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Abstract

For a graph G, let χ(G) and ω(G) respectively denote the chromatic
number and clique number of G. We give an explicit structural descrip-
tion of (P5, gem)-free graphs, and show that every such graph G satisfies

χ(G) ≤ ⌈ 5ω(G)
4

⌉. Moreover, this bound is best possible. Here a gem is the
graph that consists of an induced four-vertex path plus a vertex which is
adjacent to all the vertices of that path.
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1 Introduction

All our graphs are finite and have no loops or multiple edges. For any integer k,
a k-coloring of a graph G is a mapping ϕ : V (G) → {1, . . . , k} such that any two
adjacent vertices u, v in G satisfy ϕ(u) ̸= ϕ(v). A graph is k-colorable if it admits
a k-coloring. The chromatic number χ(G) of a graph G is the smallest integer
k such that G is k-colorable. A clique in a graph G is a set of pairwise adjacent
vertices, and the clique number of G, denoted by ω(G), is the size of a maximum
clique in G. Clearly χ(H) ≥ ω(H) for every induced subgraph H of G. A graph
G is perfect if every induced subgraph H of G satisfies χ(H) = ω(H). Following
Gyárfás [10], we say that a class of graphs is χ-bounded if there is a function f
(called a χ-bounding function) such that every member G of the class satisfies
χ(G) ≤ f(ω(G)). Thus the class of perfect graphs is χ-bounded with f(x) = x.

For any integer ℓ we let Pℓ denote the chordless path on ℓ vertices and Cℓ

denote the chordless cycle on ℓ vertices. The gem is the graph that consists
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of a P4 plus a vertex adjacent to all vertices of the P4. A hole (antihole) in a
graph is an induced subgraph that is isomorphic to Cℓ (Cℓ) with ℓ ≥ 4, and
ℓ is the length of the hole (antihole). A hole or an antihole is odd if ℓ is odd.
Given a family of graphs F , a graph G is F-free if no induced subgraph of G is
isomorphic to a member of F ; when F has only one element F we say that G is
F -free; when F has two elements F1 and F2, we simply write G is (F1, F2)-free
instead of {F1, F2}-free. If F is a finite family of graphs, and if C is the class
of F -free graphs which is χ-bounded, then by a classical result of Erdös [7], at
least one member of F is a forest (see also [10]). Thus, for instance, the class of
C3-free (or triangle-free) graphs is not χ-bounded. We refer to [16, 17] for more
results on χ-bounded classes of F -free graphs, and we give below some of them
which are related to our results.

Gyárfás [10] showed that the class of Pt-free graphs is χ-bounded. Gravier
et al. [9] improved Gyárfás’s bound slightly by proving that every Pt-free graph
G satisfies χ(G) ≤ (t − 2)ω(G)−1. It is well known that every P4-free graph
is perfect. The preceding result implies that every P5-free graph G satisfies
χ(G) ≤ 3ω(G)−1. The problem of determining whether the class of P5-free graphs
admits a polynomial χ-bounding function remains open, and it is remarked in
[13] (without proof) that the known χ-bounding function f for such class of
graphs satisfies c(ω2/ logw) ≤ f(ω) ≤ 2ω. So the recent focus is on obtaining
χ-bounding functions for some classes of P5-free graphs. The first author and
Sivaraman [6] showed that every (P5, C5)-free graph G satisfies χ(G) ≤ 2ω(G)−1,

and that every (P5, bull)-free graph G satisfies χ(G) ≤
(
ω(G)+1

2

)
. Schiermeyer

[15] showed that every (P5,H)-free graph G satisfies χ(G) ≤ ω(G)2, for some
special graphs H. The second author with Arnab Char [3] showed that every
(P5, 4-wheel)-free graph G satisfies χ(G) ≤ 3

2ω(G). Fouquet et al. [8] proved

that there are infinitely many (P5, P5)-free graphs G with χ(G) ≥ ω(G)α, where

α = log2 5− 1, and that every (P5, P5)-free graph G satisfies χ(G) ≤
(
ω(G)+1

2

)
.

The second author with Choudum and Shalu [4] studied the class of (P5, gem)-
free graphs and showed that every such graph G satisfies χ(G) ≤ 4ω(G). Later
Cameron, Huang and Merkel [2] improved this result replacing 4ω with ⌊ 3ω

2 ⌋.
We improve this result further and establish the best possible bound, as follows.

Theorem 1 Let G be a (P5, gem)-free graph. Then χ(G) ≤ ⌈ 5ω(G)
4 ⌉. Moreover,

this bound is tight.

The degree of a vertex in a graph G is the number of vertices adjacent to
it. The maximum degree over all vertices in G is denoted by ∆(G). Clearly
every graph G satisfies ω(G) ≤ χ(G) ≤ ∆(G) + 1. Reed [14] conjectured that

every graph G satisfies χ(G) ≤ ⌈∆(G)+ω(G)+1
2 ⌉. Reed’s conjecture is still open

in general. It is shown in [11] that if a graph G satisfies χ(G) ≤ ⌈ 5ω(G)
4 ⌉, then

χ(G) ≤ ⌈∆(G)+ω(G)+1
2 ⌉. So by Theorem 1, we immediately have the following

theorem.

Theorem 2 Let G be a (P5, gem)-free graph. Then χ(G) ≤ ⌈∆(G)+ω(G)+1
2 ⌉.

Moreover, this bound is tight.

A stable set in a graph G is a set of pairwise nonadjacent vertices, and the
stability number of G, denoted by α(G), is the size of a maximum stable set in

G. It is folklore that every graph G satisfies χ(G) ≥ ⌈ |V (G)|
α(G) ⌉.
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The bounds in Theorem 1 and in Theorem 2 are tight on the following
example. Let G be a graph whose vertex-set is partitioned into five cliques
Q1, . . . , Q5 such that for each i mod 5, every vertex in Qi is adjacent to every
vertex in Qi+1 ∪ Qi−1 and to no vertex in Qi+2 ∪ Qi−2, and |Qi| = t for all i
(t > 0). Then |V (G)| = 5t, ∆(G) = 3t− 1, ω(G) = 2t and α(G) = 2. Moreover,
it is easy to check that G is (P5, gem)-free. So by Theorem 1, χ(G) ≤ ⌈ 5t

2 ⌉.
Also, since χ(G) ≥ ⌈ |V (G)|

α(G) ⌉, we have χ(G) ≥ ⌈ 5t
2 ⌉. So χ(G) = ⌈ 5t

2 ⌉.

Our proof of Theorem 1 uses the structure theorem for (P5, gem)-free graphs
(Theorem 3). Before stating it we recall some definitions.

Let G be a graph with vertex-set V (G) and edge-set E(G). For any two
subsets X and Y of V (G), we denote by [X,Y ], the set of edges that has one
end in X and other end in Y . We say that X is complete to Y or [X,Y ]
is complete if every vertex in X is adjacent to every vertex in Y ; and X is
anticomplete to Y if [X,Y ] = ∅. If X is singleton, say {v}, we simply write v is
complete (anticomplete) to Y instead of writing {v} is complete (anticomplete)
to Y . For any x ∈ V (G), let N(x) denote the set of all neighbors of x in G; and
let degG(x) := |N(x)|. The neighborhood N(X) of a subset X ⊆ V (G) is the
set {u ∈ V (G) \X | u is adjacent to a vertex of X}. If X ⊆ V (G), then G[X]
denote the subgraph induced by X in G. A set X ⊆ V (G) is a homogeneous set
if every vertex in V (G)\X with a neighbor in X is complete to X. Note that in
any gem-free graph G, for every v ∈ V (G), N(v) induces a P4-free graph, and
hence the subgraph induced by a homogeneous set in any connected graph G is
P4-free.

An expansion of a graphH is any graph G such that V (G) can be partitioned
into |V (H)| nonempty sets Qv, v ∈ V (H), such that [Qu, Qv] is complete if
uv ∈ E(H), and [Qu, Qv] = ∅ if uv /∈ E(H). An expansion of a graph is a clique
expansion if each Qv is a clique, and is a P4-free expansion if each Qv induces
a P4-free graph. See Figure 1 for examples.

v1

v2

v3v4

v5

Qv1

Qv5

Qv4
Qv3

Qv2

(a) (b) (c)

Figure 1: (a) A C5. (b) Schematic representation of a P4-free expansion of C5

given in (a). Here, the shaded circles represent a collection of sets into which
the vertex-set of the graph is partitioned. Each shaded circle means a nonempty
set that induces a P4-free subgraph. A solid line (the absence of a line) between
any two circles means the respective sets are complete (anticomplete) to each
other. (c) An example of a clique expansion of C5 given in (a), where |Qvi | = 2
for each i.
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Figure 2: Basic graphs

Let G1, G2, . . . , G10 be the ten graphs shown in Figure 2. Clearly each of
G1, . . . , G10 is (P5, gem)-free. Moreover, it is easy to check that any P4-free
expansion of a (P5, gem)-free graph is (P5, gem)-free.

Graph class H: The class of connected (P5, gem)-free graphs G such that V (G)
can be partitioned into seven nonempty sets A1, . . . , A7 such that:

• Each Ai induces a P4-free graph.

• [A1, A2 ∪A5 ∪A6] is complete and [A1, A3 ∪A4 ∪A7] = ∅.

• [A3, A2 ∪A4 ∪A6] is complete and [A3, A5 ∪A7] = ∅.

• [A4, A5 ∪A6] is complete and [A4, A2 ∪A7] = ∅.

• [A2, A5 ∪A6 ∪A7] = ∅ and [A5, A6 ∪A7] = ∅.

• The vertex-set of each component of G[A7] is a homogeneous set.

• Every vertex in A7 has a neighbor in A6.

Now we can state our structural result.

Theorem 3 Let G be a connected (P5, gem)-free graph that contains an induced
C5. Then either G ∈ H or G is a P4-free expansion of either G1, G2, . . . , G9

or G10.

We note that another structure theorem for (P5, gem)-free graphs using a re-
cursive construction is given by Brandstädt and Kratsch [1]. However, it seems
difficult to use that theorem to get the bounds derived in this paper.
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2 Proof of Theorem 3

Throughout this section, we use the following convention. We simply write v1-
v2-v3-v4-v5 to mean a P5 with vertex-set {v1, v2, v3, v4, v5} and edge-set {v1v2,
v2v3, v3v4, v4v5}. Also, we will say that the set {v1, v2, v3, v4, c} induces a gem,
if v1-v2-v3-v4 is a P4, and c is complete to {v1, v2, v3, v4}.

Let G be a connected (P5, gem)-free graph. Since G contains an induced C5,
there are five nonempty and pairwise disjoint sets A1, . . . , A5 such that for each i
modulo 5 the set Ai is complete to Ai−1∪Ai+1 and anticomplete to Ai−2∪Ai+2.
Let A := A1 ∪ · · · ∪ A5. We choose these sets such that A is maximal. From
now on every subscript is understood modulo 5. Let R := {x ∈ V (G) \ A | x
has no neighbor in A}, and for each i, let

Yi := {x ∈ V (G) \A | x is complete to Ai, anticomplete to Ai−1 ∪Ai+1,

and x has a neighbor in each of Ai−2 and Ai+2, and x is complete

to one of Ai−2 and Ai+2}.

Clearly, the sets Yi’s are pairwise disjoint. Moreover, we have the following.

Claim 3.1 V (G) = A1 ∪ · · · ∪ A5 ∪ Y1 ∪ · · · ∪ Y5 ∪R.

Proof. Consider any x ∈ V (G) \ (A∪R). For each i let ai be a neighbor of x in
Ai (if any such vertex exists) and bi be a nonneighbor of x in Ai (if any exists).
Let L := {i | ai exists}. Then L ̸= ∅ since x /∈ R. Up to symmetry there are
four cases:
(a) L = {i} or {i, i+ 1} for some i. Then x-ai-bi−1-bi−2-bi−3 is a P5, a contra-
diction.
(b) L = {i − 1, i + 1} or {i − 1, i, i + 1} for some i. Then x is complete to
Ai−1 ∪ Ai+1, for otherwise x-ai+1-bi+2-bi−2-bi−1 or x-ai−1-bi−2-bi+2-bi+1 is a
P5, a contradiction. But then x can be added to Ai, contradicting the maxi-
mality of A.
(c) L = {i, i − 2, i + 2} for some i. Then x is complete to Ai, for otherwise
x-ai+2-bi+1-bi-bi−1 is a P5, and similarly x must be complete to one of Ai−2 and
Ai+2. So x is in Yi.
(d) |L| ≥ 4. Then {ai, ai+1, ai+2, ai+3, x} induces a gem for some i, a contra-
diction. ♢

Claim 3.2 For each i, G[Ai] and G[Yi] are P4-free.

Proof. Since G is gem-free, the claim follows by the definitions of Ai and Yi. ♢

Claim 3.3 For each i we have [Yi−1, Yi+1] = ∅.

Proof. Pick any y ∈ Yi−1 and z ∈ Yi+1. We know that y has neighbors ai+1 ∈
Ai+1 and ai+2 ∈ Ai+2, and z has a neighbor ai−1 ∈ Ai−1. Then yz /∈ E(G), for
otherwise {ai−1, z, ai+1, ai+2, y} induces a gem, a contradiction. ♢

We say that a vertex in Yi is pure if it is complete to Ai−2 ∪ Ai+2, and the
set Yi is pure if every vertex in Yi is pure.
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Claim 3.4 Suppose that there exists a pure vertex in Yi for some i. Then Yi is
pure.

Proof. We may assume that i = 1 and let p ∈ Y1 be pure. Suppose to the
contrary that there exists a vertex y ∈ Y1 which is not pure, say y has a non-
neighbor b3 ∈ A3. So y is complete to A4. Moreover, by the definition of Y1,
y has a neighbor a3 ∈ A3. Then b3a3 /∈ E(G), for otherwise b3-a3-y-a1-a5 is a
P5 for any a1 ∈ A1 and a5 ∈ A5. Also, for any a1 ∈ A1 and a4 ∈ A4, since
{a1, y, a4, b3, p} does not induce a gem, we have py /∈ E(G). But, then for any
a4 ∈ A4, {b3, p, a3, y, a4} induces a gem, a contradiction. ♢

Claim 3.5 For each i, we have: either [Yi, Ai+2] is complete or [Yi, Ai−2] is
complete.

Proof. We may assume that i = 1. Suppose to the contrary that there exist
vertices y1 and y2 in Y1 such that y1 has a nonneighbor b4 ∈ A4 and y2 has
a nonneighbor b3 ∈ A3. By the definition of Y1, y1 is complete to A3, and
has a neighbor a4 ∈ A4. Likewise, y2 is complete to A4, and has a neighbor
a3 ∈ A3. Then a3b3 /∈ E(G), for otherwise b3-a3-y2-a1-a5 is a P5 for any a1 ∈ A1

and a5 ∈ A5. Also, for any a1 ∈ A1, since {a1, y1, a3, b4, y2} does not induce
a gem, we have y1y2 /∈ E(G). But, then {b3, y1, a3, y2, a4} induces a gem, a
contradiction. ♢

Claim 3.6 Suppose that [Yi, Ai−2] is complete for some i. Let A′
i+2 = N(Yi)∩

Ai+2 and A′′
i+2 = Ai+2 \A′

i+2. Then: (i) [A′
i+2, A

′′
i+2] = ∅, and (ii) [Yi, A

′
i+2] is

complete.

Proof. (i): Suppose to the contrary that there are adjacent vertices p ∈ A′
i+2

and q ∈ A′′
i+2. Pick a neighbor of p in Yi, say y. Clearly yq /∈ E(G). Then for

any ai ∈ Ai and ai−1 ∈ Ai−1, q-p-y-ai-ai−1 is a P5, a contradiction. This proves
item (i).

(ii): Suppose to the contrary that there are nonadjacent vertices y ∈ Yi and
p ∈ A′

i+2. Pick a neighbor of p in Yi, say y′. By the definition of Yi, y has a
neighbor in A′

i+2, say q. Pick any ai−2 ∈ Ai−2, ai−1 ∈ Ai−1 and ai ∈ Ai. Now,
pq /∈ E(G), for otherwise p-q-y-ai-ai−1 is a P5. Also, yy′ /∈ E(G), for otherwise
{p, ai−2, y, ai, y

′} induces a gem. Then since {y, q, y′, p, ai−2} does not induce
a gem, qy′ /∈ E(G). But then p-y′-ai-y-q is a P5, a contradiction. This proves
item (ii). ♢

Claim 3.7 Suppose that Yi−2 and Yi+2 are both nonempty for some i. Let
A−

i = N(Yi−2) ∩Ai and A+
i = N(Yi+2) ∩Ai. Then:

(a) [Yi−2, Yi+2] is complete, A−
i ∩A+

i = ∅, and [A−
i , A

+
i ] = ∅,

(b) [Ai \ (A−
i ∪A+

i ), A
−
i ∪A+

i ] = ∅,
(c) [Yi−2, Ai+1 ∪A−

i ] and [Yi+2, Ai−1 ∪A+
i ] are complete,

(d) Yi−1 ∪ Yi+1 = ∅,
(e) Yi is pure,
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(f) One of the sets Ai \ (A−
i ∪A+

i ) and Yi is empty.

Proof. Pick any y ∈ Yi−2 and z ∈ Yi+2. So y has neighbors ai−2 ∈ Ai−2,
ai+1 ∈ Ai+1 and ai ∈ Ai, and z has neighbors ai+2 ∈ Ai+2, ai−1 ∈ Ai−1 and
bi ∈ Ai.

(a): Now yz ∈ E(G), for otherwise y-ai+1-ai+2-z-ai−1 is a P5. Since this holds
for arbitrary y, z, we obtain that [Yi−2, Yi+2] is complete. Then zai /∈ E(G),
for otherwise {ai+1, y, z, ai−1, ai} induces a gem, and similarly ybi /∈ E(G). In
particular ai ̸= bi; moreover aibi /∈ E(G), for otherwise ai-bi-z-ai+2-ai−2 is a
P5. Since this holds for any y, z, ai, bi, it proves item (a).

(b): Suppose that there are adjacent vertices u ∈ Ai\(A−
i ∪A

+
i ) and v ∈ A−

i ∪A
+
i ,

say v ∈ A−
i . Then u-v-y-ai−2-ai+2 is a P5, a contradiction. This proves item (b).

(c): Since y and z are not complete to Ai (by (a)), by Claim 3.5, [Yi−2, Ai+1]
and [Yi+2, Ai−1] are complete. Also, by Claim 3.6(ii), [Yi−2, A

−
i ] and [Yi+2, A

+
i ]

are complete. This proves item (c).

(d): If Yi−1 ̸= ∅ then, by a similar argument as in the proof of (c) (with
subscripts shifted by 1), [Yi−2, Ai] should be complete, which it is not. So
Yi−1 = ∅, and similarly Yi+1 = ∅. This proves item (d).

(e): Consider any x ∈ Yi and suppose that it is not pure; up to symmetry x has
a nonneighbor b ∈ Ai+2 and is complete to Ai−2. By Claim 3.3 we know that
xz /∈ E(G). Then ai-x-ai−2-b-z is a P5. This proves item (e).

(f): Suppose that there are vertices b ∈ Ai \ (A−
i ∪ A+

i ) and u ∈ Yi. By the
definition of Yi, we know that bu ∈ E(G), and by Claim 3.3, uy, uz /∈ E(G).
Then by item (c) and item (e), for any ai−2 ∈ Ai−2, b-u-ai−2-y-z is a P5, a
contradiction. This proves item (f). ♢

Claim 3.8 (i) Every vertex in R has a neighbor in Yi, for some i. (ii) The
vertex-set of each component of G[R] is a homogeneous set, and hence each
component of G[R] is P4-free.

Proof. (i): Suppose to the contrary that there exists a vertex r ∈ R which has
no neighbor in Yi for every i. Then since G is connected, by using Claim 3.1,
there exists a vertex r′ ∈ R and an index j ∈ {1, 2, . . . , 5}, j mod 5 such that
r′ is adjacent to a vertex y ∈ Yj and that there is a shortest path P with end
vertices r′ and r in G[R]. Now the vertices of P together with {y, aj , aj+1}
induces a P5, for any aj ∈ Aj and aj+1 ∈ Aj+1 which is a contradiction. So (i)
holds.

(ii): Suppose that a vertex-set of a component T of G[R] is not homogeneous.
Then, since T is connected, there are adjacent vertices u, t ∈ V (T ) and a vertex
y ∈ V (G) \ V (T ) with yu ∈ E(G) and yt /∈ E(G). By Claim 3.1 we have y ∈ Yi

for some i. Then t-u-y-ai-ai+1 is a P5, for any ai ∈ Ai and ai+1 ∈ Ai+1, a
contradiction. So (ii) holds. ♢

Claim 3.9 Suppose that there is any edge ry with r ∈ R and y ∈ Yi for some i.
Then y is pure and Yi−1∪Yi+1 = ∅. Moreover at most one of the sets Yi−2, Yi+2

is nonempty, and R is complete to that nonempty set and to Yi.

Proof. Consider any edge ry with r ∈ R and y ∈ Yi. So y has a neighbor
aj ∈ Aj for each j ∈ {i, i − 2, i + 2}. If y is not pure, then up to symmetry
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y has a nonneighbor b ∈ Ai−2, and then r-y-ai-ai−1-b is a P5 for any ai−1 ∈
Ai−1, a contradiction. So y is pure, and by Claim 3.7, Yi−1 ∪ Yi+1 = ∅. Now
suppose up to symmetry that there is a vertex z ∈ Yi+2. By Claim 3.3, we
have yz /∈ E(G). Then rz ∈ E(G), for otherwise r-y-ai+2-z-ai−1 is a P5, for
any ai−1 ∈ Ai−1 ∩ N(z). Now by the same argument as above, z is pure, and
by Claim 3.7, Yi+1∪Yi+3 = ∅. Since this holds for any z, the vertex r is complete
to Yi+2, and then by symmetry r is complete to Yi; and by Claim 3.8(i) and the
fact that G is connected, R is complete to Yi ∪ Yi+2. ♢

It follows from the preceding claims that at most three of the sets Y1, . . . , Y5

are nonempty, and if R ̸= ∅ then at most two of Y1, . . . , Y5 are nonempty. Hence
we have the following cases:

(A) R = ∅ and Y2 ∪ Y3 ∪ Y5 = ∅. Any of Y1, Y4 may be nonempty.
We may assume that both Y1 and Y4 are not empty, [Y1, A3] is complete and
[Y4, A2] is complete. (Otherwise, using Claims 3.2, 3.5 and 3.6, it follows
that G is a P4-free expansion of either G1, G2, . . . , G6 or G9.) Suppose there
exists y1 ∈ Y1 that has a nonneighbor a4 ∈ A4, and there exists y4 ∈ Y4

that has a nonneighbor a1 ∈ A1, then for any a3 ∈ A3, a1-y1-a3-a4-y4 is
a P5 in G, a contradiction. So either Y1 is pure or Y4 is pure. Then by
Claims 3.2, 3.5 and 3.6, we see that G is a P4-free expansion of G4, G5 or
G6.

(B) R = ∅ and Y2, Y3 are both nonempty.
Then Claims 3.2 and 3.7 implies that G is a P4-free expansion of either G8,
G9 or G10.

(C) R ̸= ∅ and exactly one of Y1, . . . , Y5 is nonempty, say Y1 is nonempty.
In this case, we show that G ∈ H as follows: Since R ̸= ∅, by Claim 3.8(i),
there exists a vertex r ∈ R and a vertex y ∈ Y1 such that ry ∈ E(G). Then
by Claim 3.9, y is a pure vertex of Y1. So, by Claim 3.4, Y1 is pure, and
hence by Claims 3.2 and 3.8, we see that G ∈ H.

(D) R ̸= ∅ and exactly two of Y1, . . . , Y5 are nonempty.
In this case, by Claims 3.8 and 3.9 and up to symmetry we may assume that
Y1 and Y4 are nonempty, all vertices in Y1 ∪Y4 are pure, and [R, Y1 ∪Y4] is
complete. Moreover, since G is gem-free, G[R] is P4-free. So by Claim 3.2,
G is a P4-free expansion of G7.

This completes the proof of Theorem 3. �

3 Bounding the chromatic number

We say that two sets meet if their intersection is not empty. In a graph G, we
say that a stable set is good if it meets every clique of size ω(G). Moreover, we
say that a clique K in G is a t-clique of G if |K| = t.

We use the following theorem often.

Theorem 4 ([12]) Let G be a graph such that every proper induced subgraph
G′ of G satisfies χ(G′) ≤ ⌈ 5

4ω(G
′)⌉. Suppose that one of the following occurs:

(i) G has a vertex of degree at most ⌈ 5
4ω(G)⌉ − 1.

8



(ii) G has a good stable set.

(iii) G has a stable set S such that G− S is perfect.

(iv) For some integer t ≥ 5 the graph G has t stable sets S1, . . . , St such that
ω(G− (S1 ∪ · · · ∪ St)) ≤ ω(G)− (t− 1).

Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Given a graphG and a proper homogeneous setX inG, letG/X be the graph
obtained by replacing X with a clique Q of size ω(X) (i.e., G/X is obtained
from G−X and Q by adding all edges between Q and the vertices of V (G) \X
that are adjacent to X in G).

Lemma 1 ([11]) In a graph G let X be a proper homogeneous set such that
G[X] is P4-free. Then ω(G) = ω(G/X) and χ(G) = χ(G/X). Moreover, G has
a good stable set if and only if G/X has a good stable set.

For k ∈ {1, 2, . . . , 10}, let Gk be the class of graphs that are P4-free expan-
sions of Gk, and let G∗

k be the class of graphs that are clique expansions of
Gk. Let H∗ be the class of graphs G ∈ H such that, with the notation as in
Section 1, the five sets A1, A2, . . . , A5, and the vertex-set of each component of
G[A7] are cliques.

The following lemma can be proved using Lemma 1, and the proof is very
similar to that of Lemma 3.3 of [11], so we omit the details.

Lemma 2 For every graph G in Gi (i ∈ {1, . . . , 10}) (resp. G in H) there is a
graph G∗ in G∗

i (i ∈ {1, . . . , 10}) (resp. G∗ in H∗) such that ω(G) = ω(G∗) and
χ(G) = χ(G∗). Moreover, G has a good stable set if and only if G∗ has a good
stable set.

By Lemma 2 and Theorem 3, to prove Theorem 1, it suffices to consider the
clique expansions of G1, G2 . . . , G10 and the members of H∗.

3.1 Coloring clique expansions

Throughout this section, we will use the following notation:

Suppose that G is a clique expansion of H ∈ {G1, . . . , G9}. So there is a
partition of V (G) into |V (H)| nonempty cliquesQ1, . . . , Q|V (H)|, whereQi corre-
sponds to the vertex xi of H. Since Qi is nonempty for each i ∈ {1, . . . , |V (H)|},
we may call xi one vertex of Qi. Moreover if |Qi| ≥ 2 we call x′

i one vertex of
Qi \ {xi}, and if |Qi| ≥ 3 we call x′′

i one vertex of Qi \ {xi, x
′
i}. We write, e.g.,

Q12 instead of Q1∪Q2 whenever Q1∪Q2 is a clique, Q123 instead of Q1∪Q2∪Q3

whenever Q1 ∪Q2 ∪Q3 is a clique, etc.

Theorem 5 Let G be a clique expansion of either G1, . . . , G5 or G6, and as-
sume that every proper induced subgraph G′ of G satisfies χ(G′) ≤ ⌈ 5

4ω(G
′)⌉.

Then χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. Let G be a clique expansion of either G1, . . . , G5 or G6. Let q = ω(G).
Recall that if G has a good stable set, then we can conclude the theorem using
Theorem 4(ii).
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Figure 3: (a) A 5-coloring of a clique expansion of G1, where for each v ∈ V (G1),
Qv is a clique of size 2, and (b) a graph isomorphic to G10.

(I) Suppose that G is a clique expansion of G1. (We refer to [11, 12] for alternate
proofs.) We may assume that |Qi| ≥ 2, for each i ∈ {1, . . . , 5}, otherwise if
|Q1| = 1 (say), then G − {x1} is perfect, as it is a clique expansion of a P4,
and we can conclude with Theorem 4(iii). Let X be a subset of V (G) obtained
by taking two vertices from Qi for each i ∈ {1, . . . , 5}. Then since G[X] has

no stable set of size 3, χ(G[X]) ≥ |V (G[X])|
α(G[X]) = 10

2 = 5, and since χ(G[X]) ≤ 5

(see Figure 3:(a)), we have χ(G[X]) = 5. Moreover, ω(G −X) = q − 4. So by
hypothesis, we have χ(G) ≤ ⌈ 5

4ω(G−X)⌉+ 5 ≤ ⌈ 5
4q⌉.

(II) Suppose that G is a clique expansion of G2. Then {x2, x5, x6} is a good
stable set of G, and we can conclude with Theorem 4(ii).

(III) Suppose that G is a clique expansion of G3. Suppose that |Q5| ≤ |Q6|.
By hypothesis we can color G − Q5 with ⌈ 5

4q⌉ colors. Since Q6 is complete to
Q1 ∪ Q4, which is equal to N(Q5), we can extend this coloring to Q5, using
for Q5 the colors used for Q6. Therefore let us assume that |Q5| > |Q6|. It
follows that |Q15| > |Q16|, so Q16 is not a q-clique. Likewise we may assume
that |Q7| > |Q3|, and consequently Q23 is not a q-clique. Therefore all q-cliques
of G are in the set {Q12, Q15, Q27, Q45, Q47, Q346}.

If Q15 is not a q-clique, then {x2, x4} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q15 is a q-clique
of G.

If Q45 is not a q-clique, then {x1, x3, x7} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q45 is a q-clique
of G.

If Q12 is not a q-clique, then {x3, x5, x7} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q12 is a q-clique
of G.

If Q47 is not a q-clique, then {x2, x5, x6} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q47 is a q-clique
of G.

If Q27 is not a q-clique, then {x1, x4} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q27 is a q-clique
of G.
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Thus the above properties imply that there is an integer a with 1 ≤ a ≤ q−1
such that |Q2| = |Q5| = |Q7| = a and |Q1| = |Q4| = q − a. Since |Q7| > |Q3|,
we have a ≥ 2. Since q = |Q27| = 2a, a = q

2 . So q is even, q ≥ 4 and
|Q1| = |Q2| = |Q4| = |Q5| = |Q7| = q

2 ≥ 2.

Now consider the five stable sets {x1, x3, x7}, {x′
1, x4}, {x5, x6, x

′
7}, {x2, x

′
4}

and {x′
2, x

′
5}. It is easy to see that their union U meets every q-clique four times.

It follows that ω(G− U) = q − 4, and we can conclude using Theorem 4(iv).

(IV) Suppose that G is a clique expansion of either G4 or G5. Suppose that
|Q5| ≤ |Q7|. By hypothesis we can color G−Q5 with ⌈ 5

4q⌉ colors. Since Q7 is
complete to Q1∪Q4, which is equal to N(Q5), we can extend this coloring to Q5,
using for Q5 the colors used for Q7. Therefore let us assume that |Q5| > |Q7|.
It follows that |Q45| > |Q47|, so Q47 is not a q-clique. Likewise we may assume
that |Q5| > |Q6| (for otherwise any ⌈ 5

4q⌉-coloring of G−Q5 can be extended to
Q5), and consequently Q16 is not a q-clique.

Therefore, if G is a clique expansion of G4, all q-cliques of G are in the set
{Q15, Q23, Q45, Q127, Q346}, and if G is a clique expansion of G5, all q-cliques of
G are in the set {Q15, Q18, Q23, Q45, Q38, Q127, Q346}.

Hence if G is a clique expansion of G4, then {x2, x5, x6} is a good stable set
of G, and if G is a clique expansion of G5, then {x2, x5, x6, x8} is a good stable
set of G. In either case, we can conclude the theorem with Theorem 4(ii).

(V) Suppose that G is a clique expansion of G6. Suppose that |Q8| ≤ |Q1|. By
hypothesis we can color G−Q8 with ⌈ 5

4q⌉ colors. Since Q1 is complete to Q2 ∪
Q5∪Q6, which is equal to N(Q8), we can extend this coloring to Q8, using for Q8

the colors used for Q1. Therefore let us assume that |Q8| > |Q1|. It follows that
|Q68| > |Q16| and |Q58| > |Q15|, and consequentlyQ16 andQ15 are not q-cliques.
Likewise we may assume that |Q5| > |Q6| (for otherwise any ⌈ 5

4q⌉-coloring of
G−Q5 can be extended toQ5), and consequentlyQ68 is not a q-clique. Therefore
all q-cliques of G are in the set {Q23, Q28, Q45, Q47, Q58, Q127, Q346}.

If Q23 is not a q-clique, then {x1, x4, x8} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q23 is a q-clique
of G.

If Q28 is not a q-clique, then {x3, x5, x7} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q28 is a q-clique
of G.

If Q58 is not a q-clique, then {x2, x4} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q58 is a q-clique
of G.

If Q45 is not a q-clique, then {x3, x7, x8} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q45 is a q-clique
of G.

Now we claim thatQ47 is not a q-clique. Suppose not. Then the above properties
imply that there is an integer a with 1 ≤ a ≤ q − 1 such that |Q2| = |Q5| =
|Q7| = a and |Q3| = |Q4| = |Q8| = q− a. Since |Q346| = |Q6|+2(q− a) ≤ q, we
have |Q6| ≤ 2a− q. Also, since |Q127| = |Q1|+ 2a ≤ q, we have |Q1| ≤ q − 2a.
However, 2 ≤ |Q16| ≤ (q−2a)+(2a− q) = 0 which is a contradiction. So Q47 is
not a q-clique. Then {x2, x5, x6} is a good stable set of G, and we can conclude
the theorem with Theorem 4(ii). �
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Theorem 6 Let G be a clique expansion of G7, and assume that every proper
induced subgraph G′ of G satisfies χ(G′) ≤ ⌈ 5

4ω(G
′)⌉. Then χ(G) ≤ ⌈ 5

4ω(G)⌉.

Proof. Let q = ω(G). Suppose that |Q7| ≤ |Q2|. By hypothesis we can color
G − Q7 with ⌈ 5

4q⌉ colors. Since Q2 is complete to Q1 ∪ Q5, which is equal
to N(Q7), we can extend this coloring to Q7, using for Q7 the colors used for
Q2. Therefore let us assume that |Q7| > |Q2|; and similarly, that |Q8| > |Q5|.
It follows that |Q25| < |Q57|, so Q25 is not a q-clique of G. By symmetry,
Q14 is not a q-clique of G. Therefore all q-cliques of G are in the set Q =
{Q17, Q28, Q36, Q48, Q57, Q123, Q456}.

If Q123 is not a q-clique, then {x6, x7, x8} is a good stable set of G, and we
can conclude using Theorem 4(ii). Therefore we may assume that Q123, and
similarly Q456, is a q-clique of G.

If Q36 is not a q-clique, then {x1, x5, x8} is a good stable set of G, and we can
conclude using Theorem 4(ii). Therefore we may assume that Q36 is a q-clique
of G.

If Q17 is not a q-clique, then {x3, x5, x8} is a good stable set of G, and we
can conclude using Theorem 4(ii). Therefore we may assume that Q17, and
similarly each of Q57, Q28 and Q48, is a q-clique of G.

Hence Q is precisely the set of all q-cliques of G. It follows that there
are integers a, b, c with a = |Q1], b = |Q2|, c = |Q3|, a + b + c = q, and
then |Q7| = q − a, |Q5| = a, |Q8| = q − b, |Q4| = b, hence |Q6| = c. Since
q = |Q36| = 2c, it must be that q is even and c = q

2 , so |Q3| = |Q6| = q
2 .

Since each of Q1, Q2, Q3 is nonempty we have q ≥ 3, and since q is even,
q ≥ 4. Hence |Q3|, |Q6| ≥ 2 (so the vertices x′

3 and x′
6 exist). Since Q2 and Q3

are nonempty, and |Q3| = q
2 , we have a < q

2 , so |Q7| = q − a > q
2 , so |Q7| ≥ 3

(and so the vertices x′
7 and x′′

7 exist). Likewise |Q8| ≥ 3 (and so the vertices x′
8

and x′′
8 exist). We observe that the clique Q14 satisfies |Q14| = a+b = q

2 ≤ q−2
since q ≥ 4. Likewise |Q25| ≤ q − 2.

Now consider the five stable sets {x3, x4, x7}, {x1, x6, x8}, {x′
3, x5, x

′
8}, {x′

6,
x2, x

′
7} and {x′′

7 , x
′′
8}. It is easy to see that their union U meets every q-clique

(every member of Q) four times, and that it meets each of Q14 and Q25 twice.
It follows (since |Q14|, |Q25| ≤ q−2) that ω(G−U) = q−4, and we can conclude
using Theorem 4(iv). �

Theorem 7 Let G be a clique expansion of either G8, G9 or G10, and assume
that every proper induced subgraph G′ of G satisfies χ(G′) ≤ ⌈ 5

4ω(G
′)⌉. Then

χ(G) ≤ ⌈ 5
4ω(G)⌉.

Proof. Let G be a clique expansion of either G8, G9 or G10. Let q = ω(G).

(I) Suppose that G is a clique expansion of G8. Suppose that |Q2| ≤ |Q7|.
By hypothesis we can color G − Q2 with ⌈ 5

4q⌉ colors. Since Q7 is complete
to Q1 ∪ Q3 ∪ Q8, which is equal to N(Q2), we can extend this coloring to
Q2, using for Q2 the colors used for Q7. Therefore let us assume that |Q2| >
|Q7|; and similarly, that |Q3| > |Q8|. It follows that |Q28| > |Q78|, so Q78

is not a q-clique of G. Likewise |Q23| > |Q37|, so Q37 is not a q-clique of G,
and similarly Q28 is not a q-clique. Therefore all q-cliques of G are in the set
{Q12, Q16, Q23, Q34, Q45, Q157, Q468}.
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If Q45 is not a q-clique, then {x1, x3, x8} is a good stable set of G, and we
can conclude with Theorem 4(ii). Hence we may assume that Q45, and similarly
Q16, is a q-clique. Also Q12 is a q-clique, for otherwise {x3, x5, x6} is a good
stable set, and similarly Q34 is a q-clique.

Now we claim that Q23 is not a q-clique of G. Suppose not. Then the
above properties imply that there is an integer a with 1 ≤ a ≤ q − 1 such
that |Q1| = |Q3| = |Q5| = a and |Q2| = |Q4| = |Q6| = q − a. However we
have q ≥ |Q157| > 2a and q ≥ |Q468| > 2(q − a), hence 2q > 2a + 2(q − a), a
contradiction. So Q23 is not a q-clique of G. But, then {x1, x4} is a good stable
set of G, and we can conclude the theorem with Theorem 4(ii).

(II) Now suppose that G is a clique expansion of G9. Then a similar argument,
as in the case of G8, shows that, we may assume that Q28, Q37 and Q78 are not
q-cliques (we omit the details). Likewise we may assume that |Q9| > |Q5| (for
otherwise any ⌈ 5

4q⌉-coloring of G−Q9 can be extended to Q9), and consequently
Q45 is not a q-clique; and similarly Q16 is not a q-clique.

Then Q19 is a q-clique, for otherwise {x2, x4, x7} is a good stable set, and
similarly Q49 is a q-clique. Also Q12 is a q-clique, for otherwise {x3, x5, x6, x9}
is a good stable set; and similarly Q34 is a q-clique. And Q23 is a q-clique, for
otherwise {x1, x4} is a good stable set.

The properties given in the preceding paragraph imply that q is even and
that |Q1| = |Q2| = |Q3| = |Q4| = |Q9| = q

2 . We now distinguish two cases.

First suppose that q = 4k for some k ≥ 1. Hence ⌈ 5
4q⌉ = 5k. Let

A,B,C,D,E be five disjoint sets of colors, each of size k. We color the ver-
tices in Q1 with the colors from A ∪ B, the vertices in Q2 with C ∪ D, the
vertices in Q3 with E ∪ A, the vertices in Q4 with B ∪ C, and the vertices in
Q9 with D ∪ E. Thus we obtain a 5k-coloring of G[Q1 ∪ Q2 ∪ Q3 ∪ Q4 ∪ Q9].
We can extend it to the rest of the graph as follows. Since Q157 is a clique, and
|Q1| = q

2 = 2k, we have |Q5| + |Q7| ≤ 2k, hence either |Q5| ≤ k or |Q7| ≤ k.
Likewise, we have either |Q6| ≤ k or |Q8| ≤ k. This yields (up to symmetry)
three possibilities:
(i) |Q5| ≤ k and |Q6| ≤ k. Then we can color Q5 with colors form E, Q6 with
colors from D, Q7 with colors from C ∪D, and Q8 with colors from A ∪ E.
(ii) |Q5| ≤ k and |Q8| ≤ k. Then we can color Q5 with colors form E, Q6 with
colors from D∪E, Q7 with colors from C∪D, and Q8 with colors from A. (The
case where |Q6| ≤ k and |Q7| ≤ k is symmetric.)
(iii) |Q7| ≤ k and |Q8| ≤ k. Then we can color Q5 and Q6 with colors from
D ∪ E, Q7 with colors from C, and Q8 with colors from A.

Now suppose that q = 4k + 2 for some k ≥ 1. Hence ⌈ 5
4q⌉ = 5k + 3. Let

A,B,C,D,E and {z} be six disjoint sets of colors, with |A| = |B| = |C| = k
and |D| = |E| = k + 1. So these are 5k + 3 colors. We color the vertices in
Q1 with the colors from C ∪D, the vertices in Q2 with A ∪ E, the vertices in
Q3 with B ∪ D, the vertices in Q4 with C ∪ E, and the vertices in Q9 with
A ∪ B ∪ {z}. Thus we obtain a 5k + 3-coloring of G[Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q9].
We can extend it to the rest of the graph as follows. Since Q157 is a clique,
and |Q1| = q

2 = 2k + 1, we have |Q5| + |Q7| ≤ 2k + 1, hence either |Q5| ≤ k
or |Q7| ≤ k (and in any case max{|Q5|, |Q7|} ≤ 2k). Likewise, we have either
|Q6| ≤ k or |Q8| ≤ k (and max{|Q6|, |Q8|} ≤ 2k). This yields (up to symmetry)
three possibilities:
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(i) |Q5| ≤ k and |Q6| ≤ k. Then we can color Q5 with colors form B, Q6 with
colors from A, Q7 with colors from A ∪ E, and Q8 with colors from B ∪D.
(ii) |Q5| ≤ k and |Q8| ≤ k. Then we can color Q5 with colors form B, Q6 with
colors from A∪B, Q7 with colors from A∪E, and Q8 with colors from D. (The
case where |Q6| ≤ k and |Q7| ≤ k is symmetric.)
(iii) |Q7| ≤ k and |Q8| ≤ k. Then we can color Q5 and Q6 with colors from
A ∪B, Q7 with colors from E, and Q8 with colors from D.

(III) Finally suppose that G is a clique expansion of G10. We view G10 as
the graph with nine vertices u1, . . . , u9 and edges uiui+1 and uiui+3 for each i
modulo 9; see Figure 3:(b). For each i let Qi be the clique of G that corresponds
to ui, and let ui be one vertex of Qi. As usual for the clique Q1 ∪Q2, we write
Q12 instead of Q1 ∪Q2, etc. We make two observations.

Observation 1 : If for some i the three cliques Qi,i+1, Qi+1,i+2 and Qi+2,i+3

are not q-cliques, then {ui+4, ui+6, ui+8} is a good stable set of G, and we can
conclude using Theorem 4(ii). ⋄
Observation 2 : If for some i we have |Qi−1| ≤ q

3 and |Qi+1| ≤ q
3 , then |Qi| ≥ 2q

3 .

Indeed suppose (for i = 1) that |Q9| ≤ q
3 , |Q2| ≤ q

3 and |Q1| < 2q
3 . Then Q19

and Q12 are not q-cliques, so, by Observation 1, we may assume that Q89 and
Q23 are q-cliques. Hence |Q8| ≥ 2q

3 , and consequently, since Q58 is a clique,

|Q5| ≤ q
3 , and since Q78 is a clique, |Q7| ≤ q

3 ; and similarly |Q3| ≥ 2q
3 , and

consequently |Q4| ≤ q
3 and |Q6| ≤ q

3 . But then Q45, Q56 and Q67 are not
q-cliques, so we can conclude as in Observation 1. ⋄

Now, since Q147 is a clique, we have |Qi| ≤ q
3 for some i ∈ {1, 4, 7}; and

similarly |Qj | ≤ q
3 for some j ∈ {2, 5, 8}, and |Qk| ≤ q

3 for some k ∈ {3, 6, 9}.
Up to symmetry this implies one the following three cases:
(a) |Q1|, |Q2|, |Q3| ≤ q

3 . Then we can conclude using Observation 2.
(b) |Q1|, |Q2|, |Q6| ≤ q

3 . Then Q12 is not a q-clique, so, by Observation 1, we

may assume that one of Q91 and Q23, say Q91 is a q-clique. Hence |Q9| ≥ 2q
3 ,

and consequently |Q3| ≤ q
3 . But then we are in case (a) again.

(c) |Q1|, |Q3|, |Q5| ≤ q
3 . By Observation 2 we have |Q2| ≥ 2q

3 and |Q4| ≥ 2q
3 , and

consequently |Q8| ≤ q
3 and |Q7| ≤ q

3 . Then Q7, Q8 and Q3 are like in case (b).

This completes the proof of the theorem. �

3.2 Coloring the graph class H∗

Recall that H∗ is the class of graphs G ∈ H such that, with the notation as in
Section 1, the five sets A1, A2, . . . , A5, and the vertex-set of each component of
G[A7] are cliques.

Theorem 8 Let G ∈ H∗ and assume that every proper induced subgraph G′ of
G satisfies χ(G′) ≤ ⌈ 5

4ω(G
′)⌉. Then χ(G) ≤ ⌈ 5

4ω(G)⌉.

Proof. Let q = ω(G). Let T1, T2, . . . , Tk be the components of G[A7]. For
each i ∈ {1, . . . , 5} and for each j ∈ {1, . . . , k}: let xi be one vertex of Ai, and
let tj be one vertex of V (Tj). Moreover if |Ai| ≥ 2 we call x′

i one vertex of
Ai \ {xi}, if |V (Ti)| ≥ 2 we call t1i one vertex of V (Ti) \ {ti}, if |V (Ti)| ≥ 3 we
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call t2i one vertex of V (Ti) \ {ti, t1i }, and if |V (Ti)| ≥ 4 we call t3i one vertex of
V (Ti) \ {ti, t1i , t2i }.

Suppose that |A2| ≤ ω(G[A6]). Then by hypothesis, G− A2 can be colored
with ⌈ 5

4q⌉ colors, and since A6 is complete to A1 ∪A3 which is equal to N(A2),
we can extend this coloring to A2 by using the colors of A6 on A2. So we may
assume that |A2| > ω(G[A6]). Likewise, |A5| > ω(G[A6]). So it follows that no
clique of A1 ∪A6 is a q-clique of G.

Now consider the stable set S := {x2, x5, t1, . . . , tk}. We may assume that S
is not a good stable set of G (otherwise, we can conclude with Theorem 4(ii)). So
there is a maximum clique Q of G contained in A3∪A4∪A6. Further, it follows
that for every maximum clique Q of G with Q ∩ S = ∅, we have A3 ∪A4 ⊂ Q.

If A1 ∪ A2 is not a q-clique, then {x3, x5, t1, . . . , tk} is a good stable set of
G, and we can conclude using Theorem 4(ii). So we may assume that A1 ∪ A2

is a q-clique of G. Likewise, A1 ∪A5 is a q-clique of G.

If A2 ∪ A3 is not a q-clique, then {x1, x4, t1, . . . , tk} is a good stable set of
G, and we can conclude using Theorem 4(ii). So we may assume that A2 ∪ A3

is a q-clique of G. Likewise, A4 ∪A5 is a q-clique of G.

The above properties imply that there is an integer a with 1 ≤ a ≤ q − 1
such that |A1| = |A3| = |A4| = a and |A2| = |A5| = q − a. Moreover, every
q-clique of G either contains Ai ∪ Ai+1, for some i ∈ {1, . . . , 5}, i modulo 5, or
contains Tj , for some j ∈ {1, . . . , k}.

Now if |V (Tj)| ≤ 2a, for some j, then by hypothesis, G − V (Tj) can be
colored with ⌈ 5

4q⌉ colors. Since |A3∪A4| = 2a, V (Tj) is anticomplete to A3∪A4,
N(V (Tj)) ⊆ A6, and since A6 is complete to A3∪A4, we can extend this coloring
to V (Tj) by using the colors of A3 ∪A4 on V (Tj). So, we may assume that, for
each j ∈ {1, . . . , k}, |V (Tj)| > 2a.

If a = 1, then degG(x2) = 2 ≤ ⌈ 5
4q⌉ − 1, and we can conclude with Theo-

rem 4(i). So we may assume that a ≥ 2.

Thus for each j ∈ {1, . . . , k}, we have |V (Tj)| > 4. Also, since q − a >
ω(G[A6]), we have q − a ≥ 2.

Now consider the five stable sets {x1, x3, t1, t2 . . . , tk}, {x′
3, x5, t

1
1, t

1
2 . . . , t

1
k},

{x2, x
′
5, t

2
1, t

2
2, . . . , t

2
k}, {x′

2, x4, t
3
1, t

3
2 . . . , t

3
k}, and {x′

1, x
′
4}. It is easy to see that

their union U meets every q-clique of G four times. It follows that ω(G−U) =
q − 4, and we can conclude using Theorem 4(iv). �

Proof of Theorem 1. Let G be any (P5, gem)-free graph. We prove the
theorem by induction on |V (G)|. If G is perfect, then χ(G) = ω(G) and the
theorem holds. So we may assume that G is not perfect, and that G is connected.
Since a P5-free graph contains no hole of length at least 7, and a gem-free graph
contains no antihole of length at least 7, it follows from the Strong Perfect Graph
Theorem [5] that G contains a hole of length 5. That is, G contains a C5 as an
induced subgraph. By Lemma 2 and Theorem 3 that it suffices to consider the
clique expansions of G1, G2, . . . , G10 and the members of H∗. Now the result
follows directly by the induction hypothesis and from Theorems 5, 6, 7 and 8.
This completes the proof of Theorem 1. �
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