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Abstract An approximate analytical technique is

developed for determining, in closed form, the tran-

sition probability density function (PDF) of a gen-

eral class of first-order stochastic differential equations

(SDEs) with nonlinearities both in the drift and in the

diffusion coefficients. Specifically, first, resorting to the

Wiener path integral most probable path approximation

and utilizing the Cauchy–Schwarz inequality yields a

closed-form expression for the system response PDF,

at practically zero computational cost. Next, the accu-

racy of this approximation is enhanced by proposing a

more general PDF form with additional parameters to

be determined. This is done by relying on the associated

Fokker–Planck operator to formulate and solve an error
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minimization problem. Besides the mathematical merit

of the derived closed-form approximate PDFs, an addi-

tional significant advantage of the technique relates to

the fact that it can be readily coupled with a stochas-

tic averaging treatment of second-order SDEs govern-

ing the dynamics of diverse stochastically excited non-

linear/hysteretic oscillators. In this regard, it is shown

that the technique is capable of determining approxi-

mately the response amplitude transition PDF of a wide

range of nonlinear oscillators, including hysteretic sys-

tems following the Preisach versatile modeling. Several

numerical examples are considered for demonstrating

the reliability and computational efficiency of the tech-

nique. Comparisons with pertinent Monte Carlo simu-

lation data are provided as well.

Keywords Nonlinear stochastic dynamics · Path

integral · Cauchy–Schwarz inequality · Fokker–Planck

equation · Stochastic differential equations

1 Introduction

Although Monte Carlo simulation (MCS) has been

the most versatile tool for solving stochastic dif-

ferential equations (SDEs) governing the dynamics

of diverse engineering systems and structures (e.g.,

[1–3]), in many cases it can be computationally pro-

hibitive. Therefore, there is merit in developing alterna-

tive numerical and/or analytic solution methodologies.

Indicative popular approaches in stochastic engineer-
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ing dynamics include moments equations and statistical

linearization, stochastic averaging, discrete Chapman–

Kolmogorov equation schemes, Fokker–Planck equa-

tion solution techniques, (generalized) polynomial

chaos expansions, and probability density evolution

methods (e.g., [4–6]).

One of the promising semi-analytical techniques

relates to the concept of path integral, developed

independently by Wiener [7] and by Feynman [8].

Recently, Kougioumtzoglou and co-workers developed

Wiener path integral techniques for stochastic response

determination and optimization of complex engineer-

ing dynamical systems. These techniques are capable

of determining the joint response transition probabil-

ity density function (PDF) of diverse nonlinear sys-

tems, even endowed with fractional derivative elements

(e.g., [9,10]). Further, they can account for non-white

and non-Gaussian stochastic process modeling [11],

while it has been shown that the related computational

cost can be reduced drastically by resorting to sparse

representations and compressive sampling theory and

tools [12]. Nevertheless, the numerical implementation

of the technique is still associated with non-negligible

computational cost. To address this challenge, a con-

ceptually different solution approach has been pur-

sued recently by the authors [13,14] by coupling

the Wiener path integral formalism with a Cauchy–

Schwarz inequality treatment. This has yielded a

closed-form approximate expression for the system

response transition PDF, whereas the computational

cost has been kept at a minimal level. Note, however,

that the results in [13,14] have been restricted to the

class of SDEs with nonlinear drift, but constant diffu-

sion coefficients.

In this paper, the technique developed in [13,14]

is extended to account for a more general class of

nonlinear SDEs, with nonlinearities appearing both in

the drift and in the diffusion coefficients. Specifically,

the system response PDF is derived approximately in

closed form. This is done by relying on the Wiener

path integral “most probable path” approximation and

on the Cauchy–Schwarz inequality, in conjunction with

formulating and solving an error minimization prob-

lem by utilizing the associated Fokker–Planck equa-

tion operator. Besides the mathematical merit of this

generalization, its relevance to engineering dynamics

applications is evident when coupled with a stochastic

averaging treatment of the original second-order gov-

erning SDE. In this regard, the technique is capable

of determining approximately the response amplitude

transition PDF of diverse stochastically excited nonlin-

ear oscillators. Various nonlinear systems are consid-

ered in the numerical examples for demonstrating the

accuracy and computational efficiency of the developed

technique, including hysteretic systems following the

Preisach versatile modeling. Comparisons with perti-

nent MCS data are provided as well.

2 Preliminaries

2.1 Chapman–Kolmogorov and Fokker–Planck

equations

This section serves as a brief background on Markov

processes, the associated Chapman–Kolmogorov (C–

K), and Fokker–Planck (F–P) equations, as well as

their relation to the corresponding governing SDE; see

also [15,16] for some indicative standard books on the

topic.

Consider a Markov stochastic process, X t = X (t),

for which the C–K equation is satisfied for any t3 ≥
t2 ≥ t1, i.e.,

p(x3, t3|x1, t1) =
∫ ∞

−∞
p(x3, t3|x2, t2)p(x2, t2|x1, t1)dx2,

(1)

where p(x3, t3|x1, t1) denotes the transition PDF of the

process X t . Further, under Lindeberg’s condition, the

C–K Eq. (1) leads to the well-known F–P equation gov-

erning the evolution in time of the transition PDF (e.g.,

see [16,17]), i.e.,

∂p

∂t
= −∂ (μ(x, t) p)

∂x
+ 1

2

∂2
(

σ(x, t)2 p
)

∂x2
, (2)

where p is the transition PDF of the diffusion process

X t , and μ(·, ·), σ(·, ·) are real-valued functions denot-

ing the drift and diffusion coefficients, respectively, of

the associated governing SDE of the form

ẋ = μ(x, t) + σ(x, t)η(t). (3)

In Eq. (3), the dot over a variable denotes differentiation

with respect to time t , and η(t) is a zero-mean and delta-

correlated process of intensity one, i.e., E(η(t)) = 0
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and E ((η(t)η(t − τ)) = δ0(τ ), where δ0(·) is the Dirac

delta function.

2.2 Wiener path integral formulation

For completeness, this section reviews the basic ele-

ments of a recently developed Wiener path integral

stochastic response determination technique, which

relies on the machinery of functional integrals and vari-

ational calculus; see also [11,18,19] for a more detailed

presentation. The formulation of the Wiener path inte-

gral technique serves as the starting point in the ensuing

analysis for deriving a closed-form expression for the

system response transition PDF.

In the limit, i.e., t2 − t1 = �t → 0, the transition

PDF has been shown to admit a Gaussian distribution

of the form (e.g., [17])

p (x2, t2|x1, t1) =
exp

(

− (x2−x1−μ(x1,t1)�t)2

2σ(x1,t1)2�t

)

√

2πσ(x1, t1)2�t
. (4)

Note that the choice of Eq. (4) is not restrictive,

and alternative non-Gaussian distributions can also be

employed (e.g., [20]). Further, Eq. (4), in conjunction

with the C–K Eq. (1), has been the starting point of

numerical schemes (typically referred to in the litera-

ture as numerical path integral schemes) for propagat-

ing the response PDF in short time steps (e.g., [21–23]).

Although these schemes have proven to be highly accu-

rate in determining the response transition PDF, they

become eventually computationally prohibitive with

increasing number of dimensions. This is due to the

fact that numerical computation of a multi-dimensional

convolution integral is required for each and every time

step.

Next, from a Wiener path integral perspective, the

probability that x follows a specific path, x(t), can be

construed as the probability of a compound event. In

particular, it can be expressed (e.g., [11,18]) as a prod-

uct of probabilities by utilizing Eq. (4), i.e.,

P[x(t)] = lim
�t→0, N→∞

×
exp

(

−
∑N−1

j=0
(x j+1−x j −μ(x j ,t j )�t)

2

2σ(x j ,t j )
2�t

)

∏N−1
j=0

√

2πσ(x j , t j )2�t

N−1
∏

j=0

dx j ,

(5)

where the time has been discretized into N points, �t

apart, and the path x(t) is represented by its values x j

at the discrete time points t j , for j ∈ {0, . . . , N − 1}.
Also, dx j denotes the (infinite in number) infinitesimal

“gates” through which the path propagates. Loosely

speaking, Eq. (5) represents the probability of the pro-

cess to propagate through the infinitesimally thin tube

surrounding x(t). Alternatively, Eq. (5) can be written

in the compact form [11,18]

P[x(t)]

= exp

⎛

⎜

⎝
−

tf
∫

ti

(

ẋ j − μ(x, t)
)2

2σ(x, t)2
dt

⎞

⎟

⎠

tf
∏

t=ti

dx(t)
√

2πσ(x, t)2dt
.

(6)

Overall, the total probability that x will start from xi

at time ti and end up at xf at time tf takes the form

of a functional integral, which “sums up” the respec-

tive probabilities of each and every path that the pro-

cess can possibly follow (e.g., see [18]). Next, denoting

by C {xi , ti ; xf , tf } the set of all possible paths starting

from xi at time ti and ending up at xf at time tf , the

transition PDF takes the form

p (xf , tf |xi , ti ) =
∫

C{xi ,ti ;xf ,tf }
exp

(

−
∫ tf

ti

L(x, ẋ)

)

D[x(t)].

(7)

In Eq. (7), L(x, ẋ) represents the Lagrangian function

equal to

L(x, ẋ) = 1

2

(

ẋ − μ(x, t)

σ (x, t)

)2

, (8)

and D[x(t)] is a functional measure given by

D[x(t)] =
tf

∏

t=ti

dx(t)
√

2πσ(x(t), t)2dt
. (9)

2.3 Numerical implementation and computational

cost of the Wiener path integral solution technique

It is noted that the formal expression of the path inte-

gral in Eq. (7) is of little practical use as its analytical or

numerical evaluation is highly challenging. Therefore,
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an approximate solution approach is required. In this

regard, the “most probable path” approach is employed

(e.g., [11,18,19]), according to which the largest con-

tribution to the Wiener path integral comes from the

path xc(t) for which the integral in the exponential of

Eq. (7) becomes as small as possible. Calculus of vari-

ations [24] dictates that this path xc(t) with fixed end

points satisfies the extremality condition

δ

∫ tf

ti

L(xc, ẋc)dt = 0, (10)

which yields the Euler–Lagrange (E–L) equation (e.g.,

see [9,11,19])

∂L

∂xc
− ∂

∂t

∂L

∂ ẋc
= 0, (11)

to be solved in conjunction with the boundary con-

ditions xc(ti ) = xi , xc(tf) = xf . Once the boundary

value problem (BVP) of Eq. (11) is solved and xc(t) is

determined, the response transition PDF can be approx-

imated by

p (xf , tf |xi , ti ) ≈ Φ exp

(

−
∫ tf

ti

L(xc, ẋc)dt

)

, (12)

where Φ is a normalization coefficient; see also [11,

18]for a more detailed presentation.

Although the BVP of Eq. (11) can be solved analyti-

cally and yield closed-form solutions for cases of linear

systems (e.g., [25,26]), it is readily seen that a numeri-

cal solution treatment is required, in general, to account

for arbitrary nonlinearities in the governing Eq. (3), and

consequently, in the BVP of Eq. (11). In this regard,

note that, due to the fixed boundary conditions, a sin-

gle point of the response transition PDF is evaluated by

solving numerically one BVP of the form of Eq. (11).

According to a brute-force solution scheme, and for a

given time instant, an effective PDF domain is consid-

ered. Following the discretization of the domain into

N points xf , the response PDF values are determined

for each point of the mesh. It is worth mentioning that

for an m-dimensional version of the SDE of Eq. (3),

the number of BVPs to be solved becomes N m , i.e.,

the computational cost increases exponentially with the

number of dimensions, and becomes prohibitive even-

tually. To bypass the above bottleneck, Kougioumt-

zoglou and co-workers have developed recently various

efficient solution techniques by resorting to appropriate

response PDF expansions in conjunction with a com-

pressive sampling treatment and group sparsity con-

cepts. The above developments have decreased dras-

tically the associated computational cost as compared

both to a standard MCS solution approach and to the

N m BVPs required to be solved numerically by the

brute-force Wiener path integral technique implemen-

tation; see also [12,27,28] for a more detailed presen-

tation and discussion.

Nevertheless, despite the aforementioned efforts

toward computational efficiency enhancement of the

Wiener path integral technique, the computational cost

remains non-trivial as a non-negligible number of

BVPs is still required to be solved numerically for

determining the response PDF. In this paper, and in the

following section in particular, a conceptually differ-

ent solution approach is pursued, and a closed-form

approximate expression is derived for the response

transition PDF. This is done in conjunction with the

Wiener path integral formalism and by relying on

a Cauchy–Schwarz inequality treatment, whereas the

computational cost is kept at a minimal level.

3 Main results

In this section, a novel closed-form approximate

expression is derived for the response transition PDF

of SDEs with nonlinear drift and nonlinear diffusion

coefficients of arbitrary form. In this regard, attention

is directed in the ensuing analysis to a version of Eq.

(3) with time-invariant nonlinear coefficients; that is,

ẋ = μ(x) + σ(x)η(t). (13)

Specifically, resorting to a Wiener path integral

variational formulation and employing the Cauchy–

Schwarz inequality yields an analytical expression for

the transition PDF, whose determination requires prac-

tically zero computational cost. Further, the accuracy

of the above approximation is enhanced by propos-

ing a more versatile closed-form expression with addi-

tional “degrees of freedom,” i.e., parameters to be eval-

uated. To this aim, an error minimization approach

based on the corresponding F–P equation is formulated

and solved, at the expense of some modest compu-

tational cost. The herein developed technique can be

construed as an extension of earlier work by Meimaris
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et al. [13,14] to account for a more general class of

nonlinear SDEs, with nonlinearities appearing both in

the drift and in the diffusion coefficients. Besides the

mathematical merit of the aforementioned generaliza-

tion, its relevance to engineering dynamics applications

is significant. In particular, as shown in the numerical

examples section, when coupled with a stochastic aver-

aging treatment of the original second-order governing

SDE, the technique is capable of determining approx-

imately (at minimal, however, computational cost) the

response amplitude transition PDF of diverse stochasti-

cally excited nonlinear oscillators. Systems exhibiting

complex hysteretic response behaviors such as those

following the Preisach versatile modeling can also be

readily accounted for under the same solution frame-

work.

3.1 Approximate closed-form transition PDF for

SDEs with nonlinear drift and nonlinear diffusion

coefficients

In this section, a closed-form analytical approximation

is derived for the solution PDF of Eq. (13) based on a

Cauchy–Schwarz inequality treatment. In this regard,

the approximation can be used not only as a direct SDE

response PDF estimate that requires practically zero

computational effort for its determination, but also as a

starting point in the optimization approach developed

in the ensuing section toward enhancing the accuracy

of the original, rather crude, approximation.

Specifically, following the derivation provided in

“Appendix A” and taking into account Eqs. (12) and

(73), an approximation for the response transition PDF

of Eq. (13) is given by

p̂ (xf , tf |xi , ti ) = N (tf |xi , ti ) exp (−G (xf , tf |xi , ti )),

(14)

where

G (xf , tf |xi , ti )

= 1

2

(

(R(xf ) − R(xi ))
2

tf − ti
− (M(xf ) − M(xi ))

)

,

R(x) =
x

∫

x∗

1

σ(u)
du,

M(x) =
x

∫

x∗

2μ(u)

σ (u)2
du, (15)

and x∗ ∈ R an arbitrarily chosen point so that the inte-

grals of Eq. (15) are well defined. Further, the normal-

ization constant N in Eq. (14) is determined as

N (tf |xi , ti ) =
(∫

D

exp (−G (z, tf |xi , ti )) dz

)−1

,

(16)

where D denotes the domain of integration, account-

ing for any restrictions that M(·) and R(·) may

impose. Clearly, further manipulation of the closed-

form expression of Eqs. (14)–(15) depends on the avail-

ability of analytical expressions for the antiderivatives

M(·) and R(·), which in turn depends on the specific

nonlinearity form under consideration.

It can be readily seen that p̂(·) in Eq. (14) can be

directly used as an analytical approximation of the

response process transition PDF without resorting to

the numerical solution of the E–L Eq. (11). Note that

the closed-form expression of Eq. (14), which requires

essentially zero computational cost for its evaluation,

can be construed as a generalization of the expression

derived in [13] to account for nonlinearities both in the

drift and in the diffusion coefficients of the governing

stochastic differential Eq. (13).

3.2 Enhanced accuracy via an error minimization

scheme

As demonstrated in [13] for the case of SDEs with non-

linear drift but constant diffusion coefficients, although

the approximation of Eq. (14) is capable, in general, of

capturing the salient features of the solution PDF, in

many cases the degree of accuracy exhibited can be

inadequate. To address this limitation, a more general

form of the PDF was proposed in [14], by incorporating

two additional “degrees of freedom,” i.e., parameters

to be determined based on an appropriate optimization

scheme. Similarly to [14], and to address the herein

considered more challenging case of SDEs with non-

linearities both in the drift and in the diffusion coeffi-

cients, a more general form than Eq. (14) is proposed

for the transition PDF, that is,

p̂(k,n) (xf , tf |xi , ti )

= N(k,n) (tf |xi , ti ) exp
(

−G(k,n) (xf , tf |xi , ti )
)

,

(17)
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where

G(k,n) (xf , tf |xi , ti )

= 1

2

(

k
(R(xf ) − R(xi ))

2

tf − ti
− n (M(xf ) − M(xi ))

)

,

(18)

and the normalization constant N in Eq. (17) is given

by

N(k,n)(tf |xi , ti ) =
(∫

D

exp
(

−G(k,n) (z, tf |xi , ti )
)

dz

)−1

.

(19)

Note that the additional parameters k and n ren-

der the rather crude PDF approximation of Eq. (14)

more versatile in capturing diverse response behav-

iors. In particular, the parameter k relates to optimiz-

ing and “tightening” the Cauchy–Schwarz inequality

of Eq. (72), whereas the parameter n refers to the over-

all accuracy of the Wiener path integral approximation

of Eq. (12). This generalized PDF form is anticipated

to enhance the accuracy exhibited by Eq. (14), at the

expense, however, of some modest computational cost

related to the determination of k and n.

Specifically, to determine the parameters k and n in

Eq. (17), for a given norm (‖ · ‖q ), the error quantity

‖ p̂(k,n) − p∗‖q is sought to be minimized, where p∗

denotes the exact solution PDF. However, since p∗ is

unknown, an error minimization scheme based on the

F–P equation operator is adopted in the ensuing anal-

ysis (see also [14]). In this regard, the exact transition

PDF p∗ for the SDE of Eq. (13) is given as the solution

of the F–P equation [Eq. (2)] associated with Eq. (13),

i.e.,

∂p∗(x, t)

∂t
= −∂ (μ(x) p∗(x, t))

∂x

+ 1

2

∂2
(

σ(x)2 p∗(x, t)
)

∂x2
.

(20)

Next, denoting the F–P operator as

LFP[p(x, t)] = ∂p(x, t)

∂t
+ ∂ (μ(x) p(x, t))

∂x

− 1

2

∂2
(

σ(x)2 p(x, t)
)

∂x2
,

(21)

and taking into account that LFP[p∗] = 0, the error is

defined as

errq = ‖LFP[ p̂(k,n) − p∗]‖q

= ‖LFP[ p̂(k,n)] − LFP[p∗]‖q

= ‖LFP[ p̂(k,n)]‖q .

(22)

Due to the analytical form of p̂(k,n) in Eq. (17), the

error quantity errq = ‖LFP[ p̂(k,n)]‖q in Eq. (22) can be

expressed explicitly as a function of k and n; see also

[14]. Further, for a chosen q-norm and final time tf , the

values of k, n are numerically evaluated by solving the

optimization problem

ẑq =
(

k̂, n̂
)

q
= arg min

k,n∈R

‖LFP[ p̂(k,n)(·, tf)]‖q , (23)

and thus, the approximate response PDF of Eq. (17) is

determined.

4 Response analysis of stochastically excited

nonlinear/hysteretic oscillators

In this section, it is shown that the developed solu-

tion technique in Sect. 3 can be readily coupled with

a stochastic averaging treatment of the second-order

SDEs governing the dynamics of diverse stochasti-

cally excited nonlinear/hysteretic oscillators for deter-

mining the response transition PDF in a computation-

ally efficient manner. Concisely, the main aspects of

stochastic averaging (e.g., [30,31]) relate to a Marko-

vian approximation of an appropriately chosen ampli-

tude of the system response, as well as to a dimension

reduction of the original two-dimensional problem to

an one-dimensional problem. In particular, the original

second-order SDE is cast into a first-order SDE of the

form of Eq. (13), and thus, the technique developed in

Sect. 3 can be applied in a straightforward manner.

In this regard, consider a nonlinear single-degree-

of-freedom oscillator whose motion is governed by

ÿ + β0 ẏ + g(t, y, ẏ) = v(t), (24)

where v(t) is a white noise process, i.e., E(v(t)) = 0

and E(v(t1)v(t2)) = 2π S0δ0(t1 − t2), g(·) is the restor-

ing force which can be either hysteretic or depend only

on the instantaneous values of y and ẏ, β0 is a lin-

ear damping coefficient so that β0 = 2ζ0ω0; ζ0 is
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An approximate technique for determining in closed form 2633

the ratio of critical damping, and ω0 is the natural

frequency corresponding to the linear oscillator (i.e.,

g(t, y, ẏ) = ω2
0 y).

Next, adopting the assumption of light damping

(e.g., ζ0 	 1), it can be argued that the oscillator of

Eq. (24) exhibits a pseudo-harmonic response behavior

described by the equations (e.g., [32])

y(t) = x cos(ω(x)t + φ), (25)

and

ẏ(t) = −xω(x) sin(ω(x)t + φ). (26)

Manipulating Eqs. (25) and (26), the response ampli-

tude x and the response phase φ are given by

x(t) =

√

y(t)2 + ẏ(t)2

ω(x)2
, (27)

and

φ(t) = −ω(x)t − tan−1

(

ẏ(t)

y(t)ω(x)

)

, (28)

respectively. These are considered to be slowly vary-

ing functions with respect to time, and approximately

constant over one cycle of oscillation; see also [31,32].

In Eqs. (25) and (26), the equivalent natural frequency

ω(x), to be determined in the following, is approx-

imated as a function of the response amplitude x to

account for the effect of nonlinearities in the origi-

nal system of Eq. (24). Next, a statistical linearization

treatment (e.g., [4,32]) yields an equivalent to Eq. (24)

oscillator of the form

ÿ + β(x)ẏ + ω(x)2 y = v(t), (29)

where

β(x) = β0 −
1
π

∫ 2π

0 sin(ψ)g(t, xcos(ψ),−ωxsin(ψ))dψ

xω(x)
,

(30)

and

ω(x)2 =
1
π

∫ 2π

0 cos(ψ)g(t, xcos(ψ), −ωxsin(ψ))dψ

x
.

(31)

Further, resorting to a stochastic averaging treatment

(e.g., [32]), the response amplitude x can be decou-

pled from the response phase φ, yielding a first-order

stochastic differential equation for x in the form

ẋ = −1

2
β(x)x + π S0

2xω(x)2
+

√
π S0

ω(x)
η(t). (32)

It can be readily seen that Eq. (32) is an SDE of the

form of Eq. (13) with drift μ and diffusion σ coeffi-

cients given by

μ(x) = −1

2
β(x)x + π S0

2xω(x)2
, (33)

and

σ(x) =
√

π S0

ω(x)2
, (34)

respectively. Thus, the herein developed solution tech-

nique can be applied in a straightforward manner for

determining the stochastic response of a wide range of

nonlinear/hysteretic oscillators.

5 Numerical examples

In this section, the hardening Duffing and hysteretic

Preisach nonlinear oscillators are considered for assess-

ing the reliability of the herein developed technique. In

this regard, a standard interior point method [33,34]

using Matlab’s fmincon built-in function is employed

for solving numerically the optimization problem of

Eq. (23) in conjunction with the ‖·‖2 norm. To this aim,

the basic approximation of Eq. (14) with (k, n) = (1, 1)

serves as a natural choice for the starting point of the

optimization algorithm. In all cases, the algorithm con-

verged in no more than 55 iterations, which translates

into a small fraction of a second from a computa-

tional cost perspective. The response transition PDF

obtained by the closed-form expression of Eq. (32)

is compared with pertinent MCS-based PDF estimates

produced by numerically integrating the original equa-

tion of motion, Eq. (24) (100,000 realizations). A stan-

dard computer with 16 GB RAM, Inter(R) Core(TM)

i7-6700 CPU @3.40 GHz, is used for the numerical

implementations.
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5.1 Duffing nonlinear oscillator

In the case of a Duffing oscillator, the equation of

motion is governed by Eq. (24), with

g(t, y, ẏ) = ω2
0

(

y + αy3
)

, (35)

and α is a parameter controlling the nonlinearity mag-

nitude. Next, utilizing Eqs. (30) and (31) yields

β(x) = β0, (36)

and

ω(x)2 = ω2
0

(

1 + 3

4
αx2

)

. (37)

Thus, by employing Eqs. (36–37), the drift and dif-

fusion coefficients of Eqs. (33–34) become

μ(x) = −1

2
β0x + π S0

2xω2
0

(

1 + 3
4
αx2

) , (38)

and

σ(x) =
√

π S0

ω2
0

(

1 + 3
4
αx2

) , (39)

respectively.

Further, the antiderivatives R(·) and M(·) take the

form
√

π S0R(x)

= ω0

⎛

⎜

⎜

⎝

sinh−1

(

√

3
4
α x

)

√
3α

+
x

√

3
4
α x2 + 1

2

⎞

⎟

⎟

⎠

,

(40)

where sinh−1(x) = ln(x +
√

1 + x2) and

M(x) = ln(x) − β0ω
2
0

2π S0
x2 − 3β0ω

2
0α

16π S0
x4, (41)

respectively. Thus, the nonlinear Duffing oscillator

response amplitude PDF has been expressed in closed

form according to Eq. (17).

In the following numerical example, the parameter

values ω0 = 1, ζ0 = 0.01, S0 = 6
π
ζ0 and the initial

conditions y(ti = 0) = 1, ẏ(ti = 0) = 0 are consid-

ered. Next, minimizing the error as defined in Eq. (23)

for a given time instant yields the values for k and n.

Two time instants are considered, the first (tf = 2s)

corresponding to the transient phase of the response

behavior, and the second (tf = 50s) corresponding

effectively to the stationary regime. For tf = 2s and

tf = 50s, the respective objective functions of Eq.

(23) are plotted in Figs. 1 and 2, respectively, for non-

linearity magnitude α = 1. The computed values of

k and n are shown in Table 1 together with the cor-

responding iterations numbers and CPU times of the

optimization algorithm. In Fig. 3, both the basic p̂(1,1)

and the enhanced p̂(k,n) approximations are plotted for

the above two time instants and compared with perti-

nent MCS-based PDF estimates. It is seen that for early

time instants (tf = 2s) p̂(1,1) manages to capture the

basic features of the response amplitude PDF and yields

comparable accuracy to p̂(k,n). However, the superior

performance of p̂(k,n) over p̂(1,1) becomes evident at

tf = 50s (stationary phase). In fact, comparisons both

with MCS data and with the available stationary ana-

lytical solution of the F–P Eq. (20) (e.g., [31]), i.e.,

Fig. 1 Objective function of Eq. (23) for a Duffing oscillator

with α = 1 at tf = 2

Fig. 2 Objective function of Eq. (23) for a Duffing oscillator

with α = 1 at tf = 50
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Table 1 Computed k and n values for various final time instants

tf and starting point (1, 1) for a Duffing oscillator with α = 1

k n Iterations CPU time

tf = 2 0.7949 3.5083 39 0.048

tf = 50 (stationary) − 4.4646 6.1254 54 0.135

Fig. 3 Approximate response PDFs p̂(k,n) and p̂ = p̂(1,1) for

various time instants tf for a Duffing oscillator with α = 1; com-

parisons with MCS-based PDF estimates (100,000 realizations)

and with existing analytical stationary PDF expressions

p(xf) = xf + αx3
f

A2
exp

(

−
(

1
2

x2
f + α

4
x4

f

)

A2

)

, (42)

where

A2 = π S0

2ζ0ω
3
0

, (43)

indicate a high accuracy degree exhibited by the

approximate PDF p̂(k,n). Similar results are shown in

Figs. 4, 5 and 6 and Table 2 for nonlinearity magnitude

α = 2.

Fig. 4 Objective function of Eq. (23) for a Duffing oscillator

with α = 2 at tf = 2

Fig. 5 Objective function of Eq. (23) for a Duffing oscillator

with α = 2 at tf = 50

Fig. 6 Approximate response PDFs p̂(k,n) and p̂ = p̂(1,1) for

various time instants tf for a Duffing oscillator with α = 2; com-

parisons with MCS-based PDF estimates (100,000 realizations)

and with existing analytical stationary PDF expressions

Table 2 Computed k and n values for various final time instants

tf and starting point (1, 1) for a Duffing oscillator with α = 2

k n Iterations CPU time

tf = 2 0.4525 8.6760 42 0.191

tf = 50 (stationary)− 9.0246 9.1555 51 0.157

5.2 Preisach hysteretic oscillator

In the context of engineering dynamics, hysteresis

can be construed as a memory-dependent relationship,

which describes the dependence of the system restor-

ing force g(t, y, ẏ) on the time history of the sys-

tem response. A mathematical description of various

hysteretic models can be found in [35,36]. Recently,

the Preisach hysteretic model has been adopted to

describe the response behavior of smart materials, such

as shape-memory alloys [37,38]. The model is sig-

nificantly versatile in representing diverse hysteretic

patterns, and even capable of capturing minor loops

present in many physical phenomena. A detailed pre-
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sentation of the Preisach formalism is given in [39],

while indicative contributions toward determining the

stochastic response and assessing the reliability of sys-

tems endowed with Preisach elements can be found

in [32,40–46].

Following the notation adopted in [41], the Preisach

hysteretic restoring force, f (t), is given by

f (t) =
∫∫

a≥b

μ(a, b)γ (x, t)da db, (44)

where γ (x, t) is a relay operator or hysteron. Although

the model of Eq. (44) can represent various hysteretic

behaviors by appropriately identifying the weight func-

tion μ(a, b) (see also [37]), the one corresponding to

the Iwan–Jenkins model is utilized in the following.

Specifically, the equation of motion [Eq. (24)] becomes

ÿ + β0 ẏ + ω̄2 y + fH(t) = v(t), (45)

where

ω̄2 = ω2
0 + ω2

j = ω2
j (ϕ + 1) = k j (1 + ϕ), (46)

i.e., k j = ω2
j and ϕ = ω2

0

ω2
j

. In Eqs. (45–46), it is seen

that the Preisach restoring force is divided into a linear

part and a nonlinear one monitoring the memory of

the system, while ϕ quantifies the contribution of the

Preisach linear part as compared to the stiffness of the

corresponding linear oscillator. Next, introducing the

parameter

ψ = ω̄2

f �
y

, (47)

Equation (45) can be cast in the form

ÿ + β0 ẏ + ω̄2 (y + ψdH(t)) = v(t), (48)

where dH(t) denotes the scaled hysteretic restoring

force. Further, for the case

fy,max − fy,min

fy,max + fy,min
= 1, (49)

where fy is the yielding force, utilizing Eqs. (30) and

(31) yields

β(x) = β0 + ψω̄2x

3π (1 + ϕ)2

√

ω̄2 − ψω̄2x

4(1+ϕ)2

, (50)

and

ω(x)2 = ω̄2 − ψω̄2x

4 (1 + ϕ)2
. (51)

Thus, by employing Eqs. (50–51), the drift and dif-

fusion coefficients of Eqs. (33–34) become

μ(x) = − β0

2
x − ψω̄2x2

6π (1 + ϕ)2

√

ω̄2 − ψω̄2x

4(1+ϕ)2

+ π S0

2x
(

ω̄2 − ψω̄2x

4(1+ϕ)2

) ,

(52)

and

σ(x) =
√

√

√

√

π S0

ω̄2 − ω̄2 ψ x

4(ϕ+1)2

, (53)

respectively. The reader is also directed to [41,43] for

more details on stochastic averaging of Preisach oscil-

lators.

Further, the antiderivatives R(·) and M(·) take the

form

R(x) = −
ω̄2 Aϕ,ψ (x)2

√

πS0 (ϕ+1)2

ω̄2 Aϕ,ψ (x)

3 πS0 ψ (ϕ + 1)2
, (54)

and

M(x) = log(x)

+
β0 ω̄6 Aϕ,ψ (x)3

24
+ β0 ω̄6 ψ x Aϕ,ψ (x)2

8

πS0 ω̄4 ψ2 (ϕ + 1)2

+
8 ω̄7 Aϕ,ψ (x)7/2

315
+ 4 ω̄7 ψ x Aϕ,ψ (x)5/2

45
+ ω̄7 ψ2 x2 Aϕ,ψ (x)3/2

9

πS0 ω̄4 ψ2 π (ϕ + 1)3
,

(55)

respectively, where Aϕ,ψ (x)=
(

4 ϕ2 + 8 ϕ − ψ x + 4
)

.

Thus, the nonlinear hysteretic Preisach oscillator

response amplitude PDF has been expressed in closed

form according to Eq. (17).
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In the numerical example, the parameter values

ω̄ = 1, ζ0 = 0.01, S0 = 2
π
ζ0 with ψ = 1 are used

together with the initial conditions y(ti = 0) = 1,

ẏ(ti = 0) = 0. Next, minimizing the error in Eq. (23)

for a given time instant yields the values for k and n.

In a similar manner as in Sect. 5.1, two time instants

are considered, the first (tf = 5s) corresponding to the

transient phase of the response behavior, and the second

(tf = 50s) corresponding effectively to the stationary

regime. For tf = 5s and tf = 50s the objective func-

tions of Eq. (23) are plotted in Figs. 7 and 8, respec-

tively, for nonlinearity magnitude ϕ = 1. The com-

puted values of k and n are shown in Table 3 together

with the corresponding iterations numbers and CPU

times of the optimization algorithm. In Fig. 9, both the

basic p̂(1,1) and the enhanced p̂(k,n) approximations are

plotted for the above two time instants and compared

Fig. 7 Objective function of Eq. (23) for a Preisach oscillator

with ϕ = 1 at tf = 5

Fig. 8 Objective function of Eq. (23) for a Preisach oscillator

with ϕ = 1 at tf = 50

Table 3 Computed k and n values for various final time instants

tf and starting point (1, 1) for a Preisach oscillator with ϕ = 1

k n Iterations CPU time

tf = 5 0.9440 1.2226 33 0.023

tf = 50 (stationary) 0.1928 1.9673 48 0.053

Fig. 9 Approximate response PDFs p̂(k,n) and p̂ = p̂(1,1) for

various time instants tf for a Preisach oscillator with ϕ = 1; com-

parisons with MCS-based PDF estimates (100,000 realizations)

and with existing analytical stationary PDF expressions

with pertinent MCS-based PDF estimates. It is seen

that for early time instants (tf = 5s) p̂(1,1) manages to

capture the salient features of the response amplitude

PDF and appears to be almost indistinguishable from

p̂(k,n). This is also seen by observing the values for k

and n in Table 3, which are relatively close to 1. Further,

the enhanced accuracy of p̂(k,n) as compared to p̂(1,1)

becomes evident at tf = 50s (stationary phase). In fact,

comparisons both with MCS data and with the avail-

able stationary analytical solution of the F–P Eq. (20)

(e.g., [41]), i.e.,

p(xf) = C(λ)xf

(

2ζ0

1 − λxf

)−1/2

exp

(

− x2
f

2
+ λx3

f

12

+
(

128 + 48λxf + 15λ2x2
f

)

(4 − λxf)
3/2

630πζ0λ2

)

,

(56)

where

λ = ψ

(1 + φ)2
, (57)

and C(λ) is a normalization coefficient, indicate a sat-

isfactory level of agreement. Similar results are shown

in Figs. 10, 11 and 12 and Table 4 for nonlinearity mag-

nitude ϕ = 2.
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Fig. 10 Objective function of Eq. (23) for a Preisach oscillator

with ϕ = 2 at tf = 5

Fig. 11 Objective function of Eq. (23) for a Preisach oscillator

with ϕ = 2 at tf = 50

Fig. 12 Approximate response PDFs p̂(k,n) and p̂ = p̂(1,1) for

various time instants tf for a Preisach oscillator with ϕ = 2; com-

parisons with MCS-based PDF estimates (100,000 realizations)

and with existing analytical stationary PDF expressions

Table 4 Computed k and n values for various final time instants

tf and starting point (1, 1) for a Preisach oscillator with ϕ = 2

k n Iterations CPU time

tf = 5 0.9358 1.3059 27 0.042

tf = 50 (stationary) 0.2215 1.9201 51 0.051

6 Concluding remarks

In this paper, an approximate analytical technique has

been developed for determining, in closed form and

at minimal computational cost, the transition PDF of

a wide range of nonlinear first-order SDEs. This has

been done by relying on the Wiener path integral “most

probable path” approximation and on the Cauchy–

Schwarz inequality, in conjunction with formulating

and solving an error minimization problem by utiliz-

ing the associated Fokker–Planck equation operator.

The technique can be construed as an extension of

the results in [13,14] to account for a more general

class of SDEs with nonlinearities both in the drift and

in the diffusion coefficients. Besides the mathematical

merit of this generalization, the technique can serve

also as a benchmark for assessing the performance of

alternative, more computationally demanding, stochas-

tic dynamics numerical methodologies. Further, its

relevance to engineering dynamics applications has

been demonstrated by determining approximately the

response amplitude transition PDF of diverse stochasti-

cally excited nonlinear oscillators, including hysteretic

systems following the Preisach versatile modeling.

Comparisons with pertinent MCS data have demon-

strated a satisfactory accuracy degree.
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Appendix A: Derivation of Eq. (14)

Employing the Wiener path integral approximate solu-

tion technique and substituting the associated

Lagrangian function of Eq. (8) into the E–L Eq. (11)

yields
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ẍc − ∂μ(xc)
∂xc

ẋc

σ(xc)2
− 2

(ẋc − μ(xc))
∂σ(xc)

∂xc
ẋc

σ(xc)3

= −
(ẋc − μ(xc))

∂μ(xc)
∂xc

σ(xc)2
−

(ẋc − μ(xc))
2 ∂σ(xc)

∂xc

σ(xc)3
.

(58)

Equation (58) can be further manipulated into

ẍc − μ(xc)
∂μ(xc)

∂xc
=

∂σ(xc)
∂xc

σ(xc)

(

ẋ2
c − μ(xc)

2
)

, (59)

in conjunction with the boundary conditions xc(ti ) =
xi , xc(tf) = xf . Equivalently, Eq. (59) can be cast into

the form

ẍc −
∂σ(xc)

∂xc

σ(xc)
ẋ2

c = μ(xc)
∂μ(xc)

∂xc
−

μ(xc)
2 ∂σ(xc)

∂xc

σ(xc)

= μ(xc)

σ (xc)

(

σ(xc)
∂μ(xc)

∂xc
− μ(xc)

∂σ (xc)

∂xc

)

,

(60)

and multiplying both sides by 2ẋc

σ(xc)2 yields

2ẋc ẍc

σ(xc)
2

−
2 ∂σ(xc)

∂xc

σ(xc)
3

ẋ3
c

= 2
μ(xc)

σ (xc)

(

σ(xc)
∂μ(xc)

∂xc
− μ(xc)

∂σ(xc)
∂xc

σ(xc)
2

)

ẋc.

(61)

Next, taking into account that

∂

∂xc

(

(

μ(xc)

σ (xc)

)2
)

= 2
μ(xc)

σ (xc)

(

σ(xc)
∂μ(xc)

∂xc
− μ(xc)

∂σ(xc)
∂xc

σ(xc)
2

)

,

(62)

in conjunction with the chain rule of differentiation,

i.e., d
dt

(

(

μ(xc)
σ (xc)

)2
)

= ∂
∂xc

(

(

μ(xc)
σ (xc)

)2
)

ẋc, Eq. (61)

becomes

2ẋc ẍc

σ(xc)
2

−
2 ∂σ(xc)

∂xc

σ(xc)
3

ẋ3
c = d

dt

(

(

μ(xc)

σ (xc)

)2
)

. (63)

Further, it can be readily verified that

d

dt

(

ẋ2
c

σ(xc)
2

)

= 2ẋc ẍc

σ(xc)
2

−
2 ∂σ(xc)

∂xc

σ(xc)
3

ẋ3
c . (64)

Utilizing Eq. (64), Eq. (63) becomes

d

dt

(

ẋ2
c

σ(xc)
2

)

= d

dt

(

(

μ(xc)

σ (xc)

)2
)

, (65)

or, alternatively,

ẋ2
c

σ(xc)
2

=
(

μ(xc)

σ (xc)

)2

+ b, (66)

where b is a constant, dependent on the boundary con-

ditions, i.e., xc(ti ) = xi , xc(tf) = xf . Considering next

Eq. (8), and expanding, leads to

L(xc, ẋc) = 1

2

(

ẋ2
c − 2ẋcμ(xc) + μ(xc)

2

σ(xc)
2

)

, (67)

whereas substituting Eq. (66) into Eq. (67) yields

L(xc, ẋc) = 1

2

(

2ẋ2
c − 2ẋcμ(xc)

σ (xc)
2

− b

)

. (68)

Next, integrating Eq. (68) leads to

∫ tf

ti

L(xc, ẋc)dt

= 1

2

(

2

∫ tf

ti

ẋ2
c

σ(xc)
2

dt −
∫ tf

ti

2ẋcμ(xc)

σ (xc)
2

dt

− b (tf − ti )) .

(69)

Furthermore, for arbitrary functions f (·), g(·), the

Cauchy–Schwarz inequality (e.g., [29]) states that

(∫ b

a

f (t)g(t)dt

)2

≤
∫ b

a

f (t)2dt

∫ b

a

g(t)2dt. (70)

Clearly, setting f ≡ 1 yields the special case

∫ b

a

g(t)2dt ≥ 1

b − a

(∫ b

a

g(t)dt

)2

. (71)
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Next, denoting by M(·) an antiderivative of
2μ(·)
σ (·)2

and by R(·) an antiderivative of 1
σ(·) , and applying Eq.

(71) to the term 2
∫ tf

ti

ẋ2
c

σ(xc)
2 dt in Eq. (69) yields

2

∫ tf

ti

ẋ2
c

σ(xc)
2

dt ≥
∫ tf

ti

ẋ2
c

σ(xc)
2

dt

≥

(

∫ tf
ti

ẋc
σ(xc)

dt
)2

tf − ti

= (R(xf) − R(xi ))
2

tf − ti
.

(72)

Considering Eq. (72), Eq. (69) becomes

∫ tf

ti

L(xc, ẋc)dt ≥ −b (tf − ti )

2

+ 1

2

(

(R(xf) − R(xi ))
2

tf − ti
− (M(xf ) − M(xi ))

)

.

(73)

Thus, taking into account Eqs. (12) and (73) an

approximation for the response transition PDF of Eq.

(13) is given by

p̂ (xf , tf |xi , ti ) = N (tf |xi , ti ) exp (−G (xf , tf |xi , ti )) ,

(74)

where

G (xf , tf |xi , ti )

= 1

2

(

(R(xf) − R(xi ))
2

tf − ti
− (M(xf ) − M(xi ))

)

,

(75)

and N in Eq. (74) serves as the normalization constant,

which is determined as

N (tf |xi , ti ) =
(∫

D

exp (−G (z, tf |xi , ti )) dz

)−1

,

(76)

where D denotes the domain of integration, accounting

for any restrictions that M(·) and R(·) may impose.
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