rm isc}$ are needed 354 to compute $k_{\rm r}$ and $k_{\rm nr}$. Here $\tau_{\rm T}$ and $\Phi_{\rm p}$ are known and $\Phi_{\rm isc}$ is 355 unknown. However, as previously noted, we believe that the 356 intersystem crossing efficiency ($\Phi_{\rm isc}$) is close to unity ($\Phi_{\rm isc}\approx 357$ 1). Furthermore, because $\Phi_{\rm p}$ is small, $\Phi_{\rm p}\ll \Phi_{\rm isc}$ and under 358 these conditions eqs 4 and 5 can be further simplified to afford 359 eqs 6 and 7.

$$k_{\rm nr} \approx \frac{1}{\tau_{\rm T}} \tag{6}$$

$$k_{\rm r} \approx \frac{\Phi_{\rm p}}{\tau_{\rm T}}$$
 (7) 36

The values of $k_{\rm r}$ and $k_{\rm nr}$ computed from the experimental 363 data are listed in Table 2, and several features are worth noting 364 t2 with respect to these data. First, for all three oligomers, the 365 values of $k_{\rm nr}$ exceed $k_{\rm r}$ by about 1000-fold, indicating that 366 nonradiative decay is the dominant decay path for the 367 oligomers. Second, the radiative rate is relatively constant for 368 the series at $\sim 5 \times 10^3 \ {\rm s}^{-1}$. This finding is similar to the results 369 seen in our previous study of the Pt-capped carbon chains 370 (Scheme 1). Third and most interesting is the fact that the 371 nonradiative decay rate systematically decreases with increasing 372 oligomer length. (Note that this trend is clear in the fact that 373 the phosphorescence and transient absorption lifetimes increase 374 with oligomer length.)

Structure and Delocalization of the Triplet Exciton in 376 Carbon-Chain Oligomers. As noted in the Introduction, we 377 previously examined the spectroscopy and dynamics in a series 378 of Pt-capped oligoynes (Scheme 1, $Pt_2(C)_n$). On the basis of 379 the evolution of the triplet energy and nonradiative decay rates 380 within this series it was concluded that the triplet is delocalized 381 over ≥ 12 carbon atoms, corresponding to a segment consisting 382 of at least a hexayne segment $(-(C \equiv C)_6 -)$. In the present 383 study, we sought to determine how "oligomerization" of a 384

458

459

464

465

466

467

468

469

470

477

Table 2. Photophysical Parameters for the Complexes (PtC₈)_n

	$\tau_{\rm T}/10^{-6}~{\rm s}^a$	$\Phi_{\mathtt{p}}^{\;\;a}$	$k_{\rm nr}/10^6 \ {\rm s}^{-1a}$	$k_{\rm r}/10^3~{\rm s}^{-1a}$	$ au_{\mathrm{T}}/10^{-6}~\mathrm{s}^b$	$k_{\rm nr}/10^5 { m s}^b$	$\tau/\mu s^c$
$(PtC_8)_1$	0.26	0.0011	3.8	4.1	1.25	8.0	0.22
$(PtC_8)_2$	0.49	0.0025	2.1	5.1	1.81	5.5	0.45
$(PtC_8)_3$	0.70	0.0031	1.4	4.4	2.50	4.0	0.62

^aPhosphorescence decay measured at room temperature. ^bMeasured at 100 K. ^cExtracted from room temperature transient absorption.

385 tetrayne (C₈) segment influences the energy and dynamics of 386 the triplet exciton. In the present study, information regarding 387 the triplet state comes from several observables: (1) absorption 388 spectroscopy; (2) phosphorescence spectroscopy and decay 389 dynamics; and 3) triplet-triplet absorption spectroscopy. The 390 results of these experiments paint a consistent picture of the 391 triplet state in the oligomer systems. First, the absorption and 392 phosphorescence spectroscopy reveal that the $S_o \rightarrow S_1$ and T_1 $393 \rightarrow S_0$ transitions shift to lower energy from $(PtC_8)_1$ to $(PtC_8)_2$ 394 but then remain approximately the same for (PtC₈)₃. 395 Comparing the results from the present study with those for 396 the $Pt_2(C_2)_n$ oligomers previously studied (Scheme 1) shows 397 that the triplet energy for (PtC₈)₁ is approximately the same as 398 that for $Pt_2(C_2)_4$. However, the triplet energy of $(PtC_8)_2$ and $(PtC_8)_3$ is somewhat larger compared with that of $Pt_2(C_2)_5$. 400 This reveals that the effect of C₈ "dimerization" on the triplet 401 energy is less than occurs by the simple addition of two more 402 carbons in the chain (e.g., $Pt_2(C_2)_4 \rightarrow Pt_2(C_2)_5$). These 403 findings are in accord with previous studies of platinum-404 acetylide chromophores, which generally reveal that the triplet 405 excited state is not substantially delocalized through intervening 406 Pt(II)-centers that link π -electron systems. ^{1,24–2}

While the absorption and emission spectroscopic results point to a relatively localized triplet state, there are subtle hints that the triplet exciton structure and dynamics are affected, the either directly or indirectly, by oligomerization of the C_8 chains (PtC₈)₂ and (PtC₈)₃. Thus, the emission spectral fitting shows that the Huang–Rhys parameter, S_m , decreases slightly between n=2 and 3. In addition, the nonradiative decay rate also decreases continuously across the entire series. These results point to the fact that the triplet is further delocalized by the increased chain length in n=3 compared with n=2. An interesting possibility is that these affects arise due to a dynamic "hopping" of a more localized triplet exciton between C_8 chains, for example, as suggested by the following equation for C_8 (PtC₈)₃:

 $C1^{-3}[PtP_2-(C=C)_4-PtP_2]^*-(C=C)_4-PtP_2-(C=C)_4-PtP_2-C1 \iff$

 $\text{Cl-PtP}_2\text{-}(C \equiv C)_4\text{-}^3[\text{PtP}_2\text{-}(C \equiv C)_4\text{-PtP}_2]^*\text{-}(C \equiv C)_4\text{-PtP}_2\text{-}C1 \ \leftrightarrows$

$$C1-PtP_2-(C\equiv C)_4-PtP_2-(C\equiv C)_4-^3[PtP_2-(C\equiv C)_4-PtP_2]^*-C1$$
 (8)

421 Similar dynamic triplet hopping was probed in a series of 422 monodisperse oligomers of the type, *all-trans*-[PtP₂–(C \equiv C–423 C₆H₄–C \equiv C)]_n–, where C₆H₄ is 1,4-phenylene, and the unit to 424 unit triplet hopping was found to occur with a time constant 425 ~25 ps. ¹⁸ While it is not possible to distinguish whether such a 426 triplet hopping process in (PtC₈)₂ and (PtC₈)₃ happens, future 427 experiments using time-resolved infrared spectroscopy²⁸ could 428 provide insight into the structure and dynamics of triplet 429 exciton hopping in this and related structures.

30 SUMMARY AND CONCLUSIONS

431 A detailed photophysical investigation of a series of platinum 432 tetrayne oligomers has been carried out. The photophysics of 433 these oligomers is dominated by a ${}^3\pi$, π^* state that is

concentrated on the $-(C \equiv C)_4$ chain. The low-temperature 434 emission spectrum of each oligomer shows an intense and 435 narrow phosphorescence band followed by a vibronic 436 progression of sub-bands separated by ca. 2100 cm⁻¹ that 437 responds to the stretch of the $-(C \equiv C)_4$ chain. Both 438 absorption and emission bands are red-shifted \sim 10 nm (650 439 and 290 cm⁻¹, respectively) from (PtC₈)₁ ($\lambda_{abs} = 388$ nm; $\lambda_{em} = 585$ nm)to (PtC₈)₂ ($\lambda_{abs} = 398$ nm; $\lambda_{em} = 595$ nm) and then 441 shifted a little from (PtC₈)₂ to (PtC₈)₃, suggesting that the 442 triplet exciton is delocalized over at most two repeat units. 443 Room-temperature transient absorption measurements also 444 support the notion of triplet delocalization, even suggesting that 445 there is increased delocalization in (PtC₈)₃.

The platinum centers in the carbon chain oligomers play 447 several roles beyond serving to link together the C_8 chains. 448 First, $d\pi(Pt)-p\pi(C)$ overlap allows electronic interaction 449 between two C_8 chains. This interaction leads to delocalization 450 in the singlet state and to a lesser extent in the triplet state. 451 Second, the Pt centers introduce strong spin—orbit coupling, 452 leading to very efficient singlet \rightarrow triplet intersystem crossing as 453 well as the observation of phosphorescence, even at ambient 454 temperature in fluid solution. The latter effect allows facile 455 study of the triplet state in these remarkable linear carbon chain 456 oligomers.

ASSOCIATED CONTENT

S Supporting Information

Excitation spectra and fitted phosphorescence emission spectra 460 of platinum tetrayne oligomers. Results of time-dependent 461 density functional theory calculations. This material is available 462 free of charge via the Internet at http://pubs.acs.org. 463

AUTHOR INFORMATION

Corresponding Authors

*E-mail: gladysz@mail.chem.tamu.edu (J.A.G).

*E-mail: kschanze@chem.ufl.edu (K.S.S.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation 471 (grant no. CHE-115164 (K.S.S.) and grant no. CHE-1153085 472 (J.A.G.)). We acknowledge the University of Florida Research 473 Computing for providing computational resources and support 474 that contributed to the research results reported in this 475 publication (http://researchcomputing.ufl.edu).

REFERENCES

(1) Glusac, K.; Kose, M. E.; Jiang, H.; Schanze, K. S. Triplet Excited 478 State in Platinum-Acetylide Oligomers: Triplet Localization and 479 Effects of Conformation. *J. Phys. Chem. B* **2007**, 111, 929–940.

(2) Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; 481 Hegmann, F. A.; Tykwinski, R. R. Polyynes as a Model for Carbyne: 482 Synthesis, Physical Properties, and Nonlinear Optical Response. *J. Am.* 483 Chem. Soc. 2005, 127, 2666–2676.

- 485 (3) Dembinski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A. 486 Toward Metal-Capped One-Dimensional Carbon Allotropes: Wirelike 487 C6-C20 Polyynediyl Chains That Span Two Redox-Active (η_5 -488 C₅Me₅)Re(NO)(PPh₃) Endgroups. *J. Am. Chem. Soc.* **2000**, 122, 489 810–822.
- 490 (4) Szafert, S.; Gladysz, J. A. Carbon in One Dimension: Structural 491 Analysis of the Higher Conjugated Polyynes. *Chem. Rev.* **2003**, *103*, 492 4175–4205.
- 493 (5) Gibtner, T.; Hampel, F.; Gisselbrecht, J.-P.; Hirsch, A. End-Cap 494 Stabilized Oligoynes: Model Compounds for the Linear sp Carbon 495 Allotrope Carbyne. *Chem.—Eur. J.* **2002**, *8*, 408–432.
- 496 (6) Meyer, W. E.; Amoroso, A. J.; Horn, C. R.; Jaeger, M.; Gladysz, J. 497 A. Synthesis and Oxidation of Dirhenium C_4 , C_6 , and C_8 Complexes of 498 the Formula $(\eta S-C_5Me_5)Re(NO)(PR_3)(CC)_n(R_3P)(ON)Re(\eta_{S-499} C_5Me_5) (R = 4-C_6H_4R', c-C_6H_{11})$: In Search of Dications and Radical 500 Cations with Enhanced Stabilities. *Organometallics* **2001**, 20, 1115–501 1127.
- 502 (7) Yam, V. W.-W. Luminescent Carbon-Rich Rhenium(I) 503 Complexes. *Chem. Commun.* **2001**, 789–796.
- 504 (8) Che, C.-M.; Chao, H.-Y.; Miskowski, V. M.; Li, Y.; Cheung, K.-K. 505 Luminescent μ -Ethynediyl and μ -Butadiynediyl Binuclear Gold(I) 506 Complexes: Observation of ${}^3(\pi,\pi^*)$ Emissions from Bridging ${\rm C_n}^2$ 507 Units. *J. Am. Chem. Soc.* **2001**, *123*, 4985–4991.
- 508 (9) Chalifoux, W. A.; McDonald, R.; Ferguson, M. J.; Tykwinski, R. 509 R. *tert*-Butyl-End-Capped Polyynes: Crystallographic Evidence of 510 Reduced Bond-Length Alternation. *Angew. Chem., Int. Ed.* **2009**, 48, 511 7915–7919.
- 512 (10) Samoc, M.; Dalton, G. T.; Gladysz, J. A.; Zheng, Q.; Velkov, Y.; 513 Agren, H.; Norman, P.; Humphrey, M. G. Cubic Nonlinear Optical 514 Properties of Platinum-Terminated Polyynediyl Chains. *Inorg. Chem.* 515 **2008**, 47, 9946–9957.
- 516 (11) Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, 517 C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. 518 A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. 519 D.; Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X. 520 Charge Transfer on the Nanoscale: Current Status. *J. Phys. Chem. B* 521 **2003**, *107*, 6668–6697.
- 522 (12) Ballmann, S.; Hieringer, W.; Secker, D.; Zheng, Q. L.; Gladysz, 523 J. A.; Gorling, A.; Weber, H. B. Molecular Wires in Single-Molecule 524 Junctions: Charge Transport and Vibrational Excitations. *ChemPhy-*525 sChem **2010**, 11, 2256–2260.
- 526 (13) Stahl, J.; Bohling, J. C.; Bauer, E. B.; Peters, T. B.; Mohr, W.; 527 Martin-Alvarez, J. M.; Gladysz, J. A. sp Carbon Chains Surrounded by 528 sp³ Carbon Double Helices: A Class of Molecules That Are Accessible 529 by Self-Assembly and Models for Insulated Molecular-Scale Devices. 530 Angew. Chem., Int. Ed. 2002, 41, 1872–1876.
- 531 (14) Bruce, M. I.; Low, P. J.; Costuas, K.; Halet, J.-F.; Best, S. P.; 532 Heath, G. A. Oxidation Chemistry of Metal-Bonded C₄ Chains: A 533 Combined Chemical, Spectroelectrochemical, and Computational 534 Study. *J. Am. Chem. Soc.* **2000**, *122*, 1949–1962.
- 535 (15) Yam, V. W.-W.; Wong, K. M.-C.; Zhu, N. Luminescent 536 Platinum(II) Terpyridyl-Capped Carbon-Rich Molecular Rods—an 537 Extension from Molecular- to Nanometer-Scale Dimensions. *Angew.* 538 Chem., Int. Ed. 2003, 42, 1400–1403.
- 539 (16) Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. Synthesis, 540 Structure, and Reactivity of sp Carbon Chains with Bis(Phosphine) 541 Pentafluorophenylplatinum Endgroups: Butadiynediyl (C_4) through 542 Hexadecaoctaynediyl (C_{16}) Bridges, and Beyond. *Chem.—Eur. J.* **2003**, 543 9, 3324–3340.
- 544 (17) Farley, R. T.; Zheng, Q.; Gladysz, J. A.; Schanze, K. S. 545 Photophysics of Diplatinum Polyynediyl Oligomers: Chain Length 546 Dependence of the Triplet State in sp Carbon Chains. *Inorg. Chem.* 547 **2008**, 47, 2955–2963.
- 548 (18) Keller, J. M.; Glusac, K. D.; Danilov, E. O.; McIlroy, S.; 549 Sreearuothai, P.; Cook, A. R.; Jiang, H.; Miller, J. R.; Schanze, K. S. 550 Negative Polaron and Triplet Exciton Diffusion in Organometallic 551 "Molecular Wires". J. Am. Chem. Soc. 2011, 133, 11289–11298.
- 552 (19) Zheng, Q.; Hampel, F.; Gladysz, J. A. Longitudinally Extended 553 Molecular Wires Based Upon Ptctcctcctct Repeat Units: Iterative

- Syntheses of Functionalized Linear PtC₈Pt, PtC₈PtC₈Pt, and 554 PtC₈PtC₈PtC₈Pt Assemblies. *Organometallics* **2004**, 23, 5896–5899. 555
- (20) Stultz, L. K.; Binstead, R. A.; Reynolds, M. S.; Meyer, T. J. 556 Epoxidation of Olefins by $[Ru^{IV}(bpy)_2(py)(O)]^{2+}$ in Acetonitrile 557 Solution. A Global Kinetic Analysis of the Epoxidation of Trans- 558 Stilbene. *J. Am. Chem. Soc.* **1995**, *117*, 2520–2532.
- (21) Nagano, Y.; Ikoma, T.; Akiyama, K.; Tero-Kubota, S. Symmetry 560 Switching of the Fluorescent Excited State in Diphenylpolyynes. *J. Am.* 561 *Chem. Soc.* **2003**, *125*, 14103–14112.
- (22) Whittle, C. E.; Weinstein, J. A.; George, M. W.; Schanze, K. S. 563 Photophysics of Diimine Platinum(II) bis-Acetylide Complexes. *Inorg.* 564 *Chem.* **2001**, 40, 4053–4062.
- (23) Patil, A. O.; Heeger, A. J.; Wudl, F. Optical-Properties of 566 Conducting Polymers. *Chem. Rev.* 1988, 88, 183–200.
- (24) Liu, Y.; Jiang, S.; Glusac, K.; Powell, D. H.; Anderson, D. F.; 568 Schanze, K. S. Photophysics of Monodisperse Platinum-Acetylide 569 Oligomers: Delocalization in the Singlet and Triplet Excited States. *J.* 570 Am. Chem. Soc. 2002, 124, 12412–12413.
- (25) Beljonne, D.; Wittmann, H. F.; Kohler, A.; Graham, S.; Younus, 572 M.; Lewis, J.; Raithby, P. R.; Khan, M. S.; Friend, R. H.; Bredas, J. L. 573 Spatial Extent of the Singlet and Triplet Excitons in Transition 574 Metalcontaining Poly-ynes. *J. Chem. Phys.* **1996**, 105, 3868–3877.
- (26) Rogers, J. E.; Cooper, T. M.; Fleitz, P. A.; Glass, D. J.; McLean, 576 D. G. Photophysical Characterization of a Series of Platinum(II)- 577 Containing Phenyl-Ethynyl Oligomers. *J. Phys. Chem. A* **2002**, 106, 578 10108–10115.
- (27) Cooper, T. M.; Krein, D. M.; Burke, A. R.; McLean, D. G.; 580 Rogers, J. E.; Slagle, J. E. Asymmetry in Platinum Acetylide 581 Complexes: Confinement of the Triplet Exciton to the Lowest Energy 582 Ligand. J. Phys. Chem. A 2006, 110, 13370–13378.
- (28) Chisholm, M. H.; Gustafson, T. L.; Turro, C. Photophysical 584 Properties of Mm Quadruply Bonded Complexes Supported by 585 Carboxylate Ligands, MM = Mo₂, MoW, or W₂. Acc. Chem. Res. **2012**, 586 46, 529–538.