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a b s t r a c t 

An approximate solution technique is developed for a class of coupled multi-dimensional 
stochastic differential equations with nonlinear drift and constant diffusion coefficients. Re- 
lying on a Wiener path integral formulation and employing the Cauchy–Schwarz inequality, 
an approximate closed-form expression for the joint response process transition probabil- 
ity density function is determined. Next, the accuracy of the approximation is further en- 
hanced by proposing a more versatile closed-form expression with additional “degrees of 
freedom”; that is, parameters to be determined. To this aim, an error minimization prob- 
lem related to the corresponding Fokker–Planck equation is formulated and solved. Several 
diverse numerical examples are considered for demonstrating the reliability of the herein 
developed solution technique, which requires minimal computational cost for determining 
the joint response transition probability density function and exhibits satisfactory accuracy 
as compared with pertinent Monte Carlo simulation data. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction 

Systems of coupled nonlinear ordinary stochastic differential equations (SDEs) are widely used for modeling the dynam- 
ics of diverse systems. In this regard, several solution methodologies have been developed in the literature, with Monte 
Carlo (MC) simulation techniques [1,2] being among the most widely utilized numerical approaches. Nevertheless, in certain 
situations MC techniques can be computationally highly intensive, and thus, a need for developing alternative approximate 
solution methodologies arises; see, for instance, some indicative work in the field of chemical processes (e.g., [3,4] ). Further, 
based on preliminary work in [5] , Naess and co-workers developed a stochastic response determination numerical scheme 
by utilizing a discrete version of the Chapman–Kolmogorov equation, and by propagating the response probability density 
function (PDF) in short time steps [6,7] . Nevertheless, although the scheme exhibits excellent accuracy in predicting even 
the tails of the system response PDF, it becomes eventually computationally prohibitive with increasing dimensionality. This 
is due to the fact that a multi-convolution integral needs to be computed for each and every time step, while the time in- 
crement is required to be short. The reader is also referred to [8,9] for other alternative approximate techniques for solving 
SDEs modelling the random vibrations of diverse structural and mechanical systems. 
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Recently, Kougioumtzoglou and co-workers developed a semi-analytical technique based on the concept of the Wiener 
path integral (WPI) [10,11] for determining the joint response PDF of coupled nonlinear SDEs describing the dynamics of 
multi-degree-of-freedom structural systems subject to stochastic excitation [12–15] . In general, although the WPI technique 
has exhibited both versatility and relatively high accuracy in addressing a wide range of engineering problems (e.g. [16–
18] ), its implementation relates, unfortunately, to non-negligible computational cost; see [15,19] for more details and some 
recent enhancements of the technique regarding computational efficiency. Motivated by the above challenge, and relying on 
a WPI formulation, as well as on a Cauchy–Schwarz inequality treatment, the authors derived recently in [20,21] closed-form 

approximate expressions for the response PDF of a class of one-dimensional nonlinear SDEs. Due to the analytical nature of 
the solution techniques, minimal computational effort is required, while the approximate PDF has demonstrated satisfactory 
accuracy as compared to pertinent Euler–Maruyama MC simulation data. 

In this paper, the approximations proposed in [20,21] are generalized to account for multi-dimensional stochastic pro- 
cesses related to systems of coupled nonlinear Itô SDEs. Specifically, first, a basic approximation is derived for the joint 
response transition PDF, which is enhanced further by introducing additional “degrees-of-freedom”, i.e., parameters to be 
determined. To this aim, an error minimization problem associated with the corresponding Fokker–Planck equation is for- 
mulated and solved. This enhancement aims at “tightening” the Cauchy-Schwarz inequality as well as increasing the overall 
accuracy of the basic approximation. Several diverse numerical examples are considered for demonstrating the reliability of 
the approximation, while comparisons with Euler–Maruyama MC data demonstrate a satisfactory degree of accuracy. 

The outline of the paper is as follows: In Section 2 , the basic aspects of the WPI technique are delineated, while a note 
regarding the Cauchy–Schwarz inequality is included as well. In Section 3 , a closed-form approximate joint response tran- 
sition PDF for a class of multi-dimensional coupled SDEs with nonlinear drift and constant diffusion coefficients is derived, 
which is supplemented by an error quantification analysis as well. This, in turn, facilitates the development of an enhanced 
approximate joint PDF by proposing a more versatile closed-form expression with additional parameters to be determined 
by resorting to an appropriate error minimization scheme. Section 4 corresponds to the numerical examples, while conclud- 
ing remarks are provided in Section 5 . 

2. Preliminaries 

Let (�, F , F t≥0 , P ) be a complete filtered probability space on which a scalar standard Brownian motion ( B t , t ≥0) is 
defined, and F t is the augmentation of σ { B s |0 ≤ s ≤ t } by all the P -null sets of F . 

2.1. Wiener path integral overview 

In general, for an N -dimensional stochastic process X t = 
(
X (1) (t) , X (2) (t ) , . . . , X (N) (t ) 

)
the joint transition PDF p ( x f , t f | x i , 

t i ) from a point in state space x i at time t i to a point x f at time t f , where t f > t i , can be expressed as a functional integral 
over the space of all possible paths C { x i , t i ; x f , t f } in the form (e.g., see [15] ) 

p 
(
x f , t f | x i , t i 

)
= 

∫ { x f ,t f } 

{ x i ,t i } 
�[ x (t) ] [ dx (t) ] . (1) 

In Eq. (1) , �[ x ( t )] represents the probability density functional, which can be explicitly determined in closed-form only 
for relatively simple cases of stochastic processes, and [ d x ( t )] represents a functional measure. For instance, for a Gaussian 
white noise process vector w ( t ) possessing a diagonal power spectrum matrix 

S = 

⎡ 

⎣ 

S 0 
. . . 

S 0 

⎤ 

⎦ , (2) 

�[ x ( t )] is given by [22] 

�[ w (t) ] = exp 

[
−

∫ t f 
t i 

1 
4 π

w (t) T S −1 w (t) dt 

]
. (3) 

Without loss of generality and for notation simplicity, it has been assumed that the constant entries of the power spectrum 

matrix of Eq. (2) are identical, and equal to S 0 . A detailed derivation and discussion of Eq. (3) can be found in standard 
path integral related books such as [23] . In the ensuing analysis, the following system of coupled nonlinear Itô stochastic 
differential equations is considered, i.e., 

dX ( j) t = μ j ( X t ) d t + σd B ( j) t , ∀ j ∈ { 1 , 2 , . . . , N } ≡ � N 	 , (4) 

where μ( X t ) = ( μ1 ( X t ) , μ2 ( X t ) , . . . , μN ( X t ) ) 
T denotes the nonlinear drift coefficient v ect or, σ 2 = 2 πS 0 is the constant dif- 

fusion coefficient, and dB / dt represents the formal time-derivative of a white noise process of unit intensity. In this regard, 
Eq. (4) can be substituted into Eq. (3) , yielding for the transition PDF of the response process X t the expression (e.g., see 
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[12–16] ) 

p 
(
x f , t f | x i , t i 

)
= 

∫ { x f ,t f } 

{ x i ,t i } 
exp 

(
−

∫ t f 
t i 

L (x , ˙ x ) dt 

)
[ dx (t)] , (5) 

where L (x , ˙ x ) represents the Lagrangian function associated with the dynamical system of Eq. (4) , and is given by 

L (x , ˙ x ) = 
1 

2 σ 2 

N ∑ 

j=1 

(
˙ x ( j) − μ j (x ) 

)2 
. (6) 

As noted earlier, the constant diffusion coefficients in Eq. (5) are taken all equal to σ for convenience and notation 
simplicity. It is rather straightforward to consider non-equal values for the diffusion coefficients in Eq. (5) (corresponding to 
non-equal entries in the power spectrum matrix of Eq. (2) ) and adjust accordingly Eq. (6) . Further, although the assumption 
of constant diffusion coefficients appears rather restrictive, it is often possible to transform more general cases with state- 
dependent/nonlinear diffusion coefficients into the form of Eq. (5) ; see for instance [24] , as well as the herein considered 
example in Section 4.3 . Furthermore, the assumption of constant diffusion may be quite reasonable for various engineering 
dynamics applications. Indicatively, the SDE governing the dynamics of a class of oscillators with nonlinear damping subject 
to stochastic excitation can be approximated via a stochastic averaging treatment by Eq. (4) ; see, for instance, the numerical 
examples in [12] for more details. Extending the herein developed solution technique for the more general and significantly 
more challenging case of nonlinear drift and nonlinear diffusion coefficients is identified as future work. 

Next, it is readily seen that, in general, the analytical evaluation of the WPI, Eq. (5) , is at least a rather challenging, if not 
impossible, task. Thus, seeking for an approximate solution technique, it is observed that the greatest contribution to the 
WPI comes from the trajectory for which the integral in the exponential of Eq. (5) becomes as small as possible. According 
to calculus of variations [25] , this trajectory with fixed end points satisfies the extremality condition 

δ

∫ t f 
t i 

L (x c , ˙ x c ) dt = 0 , (7) 

where x c denotes the “most probable path ” to be determined by the functional optimization problem 

M in (M ax ) J[ x c (t)] = 

∫ t f 
t i 

L (x c , ˙ x c ) dt, (8) 

together with the boundary conditions x c (t i ) = x i and x c (t f ) = x f . Further, x c ( t ) can be determined either by deriving and 
solving a system of Euler–Lagrange (E–L) equations associated with Eq. (7) (e.g., see [13,15] ), i.e. 

∂L 

∂x (k ) c 

−
∂ 

∂t 

∂L 

∂ ˙ x (k ) c 

= 0 , ∀ k ∈ � N	 , (9) 

in conjunction with the boundary conditions x c (t i ) = x i , x c (t f ) = x f , or alternatively, by treating directly the deterministic 
boundary value problem (BVP) of Eq. (8) (e.g. [14,16] ). Once x c ( t ) is determined, the joint transition PDF can be approximated 
by 

p 
(
x f , t f | x i , t i 

)
≈ � exp 

(
−

∫ t f 
t i 

L (x c , ˙ x c ) dt 

)
, (10) 

where � is a normalization coefficient. 

2.2. Cauchy–Schwarz inequality 

For completeness, the integral form of the Cauchy–Schwarz inequality is included below, whereas a detailed presentation 
of the topic can be found in [26] . 

Lemma 2.1. Let f and g be real functions that are continuous on the closed interval [ a , b ] . Then 
(∫ b 

a 
f (t) g(t) dt 

)
2 ≤

∫ b 

a 
f (t) 2 dt 

∫ b 

a 
g(t) 2 dt. (11) 

Clearly, setting g = 1 yields the special case 

∫ b 

a 
f (t) 2 dt ≥

1 
b − a 

(∫ b 
a 

f (t) dt 

)
2 , (12) 

which will be used in Section 3.1 for proving Lemma 3.1 . 
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3. Main results 

3.1. A closed-form approximate solution for stochastically driven nonlinear dynamical systems with constant diffusion 

Although the approximate expression of Eq. (10) has exhibited a significant degree of accuracy (as compared to pertinent 
MC simulation data) in several applications such as those pertaining to engineering dynamical systems [14,15,20] , there is a 
considerable computational cost associated with solving numerically the BVPs of Eq. (8) ; see for instance [19] for a recent 
work towards enhancing the computational efficiency of the WPI. In this section, a closed-form approximate expression for 
the joint response transition PDF of Eq. (4) is derived by relying on a Cauchy–Schwarz inequality treatment. The approximate 
solution, which can be construed as a generalization of the results of [20] to account for multi-dimensional processes X t , 
not only requires essentially zero computational effort, but also facilitates an error quantification analysis (see Section 3.2 ). 

Regarding the system of coupled nonlinear SDEs of Eq. (4) , the following Lemma is proved next, which will be instru- 
mental in deriving the approximate joint response PDF. 

Lemma 3.1. Let M ( j ) ( ·) be an antiderivative of μj ( ·) ∀ j w.r.t the jth coordinate, i.e., 

∂M ( j) (x ) 

∂x ( j) 
= μ j (x ) ∀ j. (13) 

Then, the integral of the Lagrangian function, 
∫ t f 
t i 

L (x c , ̇  x c ) dt, is bounded by 

∫ t f 
t i 

L (x c , ˙ x c ) dt ≥
1 

2 σ 2 

( 
N ∑ 

j=1 

(
χ ( j) 

)2 

τ
− bτ − 2 

N ∑ 

j=1 

(
M 

( j) (x f ) − M 
( j) (x i ) 

)
) 

, (14) 

where χ ( j) = x 
( j) 
f 

− x 
( j) 
i 

, τ = t f − t i and b is a constant, depending on the boundary conditions x c (t i ) = x i , x c (t f ) = x f . 

Proof. Substituting the Lagrangian function of Eq. (6) corresponding to the system of SDEs of Eq. (4) into the E–L Eq. (9) , 
and manipulating, yields 

−
1 
σ 2 

N ∑ 

j=1 

(
˙ x ( j) c − μ j (x c ) 

)∂μ j (x c ) 

∂x (k ) c 

−
1 
σ 2 

( 

ẍ (k ) c −

N ∑ 

j=1 

∂μk (x c ) 

∂x ( j) c 

˙ x ( j) c 

) 

= 0 , ∀ k ∈ � N	 , (15) 

together with the boundary conditions x c (t i ) = x i , x c (t f ) = x f . Further, Eq. (15) can be cast in the form 

ẍ (k ) c = 

N ∑ 

j=1 

˙ x ( j) c 

(
∂μk (x c ) 

∂x ( j) c 

−
∂μ j (x c ) 

∂x (k ) c 

)
+ 

N ∑ 

j=1 

μ j (x c ) 
∂μ j (x c ) 

∂x (k ) c 

, ∀ k ∈ � N	 , (16) 

or equivalently written as 

∂ 

∂t 

((
˙ x (k ) c 

)2 )
= 2 

N ∑ 

j=1 

˙ x ( j) c 

(
∂μk (x c ) 

∂x ( j) c 

−
∂μ j (x c ) 

∂x (k ) c 

)
˙ x (k ) c + 

N ∑ 

j=1 

2 μ j (x c ) 
∂μ j (x c ) 

∂x (k ) c 

˙ x (k ) c , ∀ k ∈ � N	 . (17) 

Considering Eq. (17) , and summing over all k indexes yields 

N ∑ 

k =1 

∂ 

∂t 

((
˙ x (k ) c 

)2 )
= 2 

N ∑ 

k =1 

N ∑ 

j=1 

˙ x ( j) c 

(
∂μk (x c ) 

∂x ( j) c 

−
∂μ j (x c ) 

∂x (k ) c 

)
˙ x (k ) c + 

N ∑ 

k =1 

N ∑ 

j=1 

2 μ j (x c ) 
∂μ j (x c ) 

∂x (k ) c 

˙ x (k ) c , (18) 

or equivalently, 

N ∑ 

k =1 

∂ 

∂t 

((
˙ x (k ) c 

)2 )
= 

N ∑ 

j=1 

2 μ j (x c ) 
N ∑ 

k =1 

∂μ j (x c ) 

∂x (k ) c 

˙ x (k ) c , (19) 

since by symmetry, 

N ∑ 

k =1 

N ∑ 

j=1 

˙ x ( j) c 

(
∂μk (x c ) 

∂x ( j) c 

−
∂μ j (x c ) 

∂x (k ) c 

)
˙ x (k ) c = 0 . (20) 

Taking into account the chain rule of differentiation, Eq. (19) becomes 

N ∑ 

k =1 

∂ 

∂t 

((
˙ x (k ) c 

)2 )
= 

N ∑ 

j=1 

2 μ j (x c ) 
∂ 

∂t 
μ j (x c ) = 

N ∑ 

j=1 

∂ 

∂t 

(
μ j (x c ) 

2 
)
, (21) 
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or equivalently, 

∂ 

∂t 

( 
N ∑ 

k =1 

(
˙ x (k ) c 

)2 
) 

= 
∂ 

∂t 

( 
N ∑ 

j=1 

μ j (x c ) 
2 

) 

, (22) 

which yields 

N ∑ 

k =1 

(
˙ x (k ) c 

)2 
= 

N ∑ 

j=1 

μ j (x c ) 
2 + b. (23) 

In Eq. (23) b is a constant, depending on the boundary conditions x c (t i ) = x i , x c (t f ) = x f . Expanding next the square in 
Eq. (6) , and substituting Eq. (23) yields 

L (x c , ˙ x c ) = 
1 

2 σ 2 

( 

2 
N ∑ 

j=1 

(
˙ x ( j) c 

)2 
− b − 2 

N ∑ 

j=1 

μ j (x c ) ̇ x 
( j) 
c 

) 

. (24) 

Next, the integral of Eq. (24) is given by 

∫ t f 
t i 

L (x c , ˙ x c ) d t = 
1 
2 

( ∑ N 
j=1 2 

∫ t f 
t i 

(
˙ x ( j) c 

)2 
d t − bτ − 2 

∑ N 
j=1 

∫ t f 
t i 

μ j (x c ) d x 
( j) 
c 

σ 2 

) 

, (25) 

or equivalently, by utilizing the M ( j ) antiderivatives of Eq. (13) 

∫ t f 
t i 

L (x c , ˙ x c ) d t = 
1 
2 

( ∑ N 
j=1 2 

∫ t f 
t i 

(
˙ x ( j) c 

)2 
d t − bτ − 2 

∑ N 
j=1 

(
M ( j) (x f ) − M ( j) (x i ) 

)

σ 2 

) 

. (26) 

Further, employing the Cauchy–Schwarz inequality of Eq. (12) , the quantity 2 
∫ t f 
t i 

(
˙ x ( j) c 

)2 
dt is bounded by 

2 
∫ t f 
t i 

(
˙ x ( j) c 

)2 
d t ≥

∫ t f 
t i 

(
˙ x ( j) c 

)2 
d t ≥

(
x ( j) 
f 

− x ( j) 
i 

)2 

τ
= 

(
χ ( j) 

)2 

τ
. (27) 

Combining Eqs. (26) and (27) , Eq. (14) is derived. �

In the following, the main result of the present section is stated and proved. 

Theorem 3.2. Let 

G 
(
x f , t f | x i , t i 

)
= 

∑ N 
j=1 

(
χ ( j) 

)2 
+ 
∑ N 

j=1 

(
−2 M ( j) (x f ) + 2 M ( j) (x i ) 

)
τ

2 τσ 2 
, (28) 

then an approximate joint transition PDF for Eq. (4) is given by ˆ p : D(M) × ( t i , + ∞ ) × { x i } × { t i } → R , where D(M) = D(M (1) ) ×

D(M (2) ) × · · · × D(M (N) ) , defined as 

ˆ p 
(
x f , t f | x i , t i 

)
= F (t f ) exp 

(
−G 
(
x f , t f | x i , t i 

))
, (29) 

where F ( t f ) is a normalization constant. 

Proof. The proof follows in a straightforward manner from Lemma 3.1 and Eqs. (10) and (14) . Thus, it can be read- 
ily seen that a closed-form approximate solution for the joint transition PDF can be given by Eq. (29) , where F (t f ) = (∫ 

D(M) exp 
(
−G 
(
x , t f | x i , t i 

))
dx 
)−1 

. Note that the arbitrary term exp 
(

−bτ
2 σ 2 

)
has been included in the constant F ( t f ). �

3.2. Error quantification 

The transition PDF of Eq. (29) derived herein constitutes an approximate solution of the coupled system of nonlinear 
SDEs of Eq. (4) . Naturally, the next step is to quantify the accuracy of the derived approximation and estimate its error. 
In this regard, for a given norm ( ‖·‖ q ), the error quantity ‖ ̂  p − p ∗‖ q can be defined, where p ∗ is the exact transition PDF. 
Clearly, however, the error quantity ‖ ̂  p − p ∗‖ q cannot be determined explicitly as p ∗ is unknown. Thus, an alternative error 
definition, also adopted in [20,21] , is utilized in the ensuing analysis. Specifically, the transition PDF p ∗ for the SDEs of 
Eq. (4) is given as the solution of the associated Fokker–Planck equation [27] , i.e., 

∃ p ∗ : 
∂ p ∗(x , t) 

∂t 
= −

N ∑ 

j=1 

∂ 
(
μ j (x ) p 

∗(x , t) 
)

∂x ( j) 
+ 

σ 2 

2 

N ∑ 

j=1 

N ∑ 

k =1 

∂ 2 p ∗(y, t) 

∂ x ( j) ∂ x (k ) 
. (30) 
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Let us denote the Fokker–Planck operator as follows 

L F P [ p(x , t)] = 
∂ p(x , t) 

∂t 
+ 

N ∑ 

j=1 

∂ 
(
μ j (x ) p(x , t) 

)

∂x ( j) 
−

σ 2 

2 

N ∑ 

j=1 

N ∑ 

k =1 

∂ 2 p(x , t) 

∂ x ( j) ∂ x (k ) 
. (31) 

From Eq. (30) , it follows that L F P [ p ∗] = 0 . Thus, the error is defined as ‖L F P [ ̂  p − p ∗] ‖ q = ‖L F P [ ̂  p ] − L F P [ p ∗] ‖ q = ‖L F P [ ̂  p ] ‖ q (see 
also [20,21] ). 

Clearly, utilizing the Fokker–Planck operator in the above error definition (see also [28–30] ) facilitates the evaluation 
via ‖L F P [ ̂  p ] ‖ q of the error incurred by using ˆ p as an approximation to the exact PDF p ∗. In particular, substituting the 
approximate transition PDF of Eq. (29) into Eq. (31) and manipulating yields 

L F P [ ̂  p ] = ˆ p 

( 

˙ F 
F 

−
∂G 

∂t 
+ 

N ∑ 

j=1 

(
μ j 

∂x ( j) 
− μ j 

∂G 

∂x ( j) 

)
−

σ 2 

2 

N ∑ 

j=1 

N ∑ 

k =1 

(
−

∂ 2 G 

∂ x ( j) ∂ x (k ) 
+ 

(
∂G 

∂x ( j) 

)(
∂G 

∂x (k ) 

))) 

. (32) 

Differentiating Eq. (28) leads to 

−
∂G 

∂t 

∣∣
x = x f ,t= t f 

= 
1 

2 σ 2 

N ∑ 

j=1 

(
χ ( j) 

τ

)2 

, (33) 

∂G 

∂x ( j) 

∣∣
x = x f ,t= t f 

= 

x ( j) 
f −x ( j) 

i 
τ − μ j (x f ) 

σ 2 
, (34) 

∂ 2 G 

∂ x ( j) ∂ x (k ) 

∣∣
x = x f ,t= t f 

= 

(
∂ 

∂x ( j) 

(
∂G 

∂x (k ) 

))∣∣
x = x f ,t= t f 

= 
1 j= k −

∂ 
∂x ( j) 

μk (x f )) τ

τσ 2 
. (35) 

Next, substituting Eqs. (33) to (35) into Eq. (32) , and manipulating, yields 

L F P [ ̂  p ] = 
ˆ p 
(
x f , t f | x i , t i 

)

2 

( 

2 
˙ F (t f ) 
F (t f ) 

+ 
N 

τ
+ 

1 
σ 2 

N ∑ 

j=1 

μ j (x f ) 
2 + 

N ∑ 

j=1 

∂μ j (x f ) 

∂x ( j) 

−
∑ 

j � = k 

∂μk (x f ) 

∂x ( j) 
−

1 
σ 2 

∑ 

j � = k 

(
χ ( j) 

τ
− μ j (x f ) 

)(
χ (k ) 

τ
− μk (x f ) 

)) 

. (36) 

Utilizing Eq. (36) , the error function, err ( x f , t f | x i , t i ), and its normalized version are given by 

er r 
(
x f , t f | x i , t i 

)
= 

∥∥∥∥∥
ˆ p 
(
x f , t f | x i , t i 

)

2 

( 

2 
˙ F (t f ) 
F (t f ) 

+ 
N 

τ
+ 

N ∑ 

j=1 

∂μ j (x f ) 

∂x ( j) 
−
∑ 

j � = k 

∂μk (x f ) 

∂x ( j) 

+ 
1 
σ 2 

N ∑ 

j=1 

μ j (x f ) 
2 −

1 
σ 2 

∑ 

j � = k 

(
χ ( j) 

τ
− μ j (x f ) 

)(
χ (k ) 

τ
− μk (x f ) 

)) ∥∥∥∥∥
q 

(37) 

and 

˜ err 
(
x f , t f | x i , t i 

)
= 

er r 
(
x f , t f | x i , t i 

)

sup x f ∈D(M) 
t f ∈ [ t 

+ 
i , + ∞ ) 

er r 
(
x f , t f | x i , t i 

) , (38) 

where sup (·) denotes the supremum operator. 
Overall, the normalized error of Eq. (38) can be estimated for a given system of SDEs of Eq. (4) for assessing the relative 

accuracy of the approximate response transition PDF both for various x f values, and for various time instants t f . 

3.3. SDEs with constant drift and diffusion coefficients: an exact analytical solution case 

For the special case of constant drift coefficients, the system of coupled SDEs of Eq. (4) degenerates to 

dX ( j) t = μ j d t + σd B ( j) t , ∀ j ∈ � N	 , (39) 

Eq. (39) represents a system of uncoupled SDEs, which has been used, for instance, to model the motion of particles [31] . 
In this regard, the approximate PDF of Eq. (29) takes the form (see also [20] ) 

ˆ p 
(
x f , t f | x i , t i 

)
= F (t f ) exp 

( 

−

∑ N 
j=1 

(
χ ( j) 

)2 
+ 
∑ N 

j=1 

(
−2 μx ( j) 

f 
+ 2 μx ( j 

i 

)
τ

2 τσ 2 

) 

, (40) 
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or equivalently, 

ˆ p 
(
x f , t f | x i , t i 

)
= ˜ F (t f ) exp 

( 

−

N ∑ 

j=1 

(
χ ( j) − μτ

)2 

2 τσ 2 

) 

, (41) 

where the term exp 
(

Nμ2 τ2 

2 τσ 2 

)
has been merged with the normalization coefficient ˜ F (t f ) . Note that for the SDEs of Eq. (39) , an 

exact response PDF for the process X ( t ) is available (e.g., [32] ) which, notably, coincides with Eq. (41) . Also, it can be readily 
seen that substituting Eq. (41) into Eq. (37) yields er r (x f , t f | x i , t i ) = 0 , and thus, as anticipated, the error of approximating 
the exact PDF of Eq. (39) with the approximate one of Eq. (29) is zero, since in that case the two PDFs coincide as discussed 
earlier. 

3.4. Enhanced accuracy via an error minimization scheme 

It can be readily seen that ˆ p in Eq. (29) can be directly used as an analytical approximation of the joint response process 
PDF without resorting to the numerical solution of the E–L Eq. (9) . Thus, essentially zero computational effort is required 
for the determination of the joint response transition PDF. However, as demonstrated in [20] for the one-dimensional case, 
although the approximation of Eq. (29) is capable, in general, of capturing the salient features of the solution PDF, in many 
cases the degree of accuracy exhibited can be inadequate. To address this limitation, a more general form of the PDF was 
proposed in [21] , by incorporating two additional “degrees-of-freedom”; that is, parameters to be determined based on an 
appropriate optimization scheme. 

In this section, a more general form than Eq. (29) is proposed for the joint solution PDF of the system of coupled SDEs 
of Eq. (4) . This can be construed as a generalization of the results of [21] to account for multi-dimensional processes X t . 
Specifically, the joint response transition PDF is expressed in the form 

ˆ p (k , n ) 
(
x f , t f | x i , t i 

)
= F (k , n ) (t f ) exp 

(
−G (k , n ) 

(
x f , t f | x i , t i 

))
, (42) 

where 

( k , n ) = (k 1 , . . . , k N , n 1 , . . . , n N ) , (43) 

and 

G (k , n ) 

(
x f , t f | x i , t i 

)
= 

∑ N 
j=1 k j 

(
χ ( j) 

)2 
+ 
∑ N 

j=1 n j 
(
−2 M ( j) (x f ) + 2 M ( j) (x i ) 

)
τ

2 τσ 2 
. (44) 

The constant F in Eq. (42) is determined as 

F (k , n ) (t f ) = 

(∫ 
D(M) 

exp 
(
−G (k , n ) 

(
y , t f | x i , t i 

))
dy 

)−1 

. (45) 

Note that in comparison to Eq. (29) , the general solution form in Eq. (42) has 2 N additional “degrees-of-freedom”; that 
is, the parameters k and n to be determined based on an appropriate optimization scheme. The rationale behind this choice 
relates to utilizing available knowledge and integrating it in an optimization scheme for determining Eq. (42) , and thus, 
enhancing the overall accuracy of Eq. (29) . In particular, the parameter k relates to optimizing and “tightening” the Cauchy–
Schwarz inequality of Eq. (27) , whereas the parameter n refers to the overall accuracy of the WPI approximation of Eq. (10) . 
In comparison to Eq. (29) it is anticipated that the approximation of Eq. (42) will exhibit higher accuracy, at the expense 
of course of some added modest computational cost related to the optimization algorithm. In this regard, it is emphasized 
that exploiting a priori available information in many problems, such as obvious symmetries, can reduce significantly the 
effective size of the vector of unknown parameters ( k , n ). As seen also in many of the following numerical examples, the 
size of ( k , n ) can be considerably smaller than 2 N ; thus, reducing the complexity and computational cost of the associated 
optimization problem. 

Next, to determine the parameters k and n in Eq. (42) , for a given norm ( ‖·‖ q ), the error quantity of Eq. (37) is sought 
to be minimized; see also [21] . In fact, due to the closed-form expression of ˆ p (k , n ) , the error quantity err = ‖L F P [ ̂  p (k , n ) ] ‖ q 
can be explicitly determined as a function of k and n . Further, for a chosen q -norm and final time t f , the values of k , n are 
numerically evaluated by solving the optimization problem 

ˆ z q = 

(
ˆ k , ̂  n 

)
q 

= ar g min 
( k , n ) ∈ R 2 N 

er r = ar g min 
( k , n ) ∈ R 2 N 

‖L F P [ ̂  p (k , n ) (·, t f )] ‖ q , (46) 

and, thus, the approximate response PDF of Eq. (42) , is determined. Note that in comparison to Section 3.3 , in this section 
the closed-form expression of Eq. (37) is used not as an error estimate, but rather as a tool within the optimization scheme 
for enhancing the accuracy of the joint response PDF. 
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Table 1 

Computed ( k , n ) values for various final time instants t f and starting point 
(1,1,1,1) for Example 4.1 . 

k 1 = k 2 n 1 = n 2 Iterations 

t f = 0 . 1 0.9848 0.4411 24 
t f = 0 . 5 1.0595 0.6001 36 
t f = 1 1.3648 0.8180 39 
t f = 3 3.4699 1.0824 36 

Table 2 

Error estimates and CPU times for Example 4.1 . 

ε × 10 −4 εratio MCS CPU time 
(10 0,0 0 0 realizations) 

ˆ p (k , n ) CPU time 

t f = 0 . 1 3.42 8.18 126 s 0.068 s 
t f = 0 . 5 3.92 23.20 534 s 0.081 s 
t f = 1 10 14.20 931 s 0.058 s 
t f = 3 17 23.23 2,313 s 0.051 s 

4. Numerical examples 

In the ensuing numerical examples, a standard interior point method [33,34] using Matlab’s fmincon built-in function is 
employed to solve the unconstrained optimization problem of Eq. (46) , in conjunction with the ‖·‖ 2 norm (i.e., q = 2 ). To 
this aim, the basic approximation of Eq. (29) with ( k , n ) = ( 1 , . . . , 1 ) ∈ R 2 N serves as a natural choice for the initial starting 
point of the algorithm. 

In most of the numerical examples, the algorithm converged in less than a hundred iterations, which translates into less 
than a tenth of a second from a computational cost perspective for the examples considered. The accuracy of the approx- 
imate PDF of Eq. (42) is demonstrated by comparisons to the PDF estimated based on pertinent Euler-Maruyama MC sim- 
ulation data (10 0,0 0 0 realizations) produced by numerically integrating the original Eq. (4) with �t = 10 −2 on a computer 
with 16GB RAM, Inter(R) Core(TM) i7-6700 CPU @3.40GHz. Further, the error metric ε = ‖ ̂  p (k , n ) − MCS P DF ‖ 2 is employed 
for quantifying the accuracy of the approximate PDF as compared to the MC simulation based estimate. Also, the additional 
error quantity εratio = 

‖ ̂ p −MCS PDF ‖ 2 
‖ ̂ p (k , n ) −MCS PDF ‖ 2 

is utilized for demonstrating how much better the enhanced approximation ˆ p (k , n ) is 

in comparison to the basic one of ˆ p . 

4.1. Duffing kind nonlinearity: bimodal response PDF 

In this example, a 2-dimensional Duffing nonlinear system with bimodal response PDF (e.g. [19] ) of the form 

{ 

d X t = (Y t − X 3 t ) d t + σd B (1) 
t 

dY t = (X t − Y 3 t ) dt + σdB (2) 
t , 

(47) 

is considered. Next, assuming zero initial conditions, and taking into account that M 1 (x, y ) = xy − 1 
4 x 

4 and M 2 (x, y ) = 

M 1 (y, x ) the PDF of Eq. (42) takes the form 

ˆ p (k , n ) (x f , y f , t f | 0 , 0 , 0) = F (t f ) exp 

( 

−
k 1 x 

2 
f 
+ k 2 y 

2 
f 
− t f 

(
n 1 
(
2 x f y f −

1 
2 x 

4 
f 

)
+ n 2 

(
2 x f y f −

1 
2 y 

4 
f 

))

2 t f σ 2 

) 

. (48) 

Utilizing the parameter value σ = 1 , and applying the numerical optimization scheme of Eq. (46) based on the ‖·‖ 2 norm, 
yields the values for ( k , n ). Specifically, exploiting the symmetry of Eqs. (47) and (48) the number of the unknown param- 
eters is reduced from four to two by setting k 1 = k 2 and n 1 = n 2 . The computed values are shown in Table 1 along with 
the iterations number of the optimization algorithm, whereas in Table 2 error estimates and CPU times are presented as 
well. In Figs. 1–4 the approximate PDFs ˆ p (k , n ) of Eq. (48) are plotted for various time instants and compared both with 
the closed-form PDFs of Eq. (29) and with MCS based estimated PDFs. It is seen that the herein proposed enhanced PDF 
approximation of Eq. (48) is in very good agreement with MCS data, and yields improved performance as compared to the 
basic approximation of Eq. (29) . Specifically, the closed-form basic approximation of Eq. (29) exhibits satisfactory accuracy 
at relatively early time instants, which deteriorates as t f increases. 
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Fig. 1. Joint response PDF at t f = 0 . 1 for a coupled system of SDEs with Duffing nonlinearity and bimodal response PDF: basic approximate PDF ˆ p (a) and 
(b); Enhanced approximate PDF ˆ p (k , n ) (c) and (d); MCS based PDF (10 0,0 0 0 realizations) (e) and (f). 

Fig. 2. Joint response PDF at t f = 0 . 5 for a coupled system of SDEs with Duffing nonlinearity and bimodal response PDF: basic approximate PDF ˆ p (a) and 
(b); enhanced approximate PDF ˆ p (k , n ) (c) and (d); MCS based PDF (10 0,0 0 0 realizations) (e) and (f). 

4.2. The “labyrinth” model 

Let 

s (i ) = (i + 1) mod N, ∀ i ∈ N 0 , (49) 

denote a circular shift permutation (rotation) operator of the natural numbers. The N -dimensional circulant system of the 
form 

dX ( j) t = φ
(
X s 

◦ j (0) 
t , X s 

◦ j (1) 
t , · · · , X s 

◦ j (N−1) 
t 

)
d t + σd B ( j) t , ∀ j ∈ � N	 , (50) 
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Fig. 3. Joint response PDF at t f = 1 for a coupled system of SDEs with Duffing nonlinearity and bimodal response PDF: basic approximate PDF ˆ p (a) and 
(b); Enhanced approximate PDF ˆ p (k , n ) (c) and (d); MCS based PDF (10 0,0 0 0 realizations) (e) and (f). 

Fig. 4. Joint response PDF at t f = 3 for a coupled system of SDEs with Duffing nonlinearity and bimodal response PDF: basic approximate PDF ˆ p (a) and 
(b); Enhanced approximate PDF ˆ p (k , n ) (c) and (d); MCS based PDF (10 0,0 0 0 realizations) (e) and (f). 

where s ◦ j = 

j−times ︷ ︸︸ ︷ 
s ◦ s ◦ · · · ◦ s , for φ(a 1 , a 2 , . . . , a N ) = sin (a 2 ) , is typically called the labyrinth model [35–37] , and has been used 

extensively in diverse applications [38–40] for representing auto-catalytic systems. 
In the following example, a three-dimensional version of the labyrinth model given by Sprott [36] 
⎧ 

⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d X t = sin (Y t ) d t + σd B (1) 
t 

dY t = sin (Z t ) d t + σd B (2) 
t 

dZ t = sin (X t ) d t + σd B (3) 
t 

(51) 
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Table 3 

Computed ( k , n ) values for various final time instants t f and starting point 
(1,1,1,1,1,1) for Example 4.2 . 

k 1 = k 2 = k 3 n 1 = n 2 = n 3 Iterations 

t f = 0 . 5 0.9594 0.2616 39 
t f = 1 0.8912 0.2680 27 
t f = 10 0.4376 0.0235 48 
t f = 25 0.4498 0.0068 57 

Table 4 

Error estimates and CPU times for Example 4.2 . 

ε × 10 −4 MCS CPU time 
(10 0,0 0 0 realizations) 

ˆ p (k , n ) CPU time 

t f = 0 . 5 0.74 974 s 0.036 s 
t f = 1 1.32 1687 s 0.025 s 
t f = 10 1.07 11 , 923 s 0.027 s 
t f = 25 0.04 28 , 369 s 0.085 s 

Fig. 5. Joint response PDF at t f = 0 . 5 for a coupled nonlinear system of SDEs of the “labyrinth” type: Enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS 
based PDF (10 0,0 0 0 realizations) (c) and (d). 

is utilized to assess the accuracy of the approximate response PDF of Eq. (42) . Next, considering Eq. (51) and zero initial 
conditions, the PDF of Eq. (42) takes the form 

ˆ p (k , n ) (x f , y f , z f , t f | 0 , 0 , 0 , 0) = F (t f ) exp 

( 

−
k 1 x 

2 
f 
+ k 2 y 

2 
f 
+ k 3 z 

2 
f 
+ 
(
−2 n 1 x f sin (y f ) − 2 n 2 y f sin (z f ) − 2 n 3 z f sin (x f ) 

)
t f 

2 t f σ 2 

) 

. 

(52) 

In the following, utilizing the parameter value σ = 1 , and applying the numerical optimization scheme of Eq. (46) based 
on the ‖·‖ 2 norm, yields the values for ( k , n ). Specifically, exploiting the symmetry of Eqs. (51) and (52) the number of the 
unknown parameters is reduced from six to two by setting k 1 = k 2 = k 3 and n 1 = n 2 = n 3 . The computed values are shown 
in Table 3 along with the iterations taken by the optimization algorithm to converge, whereas in Table 4 error estimates and 
CPU times are included as well. In Figs. 5–8 the joint PDFs of X t and Y t are plotted for various time instants based on the 
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Fig. 6. Joint response PDF at t f = 1 for a coupled nonlinear system of SDEs of the “labyrinth” type: Enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS 
based PDF (10 0,0 0 0 realizations) (c) and (d). 

Fig. 7. Joint response PDF at t f = 10 for a coupled nonlinear system of SDEs of the “labyrinth” type: Enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS 
based PDF (10 0,0 0 0 realizations) (c) and (d). 

approximate PDFs ˆ p (k , n ) of Eq. (52) and compared with MCS based estimated PDFs. Additional results are shown in Fig. 9 
corresponding to the marginal PDF of Z t . It is seen that the herein proposed enhanced PDF approximation of Eq. (52) is in 
very good agreement with MC simulation data. 
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Fig. 8. Joint response PDF at t f = 25 for a coupled nonlinear system of SDEs of the “labyrinth” type: Enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS 
based PDF (10 0,0 0 0 realizations) (c) and (d). 

Fig. 9. Enhanced approximate marginal response PDFs ˆ p (k , n ) for various time instants t f for a coupled nonlinear system of SDEs of the “labyrinth” type; 
comparisons with MCS based PDF estimates (10 0,0 0 0 realizations). 

4.3. The predator-prey model 

Various predator-prey mathematical models have been developed in ecology to describe the dynamics of species popu- 
lations [41] . In this regard, a rather general predator-prey model is given by 

{
˙ x (t) = ax (t) − φ( x (t) ) y (t) 

˙ y (t) = −by (t) + cφ( x (t) ) y (t) , 
(53) 
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Table 5 

Computed ( k , n ) values for various final time instants t f and starting point 
(1,1,1,1) for Example 4.3 . 

k 1 k 2 n 1 n 2 Iterations 

t f = 0 . 1 0.9628 0.9667 2.8039 1.4113 100 
t f = 0 . 5 0.9406 0.9857 2.7976 1.4448 100 
t f = 1 0.9116 1.0421 2.5932 1.5088 120 
t f = 10 0.7614 1.5122 0.8480 2.3328 410 

Table 6 

Error statistics and CPU times for Example 4.3 . 

ε × 10 −4 MCS CPU time 
(10 0,0 0 0 realizations) 

ˆ p (k , n ) CPU time 

t f = 0 . 1 3.92 131 s 0.064 s 
t f = 0 . 5 1.44 520 s 0.059 s 
t f = 1 1.23 922 s 0.065 s 
t f = 10 3.16 13 , 600 s 0.377 s 

where x ( t ), y ( t ) represent the population densities of prey and predator, respectively; a , b and c are positive constants denot- 
ing the prey’s intrinsic growth rate, the prey’s death rate and the predator’s conversion rate, respectively. Further, various 
expressions have been proposed in the literature for φ( x ( t )), ranging from Lotka–Volterra [41] to Holling-kind nonlinear 
modeling [42] . Without loss of generality, and following [43] , a modified stochastic version of Leslie–Gower functional re- 
sponse and of the Holling-type II for the predator-prey model is given by 

⎧ 

⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d X t = X t 

(
a − bX t −

cY t 

m + X t 

)
d t + σX t d B 

(1) 
t 

dY t = Y t 

(
r −

fY t 

m + X t 

)
d t + σY t d B 

(2) 
t 

(54) 

together with the initial conditions, X(0) = X 0 > 0 , Y (0) = Y 0 > 0 . In Eq. (54) , the parameters a , b , c , r , f and m are all 
positive. These parameters are defined as follows: a is the growth rate of prey X , b measures the strength of competition 
among individuals of species X , c is the maximum value of the per capita reduction rate of X due to Y , m measures the 
extent to which the environment provides protection to prey X and to the predator Y , r describes the growth rate of Y and 
f has a similar meaning to c . The interested reader is referred to [44,45] for indicative generalizations of the model. 

Next, setting X = exp ( U ) and Y = exp ( V ) , Eq. (54) is cast in the form of Eq. (4) ; that is, 

⎧ 

⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d U t = 

(
a −

σ 2 

2 
− be U t −

ce V t 

m + e U t 

)
d t + σd B (1) 

t 

d V t = 

(
r −

σ 2 

2 
−

f e V t 

m + e U t 

)
d t + σd B (2) 

t 

(55) 

and the PDF of Eq. (42) takes the form 

ˆ p (k , n ) (u f , v f , t f | u 0 , v 0 , 0) = F (t f ) exp 

( 

−
k 1 
(
u f − u 0 

)2 
+ k 2 

(
v f − v 0 

)2 

2 t f σ 2 

) 

× exp 

( 

−
n 1 
(
−M(u f , v f ) + M(u 0 , v 0 ) 

)
+ n 2 

(
−K(u f , v f ) + K(u 0 , v 0 ) 

)

σ 2 

) 

, (56) 

where M(u, v ) = au − σ 2 

2 u − be u −
ce v ( u −log(m + e u ) ) 

m and K(u, v ) = rv − σ 2 

2 v −
f e v 

m + e u . 
In the numerical example, the parameter values σ = 1 , a = 0 . 4 , b = 0 . 1 , c = 0 . 1 , r = 0 . 3 , f = 0 . 5 , m = 0 . 1 are considered, 

together with the initial conditions x 0 = y 0 = 0 . 3 . Next, applying the numerical optimization scheme of Eq. (46) based on 
the ‖·‖ 2 norm yields the values for ( k , n ), which are shown in Eq. (5 ) along with the iterations number of the optimization 
algorithm, whereas in Table 6 error estimates and CPU times are presented for comparison purposes. In Figs. 10–13 the 
approximate PDFs ˆ p (k , n ) of Eq. (56) are plotted for various time instants and compared with MCS based estimated PDFs. It 
can be readily seen that the herein proposed enhanced PDF approximation of Eq. (56) exhibits satisfactory accuracy. 
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Fig. 10. Joint response PDF at t f = 0 . 1 for a coupled predator-prey nonlinear system of SDEs: enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS based PDF 
(10 0,0 0 0 realizations) (c) and (d). 

Fig. 11. Joint response PDF at t f = 0 . 5 for a coupled predator-prey nonlinear system of SDEs: enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS based PDF 
(10 0,0 0 0 realizations) (c) and (d). 
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Fig. 12. Joint response PDF at t f = 1 for a coupled predator-prey nonlinear system of SDEs: enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS based PDF 
(10 0,0 0 0 realizations) (c) and (d). 

Fig. 13. Joint response PDF at t f = 10 for a coupled predator-prey nonlinear system of SDEs: enhanced approximate PDF ˆ p (k , n ) (a) and (b); MCS based PDF 
(10 0,0 0 0 realizations) (c) and (d). 

5. Conclusion 

In this paper, an approximate analytical expression for the joint response transition PDF of a class of coupled SDEs 
with constant diffusion, but nonlinear drift coefficients, has been derived based on the concept of the Wiener path integral 
and on a Cauchy–Schwarz inequality treatment. Specifically, first, a basic approximation has been derived that requires 
essentially zero computational cost for its determination. Next, the approximation has been enhanced from an accuracy 
perspective by proposing a more general and versatile expression for the joint response transition PDF, which includes 
additional parameters. These are determined by formulating and solving an appropriate optimization problem related to 
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the corresponding Fokker–Planck equation. The enhanced PDF has demonstrated significant increase in accuracy, albeit at 
the expense of some modest computational cost related to the optimization scheme. Several diverse examples have been 
considered for assessing the reliability and accuracy of the derived approximation as compared to pertinent MC simulation 
data. In addition to the mathematical merit of the derived closed-form PDF, the approximate solutions can serve also as a 
benchmark for assessing the performance of alternative, more computationally demanding, stochastic dynamics numerical 
methodologies. 
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