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Abstract

For a graph G, let x(G) and w(G) respectively denote the chromatic
number and clique number of G. We give an explicit structural descrip-
tion of (Ps, gem)-free graphs, and show that every such graph G satisfies
x(G) < [S‘UT@)] Moreover, this bound is best possible. Here a gem is the
graph that consists of an induced four-vertex path plus a vertex which is
adjacent to all the vertices of that path.
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1 Introduction

All our graphs are finite and have no loops or multiple edges. For any integer k,
a k-coloring of a graph G is a mapping ¢ : V(G) — {1, ..., k} such that any two
adjacent vertices u, v in G satisfy ¢(u) # ¢(v). A graph is k-colorable if it admits
a k-coloring. The chromatic number x(G) of a graph G is the smallest integer
k such that G is k-colorable. A clique in a graph G is a set of pairwise adjacent
vertices, and the cligue number of G, denoted by w(G), is the size of a maximum
clique in G. Clearly x(H) > w(H) for every induced subgraph H of G. A graph
G is perfect if every induced subgraph H of G satisfies x(H) = w(H). Following
Gyérfds [10], we say that a class of graphs is y-bounded if there is a function f
(called a x-bounding function) such that every member G of the class satisfies
X(G) < f(w(G)). Thus the class of perfect graphs is xy-bounded with f(z) = «.

For any integer ¢ we let Py, denote the chordless path on £ vertices and C,
denote the chordless cycle on ¢ vertices. The gem is the graph that consists
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of a Py plus a vertex adjacent to all vertices of the Py. A hole (antihole) in a
graph is an induced subgraph that is isomorphic to C, (C;) with £ > 4, and
¢ is the length of the hole (antihole). A hole or an antihole is odd if ¢ is odd.
Given a family of graphs F, a graph G is F-free if no induced subgraph of G is
isomorphic to a member of F; when F has only one element F' we say that G is
F-free; when F has two elements Fy and Fs, we simply write G is (Fy, Fy)-free
instead of {F, Fy}-free. If F is a finite family of graphs, and if C is the class
of F-free graphs which is y-bounded, then by a classical result of Erdos [7], at
least one member of F is a forest (see also [10]). Thus, for instance, the class of
Cs-free (or triangle-free) graphs is not y-bounded. We refer to [16, 17] for more
results on y-bounded classes of F-free graphs, and we give below some of them
which are related to our results.

Gyérfas [10] showed that the class of Pi-free graphs is x-bounded. Gravier
et al. [9] improved Gyérfds’s bound slightly by proving that every P;-free graph
G satisfies x(G) < (t — 2)“(9 =1, Tt is well known that every Pj-free graph
is perfect. The preceding result implies that every Ps-free graph G satisfies
x(G) < 39(@)=1, The problem of determining whether the class of Ps-free graphs
admits a polynomial x-bounding function remains open, and it is remarked in
[13] (without proof) that the known y-bounding function f for such class of
graphs satisfies c(w?/logw) < f(w) < 2¥. So the recent focus is on obtaining
x-bounding functions for some classes of Ps-free graphs. The first author and
Sivaraman [6] showed that every (Ps, Cs)-free graph G satisfies x(G) < 2¢(¢)~1,
and that every (Ps, bull)-free graph G satisfies x(G) < (“(GQ)‘H). Schiermeyer
[15] showed that every (Ps, H)-free graph G satisfies x(G) < w(G)?, for some
special graphs H. The second author with Arnab Char [3] showed that every
(P5,4-wheel)-free graph G satisfies x(G) < 2w(G). Fouquet et al. [8] proved
that there are infinitely many (Ps, Ps)-free graphs G with x(G) > w(G)®, where
a =logy 5 — 1, and that every (Ps, P5)-free graph G satisfies y(G) < (“(91).
The second author with Choudum and Shalu [4] studied the class of (Ps, gem)-
free graphs and showed that every such graph G satisfies x(G) < 4w(G). Later
Cameron, Huang and Merkel [2] improved this result replacing 4w with [3£].
We improve this result further and establish the best possible bound, as follows.

Theorem 1 Let G be a (Ps, gem)-free graph. Then x(G) < [%1 Moreover,
this bound 1is tight.

The degree of a vertex in a graph G is the number of vertices adjacent to
it. The maximum degree over all vertices in G is denoted by A(G). Clearly
every graph G satisfies w(G) < x(G) < A(G) + 1. Reed [14] conjectured that

W]. Reed’s conjecture is still open

in general. It is shown in [11] that if a graph G satisfies x(G) < [5%(@1, then

X(G) < [%] So by Theorem 1, we immediately have the following
theorem.

every graph G satisfies x(G) < [

Theorem 2 Let G be a (Ps, gem)-free graph. Then x(G) < [%]
Moreover, this bound is tight.

A stable set in a graph G is a set of pairwise nonadjacent vertices, and the
stability number of G, denoted by «(G), is the size of a maximum stable set in

G. Tt is folklore that every graph G satisfies x(G) > [%]



The bounds in Theorem 1 and in Theorem 2 are tight on the following
example. Let G be a graph whose vertex-set is partitioned into five cliques
Q1,-..,Qs5 such that for each i mod 5, every vertex in Q); is adjacent to every
vertex in ;11 U Q;—1 and to no vertex in Q;y2 U Q;—_2, and |Q;| = t for all 7
(t > 0). Then |V(G)| = 5t, A(G) = 3t — 1, w(G) = 2t and a(G) = 2. Moreover,
it is easy to check that G is (Ps,gem)-free. So by Theorem 1, x(G) < [3L].

2
Also, since x(G) > [IL(E)], we have x(G) > [%]. So x(G) = [%].

Our proof of Theorem 1 uses the structure theorem for (Ps, gem)-free graphs
(Theorem 3). Before stating it we recall some definitions.

Let G be a graph with vertex-set V(G) and edge-set E(G). For any two
subsets X and Y of V(G), we denote by [X,Y], the set of edges that has one
end in X and other end in Y. We say that X is complete to Y or [X,Y]
is complete if every vertex in X is adjacent to every vertex in Y; and X is
anticomplete to Y if [X,Y] = (. If X is singleton, say {v}, we simply write v is
complete (anticomplete) to Y instead of writing {v} is complete (anticomplete)
to Y. For any x € V(G), let N(x) denote the set of all neighbors of x in G; and
let degg(x) := |N(x)|. The neighborhood N(X) of a subset X C V(G) is the
set {u € V(G)\ X | u is adjacent to a vertex of X}. If X C V(G), then G[X]
denote the subgraph induced by X in G. A set X C V(G) is a homogeneous set
if every vertex in V(G)\ X with a neighbor in X is complete to X. Note that in
any gem-free graph G, for every v € V(G), N(v) induces a Ps-free graph, and
hence the subgraph induced by a homogeneous set in any connected graph G is
Py-free.

An ezpansion of a graph H is any graph G such that V(G) can be partitioned
into |V(H)| nonempty sets @Q,, v € V(H), such that [Q,,Q,] is complete if
wv € E(H), and [Qy, Qy] = 0 if uv ¢ E(H). An expansion of a graph is a clique
expansion if each @, is a clique, and is a Py-free expansion if each @, induces
a Py-free graph. See Figure 1 for examples.
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Figure 1: (a) A C5. (b) Schematic representation of a Py-free expansion of Cj
given in (a). Here, the shaded circles represent a collection of sets into which
the vertex-set of the graph is partitioned. Each shaded circle means a nonempty
set that induces a Py-free subgraph. A solid line (the absence of a line) between
any two circles means the respective sets are complete (anticomplete) to each
other. (c) An example of a clique expansion of Cs given in (a), where |Q,,| = 2
for each i.
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Figure 2: Basic graphs

Let G1,Ga,...,Gyo be the ten graphs shown in Figure 2. Clearly each of
G1,...,Gyo is (Ps,gem)-free. Moreover, it is easy to check that any Pj-free
expansion of a (Ps,gem)-free graph is (Ps, gem)-free.

Graph class H: The class of connected (Ps, gem)-free graphs G such that V(G)
can be partitioned into seven nonempty sets Ai,..., A7 such that:

e Each A; induces a P,-free graph.

[A1, A2 U A5 U Ag] is complete and [A1, A3 U Ay U A7] = 0.

[A3, A2 U Ay U Ag] is complete and [A3z, A5 U A7] = (.

[A4, A5 U Ag] is complete and [A4, As U A7] = .

[A2, A5 U Ag U A7] = 0 and [A45, Ag U A7] = 0.

The vertex-set of each component of G[A7] is a homogeneous set.

e Every vertex in A7 has a neighbor in Ag.
Now we can state our structural result.

Theorem 3 Let G be a connected (Ps, gem)-free graph that contains an induced
Cs. Then either G € H or G is a Py-free expansion of either G1, Ga, ..., Gy
or GlO'

We note that another structure theorem for (Ps,gem)-free graphs using a re-
cursive construction is given by Brandstadt and Kratsch [1]. However, it seems
difficult to use that theorem to get the bounds derived in this paper.



2 Proof of Theorem 3

Throughout this section, we use the following convention. We simply write v;-
Va-U3-v4-V5 to mean a Ps with vertex-set {v1,ve,vs,v4,v5} and edge-set {viva,
Va3, U304, V45 }. Also, we will say that the set {v1,va,v3,v4, ¢} induces a gem,
if v1-v9-v3-v4 is a Py, and c is complete to {v1,v2,vs,v4}.

Let G be a connected (Ps, gem)-free graph. Since G contains an induced Cs,
there are five nonempty and pairwise disjoint sets A1, ..., A5 such that for each ¢
modulo 5 the set A; is complete to A;—1UA;+1 and anticomplete to A;_oUA; 9.
Let A:= Ay U---U A;. We choose these sets such that A is maximal. From
now on every subscript is understood modulo 5. Let R :={z € V(G)\ A | z
has no neighbor in A}, and for each 1, let

Y, = {xe€V(G)\ A|xis complete to A;, anticomplete to A;_1 U A;11,
and z has a neighbor in each of A;_9 and A; s, and z is complete

to one of A;_5 and A; 2}.
Clearly, the sets Y;’s are pairwise disjoint. Moreover, we have the following.
Claim 3.1 V(G)=A;U---UA;UY U ---UY; UR.

Proof. Consider any « € V(G) \ (AU R). For each i let a; be a neighbor of z in
A; (if any such vertex exists) and b; be a nonneighbor of = in A; (if any exists).
Let L := {i | a; exists}. Then L # () since x ¢ R. Up to symmetry there are
four cases:

(a) L = {i} or {i,i+ 1} for some i. Then x-a;-b;_1-b;_2-b;_3 is a Ps, a contra-
diction.

(by L ={i—1,i+ 1} or {i — 1,4,4 + 1} for some i. Then x is complete to
A1 U A4, for otherwise z-a;41-b;49-b;—2-b;—1 or x-a;_1-b;_o-b;12-b;y1 is a
Ps5, a contradiction. But then x can be added to A;, contradicting the maxi-
mality of A.

(¢) L = {i,i — 2,7 + 2} for some 4. Then x is complete to A;, for otherwise
- y9-b;11-bi-b;_1 is a Ps, and similarly « must be complete to one of 4;_5 and
Aizo. Soz isin Y;.

(d) |L| > 4. Then {a;, ait1,0it2,Git3,2} induces a gem for some i, a contra-
diction. O

Claim 3.2 For each i, G[A;] and G[Y;] are Py-free.

Proof. Since G is gem-free, the claim follows by the definitions of A; and Y;. ¢

Claim 3.3 For each i we have [Y;_1,Y;11] = 0.

Proof. Pick any y € Y;_1 and 2z € Y; ;1. We know that y has neighbors a;1 €
Aiy1 and a;49 € Aj40, and z has a neighbor a;_1 € A;,_1. Then yz ¢ E(G), for
otherwise {a;_1,2,a;+1,a;+2,y} induces a gem, a contradiction. O

We say that a vertex in Y; is pure if it is complete to A;_o U A;12, and the
set Y; is pure if every vertex in Y; is pure.



Claim 3.4 Suppose that there exists a pure vertex in Y; for some i. ThenY; is
pure.

Proof. We may assume that ¢ = 1 and let p € Y; be pure. Suppose to the
contrary that there exists a vertex y € Y7 which is not pure, say y has a non-
neighbor b3 € As. So y is complete to Ay. Moreover, by the definition of Y7,
y has a neighbor a3 € As. Then bsaz ¢ E(G), for otherwise bs-az-y-ai-as is a
Ps5 for any a; € A; and a5 € As. Also, for any a; € A; and ag € Ay, since
{a1,y, a4, b3,p} does not induce a gem, we have py ¢ E(G). But, then for any
ay € Ay, {b3,p,as,y,as} induces a gem, a contradiction. %

Claim 3.5 For each i, we have: either [Y;, A;12] is complete or [Y;, Ai_o] is
complete.

Proof. We may assume that ¢ = 1. Suppose to the contrary that there exist
vertices y; and yo in Y; such that y; has a nonneighbor by € Ay and y, has
a nonneighbor b3 € Asz. By the definition of Y7, y; is complete to Asz, and
has a neighbor a4 € A4. Likewise, ys is complete to A4, and has a neighbor
az € As. Then asbs ¢ E(G), for otherwise bs-as-y2-ai-as is a Ps for any a; € A;
and a5 € As. Also, for any a1 € Ay, since {a1,y1,a3,b4,y2} does not induce
a gem, we have y1yo ¢ E(G). But, then {bs,y1,as,y2,as4} induces a gem, a
contradiction. O

Claim 3.6 Suppose that [Y;, A;_s] is complete for some i. Let Aj , = N(Y;)N
Aiva and Aty = Aiyz\ Alyy. Then: (i) [ ALy AY,o] = 0, and (i) [Yi, ALy is
complete.

Proof. (i): Suppose to the contrary that there are adjacent vertices p € Aj .,
and q € A ,. Pick a neighbor of p in Y;, say y. Clearly yq ¢ E(G). Then for
any a; € A; and a;_1 € A;_1, ¢-p-y-a;-a;_1 is a Ps, a contradiction. This proves
item ().

(#i): Suppose to the contrary that there are nonadjacent vertices y € Y; and
p € Aj,,. Pick a neighbor of p in Y;, say 3. By the definition of Y;, y has a
neighbor in Aj_ ,, say ¢. Pick any a;_» € A;_2, a;—1 € A;_1 and a; € A;. Now,
pq ¢ E(G), for otherwise p-g-y-a;-a;—1 is a Ps. Also, yy’ ¢ E(G), for otherwise
{p, a;i—2,y,a;,y’'} induces a gem. Then since {y,q,y’,p,a;—2} does not induce
a gem, qy’ ¢ E(G). But then p-y'-a;-y-q is a Ps, a contradiction. This proves
item (7). O

Claim 3.7 Suppose that Y;_o and Y;io are both nonempty for some i. Let
A7 =N(Y,—2)NA; and Aj = NYir2) N A;. Then:

(a) [Yi—a,Yiyo] is complete, A7 NAf =0, and [A7, AF] =10,

(b) [Ai\ (A7 UAT), A7 UAT] =0,

(c) Yic2, Aix1 UA]] and [Yigo, Ai—1 U A;"] are complete,

(d) Vi1 UY;p1 =0,

(e) Y; is pure,



(f) One of the sets A; \ (A; U AT) and Y; is empty.

Proof. Pick any y € Y;_5 and z € Y;;2. So y has neighbors a;—o € A;_o,
ai+1 € Ai41 and a; € A;, and z has neighbors a;42 € Aji2, a;—1 € A;—1 and
b; € A;.

(a): Now yz € E(QG), for otherwise y-a;t1-a;42-2-a;—1 is a Ps. Since this holds
for arbitrary y,z, we obtain that [Y;_2,Y;12] is complete. Then za; ¢ E(G),
for otherwise {a;+1,¥,2,a;-1, a;} induces a gem, and similarly yb; ¢ E(G). In
particular a; # b;; moreover a;b; ¢ F(G), for otherwise a;-b;-z-a;i2-a;—2 is a
Ps. Since this holds for any y, z, a;, b;, it proves item (a).

(b): Suppose that there are adjacent vertices u € A;\(A; UA]) andv € A; UAT,
say v € A7 . Then u-v-y-a;_2-a;+2 is a Ps, a contradiction. This proves item (b).
(c): Since y and z are not complete to A4; (by (a)), by Claim 3.5, [Y;_2, A;41]
and [Y;42, A;_1] are complete. Also, by Claim 3.6(ii), [Y;_2, A; | and [Yij2, A]]
are complete. This proves item (c).

(d): If Yi—y # 0 then, by a similar argument as in the proof of (¢) (with
subscripts shifted by 1), [Y;—2, A;] should be complete, which it is not. So
Y;_1 = 0, and similarly Y; ;1 = 0. This proves item (d).

(e): Consider any x € Y; and suppose that it is not pure; up to symmetry z has
a nonneighbor b € A; ;5 and is complete to A;_5. By Claim 3.3 we know that
2z ¢ E(G). Then a;-z-a;_3-b-z is a Ps. This proves item (e).

(f): Suppose that there are vertices b € A; \ (47 U Af") and u € Y;. By the
definition of ¥;, we know that bu € E(G), and by Claim 3.3, uy,uz ¢ E(G).
Then by item (c) and item (e), for any a;—o € A;_2, b-u-a;_o-y-z is a P5, a
contradiction. This proves item (f). O

Claim 3.8 (i) Every vertex in R has a neighbor in Y;, for some i. (i) The
vertex-set of each component of G[R] is a homogeneous set, and hence each
component of G[R] is Py-free.

Proof. (i): Suppose to the contrary that there exists a vertex r € R which has
no neighbor in Y; for every i. Then since G is connected, by using Claim 3.1,
there exists a vertex 7’ € R and an index j € {1,2,...,5}, j mod 5 such that
r’ is adjacent to a vertex y € Y; and that there is a shortest path P with end
vertices ' and r in G[R]. Now the vertices of P together with {y,a;,a;11}
induces a Ps, for any a; € A; and a1 € Aj41 which is a contradiction. So (i)
holds.

(#9): Suppose that a vertex-set of a component T' of G[R] is not homogeneous.
Then, since T is connected, there are adjacent vertices u,t € V(T') and a vertex
y € V(G)\ V(T) with yu € E(G) and yt ¢ E(G). By Claim 3.1 we have y € Y;
for some ¢. Then t-u-y-a;-a;+1 is a Ps, for any a; € A; and a;41 € A;jy1, a
contradiction. So (ii) holds. O

Claim 3.9 Suppose that there is any edge ry withr € R and y € Y; for some i.
Then y is pure and Y;_1 UY;11 = 0. Moreover at most one of the sets Y;_o,Y; 10
is nonempty, and R is complete to that nonempty set and to Y;.

Proof. Consider any edge ry with » € R and y € Y;. So y has a neighbor
a; € A; for each j € {i,9 — 2,4+ 2}. If y is not pure, then up to symmetry



y has a nonneighbor b € A;_s, and then r-y-a;-a;_1-b is a P5 for any a;_1 €
A;_1, a contradiction. So y is pure, and by Claim 3.7, Y;_; UY;1; = 0. Now
suppose up to symmetry that there is a vertex z € Y;;5. By Claim 3.3, we
have yz ¢ E(G). Then rz € E(G), for otherwise r-y-a;io-2z-a;—1 is a Ps, for
any a;—1 € A;—1 N N(z). Now by the same argument as above, z is pure, and
by Claim 3.7, ¥; 1 UY;. 3 = ). Since this holds for any z, the vertex r is complete
to Y42, and then by symmetry r is complete to Y;; and by Claim 3.8(i) and the

fact that G is connected, R is complete to Y; U Y, o. O
It follows from the preceding claims that at most three of the sets Yi,...,Y5
are nonempty, and if R # ) then at most two of Y1, ..., Y5 are nonempty. Hence

we have the following cases:

(A) R=0and Y2UY5UY; = 0. Any of Y7,Y; may be nonempty.
We may assume that both Y7 and Yj are not empty, [Y7, As] is complete and
[Y1, Ag] is complete. (Otherwise, using Claims 3.2, 3.5 and 3.6, it follows
that G is a Py-free expansion of either G1, G, ..., Gg or Gg.) Suppose there
exists y; € Y7 that has a nonneighbor a4 € A4, and there exists y, € Yy
that has a nonneighbor a; € A;, then for any a3 € As, a1-y1-as-aq-y4 is
a Ps in G, a contradiction. So either Y; is pure or Yy is pure. Then by
Claims 3.2, 3.5 and 3.6, we see that G is a P,-free expansion of G4, G5 or
Gg.

(B) R =0 and Y3,Y3 are both nonempty.
Then Claims 3.2 and 3.7 implies that G is a P4-free expansion of either Gy,
Gg or GlO-

(C) R # 0 and exactly one of Y1,...,Ys is nonempty, say Y7 is nonempty.
In this case, we show that G € H as follows: Since R # ), by Claim 3.8(i),
there exists a vertex r € R and a vertex y € Y7 such that ry € E(G). Then
by Claim 3.9, y is a pure vertex of Y;. So, by Claim 3.4, Y7 is pure, and
hence by Claims 3.2 and 3.8, we see that G € H.

(D) R # 0 and exactly two of Y7, ..., Y5 are nonempty.
In this case, by Claims 3.8 and 3.9 and up to symmetry we may assume that
Y7 and Y; are nonempty, all vertices in Y; UY} are pure, and [R,Y; UYy] is
complete. Moreover, since G is gem-free, G[R] is Py-free. So by Claim 3.2,
G is a Py-free expansion of G7.

This completes the proof of Theorem 3. O

3 Bounding the chromatic number

We say that two sets meet if their intersection is not empty. In a graph G, we
say that a stable set is good if it meets every clique of size w(G). Moreover, we
say that a clique K in G is a t-clique of G if |K| =t.

We use the following theorem often.

Theorem 4 ([12]) Let G be a graph such that every proper induced subgraph
G’ of G satisfies x(G') < [2w(G')]. Suppose that one of the following occurs:

(i) G has a vertex of degree at most [3w(G)] — 1.



(i) G has a good stable set.
(ii) G has a stable set S such that G — S is perfect.

(iv) For some integer t > 5 the graph G has t stable sets Sy,...,S; such that
w(G—=(S1U---US)) <w(@)—(t—1).

Then X(G) < [3w(@)].

Given a graph G and a proper homogeneous set X in G, let G/X be the graph
obtained by replacing X with a clique @ of size w(X) (i.e., G/X is obtained
from G — X and @ by adding all edges between @ and the vertices of V(G) \ X
that are adjacent to X in G).

Lemma 1 ([11]) In a graph G let X be a proper homogeneous set such that
G[X] is Py-free. Then w(G) = w(G/X) and x(G) = x(G/X). Moreover, G has
a good stable set if and only if G/X has a good stable set.

For k € {1,2,...,10}, let Gy be the class of graphs that are Py-free expan-
sions of Gy, and let G} be the class of graphs that are clique expansions of
G. Let H* be the class of graphs G € H such that, with the notation as in
Section 1, the five sets Ay, Aa, ..., As, and the vertex-set of each component of
G[A7] are cliques.

The following lemma can be proved using Lemma 1, and the proof is very
similar to that of Lemma 3.3 of [11], so we omit the details.

Lemma 2 For every graph G in G; (i € {1,...,10}) (resp. G in H) there is a
graph G* in GF (i € {1,...,10}) (resp. G* in H*) such that w(G) = w(G*) and
X(G) = x(G*). Moreover, G has a good stable set if and only if G* has a good
stable set.

By Lemma 2 and Theorem 3, to prove Theorem 1, it suffices to consider the
clique expansions of G1,Gs...,G1o and the members of H*.

3.1 Coloring clique expansions

Throughout this section, we will use the following notation:

Suppose that G is a clique expansion of H € {Gy,...,Gg}. So there is a
partition of V'(G) into |V (H )| nonempty cliques Q1, ..., Qv ()|, where Q; corre-
sponds to the vertex z; of H. Since Q); is nonempty for each i € {1,...,|V(H)|},
we may call z; one vertex of Q;. Moreover if |@Q;| > 2 we call z one vertex of
Q; \ {z:}, and if |Q;] > 3 we call z} one vertex of @; \ {z;, z}}. We write, e.g.,
Q12 instead of Q1 UQ2 whenever Q1 UQ is a clique, Q123 instead of Q1 UQ2UQ3
whenever Q1 U Q2 U Q3 is a clique, etc.

Theorem 5 Let G be a clique expansion of either Gy, ...,Gs or Gg, and as-
sume that every proper induced subgraph G' of G satisfies x(G') < [Sw(G")].
Then X(G) < [3(G)].

Proof. Let G be a clique expansion of either Gy, ...,G5 or Gg. Let ¢ = w(G).
Recall that if G has a good stable set, then we can conclude the theorem using
Theorem 4(ii).
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Figure 3: (a) A 5-coloring of a clique expansion of G, where for each v € V(Gy),
Q. is a clique of size 2, and (b) a graph isomorphic to G1g.

(I) Suppose that G is a clique expansion of Gy. (We refer to [11, 12] for alternate
proofs.) We may assume that |Q;| > 2, for each i € {1,...,5}, otherwise if
|Q1] = 1 (say), then G — {z1} is perfect, as it is a clique expansion of a Py,
and we can conclude with Theorem 4(iii). Let X be a subset of V(G) obtained
by taking two vertices from @Q; for each ¢ € {1,...,5}. Then since G[X] has
no stable set of size 3, x(G[X]) > % = 10 =5, and since x(G[X]) < 5
(see Figure 3:(a)), we have x(G[X]) = 5. Moreover, w(G — X) = ¢ — 4. So by
hypothesis, we have x(G) < [3w(G — X)] 45 < [2¢].

(IT) Suppose that G is a clique expansion of Go. Then {z9, x5, 26} is a good
stable set of G, and we can conclude with Theorem 4(ii).

(III) Suppose that G is a clique expansion of G3. Suppose that |Q5| < |Qgl-
By hypothesis we can color G — Q)5 with [%q] colors. Since Qg is complete to
Q1 U Q4, which is equal to N(Q5), we can extend this coloring to Qs, using
for @5 the colors used for Qg. Therefore let us assume that |Qs] > |Qs]. It
follows that |Q15] > |Q16l, so Q16 is not a g-clique. Likewise we may assume
that |Q7| > |@s], and consequently Q23 is not a g-clique. Therefore all g-cliques
of G are in the set {Q12, Q15, Q27, Qus, Qa7, Q346 }-

If Q15 is not a g-clique, then {z2, x4} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q15 is a g-clique
of G.

If Q45 is not a g-clique, then {1, 23,27} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Qg5 is a g-clique
of G.

If Q12 is not a g-clique, then {x3, x5, x7} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q12 is a g-clique

of G.

If Q47 is not a g-clique, then {xs, x5, 26} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q47 is a g-clique
of G.

If Qo7 is not a g-clique, then {z1, x4} is a good stable set of G, and we can

conclude using Theorem 4(ii). Therefore we may assume that Qa7 is a g-clique
of G.
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Thus the above properties imply that there is an integer a with 1 < a < g—1
such that |Q2]| = |Qs5| = |Q7] = a and |Q1| = |Q4] = ¢ — a. Since |Q7| > |Qs],
we have a > 2. Since ¢ = [Qa7] = 2a, a = 4. So ¢ is even, ¢ > 4 and
Q1] = Q2] = Q4] = Q5| = Q7| = § > 2.

Now consider the five stable sets {x1,z3, z7}, {1, 24}, {x5, x6, 25}, {22, 2)}
and {z}, zL}. Tt is easy to see that their union U meets every g-clique four times.
It follows that w(G — U) = q — 4, and we can conclude using Theorem 4(iv).

(IV) Suppose that G is a clique expansion of either G4 or G5. Suppose that
|Qs| < |Q7|. By hypothesis we can color G — Q5 with [2¢] colors. Since Q7 is
complete to Q1 UQ, which is equal to N(Q5), we can extend this coloring to Qs,
using for @5 the colors used for Q7. Therefore let us assume that |Qs] > |Q7].
It follows that |Q45| > |Qa7], s0 Q47 is not a g-clique. Likewise we may assume
that |Qs| > |Qs| (for otherwise any [2¢]-coloring of G — Q5 can be extended to
Qs5), and consequently Q16 is not a g-clique.

Therefore, if G is a clique expansion of G4, all g-cliques of G are in the set
{Q15, Q23, Qus, Q127, Q346 }, and if G is a clique expansion of G, all g-cliques of
G are in the set {Q15, Q1s, Q23, Qus, Q38, Q127, Q346 }-

Hence if G is a clique expansion of Gy, then {zs, x5, 26} is a good stable set
of G, and if G is a clique expansion of G5, then {zq, x5, 6, s} is a good stable
set of G. In either case, we can conclude the theorem with Theorem 4(ii).

(V) Suppose that G is a clique expansion of Gg. Suppose that |Qg| < |Q1|. By
hypothesis we can color G — Qg with [%q} colors. Since @ is complete to Qo U
Q5UQsg, which is equal to N(Qs), we can extend this coloring to Qg, using for Qs
the colors used for Q1. Therefore let us assume that |Qg| > |Q1]. It follows that
|Qes| > |Q16] and |@ss] > |Q15], and consequently Q16 and Q15 are not g-cliques.
Likewise we may assume that |Qs| > |Qg| (for otherwise any [2q]-coloring of
G—Qs5 can be extended to @5), and consequently Qgs is not a g-clique. Therefore
all g-cliques of G are in the set {Qa3, Qas, Qu5, Qu7, Qs8, Q127, Q346 }-

If Q23 is not a g-clique, then {1, x4, zs} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Qo3 is a g-clique

of G.

If Q25 is not a g-clique, then {x3, x5, x7} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Qg is a g-clique
of G.

If Qss is not a g-clique, then {z5, x4} is a good stable set of G, and we can

conclude using Theorem 4(ii). Therefore we may assume that Qss is a g-clique
of G.

If Q45 is not a g-clique, then {3, 27, zg} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Qg5 is a g-clique
of G.

Now we claim that Q47 is not a g-clique. Suppose not. Then the above properties
imply that there is an integer a with 1 < a < ¢ — 1 such that |Q2] = |Q5| =
Q7] = a and |Qs] = Q4] = |Qs| = g — a. Since |Qaus| = |Qs| +2(q —a) < g, we
have |Qg| < 2a — q. Also, since |Q127] = |Q1] + 2a < g, we have |Q1| < ¢ — 2a.
However, 2 < |Q16| < (¢—2a) + (2a — ¢) = 0 which is a contradiction. So Q47 is
not a g-clique. Then {2, x5, z¢} is a good stable set of G, and we can conclude
the theorem with Theorem 4(ii). O
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Theorem 6 Let G be a clique expansion of G7, and assume that every proper
induced subgraph G' of G satisfies x(G') < [2w(G")]. Then x(G) < [Sw(G)].
Proof. Let ¢ = w(G). Suppose that |Q7| < |Q2|. By hypothesis we can color
G — Q7 with [%q] colors. Since @) is complete to Q1 U @5, which is equal
to N(Q7), we can extend this coloring to @7, using for Q7 the colors used for
Q2. Therefore let us assume that |Q7| > |Q2|; and similarly, that |Qs| > |Q5|.
It follows that |Q25] < |Qs7], so Qa5 is not a g-clique of G. By symmetry,
@14 is not a g-clique of G. Therefore all g-cliques of G are in the set Q =
{Q17, Q2s, Q36, Qus; Qs7, Q123, Qus6 }-

If Q123 is not a g-clique, then {xg, 27,25} is a good stable set of G, and we
can conclude using Theorem 4(ii). Therefore we may assume that (123, and
similarly Q4s56, is a g-clique of G.

If Q36 is not a g-clique, then {x1, x5, xg} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Qs is a g-clique
of G.

If Q17 is not a g-clique, then {x3,xs5,25} is a good stable set of G, and we
can conclude using Theorem 4(ii). Therefore we may assume that @17, and
similarly each of @57, Q28 and Qgs, is a g-clique of G.

Hence Q is precisely the set of all g-cliques of G. It follows that there
are integers a,b,c with a = |Q1], b = |Q2|, ¢ = |Q3], a + b+ c = ¢, and
then |Q7] = ¢ — a, |Qs5] = a, |Qs] = ¢ — b, |Q4] = b, hence |Qg| = ¢. Since
q = |Q36| = 2c, it must be that ¢ is even and ¢ = £, so |Qs| = |Qs| = 1.

Since each of @1, @2, Q3 is nonempty we have ¢ > 3, and since ¢ is even,
q > 4. Hence |Q3],]|Qs| > 2 (so the vertices x% and xf exist). Since Q2 and Q3
are nonempty, and [Q3| = 4, we have a < 4,50 [Q7| =¢—a > %, 50 [Q7] >3
(and so the vertices 27, and x¥ exist). Likewise |Qs| > 3 (and so the vertices x
and zg exist). We observe that the clique Q14 satisfies Q14| =a+b= 1% <¢—2
since ¢ > 4. Likewise |Q25| < g — 2.

Now consider the five stable sets {z3, x4, 27}, {21, 76, xs}, {5, x5, 25}, {x,
xo, 2%} and {xf,z{}. It is easy to see that their union U meets every g-clique
(every member of Q) four times, and that it meets each of Q14 and Qo5 twice.
It follows (since |Q14], |Q25] < ¢—2) that w(G—U) = g—4, and we can conclude
using Theorem 4(iv). O

Theorem 7 Let G be a clique expansion of either Gg, Gg or Gy, and assume
that every proper induced subgraph G' of G satisfies x(G') < [2w(G')]. Then
X(G) < [Fw(@)].

Proof. Let G be a clique expansion of either Gg, Gy or G1g. Let ¢ = w(QG).

(I) Suppose that G is a clique expansion of Gs. Suppose that |Q2] < |Q7].
By hypothesis we can color G — Q2 with [%q] colors. Since )7 is complete
to Q1 U Q3 U Qs, which is equal to N(Q2), we can extend this coloring to
Q2, using for Q2 the colors used for Q7. Therefore let us assume that |Qa| >
|Q7|; and similarly, that ‘Qg‘ > |Q8| It follows that |Q28| > ‘Q78|, S0 Q7s
is not a g-clique of G. Likewise |Q23| > |Q37], so Q37 is not a g-clique of G,
and similarly @og is not a g-clique. Therefore all ¢-cliques of G are in the set

{Q127 Q167 Q237 Q347 Q457 Q1577 Q468}-
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If Q45 is not a g-clique, then {x, 3,25} is a good stable set of G, and we
can conclude with Theorem 4(ii). Hence we may assume that @45, and similarly
Q16, is a g-clique. Also Q12 is a g¢-clique, for otherwise {3, x5, 26} is a good
stable set, and similarly Q34 is a g-clique.

Now we claim that Qa3 is not a g-clique of G. Suppose not. Then the
above properties imply that there is an integer a with 1 < a < ¢ — 1 such
that [Q1] = [Qs] = [@s5] = a and |Q2| = |Q4| = |Qs| = ¢ — a. However we
have ¢ > |Q157] > 2a and q > |Ques| > 2(¢ — a), hence 2¢ > 2a 4+ 2(q — a), a
contradiction. So Q23 is not a g-clique of G. But, then {x1, 24} is a good stable
set of G, and we can conclude the theorem with Theorem 4(ii).

(IT) Now suppose that G is a clique expansion of Gg. Then a similar argument,
as in the case of Gg, shows that, we may assume that Q2g, Q37 and Q7s are not
g-cliques (we omit the details). Likewise we may assume that |Qg| > |@Qs]| (for
otherwise any [%q] -coloring of G — Qg can be extended to Qg), and consequently
Q45 is not a g-clique; and similarly Q¢ is not a g-clique.

Then Q19 is a g-clique, for otherwise {zq, 24,27} is a good stable set, and
similarly Q49 is a g-clique. Also Q2 is a g-clique, for otherwise {x3, x5, xs, zg}
is a good stable set; and similarly Q34 is a g-clique. And Q-3 is a g-clique, for
otherwise {z1,x4} is a good stable set.

The properties given in the preceding paragraph imply that ¢ is even and
that |Q1] = [Q2| = |Q3] = |Q4] = |Qo| = . We now distinguish two cases.

First suppose that ¢ = 4k for some k > 1. Hence [5¢] = 5k. Let
A,B,C,D, FE be five disjoint sets of colors, each of size k. We color the ver-
tices in )1 with the colors from A U B, the vertices in Q2 with C' U D, the
vertices in Q3 with E U A, the vertices in Q4 with B U C, and the vertices in
Q9 with D U E. Thus we obtain a 5k-coloring of G[Q1 U Q2 U Q3 U Q4 U Qg].
We can extend it to the rest of the graph as follows. Since Q157 is a clique, and
|Q1| = 4 = 2k, we have |Qs| + |Q7| < 2F, hence either |Qs5| < k or [Q7] < k.
Likewise, we have either |Q¢| < k or |Qg| < k. This yields (up to symmetry)
three possibilities:

(i) |Qs5] < k and |Qg] < k. Then we can color Q5 with colors form E, Qg with
colors from D, Q7 with colors from C'U D, and Qg with colors from AU F.
(i) |@Qs| < k and |@s] < k. Then we can color Q5 with colors form E, Qg with
colors from DUE, Q7 with colors from C'UD, and Qg with colors from A. (The
case where |Qg| < k and |Q7| < k is symmetric.)

(iil) |Q7] < k and |Qs| < k. Then we can color @5 and Qg with colors from
D UE, Q7 with colors from C, and Qg with colors from A.

Now suppose that ¢ = 4k + 2 for some k > 1. Hence [2¢] = 5k + 3. Let
A,B,C,D,E and {z} be six disjoint sets of colors, with |A| = |B| = |C| = k
and |D| = |E| = k4 1. So these are 5k + 3 colors. We color the vertices in
@1 with the colors from C U D, the vertices in Q2 with AU F, the vertices in
Q3 with B U D, the vertices in Q4 with C'U E, and the vertices in Q9 with
AU BU{z}. Thus we obtain a 5k + 3-coloring of G[Q1 U Q2 U Q3 U Q4 U Qq].
We can extend it to the rest of the graph as follows. Since Q157 is a clique,
and |Q1] = £ = 2k + 1, we have |Qs| + |Q7| < 2k + 1, hence either Q5| < &k
or |Q7] < k (and in any case max{|@s|,|Q7|} < 2k). Likewise, we have either
|Qs| < k or |Qs| < k (and max{|Qs|, |@s|} < 2k). This yields (up to symmetry)
three possibilities:
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(i) |@s| < k and |Qg| < k. Then we can color @5 with colors form B, Qg with
colors from A, Q7 with colors from AU FE, and Qg with colors from B U D.

(i) |@Qs| < k and |@s] < k. Then we can color Q5 with colors form B, Qg with
colors from AU B, Q7 with colors from AUFE, and Qg with colors from D. (The
case where |Qg| < k and |Q7| < k is symmetric.)

(ii) |@Q7] < k and |Qs| < k. Then we can color Q5 and Qg with colors from
AU B, Q7 with colors from E, and Qg with colors from D.

(III) Finally suppose that G is a clique expansion of Gyp. We view Gy as
the graph with nine vertices uq, ..., u9 and edges u;u;+1 and u;u;43 for each i
modulo 9; see Figure 3:(b). For each i let Q; be the clique of G that corresponds
to u;, and let u; be one vertex of @;. As usual for the clique Q1 U Q2, we write
@12 instead of Q1 U @2, etc. We make two observations.

Observation 1: If for some ¢ the three cliques Q;it1, Qit1,i+2 and Qiy2i43
are not g-cliques, then {u;y4,u;t6,u;+s} is a good stable set of G, and we can
conclude using Theorem 4(ii). ¢

Observation 2: If for some i we have |Q; 1| < 4 and [Q;11] < 4, then |Q;] > %.
Indeed suppose (for i = 1) that |Qo| < £, [Q2] < £ and |Q:] < %. Then Q19
and @12 are not g-cliques, so, by Observation 1, we may assume that QQgg and
Q23 are g-cliques. Hence |Qg| > %, and consequently, since @Qsg is a clique,
|Qs] < 2, and since Qg is a clique, |Q7| < 4; and similarly |Qs] > %‘1, and
consequently [Q4] < £ and [Qs] < 4. But then Qus, Q@s6¢ and Qg7 are not
g-cliques, so we can conclude as in Observation 1. ¢

Now, since Q147 is a clique, we have |Q;| < 4 for some i € {1,4,7}; and
similarly |Q;] < £ for some j € {2,5,8}, and |Qy| < 2 for some k € {3,6,9}.
Up to symmetry this implies one the following three cases:

(a) |Q1],1Q2], Q3] < 4. Then we can conclude using Observation 2.

(b) |Q1],1Q2],1Qs] < 2. Then Q12 is not a g-clique, so, by Observation 1, we
may assume that one of Qo1 and Qa3, say Qg1 is a g-clique. Hence |Qg| > %,
and consequently |Q3| < 4. But then we are in case (a) again.

(c) |@1],1Q3],1Q5] < 1. By Observation 2 we have |Qz| > % and |Q4] > 23—‘1, and
consequently |Qg| < 4 and |Q7| < 4. Then Q7, Qg and Q3 are like in case (b).

This completes the proof of the theorem. O

ISV

3.2 Coloring the graph class H*

Recall that H* is the class of graphs G € H such that, with the notation as in
Section 1, the five sets Ay, Aa, ..., As, and the vertex-set of each component of
G[A7] are cliques.

Theorem 8 Let G € H* and assume that every proper induced subgraph G’ of
G satisfies x(G') < [Sw(G")]. Then x(G) < [3w(G)].

Proof. Let ¢ = w(G). Let T1,T5,...,T; be the components of G[A7]. For
each ¢ € {1,...,5} and for each j € {1,...,k}: let z; be one vertex of A;, and
let ¢; be one vertex of V(Tj). Moreover if |A;] > 2 we call 2 one vertex of
A\ {xi}, if [V(Ty)| > 2 we call t} one vertex of V(T;) \ {t;}, if |V(T;)| > 3 we
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call 2 one vertex of V(T;) \ {t;,t}}, and if |V (T})| > 4 we call £} one vertex of

Suppose that |As| < w(G[Ag]). Then by hypothesis, G — A can be colored
with [%q] colors, and since Ag is complete to A3 U A3 which is equal to N(Az),
we can extend this coloring to Ay by using the colors of Ag on As. So we may
assume that |As| > w(G[Ag]). Likewise, |As| > w(G[A4g]). So it follows that no
clique of A; U Ag is a g-clique of G.

Now consider the stable set S := {xa, x5, t1,...,t,}. We may assume that S
is not a good stable set of G (otherwise, we can conclude with Theorem 4(ii)). So
there is a maximum clique @ of G contained in A3U A4 U Ag. Further, it follows
that for every maximum clique @ of G with QNS =, we have A3 U A4 C Q.

If A; U A; is not a g-clique, then {z3,zs5,t1,...,tx} is a good stable set of
G, and we can conclude using Theorem 4(ii). So we may assume that A; U Ay
is a g-clique of G. Likewise, A1 U A; is a g-clique of G.

If Ay U A3 is not a g-clique, then {x1,z4,t1,...,t;} is a good stable set of
G, and we can conclude using Theorem 4(ii). So we may assume that As U Aj
is a g-clique of G. Likewise, A4 U A5 is a g-clique of G.

The above properties imply that there is an integer a with 1 < a < g —1
such that |A;] = |As|] = |A4] = a and |As| = |As| = ¢ — a. Moreover, every
g-clique of G either contains A; U A; 1, for some ¢ € {1,...,5}, ¢ modulo 5, or
contains T}, for some j € {1,...,k}.

Now if |V(T})| < 2a, for some j, then by hypothesis, G — V(7)) can be
colored with [2¢] colors. Since [A3UAy| = 2a, V(T}) is anticomplete to A3U Ay,
N(V(T;)) C Ag, and since Ag is complete to Az3UA,, we can extend this coloring
to V(T;) by using the colors of Az U A4 on V(Tj). So, we may assume that, for
each j € {1,...,k}, |[V(T})| > 2a.

If a = 1, then degg(z2) = 2 < [2¢] — 1, and we can conclude with Theo-
rem 4(i). So we may assume that a > 2.

Thus for each j € {1,...,k}, we have |V(T})| > 4. Also, since ¢ —a >
w(G[Ag]), we have ¢ —a > 2.

Now consider the five stable sets {z1, x5, t1,t2. .., tx}, {25, 25,1, t5 ... i},
{wo, b, 43,43, ... 3}, {oh, wy, 83,45 ... £3}, and {a],2}}. It is easy to see that
their union U meets every g-clique of G four times. It follows that w(G —U) =
g — 4, and we can conclude using Theorem 4(iv). d

Proof of Theorem 1. Let G be any (Ps,gem)-free graph. We prove the
theorem by induction on |V(G)|. If G is perfect, then x(G) = w(G) and the
theorem holds. So we may assume that G is not perfect, and that G is connected.
Since a Ps-free graph contains no hole of length at least 7, and a gem-free graph
contains no antihole of length at least 7, it follows from the Strong Perfect Graph
Theorem [5] that G contains a hole of length 5. That is, G contains a C5 as an
induced subgraph. By Lemma 2 and Theorem 3 that it suffices to consider the

clique expansions of G1,Gs,...,G1o and the members of H*. Now the result
follows directly by the induction hypothesis and from Theorems 5, 6, 7 and 8.
This completes the proof of Theorem 1. (]
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