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1. Introduction

Systems of coupled nonlinear ordinary stochastic differential equations (SDEs) are widely used for modeling the dynam-
ics of diverse systems. In this regard, several solution methodologies have been developed in the literature, with Monte
Carlo (MC) simulation techniques [1,2] being among the most widely utilized numerical approaches. Nevertheless, in certain
situations MC techniques can be computationally highly intensive, and thus, a need for developing alternative approximate
solution methodologies arises; see, for instance, some indicative work in the field of chemical processes (e.g., [3,4]). Further,
based on preliminary work in [5], Naess and co-workers developed a stochastic response determination numerical scheme
by utilizing a discrete version of the Chapman-Kolmogorov equation, and by propagating the response probability density
function (PDF) in short time steps [6,7]. Nevertheless, although the scheme exhibits excellent accuracy in predicting even
the tails of the system response PDF, it becomes eventually computationally prohibitive with increasing dimensionality. This
is due to the fact that a multi-convolution integral needs to be computed for each and every time step, while the time in-
crement is required to be short. The reader is also referred to [8,9] for other alternative approximate techniques for solving
SDEs modelling the random vibrations of diverse structural and mechanical systems.
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Recently, Kougioumtzoglou and co-workers developed a semi-analytical technique based on the concept of the Wiener
path integral (WPI) [10,11] for determining the joint response PDF of coupled nonlinear SDEs describing the dynamics of
multi-degree-of-freedom structural systems subject to stochastic excitation [12-15]. In general, although the WPI technique
has exhibited both versatility and relatively high accuracy in addressing a wide range of engineering problems (e.g. [16-
18]), its implementation relates, unfortunately, to non-negligible computational cost; see [15,19] for more details and some
recent enhancements of the technique regarding computational efficiency. Motivated by the above challenge, and relying on
a WPI formulation, as well as on a Cauchy-Schwarz inequality treatment, the authors derived recently in [20,21] closed-form
approximate expressions for the response PDF of a class of one-dimensional nonlinear SDEs. Due to the analytical nature of
the solution techniques, minimal computational effort is required, while the approximate PDF has demonstrated satisfactory
accuracy as compared to pertinent Euler-Maruyama MC simulation data.

In this paper, the approximations proposed in [20,21] are generalized to account for multi-dimensional stochastic pro-
cesses related to systems of coupled nonlinear Itd6 SDEs. Specifically, first, a basic approximation is derived for the joint
response transition PDF, which is enhanced further by introducing additional “degrees-of-freedom”, i.e., parameters to be
determined. To this aim, an error minimization problem associated with the corresponding Fokker-Planck equation is for-
mulated and solved. This enhancement aims at “tightening” the Cauchy-Schwarz inequality as well as increasing the overall
accuracy of the basic approximation. Several diverse numerical examples are considered for demonstrating the reliability of
the approximation, while comparisons with Euler-Maruyama MC data demonstrate a satisfactory degree of accuracy.

The outline of the paper is as follows: In Section 2, the basic aspects of the WPI technique are delineated, while a note
regarding the Cauchy-Schwarz inequality is included as well. In Section 3, a closed-form approximate joint response tran-
sition PDF for a class of multi-dimensional coupled SDEs with nonlinear drift and constant diffusion coefficients is derived,
which is supplemented by an error quantification analysis as well. This, in turn, facilitates the development of an enhanced
approximate joint PDF by proposing a more versatile closed-form expression with additional parameters to be determined
by resorting to an appropriate error minimization scheme. Section 4 corresponds to the numerical examples, while conclud-
ing remarks are provided in Section 5.

2. Preliminaries

Let (2, F, Fi>0.P) be a complete filtered probability space on which a scalar standard Brownian motion (B¢, t>0) is
defined, and #; is the augmentation of o {B;s|0 <s <t} by all the P-null sets of F.

2.1. Wiener path integral overview

In general, for an N-dimensional stochastic process X; = (X1 (t), X@(t),..., X™(t)) the joint transition PDF p(xy, tlx;,
t;) from a point in state space x; at time t; to a point Xy at time t;, where ;> t;, can be expressed as a functional integral
over the space of all possible paths C{x;, t;; X, t;} in the form (e.g., see [15])

{xet} _
p(xy 1% t) = /{ B a0} (1)

In Eq. (1), E[x(t)] represents the probability density functional, which can be explicitly determined in closed-form only
for relatively simple cases of stochastic processes, and [dx(t)] represents a functional measure. For instance, for a Gaussian
white noise process vector w(t) possessing a diagonal power spectrum matrix

So
S= , (2)
So
E[x(t)] is given by [22]
E[w()] = exp [— /[_tf 417Tw(t)TS‘1w(t)dt:|. 3)

Without loss of generality and for notation simplicity, it has been assumed that the constant entries of the power spectrum
matrix of Eq. (2) are identical, and equal to So. A detailed derivation and discussion of Eq. (3) can be found in standard
path integral related books such as [23]. In the ensuing analysis, the following system of coupled nonlinear It6 stochastic
differential equations is considered, i.e.,

dX = pj(Xe)dt + odBY, Vje{1,2,...,N} =[N, (4)

where p(X¢) = (1 (Xe), 2 (Xe), ..., un(Xe))T denotes the nonlinear drift coefficient vector, 02 = 27S, is the constant dif-
fusion coefficient, and dB/dt represents the formal time-derivative of a white noise process of unit intensity. In this regard,
Eq. (4) can be substituted into Eq. (3), yielding for the transition PDF of the response process X; the expression (e.g., see
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[12-16])
{xp.t7} ty .
P(Xy. telXi, t;) = /{ y exp (-~ | L(x,x)dt |[dx(0)], (5)
X, Li i
where L(X, X) represents the Lagrangian function associated with the dynamical system of Eq. (4), and is given by
1 J ; 2
LK) = 5 >~ (8 - 1 00)°. (6)
j=1

As noted earlier, the constant diffusion coefficients in Eq. (5) are taken all equal to o for convenience and notation
simplicity. It is rather straightforward to consider non-equal values for the diffusion coefficients in Eq. (5) (corresponding to
non-equal entries in the power spectrum matrix of Eq. (2)) and adjust accordingly Eq. (6). Further, although the assumption
of constant diffusion coefficients appears rather restrictive, it is often possible to transform more general cases with state-
dependent/nonlinear diffusion coefficients into the form of Eq. (5); see for instance [24], as well as the herein considered
example in Section 4.3. Furthermore, the assumption of constant diffusion may be quite reasonable for various engineering
dynamics applications. Indicatively, the SDE governing the dynamics of a class of oscillators with nonlinear damping subject
to stochastic excitation can be approximated via a stochastic averaging treatment by Eq. (4); see, for instance, the numerical
examples in [12] for more details. Extending the herein developed solution technique for the more general and significantly
more challenging case of nonlinear drift and nonlinear diffusion coefficients is identified as future work.

Next, it is readily seen that, in general, the analytical evaluation of the WPI, Eq. (5), is at least a rather challenging, if not
impossible, task. Thus, seeking for an approximate solution technique, it is observed that the greatest contribution to the
WPI comes from the trajectory for which the integral in the exponential of Eq. (5) becomes as small as possible. According
to calculus of variations [25], this trajectory with fixed end points satisfies the extremality condition

ty
[ Lxe.xe)de =0, )
£
where X, denotes the “most probable path” to be determined by the functional optimization problem
ty
Min(Max)  Jxc(t)] = / L(Xe. %), 8)
ti

together with the boundary conditions xc(t;) = X; and X (ty) = X;. Further, xc(t) can be determined either by deriving and
solving a system of Euler-Lagrange (E-L) equations associated with Eq. (7) (e.g., see [13,15]), i.e.

aL a oL

W_§W=O,Vkerm, (9)

in conjunction with the boundary conditions x(t;) = X;, Xc(ty) = Xy, or alternatively, by treating directly the deterministic
boundary value problem (BVP) of Eq. (8) (e.g. [14,16]). Once X.(t) is determined, the joint transition PDF can be approximated
by

[f .
p(Xg. tr|x;, t;) ~ Dexp (— L(xe, xc)dt>, (10)

5

where @ is a normalization coefficient.

2.2. Cauchy-Schwarz inequality

For completeness, the integral form of the Cauchy-Schwarz inequality is included below, whereas a detailed presentation
of the topic can be found in [26].

Lemma 2.1. Let f and g be real functions that are continuous on the closed interval [a, b]. Then

b b b
< f f(t)g(t)dt)zs / f(©)%dt / g(t)?dt. (11)

Clearly, setting g =1 yields the special case

b b
f f(t)ZdrzbiaU f(r)dt)z, (12)

which will be used in Section 3.1 for proving Lemma 3.1.
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3. Main results
3.1. A closed-form approximate solution for stochastically driven nonlinear dynamical systems with constant diffusion

Although the approximate expression of Eq. (10) has exhibited a significant degree of accuracy (as compared to pertinent
MC simulation data) in several applications such as those pertaining to engineering dynamical systems [14,15,20], there is a
considerable computational cost associated with solving numerically the BVPs of Eq. (8); see for instance [19] for a recent
work towards enhancing the computational efficiency of the WPIL. In this section, a closed-form approximate expression for
the joint response transition PDF of Eq. (4) is derived by relying on a Cauchy-Schwarz inequality treatment. The approximate
solution, which can be construed as a generalization of the results of [20] to account for multi-dimensional processes X,
not only requires essentially zero computational effort, but also facilitates an error quantification analysis (see Section 3.2).

Regarding the system of coupled nonlinear SDEs of Eq. (4), the following Lemma is proved next, which will be instru-
mental in deriving the approximate joint response PDF.

Lemma 3.1. Let MU)(-) be an antiderivative of 1;(-)¥j w.rt the jth coordinate, ie.,

oMW x) _

= M) Vi (13)

Then, the integral of the Lagrangian function, ft:f L(X¢, Xc)dt, is bounded by

1 (X (X(j))2 N ' ‘
L(xc,xc)dt>— ; - —br—zg(M(“(xf)—M(”(xi)) , (14)

t 20

where x ) = x}j) —xi(j), T =t;—t; and b is a constant, depending on the boundary conditions Xc(t;) = X;, Xc(ty) = X.

Proof. Substituting the Lagrangian function of Eq. (6) corresponding to the system of SDEs of Eq. (4) into the E-L Eq. (9),
and manipulating, yields

('éj) _ Mj(xc))w _ lz <)~(-£k) Z aﬂk(xC) §])> =0,Vk e |’NJ (15)

8x£k) o P ox 21)

1
024

-
LMZ

together with the boundary conditions Xc(t;) = X;, Xc(tf) = X;. Further, Eq. (15) can be cast in the form

I (xe)  Ipj(xc) ou; (xc)
(J) k\Ac J J
ZX ( ax9 3x® Z/M( WO ox® < INJ. (16)
C
or equivalently written as
d 0 Gy QX)) I (Xe) #0 MJ( ) L
8t(( ) ) 22’(] D gy +ZZ i) MORG ,Vk e [N]. (17)
X, 0X;
Considering Eq. (17), and summing over all k indexes yields
N N N
9 0] Gy (O () Opj(Xe) M0 M,( ) . 40
Z at<( ) ):222fo 0 — WO +ZZZM] Xc) ———= (k) x9, (18)
k=1 j=1 Xc Xc k=1 j=1
or equivalently,
N
0 Q) Mj(xc) R
> g (6)7) = Zzwxc)Z o (19)
k=1 k=1
since by symmetry,
ZZX(]) <3Mk(xc) 8”]’("5));‘5}0 -0 (20)
k=1 j=1 3"2]) ax

Taking into account the chain rule of differentiation, Eq. (19) becomes

N 3 A 0 ANy )
Z 8t(( ) ) - Z;zuf(xf)&“f(x‘) = 2&(“1(&) ). (21)
J= Jj=
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or equivalently,
I (= o) _ 9 [+
at (Z (%) ) =5 (Z m(xc)Z), (22)
k=1 Jj=1
which yields
N , N
> ()" =D nix)* +b. (23)
k=1 Jj=1

In Eq. (23) b is a constant, depending on the boundary conditions X.(t;) = X;, Xc(t;) = X;. Expanding next the square in
Eq. (6), and substituting Eq. (23) yields

N
L(Xc, X;) = (22( <f>) —b- ZZu](xC)x(”) (24)

j=1 j=1
Next, the integral of Eq. (24) is given by
(z] 208 (39) de —br —2 2N M](xc)dx(])>

o2

/ L(xc, X )dt = (25)

or equivalently, by utilizing the M) antiderivatives of Eq. (13)

Z] : zftf ( (J)) dt — bt =2 Z (M(j)(xf) — MWD (xl))>

o2

|5

L(xc, Xc)dt = 5 (

N2
Further, employing the Cauchy-Schwarz inequality of Eq. (12), the quantity 2 ftff (Xé”) dt is bounded by

. A () _ )2 1)?
fo (ng))zdtz[tf (ké”)zdtz i TX' ) = () : (27)

T
Combining Eqs. (26) and (27), Eq. (14) is derived. O
In the following, the main result of the present section is stated and proved.
Theorem 3.2. Let

N2 . .
Y (x9) + T (-2MY (xp) + 2M 9 (xp))T
2102

G(Xf, tflx,‘, ti) = s (28)
then an approximate joint transition PDF for Eq. (4) is given by p : D(M) x (t;, +00) x {X;} x {t;} = R, where D(M) = D(M™M) x
DMP) x ... x DIMM), defined as

P(Xy. tylxi, t;) = F(tp) exp (—G(X, tr[Xi, t;)), (29)
where F(tf) is a normalization constant.

Proof. The proof follows in a straightforward manner from Lemma 3.1 and Eqs. (10) and (14). Thus, it can be read-
ily seen that a closed-form approximate solution for the joint transition PDF can be given by Eq. (29), where F(t;) =

(/o exp(=G(x, tflx;, t,-))dx) . Note that the arbitrary term exp( %) has been included in the constant F(t;). [

3.2. Error quantification

The transition PDF of Eq. (29) derived herein constitutes an approximate solution of the coupled system of nonlinear
SDEs of Eq. (4). Naturally, the next step is to quantify the accuracy of the derived approximation and estimate its error.
In this regard, for a given norm (|-||q), the error quantity ||p — p*||q can be defined, where p* is the exact transition PDF.
Clearly, however, the error quantity ||p — p*||q cannot be determined explicitly as p* is unknown. Thus, an alternative error
definition, also adopted in [20,21], is utilized in the ensuing analysis. Specifically, the transition PDF p* for the SDEs of
Eq. (4) is given as the solution of the associated Fokker-Planck equation [27], i.e.,

N

Elp*.ap(xt) —Z (MJ(X)p(xt)) o2 Z N 92pr(y,t) (30)

9x() Tt < 9xDox®
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Let us denote the Fokker-Planck operator as follows

Ipx.t) L O(w;®)px.D) o2 3%p(x.t)
Lep[p(X, )] = 9t + Z Ix0) Z Z Ix) gxt)

(31)

From Eq. (30), it follows that Lgp[p*] = 0. Thus, the error is defined as || Lgp[p — p*]llq = | LeplP] — Lrplp*1llqg = | Lepl D]l (seE
also [20,21]).

Clearly, utilizing the Fokker-Planck operator in the above error definition (see also [28-30]) facilitates the evaluation
via || Lep[plllq of the error incurred by using p as an approximation to the exact PDF p*. In particular, substituting the
approximate transition PDF of Eq. (29) into Eq. (31) and manipulating yields

o [F a6 & ow 02 L& G 3G
ﬁFP[P]=P(F—8t+Z<aX(]) /Llax(])>_ 2 ZZ 8x(1)8x("> + ax() ax® ' (32)

Jj=1 k=1

Differentiating Eq. (28) leads to

9G 1 &0
70t x=xpt=t; T 202 ]Zl <z ’ (33)
) )
BG _ Xf TXl - I’L] (Xf) (34)
ax() |X:Xf,f:ff - 0?2 ’
92G (3 (G Ly M) T (35)
Ix 9x |x=xf.t=tf T\ ax) \ gx \x:xf,[=tf - 102

Next, substituting Eqs. (33) to (35) into Eq. (32), and manipulating, yields

p(Xr, te]X;, t; F(t ;
ot - BN (G N S 3 2

9 i) (k)
() )

J#k Jj#k

Utilizing Eq. (36), the error function, err(Xy, tfX;, t;), and its normalized version are given by

ﬁ(xf’tf|xi’ti) F(tf) apj(Xg) Oy (Xy)
2 (F(t) Z 9x) -2 XD

err(xf, telx;, t,-) =

1 & , 1 x x®
+ﬁzﬂj(xf) T 524 T—Mj(xf) T_/'Lk(xf) (37)
j=1 Jj#k q
and
~ err(xf, tf|Xi, ti)
err(Xy, tr|X;, 1) = (38)

SUD y,cp(m) err(xf, trlxi. t;)
treltit,+00)

where sup(-) denotes the supremum operator.
Overall, the normalized error of Eq. (38) can be estimated for a given system of SDEs of Eq. (4) for assessing the relative
accuracy of the approximate response transition PDF both for various x; values, and for various time instants ty.

3.3. SDEs with constant drift and diffusion coefficients: an exact analytical solution case
For the special case of constant drift coefficients, the system of coupled SDEs of Eq. (4) degenerates to

dX = pdt + odBY?, Vje [N], (39)

Eq. (39) represents a system of uncoupled SDEs, which has been used, for instance, to model the motion of particles [31].
In this regard, the approximate PDF of Eq. (29) takes the form (see also [20])

i (x (”) +3 V(- Z/Lx;j)+2/ucfj)t)

2102 (40)

P(Xy. tylxi, t;) = F(ty) exp (—
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or equivalently,

(X(]) — /‘”:)

N
B(xr. trlxi. ti) = F(tp) exp | =} ~=———— 2702

j=1

: (41)

where the term exp

2 722) has been merged with the normalization coefficient F(tf). Note that for the SDEs of Eq. (39), an

exact response PDF for the process X(t) is available (e.g., [32]) which, notably, coincides with Eq. (41). Also, it can be readily
seen that substituting Eq. (41) into Eq. (37) yields err(Xy, t7|x;, ;) = 0, and thus, as anticipated, the error of approximating
the exact PDF of Eq. (39) with the approximate one of Eq. (29) is zero, since in that case the two PDFs coincide as discussed
earlier.

3.4. Enhanced accuracy via an error minimization scheme

It can be readily seen that p in Eq. (29) can be directly used as an analytical approximation of the joint response process
PDF without resorting to the numerical solution of the E-L Eq. (9). Thus, essentially zero computational effort is required
for the determination of the joint response transition PDF. However, as demonstrated in [20] for the one-dimensional case,
although the approximation of Eq. (29) is capable, in general, of capturing the salient features of the solution PDF, in many
cases the degree of accuracy exhibited can be inadequate. To address this limitation, a more general form of the PDF was
proposed in [21], by incorporating two additional “degrees-of-freedom”; that is, parameters to be determined based on an
appropriate optimization scheme.

In this section, a more general form than Eq. (29) is proposed for the joint solution PDF of the system of coupled SDEs
of Eq. (4). This can be construed as a generalization of the results of [21] to account for multi-dimensional processes X;.
Specifically, the joint response transition PDF is expressed in the form

iy (Xr- t1Xi, 1) = Fiaem) (t7) XD (=Gacny (X trlXi 7)), (42)
where
(k,n):(k1,...,kN,n1,...,nN), (43)

and

Sk (x9) + Ly (-2M (xp) + 2M9 (x)) T

Gaaeny (X5 trlXi 1)) = 3752 (44)
The constant F in Eq. (42) is determined as
-1
Fuen) (t7) = (/D(M) exp (—G(k,n) (Y, trlx;, fi))@) . (45)

Note that in comparison to Eq. (29), the general solution form in Eq. (42) has 2N additional “degrees-of-freedom”; that
is, the parameters k and n to be determined based on an appropriate optimization scheme. The rationale behind this choice
relates to utilizing available knowledge and integrating it in an optimization scheme for determining Eq. (42), and thus,
enhancing the overall accuracy of Eq. (29). In particular, the parameter k relates to optimizing and “tightening” the Cauchy-
Schwarz inequality of Eq. (27), whereas the parameter n refers to the overall accuracy of the WPI approximation of Eq. (10).
In comparison to Eq. (29) it is anticipated that the approximation of Eq. (42) will exhibit higher accuracy, at the expense
of course of some added modest computational cost related to the optimization algorithm. In this regard, it is emphasized
that exploiting a priori available information in many problems, such as obvious symmetries, can reduce significantly the
effective size of the vector of unknown parameters (k, n). As seen also in many of the following numerical examples, the
size of (K, n) can be considerably smaller than 2N; thus, reducing the complexity and computational cost of the associated
optimization problem.

Next, to determine the parameters k and n in Eq. (42), for a given norm (||-||¢), the error quantity of Eq. (37) is sought
to be minimized; see also [21]. In fact, due to the closed-form expression of p n). the error quantity err = || Lrp[Pknlllq
can be explicitly determined as a function of k and n. Further, for a chosen g-norm and final time ¢, the values of k, n are
numerically evaluated by solving the optimization problem

Zy= (l(, ﬁ) = arg(krl?)m err = arg mm ||£Fp[p(k G ) llg (46)
q

and, thus, the approximate response PDF of Eq. (42), is determined. Note that in comparison to Section 3.3, in this section

the closed-form expression of Eq. (37) is used not as an error estimate, but rather as a tool within the optimization scheme

for enhancing the accuracy of the joint response PDF.



8 A.T. Meimaris, .A. Kougioumtzoglou and A.A. Pantelous/Applied Mathematics and Computation 364 (2020) 124669

Table 1
Computed (k, n) values for various final time instants t; and starting point
(1,1,1,1) for Example 4.1.

ki =k; n=n Iterations
tr=0.1 0.9848 0.4411 24
ty=05 1.0595 0.6001 36
tr=1 1.3648 0.8180 39
tr=3 3.4699 1.0824 36

Table 2
Error estimates and CPU times for Example 4.1.
ex 107 €400 MCS CPU time Dacny CPU time
(100,000 realizations)
ty=0.1 3.42 8.18 126 s 0.068 s
tr=05 392 2320 534s 0.081 s
ty = 10 1420 931 s 0.058 s
tr=3 17 2323 23135 0.051 s

4. Numerical examples

In the ensuing numerical examples, a standard interior point method [33,34] using Matlab’s fmincon built-in function is
employed to solve the unconstrained optimization problem of Eq. (46), in conjunction with the ||-||, norm (i.e., g = 2). To
this aim, the basic approximation of Eq. (29) with (k,n) = (1,...,1) € R?N serves as a natural choice for the initial starting
point of the algorithm.

In most of the numerical examples, the algorithm converged in less than a hundred iterations, which translates into less
than a tenth of a second from a computational cost perspective for the examples considered. The accuracy of the approx-
imate PDF of Eq. (42) is demonstrated by comparisons to the PDF estimated based on pertinent Euler-Maruyama MC sim-
ulation data (100,000 realizations) produced by numerically integrating the original Eq. (4) with At =102 on a computer
with 16GB RAM, Inter(R) Core(TM) i7-6700 CPU @3.40GHz. Further, the error metric € = || ny — MCS PDF||, is employed
for quantifying the accuracy of the approximate PDF as compared to the MC simulation based estimate. Also, the additional

|p—MCS PDF|ly ;o . a1 . A .
Thacm -MCS PDET, is utilized for demonstrating how much better the enhanced approximation p p) is

in comparison to the basic one of p.

error quantity €4 =

4.1. Duffing kind nonlinearity: bimodal response PDF

In this example, a 2-dimensional Duffing nonlinear system with bimodal response PDF (e.g. [19]) of the form

dX; = (Y; — X3)dt + odB" )
dY; = (X; — Y2)dt + 0 dB®,

is considered. Next, assuming zero initial conditions, and taking into account that M;(x,y) =xy — %x“ and My (x,y) =
Mj (y, x) the PDF of Eq. (42) takes the form

axg o+ kayg - tr(mi (2x5v5 — 3XF) + n2(2x5v5 — 3¥1))

2tf0'2

(48)

Paen) (X5, ¥y, t£]0,0,0) = F(ty) exp

Utilizing the parameter value o =1, and applying the numerical optimization scheme of Eq. (46) based on the |||, norm,
yields the values for (k, n). Specifically, exploiting the symmetry of Eqgs. (47) and (48) the number of the unknown param-
eters is reduced from four to two by setting k; =k, and n; = n,. The computed values are shown in Table 1 along with
the iterations number of the optimization algorithm, whereas in Table 2 error estimates and CPU times are presented as
well. In Figs. 1-4 the approximate PDFs p ) of Eq. (48) are plotted for various time instants and compared both with
the closed-form PDFs of Eq. (29) and with MCS based estimated PDFs. It is seen that the herein proposed enhanced PDF
approximation of Eq. (48) is in very good agreement with MCS data, and yields improved performance as compared to the
basic approximation of Eq. (29). Specifically, the closed-form basic approximation of Eq. (29) exhibits satisfactory accuracy
at relatively early time instants, which deteriorates as t; increases.
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Fig. 1. Joint response PDF at t; = 0.1 for a coupled system of SDEs with Duffing nonlinearity and bimodal response PDF: basic approximate PDF p (a) and
(b); Enhanced approximate PDF pp (c) and (d); MCS based PDF (100,000 realizations) (e) and (f).
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Fig. 2. Joint response PDF at t; = 0.5 for a coupled system of SDEs with Duffing nonlinearity and bimodal response PDF: basic approximate PDF p (a) and
(b); enhanced approximate PDF P n (c) and (d); MCS based PDF (100,000 realizations) (e) and (f).

4.2. The “labyrinth” model

Let
s(i) = (i+ 1)modN, Vie Ng, (49)

denote a circular shift permutation (rotation) operator of the natural numbers. The N-dimensional circulant system of the
form

dxV) = ¢<x§°j(°),x§"j(l), ’xtS"f(N—l))dt +odB, Vje[N], (50)
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(b); Enhanced approximate PDF p ) (c) and (d); MCS based PDF (100,000 realizations) (e) and (f).
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Fig. 4. Joint response PDF at t; =3 for a coupled system of SDEs with Duffing nonlinearity and bimodal response PDF: basic approximate PDF p (a) and
(b); Enhanced approximate PDF fp) (c) and (d); MCS based PDF (100,000 realizations) (e) and (f).

j—times
where 52/ =Soso0---08, for ¢(ay,ay, ..., ay) =sin(ay), is typically called the labyrinth model [35-37], and has been used

extensively in diverse applications [38-40] for representing auto-catalytic systems.
In the following example, a three-dimensional version of the labyrinth model given by Sprott [36]

dX; = sin(Y;)dt + odB"
dY, = sin(Z)dt + o dB{* (51)
dz; = sin(X;)dt + o dB>
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Table 3
Computed (k, n) values for various final time instants t; and starting point
(1,1,1,1,1,1) for Example 4.2.

ki =ky =ks ny=ny;=ns Iterations
ty=05 0.9594 0.2616 39
tr=1 0.8912 0.2680 27
t; =10 0.4376 0.0235 48
tr=25 0.4498 0.0068 57

Table 4
Error estimates and CPU times for Example 4.2.
€x 1074 MCS CPU time Pacny CPU time
(100,000 realizations)
tr=0.5 0.74 974 s 0.036 s
tr = 1.32 1687 s 0.025 s
ty =10 1.07 11,923 s 0.027 s
tp =25 0.04 28,369 s 0.085 s

(7]

o @
(I N

ty=10.5

Joint MCS PDF,
o

y]t X

Fig. 5. Joint response PDF at t; = 0.5 for a coupled nonlinear system of SDEs of the “labyrinth” type: Enhanced approximate PDF pcq (a) and (b); MCS
based PDF (100,000 realizations) (c) and (d).

is utilized to assess the accuracy of the approximate response PDF of Eq. (42). Next, considering Eq. (51) and zero initial
conditions, the PDF of Eq. (42) takes the form

kix3 + koy + kszd + (—2mixs sin(yy) — 2nayf sin(zy) — 2n3z; sin(xy) )t
- 2tf02

ﬁ(k,n) (xf,yf, Zf, tf|0, 0,0, 0) = F(ff) exp

(52)

In the following, utilizing the parameter value o = 1, and applying the numerical optimization scheme of Eq. (46) based
on the ||-||; norm, yields the values for (k, n). Specifically, exploiting the symmetry of Eqs. (51) and (52) the number of the
unknown parameters is reduced from six to two by setting k; = k, = k3 and n; = ny = n3. The computed values are shown
in Table 3 along with the iterations taken by the optimization algorithm to converge, whereas in Table 4 error estimates and
CPU times are included as well. In Figs. 5-8 the joint PDFs of X; and Y; are plotted for various time instants based on the
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Fig. 6. Joint response PDF at t; =1 for a coupled nonlinear system of SDEs of the “labyrinth” type: Enhanced approximate PDF P n (a) and (b); MCS
based PDF (100,000 realizations) (c) and (d).
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Fig. 7. Joint response PDF at t; = 10 for a coupled nonlinear system of SDEs of the “labyrinth” type: Enhanced approximate PDF ) (a) and (b); MCS
based PDF (100,000 realizations) (c) and (d).

approximate PDFs Py n) of Eq. (52) and compared with MCS based estimated PDFs. Additional results are shown in Fig. 9
corresponding to the marginal PDF of Z. It is seen that the herein proposed enhanced PDF approximation of Eq. (52) is in
very good agreement with MC simulation data.
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Fig. 9. Enhanced approximate marginal response PDFs f ) for various time instants t; for a coupled nonlinear system of SDEs of the “labyrinth” type;
comparisons with MCS based PDF estimates (100,000 realizations).

4.3. The predator-prey model

Various predator-prey mathematical models have been developed in ecology to describe the dynamics of species popu-
lations [41]. In this regard, a rather general predator-prey model is given by

{X(t) = ax(t) — ¢ (x(t))y(t)

. (53)
y(t) = —by(t) + cg (x(t))y(t).
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Table 5
Computed (k, n) values for various final time instants t; and starting point
(1,1,1,1) for Example 4.3.

kq ko n n, Iterations
tr=0.1 0.9628 0.9667 2.8039 1.4113 100
t;=05 0.9406 0.9857 2.7976 1.4448 100
tr=1 09116 1.0421 2.5932 1.5088 120
ty=10 0.7614 1.5122 0.8480 2.3328 410

Table 6
Error statistics and CPU times for Example 4.3.
€x104 MCS CPU time Pacny CPU time
(100,000 realizations)
tr=0.1 3.92 131 s 0.064 s
tr=05 1.44 520 s 0.059 s
tr=1 1.23 922 s 0.065 s
tr =10 3.16 13,600 s 0.377 s

where x(t), y(t) represent the population densities of prey and predator, respectively; a, b and c are positive constants denot-
ing the prey’s intrinsic growth rate, the prey’s death rate and the predator’s conversion rate, respectively. Further, various
expressions have been proposed in the literature for ¢(x(t)), ranging from Lotka-Volterra [41]| to Holling-kind nonlinear
modeling [42]. Without loss of generality, and following [43], a modified stochastic version of Leslie-Gower functional re-
sponse and of the Holling-type II for the predator-prey model is given by

_ Y )
dX[ —X[(ﬂ — bX[ — m —|—X[)dt + O'X[dBt

Y @
dY; = (r Tmax dt + oY, dB;

(54)

together with the initial conditions, X(0) =Xy > 0, Y(0) =Yy > 0. In Eq. (54), the parameters a, b, ¢, r, f and m are all
positive. These parameters are defined as follows: a is the growth rate of prey X, b measures the strength of competition
among individuals of species X, c¢ is the maximum value of the per capita reduction rate of X due to Y, m measures the
extent to which the environment provides protection to prey X and to the predator Y, r describes the growth rate of Y and
f has a similar meaning to c. The interested reader is referred to [44,45] for indicative generalizations of the model.

Next, setting X = exp (U) and Y = exp (V), Eq. (54) is cast in the form of Eq. (4); that is,

2 ce%
du; = (a A o )dt +odB"
m+ e

2
o2 fe% (55)
— (2)
th_<r—2—m+eUl>dt+odBt
and the PDF of Eq. (42) takes the form
2 2
. ky(up—uo) +ka(ve—v0
Pacny (s, vy, trlug, vg, 0) = F(tp)exp | — ( f )2t , ( f )
fU
ny(—M(ug, ve) + M(ug, vg)) + na(—K(ug, v¢) + K(ug, v
« exp _1( (uy, vp) + M(uo o))a2 2(=K(uys, vp) + K(ug, vp)) ’ (56)
where M(u, v) _auf— — bet w and K(u,v) =rv— 22117 fer

In the numerical example the parameter valueso =1,a=04, b=0.1, ci 0.1, r=0.3, f=0.5 m=0.1 are considered,
together with the initial conditions xq = yy = 0.3. Next, applying the numerical optimization scheme of Eq. (46) based on
the ||| norm yields the values for (k, n), which are shown in Eq. (5) along with the iterations number of the optimization
algorithm, whereas in Table 6 error estimates and CPU times are presented for comparison purposes. In Figs. 10-13 the
approximate PDFs i ) of Eq. (56) are plotted for various time instants and compared with MCS based estimated PDFs. It
can be readily seen that the herein proposed enhanced PDF approximation of Eq. (56) exhibits satisfactory accuracy.
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Fig. 10. Joint response PDF at t; = 0.1 for a coupled predator-prey nonlinear system of SDEs: enhanced approximate PDF p ) (a) and (b); MCS based PDF
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5. Conclusion

In this paper, an approximate analytical expression for the joint response transition PDF of a class of coupled SDEs
with constant diffusion, but nonlinear drift coefficients, has been derived based on the concept of the Wiener path integral
and on a Cauchy-Schwarz inequality treatment. Specifically, first, a basic approximation has been derived that requires
essentially zero computational cost for its determination. Next, the approximation has been enhanced from an accuracy
perspective by proposing a more general and versatile expression for the joint response transition PDF, which includes
additional parameters. These are determined by formulating and solving an appropriate optimization problem related to
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the corresponding Fokker-Planck equation. The enhanced PDF has demonstrated significant increase in accuracy, albeit at
the expense of some modest computational cost related to the optimization scheme. Several diverse examples have been
considered for assessing the reliability and accuracy of the derived approximation as compared to pertinent MC simulation
data. In addition to the mathematical merit of the derived closed-form PDF, the approximate solutions can serve also as a
benchmark for assessing the performance of alternative, more computationally demanding, stochastic dynamics numerical
methodologies.

Acknowledgment

The authors would like to thank the Editor-in-Chief Theodore E. Simos and the anonymous reviewers for their insightful
comments that significantly improved the quality of this paper. I. A. Kougioumtzoglou gratefully acknowledges the support
through his CAREER award by the CMMI Division of the National Science Foundation, USA (Award number: 1748537).

References

[1] PE. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag Berlin and Heidelberg Gmbh & Co. Kg, 1992.
[2] M. Grigoriu, Stochastic Calculus: Applications in Science and Engineering, Springer, New York, USA, 2002.
[3] S. Tronci, M. Grosso, J. Allvarez, R. Baratti, On the global nonlinear stochastic dynamical behavior of a class of exothermic CSTRs, J. Process Control 21
(9) (2011) 1250-1264.
[4] J. Alvarez, R. Baratti, S. Tronci, M. Grosso, A. Schaum, Global-nonlinear stochastic dynamics of a class of two-state two-parameter non-isothermal
continuous stirred tank reactors, J. Process Control 72 (2018) 1-16.
[5] M.E. Wehner, W.G. Wolfer, Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes, Phys. Rev. A
28 (5) (1983) 3003-3011.
[6] A. Naess, J.M. Johnsen, Response statistics of nonlinear, compliant offshore structures by the path integral solution method, Probab. Eng. Mech. 8 (2)
(1993) 91-106.
[7] L. Chen, E.R. Jakobsen, A. Naess, On numerical density approximations of solutions of SDES with unbounded coefficients, Adv. Comput. Math. (2017)
1-29.
[8] J.B. Roberts, P.D. Spanos, Random Vibration and Statistical Linearization, Courier Corporation, 2003.
[9] J. Li, J. Chen, Stochastic Dynamics of Structures, John Wiley & Sons (Asia) Pte Ltd, 2009.
[10] N. Wiener, The average of an analytic functional and the Brownian movement, Proc. Natl. Acad. Sci. 7 (10) (1921) 294-298.
[11] R.P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20 (2) (1948) 367.
[12] LA. Kougioumtzoglou, P.D. Spanos, An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillators,
Probab. Eng. Mech. 28 (2012) 125-131.
[13] LA. Kougioumtzoglou, P.D. Spanos, Nonstationary stochastic response determination of nonlinear systems: a Wiener path integral formalism, ASCE J.
Eng. Mech. 140 (9) (2014) 04014064.
[14] A. Di Matteo, L.A. Kougioumtzoglou, A. Pirrotta, P.D. Spanos, M. Di Paola, Stochastic response determination of nonlinear oscillators with fractional
derivatives elements via the Wiener path integral, Probab. Eng. Mech. 38 (2014) 127-135.
[15] LA. Kougioumtzoglou, A. Di Matteo, P.D. Spanos, A. Pirrotta, M. Di Paola, An efficient Wiener path integral technique formulation for stochastic response
determination of nonlinear MDOF systems, ASME ]. Appl. Mech. 82 (10) (2015) 101005.
[16] LA. Kougioumtzoglou, A Wiener path integral solution treatment and effective material properties of a class of one-dimensional stochastic mechanics
problems, ASCE J. Eng. Mech. 143 (6) (2017) 04017014.
[17] L. Petromichelakis, A.F. Psaros, I.A. Kougioumtzoglou, Stochastic response determination and optimization of a class of nonlinear electromechanical
energy harvesters: A Wiener path integral approach, Probab. Eng. Mech. 53 (2018) 116-125.
[18] A.E. Psaros, O. Brudastova, G. Malara, L.A. Kougioumtzoglou, Wiener Path Integral based response determination of nonlinear systems subject to
non-white, non-Gaussian, and non-stationary stochastic excitation, J. Sound Vib. 433 (2018) 314-333.
[19] A.E. Psaros, L.A. Kougioumtzoglou, I. Petromichelakis, Sparse representations and compressive sampling for enhancing the computational efficiency of
the wiener path integral technique, Mech. Syst. Signal Process. 111 (2018) 87-101.
[20] A.T. Meimaris, .A. Kougioumtzoglou, A.A. Pantelous, A closed form approximation and error quantification for the response transition probability
density function of a class of stochastic differential equations, Probab. Eng. Mech. 54 (2018) 87-94.
[21] AT. Meimaris, LA. Kougioumtzoglou, A.A. Pantelous, Approximate analytical solutions for a class of nonlinear stochastic differential equations, Eur. J.
Appl. Math. (2018) 1-17.
[22] T. Taniguchi, E.G.D. Cohen, Inertial effects in nonequilibrium work fluctuations by a path integral approach, J. Stat. Phys. 130 (1) (2008) 1-26.
[23] M. Chaichian, A. Demichev, Path Integrals in Physics: Volume I Stochastic Processes and Quantum Mechanics, CRC Press, 2001.
[24] R.L. Schilling, L. Partzsch, Brownian Motion: An Introduction to Stochastic Processes, Walter de Gruyter GmbH & Co KG, 2012.
[25] G.M. Ewing, Calculus of Variations with Applications, Dover Publications, New York, USA, 2016.
[26] ].M. Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, Cambridge University Press, New York, USA,
2004.
[27] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier, New York, USA, 2007.
[28] D. Kunszenti-Kovdcs, On the error of Fokker-Planck approximations of some one-step density dependent processes, arXiv:1612.08829, 2016.
[29] R. Grima, P. Thomas, A.V. Straube, How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? J. Chem. Phys. 135 (2011)
084103.
[30] Q. Yang, F. Liu, I. Turner, Stability and convergence of an effective numerical method for the time-space fractional Fokker-Planck equation with a
nonlinear source term, Int. J. Diff. Eq. 2010 (2010) 1-22.
[31] H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7 (4) (1940) 284-304.
[32] B. @ksendal, Stochastic Differential Equations: An Introduction with Applications, Springer-Verlag Berlin and Heidelberg Gmbh & Co. Kg, 2010.
[33] A. Forsgren, PE. Gill, M.H. Wright, Interior methods for nonlinear optimization, SIAM Rev. 44 (4) (2002) 525-597.
[34] J. Nocedal, S. Wright, Numerical Optimization, Springer, New York, USA, 2006.
[35] R. Thomas, Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “labyrinth chaos”, Int. ]. Bifurc. Chaos 9 (10) (1999) 1889-1905.
[36] J.C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows, World Scientific, Singapore., 2010.
[37] S. Vaidyanathan, C. Volos, Advances and Applications in Chaotic Systems, Springer-Verlag Berlin and Heidelberg Gmbh & Co. Kg, 2016.
[38] S. Rasmussen, C. Knudsen, R. Feldberg, M. Hindsholm, The coreworld: emergence and evolution of cooperative structures in a computational chemistry,
Phys. D: Nonlinear Phenom. 42 (1-3) (1990) 111-134.
[39] J.L. Deneubourg, S. Goss, Collective patterns and decision-making, Ethol. Ecol. Evol. 1 (1989) 295-311.
[40] S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, USA, 1993.
[41] H.L Freedman, Deterministic Mathematical Models in Population Ecology, Pure and applied mathematics, Marcel Dekker, Inc., New York, USA, 1980.



18 A.T. Meimaris, .A. Kougioumtzoglou and A.A. Pantelous/Applied Mathematics and Computation 364 (2020) 124669

[42] B. Liu, Z. Teng, L. Chen, Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy, ]. Comput. Appl.
Math. 193 (2006) 347-362.

[43] C.Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Il schemes with stochastic perturbation, ]. Math.
Anal. Appl. 359 (2) (2009) 482-498.

[44] AE. Nindjin, M.A. Aziz-Alaoui, M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay,
Nonlinear Anal.: Real World Appl. 7 (2006) 1104-1118.

[45] H. Guo, X. Song, An impulsive predator-prey system with modified Leslie-Gower and Holling type II schemes, Chaos Solitons Fractals 36 (5) (2008)
1320-1331.



	Closed-form approximate solutions for a class of coupled nonlinear stochastic differential equations
	1 Introduction
	2 Preliminaries
	2.1 Wiener path integral overview
	2.2 Cauchy-Schwarz inequality

	3 Main results
	3.1 A closed-form approximate solution for stochastically driven nonlinear dynamical systems with constant diffusion
	3.2 Error quantification
	3.3 SDEs with constant drift and diffusion coefficients: an exact analytical solution case
	3.4 Enhanced accuracy via an error minimization scheme

	4 Numerical examples
	4.1 Duffing kind nonlinearity: bimodal response PDF
	4.2 The “labyrinth” model
	4.3 The predator-prey model

	5 Conclusion
	Acknowledgment
	References


