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A B S T R A C T

The Wiener path integral (WPI) approximate semi-analytical technique for determining the joint response
probability density function (PDF) of stochastically excited nonlinear oscillators is generalized herein to account
for systems with singular diffusion matrices. Indicative examples include (but are not limited to) systems with
only some of their degrees-of-freedom excited, hysteresis modeling via additional auxiliary state equations, and
energy harvesters with coupled electro-mechanical equations. In general, the governing equations of motion
of the above systems can be cast as a set of underdetermined stochastic differential equations coupled with a
set of deterministic ordinary differential equations. The latter, which can be of arbitrary form, are construed
herein as constraints on the motion of the system driven by the stochastic excitation. Next, employing a
semi-classical approximation treatment for the WPI yields a deterministic constrained variational problem
to be solved numerically for determining the most probable path; and thus, for evaluating the system joint
response PDF in a computationally efficient manner. This is done in conjunction with a Rayleigh-Ritz approach
coupled with appropriate optimization algorithms. Several numerical examples pertaining to both linear and
nonlinear constraint equations are considered, including various multi-degree-of-freedom systems, a linear
oscillator under earthquake excitation and a nonlinear oscillator exhibiting hysteresis following the Bouc–Wen
formalism. Comparisons with relevant Monte Carlo simulation data demonstrate a relatively high degree of
accuracy.

1. Introduction

Accurate response analysis of engineering dynamical systems neces-
sitates an increasingly sophisticated modeling of the system behavior
and of the associated excitations. This includes consideration of strong
nonlinearities, complex hysteresis, stochastic loads, as well as a rela-
tively high dimensionality of the system response vector. Despite their
versatility and implementation simplicity, the performance of purely
numerical solution techniques, such as various Monte Carlo simulation
(MCS) schemes (e.g., [1,2]), for determining the system stochastic
response is often hindered by the related excessive computational cost.
In this regard, alternative semi-analytical methodologies, such as the
recently developed Wiener path integral (WPI) technique [3,4], exhibit
both a satisfactory accuracy degree and a tractable computational cost.
In particular, the WPI solution technique, which relies on functional
integration concepts and on a variational formulation, is capable of
determining the joint response transition probability density function
(PDF) of stochastically excited multi-degree-of-freedom (MDOF) non-
linear systems, even when endowed with fractional derivative terms
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(e.g., [3–5]). Further, it can account for diverse non-white and non-
Gaussian stochastic process modeling [6], while it has been shown
recently that the associated computational cost can be drastically re-
duced by employing sparse representations for the system response PDF
in conjunction with compressive sampling schemes and group sparsity
concepts (e.g., [7–9]).

Nevertheless, the applicability of the WPI technique has so far been
restricted to systems with non-singular diffusion matrices. In fact, the
general formulation of the technique involving the inversion of the gov-
erning equation diffusion matrix does not allow for a straightforward
extension to cases pertaining to singular diffusion matrices, and thus,
special mathematical treatments are required (e.g., [10–12]). Indicative
examples, where such special treatments can be rather trivial, include
casting the higher-order (e.g., second-order) governing equation into
a lower-order (e.g., first-order) form by introducing additional state
variables, as well as modeling non-white excitations via filter equations
(e.g., [6,13,14]). In such cases, the limitation of singular diffusion
matrices can be readily bypassed (e.g., [15]) by enforcing compati-
bility conditions of a rather simple (almost trivial) form between the
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auxiliary variables and the time-derivatives of the original variables.
However, this is not always the case as these auxiliary equations are
more than often of a complex form. Examples include (but are not
limited to) dynamical systems with only some of their DOFs forced,
hysteretic models (e.g., Bouc–Wen [16]) with nonlinear auxiliary differ-
ential equations, and diverse energy harvesting systems such as various
electromechanical harvesters (e.g., [17]) and wave energy converters
(e.g., [18]).

In this paper, the WPI solution technique is generalized to cope
with a broad class of systems with singular diffusion matrices. In this
regard, the governing equations of motion are represented herein as a
set of underdetermined stochastic differential equations (SDEs) coupled
with a set of deterministic ordinary differential equations (ODEs). The
latter, which can be of arbitrary (nonlinear) form, are construed as
constraints on the motion of the system driven by the stochastic excita-
tion (e.g., [19–21]). This yields a constrained variational problem to be
solved for the most probable path, and thus, the system joint response
PDF is determined. Several numerical examples pertaining to both
linear and nonlinear constraint equations are considered, including
MDOF systems with only some of their DOFs stochastically excited,
a linear oscillator under Kanai–Tajimi earthquake excitation, as well
as a nonlinear oscillator exhibiting hysteresis following the Bouc–Wen
formalism. Direct comparisons with MCS data demonstrate a relatively
high degree of accuracy.

2. Wiener path integral formalism aspects

2.1. Preliminaries

This section serves as a brief overview of several aspects of the
theory of SDEs and the associated Chapman–Kolmogorov (C-K) and
Fokker–Planck (F-P) equations. In this regard, consider a multi-
dimensional first-order SDE of the general form

𝜶̇ = A(𝜶, 𝑡) + B(𝜶, 𝑡)𝜼(𝑡) (1)

where the dot above a variable denotes differentiation with respect to
time 𝑡 and 𝜼(𝑡) is a zero-mean and delta-correlated process of intensity
one; i.e., E[𝜼(𝑡)] = 𝟎 and E[𝜼(𝑡)𝜼T(𝑡 + 𝜏)] = I𝛿(𝜏) where I is the
identity matrix, and 𝛿(𝑡) is the Dirac delta function. Certain existence
and uniqueness conditions related to Eq. (1) dictate that the solution
𝜶 = [𝛼𝑗 ]𝑛×1 is a Markov stochastic vector process [22,23], for which the
C-K equation (e.g., [24])

𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖−1, 𝑡𝑖−1) = ∫
∞

−∞

𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖, 𝑡𝑖)𝑝(𝜶𝑖, 𝑡𝑖|𝜶𝑖−1, 𝑡𝑖−1)d𝜶𝑖 (2)

is satisfied for any 𝑡𝑖−1 < 𝑡𝑖 < 𝑡𝑖+1. In Eq. (2), 𝜶𝑖 = 𝜶(𝑡𝑖) and
𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖−1, 𝑡𝑖−1) denotes the transition PDF of the process 𝜶(𝑡).
Next, if A and B are continuous functions of 𝑡, then 𝜶 is a diffusion
process [22] and the following conditions hold true for any 𝜀 > 0

(e.g., [23,25]), i.e.,

(𝑖) lim
𝛥𝑡→0 ∫

|𝜶𝑖+1−𝜶𝑖|<𝜀
𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖, 𝑡𝑖)d𝜶𝑖+1 = 0 (3)

(𝑖𝑖) lim
𝛥𝑡→0 ∫

|𝜶𝑖+1−𝜶𝑖|<𝜀
(𝜶𝑖+1 − 𝜶𝑖)𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖, 𝑡𝑖)d𝜶𝑖+1 = A(𝜶𝑖, 𝑡𝑖) (4)

(𝑖𝑖𝑖) lim
𝛥𝑡→0 ∫

|𝜶𝑖+1−𝜶𝑖|<𝜀
(𝜶𝑖+1 − 𝜶𝑖)(𝜶𝑖+1 − 𝜶𝑖)

T𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖, 𝑡𝑖)d𝜶𝑖+1

= B(𝜶𝑖, 𝑡𝑖)B
T(𝜶𝑖, 𝑡𝑖) (5)

where 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖. Further, employing the C-K Eq. (2) leads to the F-P
Eq. (6) for the transition PDF 𝑝 = 𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖, 𝑡𝑖), i.e.,
𝜕𝑝

𝜕𝑡
= −

∑
𝑗

𝜕

𝜕𝛼𝑗

(
𝐴𝑗 (𝜶, 𝑡)𝑝

)
+

1

2

∑
𝑗,𝑘

𝜕2

𝜕𝛼𝑗𝛼𝑘

(
𝐵̃𝑗𝑘(𝜶, 𝑡)𝑝

)
(6)

where A(𝜶, 𝑡) = [𝐴𝑗 (𝜶, 𝑡)]𝑛×1 is the drift vector, and B̃(𝜶, 𝑡)=[𝐵̃𝑗𝑘(𝜶, 𝑡)]𝑛×𝑛
∶= B(𝜶, 𝑡)BT(𝜶, 𝑡) denotes the diffusion matrix (e.g., [22,23,26]), which
is symmetric and positive semidefinite.

2.2. Wiener path integral and Lagrangian function

In this section, basic WPI formalism aspects are presented for com-

pleteness. The interested reader is directed to [27–31] for more details.

In the limit 𝛥𝑡 → 0, and assuming a non-singular diffusion matrix B̃, the

transition PDF associated with a diffusion process 𝜶(𝑡) has been shown

to admit a Gaussian distribution (e.g., [26]) of the form

𝑝(𝜶𝑖+1, 𝑡𝑖+1|𝜶𝑖, 𝑡𝑖) =
[√

(2𝜋𝛥𝑡)𝑛det
[
B̃(𝜶𝑖, 𝑡𝑖)

]]−1
×⋯

exp

⎛⎜⎜⎝
−
1

2

[
𝜶𝑖+1 − 𝜶𝑖 − 𝛥𝑡A(𝜶𝑖, 𝑡𝑖)

]T [
B̃(𝜶𝑖, 𝑡𝑖)

]−1 [
𝜶𝑖+1 − 𝜶𝑖 − 𝛥𝑡A(𝜶𝑖, 𝑡𝑖)

]
𝛥𝑡

⎞⎟⎟⎠
(7)

In passing, it is noted that the choice of Eq. (7) is not restrictive, and

alternative non-Gaussian distributions can also be employed (e.g., [32,

33]). Next, the probability that 𝜶(𝑡) follows a specific path 𝜶̄(𝑡) can be

expressed as the limiting case of the probability of the compound event

𝑃 [𝜶̄(𝑡)] = lim
𝛥𝑡→0
𝑁→∞

𝑃

[
𝑁⋂
𝑖=1

{
𝜶𝑖 ∈

[
𝜶̄𝑖, 𝜶̄𝑖 + [d𝛼𝑗𝑖]𝑛×1

]}]
(8)

In Eq. (8), the time is discretized into 𝑁 time points (slices) 𝛥𝑡 apart,
while d𝛼𝑗𝑖 denotes the infinitesimal element along dimension 𝑗 at time
𝑡𝑖. Loosely speaking, Eq. (8) represents the probability of the process to
propagate through the infinitesimally thin tube surrounding 𝜶̄(𝑡). In the
following, considering deterministic initial conditions, and employing
Eq. (7) and the Markovian property of 𝜶(𝑡), Eq. (8) becomes

𝑃 [𝜶̄(𝑡)] = lim
𝛥𝑡→0

𝑁→∞

{
𝑁∏
𝑖=1

𝑝(𝜶̄𝑖+1, 𝑡𝑖+1|𝜶̄𝑖, 𝑡𝑖)
𝑛∏
𝑗=1

d𝛼𝑗𝑖

}

= lim
𝛥𝑡→0

𝑁→∞

{[
𝑁∏
𝑖=1

([√
(2𝜋𝛥𝑡)𝑛det

[
B̃(𝜶̄𝑖, 𝑡𝑖)

]]−1 𝑛∏
𝑗=1

d𝛼𝑗𝑖

)]
×⋯

exp

(
−
1

2

𝑁∑
𝑖=1

[
𝜶̄𝑖+1 − 𝜶̄𝑖 − 𝛥𝑡A(𝜶̄𝑖, 𝑡𝑖)

]T [
B̃(𝜶̄𝑖, 𝑡𝑖)

]−1 [
𝜶̄𝑖+1 − 𝜶̄𝑖 − 𝛥𝑡A(𝜶̄𝑖, 𝑡𝑖)

]
𝛥𝑡

)}

= exp

⎛⎜⎜⎜⎝
−

𝑡𝑓

∫
𝑡0

(𝜶, 𝜶̇)d𝑡
⎞⎟⎟⎟⎠

𝑛∏
𝑗=1

𝑡𝑓∏
𝑡=𝑡0

d𝛼𝑗 (𝑡)√
2𝜋

(
det

[
B̃(𝜶, 𝑡)

]) 1

𝑛 d𝑡

(9)

where

(𝜶, 𝜶̇) = 1

2

[
𝜶̇ − A(𝜶, 𝑡)

]T [
B̃(𝜶, 𝑡)

]−1 [
𝜶̇ − A(𝜶, 𝑡)

]
(10)

denotes the Lagrangian of the system. Further, the total probability that
the process 𝜶 starts from 𝜶0 at time 𝑡0 and ends up at 𝜶𝑓 at 𝑡𝑓 takes the
form of a functional integral, which ‘‘sums up’’ the probabilities associ-
ated with each and every path that 𝜶 can possibly follow (e.g., [28]). In
this regard, denoting by {𝜶0, 𝑡0;𝜶𝑓 , 𝑡𝑓 } the set of all paths with initial
state 𝜶0 at time 𝑡0 and final state 𝜶𝑓 at time 𝑡𝑓 , the transition PDF takes
the form

𝑝(𝜶𝑓 , 𝑡𝑓 |𝜶0, 𝑡0) = ∫{𝜶0 ,𝑡0;𝜶𝑓 ,𝑡𝑓 } exp
⎛
⎜⎜⎜⎝
−

𝑡𝑓

∫
𝑡0

(𝜶, 𝜶̇)d𝑡
⎞⎟⎟⎟⎠

𝑛∏
𝑗=1

[𝛼𝑗 (𝑡)] (11)

where

[𝛼𝑗 (𝑡)] =

𝑡𝑓∏
𝑡=𝑡0

d𝛼𝑗 (𝑡)√
2𝜋

(
det

[
B̃(𝜶, 𝑡)

]) 1
𝑛 d𝑡

(12)

is a functional measure.
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3. Wiener path integral formalism for structural/mechanical dy-
namical systems

3.1. WPI Formulation

In this section, the formulation delineated in Section 2.2 is adapted
to account for systems whose dynamics is governed by second-order
SDEs; see also [4,6] for more details. Such cases include structural
and/or mechanical dynamical systems with inertia terms in the respec-
tive equations of motion, which are generally modeled as a set of 𝑛
coupled nonlinear second-order SDEs of the form

Mẍ + g(x, ẋ, 𝑡) = w(𝑡) (13)

In Eq. (13), x = [𝑥𝑗 (𝑡)]𝑛×1 is the system response displacement vector;
M represents the 𝑛 × 𝑛 mass matrix; g = [𝑔𝑗 (x, ẋ, 𝑡)]𝑛×1 is an arbitrary
nonlinear vector-valued function, which can account also for hysteretic
response behaviors; and w is a white noise stochastic excitation vector
process with E[w(𝑡)] = 𝟎 and E[w(𝑡)wT(𝑡− 𝜏)] = D𝛿(𝜏), where D ∈ R

𝑛×𝑛

is a deterministic coefficient matrix.
Next, introducing a new variable v = ẋ, Eq. (13) can be cast,

equivalently, into the form of Eq. (1) with

𝜶 =

[
x

v

]
, A(𝜶, 𝑡) =

[
v

−M−1g(x,v, 𝑡)

]
and

B(𝜶, 𝑡) = B =

[
𝟎 𝟎

𝟎 M−1
√
D

]
(14)

where the square root of matrix D is given by
√
D
√
D
T
= D. Clearly,

the diffusion matrix B̃ = BBT is singular (see Eq. (14)), and thus,
the expression in Eq. (10) cannot be evaluated in a straightforward
manner. Nevertheless, this limitation due to the singularity of B̃ can be
addressed by introducing delta-functionals to enforce the compatibility
equation ẋ = v (e.g., [6,28,29]). In particular, defining S(x,v, v̇) =

v̇ +M−1g(x,v, 𝑡) the transition PDF of 𝜶 given by Eq. (11) becomes

𝑝(𝜶𝑓 , 𝑡𝑓 |𝜶0, 𝑡0)

= ∫
{x0 ,v0 ,𝑡0;x𝑓 ,v𝑓 ,𝑡𝑓 }

exp

⎛
⎜⎜⎜⎝
−

𝑡𝑓

∫
𝑡0

1

2

[
MS(x,v, v̇)

]T
D−1

[
MS(x,v, v̇)

]
d𝑡

⎞⎟⎟⎟⎠
× 𝛿 [ẋ − v][x(𝑡)][v(𝑡)] (15)

For the derivation of Eq. (15), the relationship
(
M−1DM−T

)−1

=

MTD−1M for an arbitrary non-singular square matrix D has been taken
into account. Following integration over all paths v(𝑡), and adopting for
convenience in the ensuing analysis the notation g(x, ẋ, 𝑡) = g(x, ẋ),
Eq. (15) becomes

𝑝(x𝑓 , ẋ𝑓 , 𝑡𝑓 |x0, ẋ0, 𝑡0) = ∫{x0 ,ẋ0 ,𝑡0 ;x𝑓 ,ẋ𝑓 ,𝑡𝑓 }

exp

⎛
⎜⎜⎜⎝
−

𝑡𝑓

∫
𝑡0

(x, ẋ, ẍ)d𝑡
⎞
⎟⎟⎟⎠
[x(𝑡)]

(16)

where

(x, ẋ, ẍ) = 1

2

[
Mẍ + g(x, ẋ)

]T
D−1

[
Mẍ + g(x, ẋ)

]
(17)

and [x(𝑡)] =
∏𝑛

𝑗=1
[𝑥𝑗 (𝑡)]. Note that the form of Eqs. (15)–(17) can

accommodate also cases of singular mass matrices M. This may be
the case, for instance, when considering hysteresis models (e.g., Bouc–
Wen) that employ auxiliary additional state variables governed by
first-order only equations (e.g., [34]). These first-order equations can
be directly cast into the form of Eq. (1), whereas inversion pertains to
the non-singular part of M only; see also Section 5.2.

Further, it is readily seen that the singularity of the diffusion matrix
B̃, encountered due to the state-variable reformulation of the second-
order Eq. (13) into the first-order Eq. (14), has been addressed in a

rather direct and straightforward manner by the introduction of the
delta-functional. Specifically, owning to the simple form of the com-
patibility equation ẋ = v between the original variable and the state
variable, functional integration over the state variable v is performed in
a direct (and rather trivial) manner. However, singular diffusion matri-
ces B̃ due to reasons other than state-variable reformulation (e.g., cases
of systems with only some of their DOFs excited, hysteresis modeling
via additional auxiliary state equations, energy harvesters with coupled
electro-mechanical equations, etc.) are not amenable, in general, to a
similar trivial treatment. This is due to the significantly more complex
form of the corresponding (compatibility) equations related to the
singularities, and thus, a direct functional integration is not possible. To
address this challenge, the WPI-based solution technique is generalized
and extended in Section 4 by relying on a constrained variational
formulation that can account for arbitrary forms of (compatibility)
equations related to singular diffusion matrices.

3.2. WPI solution treatment

3.2.1. Most probable path approximation
In this section, the basic aspects of a variational technique are

presented, which is typically referred to in the theoretical physics
literature as the semi-classical approximation [28,29,32,35,36]. The
technique relies on the concept of the ‘‘most probable path’’ (also re-
ferred to as classical path) for providing an approximation of the WPI in
Eq. (16). Specifically, the largest contribution to the functional integral
of Eq. (16) comes from the trajectory x𝑐 (𝑡) for which the integral in the
exponential, also known as stochastic action, is minimized (e.g., [28]).
According to calculus of variations (e.g., [37,38]) this trajectory x𝑐 (𝑡)

with fixed endpoints satisfies the extremality condition

𝛿 ∫
𝑡𝑓

𝑡0

(x, ẋ, ẍ)d𝑡 = 0 (18)

which leads to the Euler–Lagrange (E-L) equations

𝜕
𝜕𝑥𝑗

−
𝜕

𝜕𝑡

𝜕
𝜕𝑥̇𝑗

+
𝜕2

𝜕𝑡

𝜕
𝜕𝑥̈𝑗

= 0, 𝑗 = 1,… , 𝑛 (19)

with the set of boundary conditions

𝑥𝑗 (𝑡0) = 𝑥𝑗,0 𝑥̇𝑗 (𝑡0) = 𝑥̇𝑗,0

𝑥𝑗 (𝑡𝑓 ) = 𝑥𝑗,𝑓 𝑥̇𝑗 (𝑡𝑓 ) = 𝑥̇𝑗,𝑓

𝑗 = 1,… , 𝑛 (20)

Next, solving Eqs. (19)–(20) yields the 𝑛-dimensional most probable
path, x𝑐 (𝑡), and thus, a single point of the system response transition
PDF is determined as [4]

𝑝(x𝑓 , ẋ𝑓 , 𝑡𝑓 |x0, ẋ0, 𝑡0) ≈ 𝐶 exp

(
−∫

𝑡𝑓

𝑡0

(x𝑐 , ẋ𝑐 , ẍ𝑐 )d𝑡
)

(21)

where 𝐶 is a normalization constant. It can be readily seen by compar-
ing Eqs. (16) and (21) that in the approximation of Eq. (21) only one
trajectory, i.e., the most probable path x𝑐 (𝑡), is considered in evaluating
the path integral of Eq. (16). Regarding the degree of approximation
associated with Eq. (21), direct comparisons of Eq. (21) with perti-
nent MCS data related to various engineering dynamical systems have
demonstrated satisfactory accuracy (e.g., [5–9,17]).

3.2.2. Rayleigh-Ritz solution technique for the most probable path
In general, Eqs. (19)–(20) cannot be solved analytically for the most

probable path. Therefore, resorting to numerical solution schemes for
boundary value problems (BVPs) is often necessary. Indicatively, since
x𝑐 is the solution of the variational problem

minimize  (x, ẋ, ẍ) = ∫
𝑡𝑓

𝑡0

(x, ẋ, ẍ)d𝑡 (22)

or, in other words, an extremum for the functional  , a direct func-
tional minimization formulation can be employed in conjunction with
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a standard Rayleigh-Ritz solution technique (see [5,39,40]). In this
regard, x(𝑡) is approximated by

x̂(𝑡) = 𝝍(𝑡) + Z𝒉(𝑡) ≈ x(𝑡) (23)

The function 𝝍(𝑡) is chosen so that it satisfies the boundary conditions,
while the trial functions 𝒉(𝑡) = [ℎ𝑙(𝑡)]𝐿×1 should vanish at the bound-
aries, i.e., 𝒉(𝑡0) = 𝒉(𝑡𝑓 ) = 𝟎; Z ∈ R

𝑛×𝐿 is a coefficient matrix and 𝐿 is
the chosen number of trial functions considered. Utilizing a vectorized
form of Z, Eq. (23) is cast, equivalently, as

x̂(𝑡) = 𝝍(𝑡) +H(𝑡)z (24)

with

z =

⎡⎢⎢⎢⎢⎣

𝑍T
1

𝑍T
2

⋮

𝑍T
𝐿

⎤⎥⎥⎥⎥⎦
∈ R

𝑛𝐿 and H(𝑡) =

⎡⎢⎢⎢⎢⎣

𝒉T(𝑡) 𝟎 … 𝟎

𝟎 𝒉T(𝑡) … 𝟎

⋮ ⋮ ⋱ ⋮

𝟎 𝟎 … 𝒉T(𝑡)

⎤⎥⎥⎥⎥⎦
(25)

where 𝑍𝑙 denotes the 𝑙th row of matrix Z and H(𝑡) is an 𝑛 × 𝑛𝐿 time-
dependent matrix. Clearly, there is a wide range of choices for functions
𝝍 and 𝒉. In the ensuing analysis, the Hermite interpolating polynomials

𝜓𝑗 (𝑡) =

3∑
𝑘=0

𝑎𝑗,𝑘𝑡
𝑘 (26)

are adopted, i.e., 𝝍(𝑡) = [𝜓𝑗 (𝑡)]𝑛×1, where the 𝑛 × 4 coefficients 𝑎𝑗,𝑘
are determined by the 𝑛 × 4 boundary conditions in Eq. (20). For the
trial functions, the shifted Legendre polynomials given by the recursive
formula

𝓁𝑞+1(𝑡) =
2𝑞 + 1

𝑞 + 1

(
2𝑡 − 𝑡0 − 𝑡𝑓

𝑡𝑓 − 𝑡0

)
𝓁𝑞(𝑡) −

𝑞

𝑞 + 1
𝓁𝑞−1(𝑡), 𝑞 = 1,… , 𝐿 − 1

(27)

are employed, which are orthogonal in the interval [𝑡0, 𝑡𝑓 ], with 𝓁0(𝑡) =

1; and 𝓁1(𝑡) = (2𝑡 − 𝑡0 − 𝑡𝑓 )∕(𝑡𝑓 − 𝑡0). The trial functions take the form

ℎ𝑙(𝑡) = (𝑡 − 𝑡0)
2(𝑡 − 𝑡𝑓 )

2
𝓁𝑙(𝑡) (28)

where the factor (𝑡 − 𝑡0)
2(𝑡 − 𝑡𝑓 )

2 multiplies the 𝑙th-order Legendre
polynomial 𝓁𝑙(𝑡) to yield the 𝑙th trial function ℎ𝑙(𝑡). Note that ℎ𝑙(𝑡) is
a polynomial of order 𝑙 + 4 and vanishes at the boundaries. Clearly,
each component 𝑥̂𝑗 (𝑡) of x̂(𝑡) in Eq. (23) is a polynomial of order up to
𝐿 + 4 in 𝑡.

A practical advantage of the Rayleigh-Ritz solution technique is that
the variational problem (functional minimization) of Eq. (22) degener-
ates to an ordinary minimization problem of a function that depends
on a finite number of variables [38]. Specifically, the functional  ,
dependent on the 𝑛 functions x(𝑡) (and their time derivatives), is cast
in the form

𝐽 (z) ∶=  (x̂, ̇̂x, ̈̂x) (29)

which depends on a finite number of 𝑛𝐿 coefficients z. The correspond-
ing optimization problem takes the form

min
z

𝐽 (z) (30)

Further, the extremality condition in Eq. (18) is replaced by the first-
order optimality condition

∇𝐽 (z) = 𝟎 (31)

which represents essentially a set of 𝑛𝐿 nonlinear algebraic equations
that need to be solved numerically. Once the solution z∗ of the op-
timization problem in Eq. (30) is obtained, the most probable path
x𝑐 is determined via Eq. (24). Obviously, there is a wide range of
standard numerical optimization schemes to be employed for obtaining
the solution z∗. Indicatively, these range from gradient based tech-
niques (e.g., [41]) to rather heuristic global optimization methods
(e.g., [42,43]).

3.2.3. Computational efficiency aspects
Irrespective of whether the E-L Eqs. (19)–(20) are used or Eq. (31)

is employed, solving the related deterministic BVP for given boundary
conditions yields a single point of the joint response PDF via Eq. (21).
According to a brute-force implementation of the WPI technique, for a
given time instant 𝑡𝑓 , an effective domain of values (x𝑓 , ẋ𝑓 ) is consid-
ered for the joint response PDF 𝑝(x𝑓 , ẋ𝑓 , 𝑡𝑓 |x0, ẋ0, 𝑡0). Next, discretizing
the effective domain using 𝑅 points in each dimension, the joint
response PDF values are obtained corresponding to the points of the
mesh. Specifically, for an 𝑛-DOF system with 2𝑛 stochastic dimensions
(𝑛 displacements and 𝑛 velocities) the number of BVPs to be solved is
𝑅2𝑛. It is clear that the computational cost becomes prohibitive for rel-
atively high-dimensional systems. However, efficient implementations,
such as in [7], can be utilized in conjunction with the WPI technique.
Specifically, employing a polynomial expansion for the joint response
PDF yields a number of BVPs to be solved equal to the number of the
expansion coefficients. This implementation has been shown to follow
approximately a power-law function of the form ∼ (2𝑛)𝑑∕𝑑! (where 𝑑
is the degree of the polynomial), which, depending on the value of
𝑛, can be orders of magnitude smaller than 𝑅2𝑛 [7]. Moreover, it has
been recently shown in [8] that a compressive sampling treatment in
conjunction with an appropriate optimization algorithm can further
reduce drastically the required number of deterministic BVPs to be
solved numerically.

4. Generalization of the Wiener path integral formulation to ac-
count for singular diffusion matrices: A constrained variational
problem

4.1. WPI formulation accounting for singular diffusion matrices

In this section, the WPI solution technique delineated in Section 3 is
extended to account for a general class of systems with singular diffu-
sion matrices. In this regard, a novel WPI based variational formulation
with constraints is developed. Specifically, consider in the following
the general class of structural/mechanical systems whose governing
equation of motion takes the form

Mẍ + g(x, ẋ) =

[
w(𝑡)

𝟎

]
(32)

where M is an 𝑛 × 𝑛, (potentially singular) mass matrix, and g is a
nonlinear vector valued function. Indicative examples of engineering
systems whose dynamics is described by Eq. (32) include, but are not
limited to, structures subject to excitations applied to some (and not
all) of their DOFs, hysteretic (e.g., Bouc–Wen) systems modeled via
additional auxiliary state equations [34], and certain electromechanical
energy harvesters [17]. Next, comparing Eqs. (13) and (32), it can be
readily seen that the D matrix corresponding to the right-hand-side of
Eq. (32), and defined as

D𝛿(𝜏) = E

[[
w(𝑡)

𝟎

] [
wT(𝑡 + 𝜏) 𝟎

]]

=

[
E
[
w(𝑡)wT(𝑡 + 𝜏)

]
𝟎

𝟎 𝟎

]
=

[
D𝑟𝑟 𝟎

𝟎 𝟎

]
𝛿(𝜏) (33)

is singular, and thus, the Lagrangian of Eq. (17) cannot be determined
in a straightforward manner. Note that the symbol D𝑟𝑟 is used to denote
the non-singular square sub-matrix of D.

In the ensuing analysis, the singularity of D is addressed by parti-
tioning the system of Eq. (32) into two coupled subsystems: one that
contains the equations corresponding to vector w on the right-hand-
side of Eq. (32) and another referring to the equations that correspond
to the zero entries on the right-hand-side of Eq. (32); this yields
[
M𝑟ẍ + g𝑟(x, ẋ)

M𝑠ẍ + g𝑠(x, ẋ)

]
=

[
𝒘(𝑡)

𝟎

]
(34)

Note that the upper subsystem, hereinafter referred to as the 𝑟−system,
constitutes an underdetermined system of 𝑛 − 𝑚 SDEs and the lower
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subsystem, hereinafter referred to as the 𝑠−system, represents an un-
derdetermined system of 𝑚 homogeneous ODEs. Clearly, matrix M𝑟 ∈
R
(𝑛−𝑚)×𝑛 consists of the first 𝑛 − 𝑚 rows of matrix M, while M𝑠 ∈ R

𝑚×𝑛

consists of the last 𝑚 rows of M. Further, by recasting Eq. (32) into
the form of Eq. (34), it can be argued that the motion of the dynamical
system in Eq. (32) is governed by the 𝑟−system of equations constrained
by the 𝑠−system of equations.

Next, defining x(𝑡) = [x𝑟(𝑡) x𝑠(𝑡)]
T, M𝑟 = [M𝑟𝑟 M𝑟𝑠] and M𝑠 =

[M𝑠𝑟 M𝑠𝑠], where M𝑟𝑟, M𝑟𝑠, M𝑠𝑟 and M𝑠𝑠 are square matrices, and
employing a 𝛿-functional as in Section 3.1, the WPI for the system
response PDF takes the form

𝑝(𝜶𝑓 , 𝑡𝑓 |𝜶0, 𝑡0) = ∫{𝜶𝑓 ,𝑡𝑓 |𝜶0 ,𝑡0}
exp

⎛⎜⎜⎜⎝
−

𝑡𝑓

∫
𝑡0

1

2

[
S𝑟(𝜶, 𝜶̇)

]T
D−1
𝑟𝑟

[
S𝑟(𝜶, 𝜶̇)

]
d𝑡

⎞⎟⎟⎟⎠
× 𝛿

[
S𝑠(𝜶, 𝜶̇)

][x𝑟(𝑡)][x𝑠(𝑡)]

(35)

where 𝜶 = [x𝑟,x𝑠, ẋ𝑟, ẋ𝑠]
T, while

S𝑟(𝜶, 𝜶̇) = M𝑟𝑟ẍ𝑟 +M𝑟𝑠ẍ𝑠 + g𝑟(𝜶) (36)

and

S𝑠(𝜶, 𝜶̇) = M𝑠𝑟ẍ𝑟 +M𝑠𝑠ẍ𝑠 + g𝑠(𝜶) (37)

Following a similar procedure as in Section 3.1, the aim is to integrate
over paths x𝑠(𝑡) and to obtain a path integral formulation involving
x𝑟(𝑡) only. However, this is not generally possible because the argument
of the 𝛿-functional in Eq. (35) is not merely a trivial compatibility
relationship, as in Section 3.1, but a rather complex general function
of x𝑠. To address this challenge, the equation S𝑠(𝜶, 𝜶̇) = 𝟎 is enforced
explicitly and takes the form of a constraint 𝝓(x, ẋ, ẍ) = 𝟎 given by

𝝓(x, ẋ, ẍ) = M𝑠ẍ + g𝑠(x, ẋ) (38)

In this regard, the transition PDF can be expressed in the compact form

𝑝(x𝑓 , ẋ𝑓 , 𝑡𝑓 |x0, ẋ0, 𝑡0)

= ∫{x0 ,ẋ0 ,𝑡0;x𝑓 ,ẋ𝑓 ,𝑡𝑓 |𝝓=𝟎}
exp

⎛
⎜⎜⎜⎝
−

𝑡𝑓

∫
𝑡0

𝑟(x, ẋ, ẍ)d𝑡
⎞
⎟⎟⎟⎠
[x(𝑡)] (39)

where

𝑟(x, ẋ, ẍ) = 1

2
[M𝑟ẍ + g𝑟(x, ẋ)]

𝑇D−1
𝑟𝑟
[M𝑟ẍ + g𝑟(x, ẋ)] (40)

and {x0, ẋ0, 𝑡0;x𝑓 , ẋ𝑓 , 𝑡𝑓 |𝝓 = 𝟎} denotes the set of all paths, with
initial state (x0, ẋ0) at time 𝑡0 and final state (x𝑓 , ẋ𝑓 ) at time 𝑡𝑓 , which
satisfy the constraint 𝝓(x, ẋ, ẍ) = 𝟎.

4.2. Constrained variational problem solution treatment

Following the WPI formulation of Section 4.1, determining the
most probable path is pursued next by seeking for the solutions of
the 𝑟−system that satisfy also the constraints of the 𝑠− system. This
leads to the formulation of a constrained variational problem for the
determination of the most probable path x𝑐 , i.e.,

minimize 𝑟(x, ẋ, ẍ) = ∫
𝑡𝑓

𝑡0

𝑟(x, ẋ, ẍ)d𝑡 (41)

subject to 𝝓(x, ẋ, ẍ) = 𝟎 (42)

where the Lagrangian 𝑟 in Eq. (41) corresponds to the 𝑟−system only
and is given by Eq. (40), and the constraint function 𝝓 is given by
Eq. (38).

Constrained variational problems of the form of Eqs. (41)–(42) can
be solved by employing the general Lagrange multipliers approach
(e.g., [44,45]). This leads to an unconstrained variational problem
by considering the auxiliary Lagrangian ∗(x, ẋ, ẍ) = 𝑟(x, ẋ, ẍ) +
𝝀(𝑡)𝝓(x, ẋ, ẍ). This unconstrained problem yields a system of 𝑛 Euler–
Lagrange equations, similar to the ones in Eq. (19)–(20), to be solved

together with the 𝑚 constraint functions in Eq. (42) for the 𝑛 un-
known functions x(𝑡) and the 𝑚 unknown Lagrange multiplier functions
𝝀(𝑡); see for instance [17]. In practice, however, the reformulation of
this complex system of 𝑛 + 𝑚 equations into an equivalent first-order
system, as dictated by most numerical BVP solvers, requires multiple
time differentiations of the constraint functions. As a result, the time
derivatives of the constraints are fulfilled, but not the constraints
themselves. This is a common limitation in several numerical solution
methods for BVPs as highlighted in [46]. Therefore, in the ensuing
analysis, attention is directed to a Rayleigh-Ritz solution approach for
the determination of the most probable path.

Specifically, following Section 3.2.2, the polynomial expansion of
Eq. (24) is utilized for the response vector x(𝑡). This reduces the
functional 𝑟(x, ẋ, ẍ) of Eq. (41) to a function
𝐽𝑟(z) ∶= 𝑟(x̂, ̇̂x, ̈̂x) (43)

which depends on the vectorized expansion parameters z ∈ R
𝑝, where

𝑝 = 𝑛𝐿. Further, by defining the functions

𝝓̂(z, 𝑡) ∶= 𝝓(x̂, ̇̂x, ̈̂x) (44)

the constraints in Eq. (42) are replaced by 𝝓̂(z, 𝑡) = 𝟎. The adoption
of the Rayleigh-Ritz solution approach simplifies the constrained varia-
tional problem in Eq. (41)–(42) to an ordinary constrained optimization
problem of the form

min
z∈R𝑝

𝐽𝑟(z) (45)

subject to 𝝓̂(z, 𝑡) = 𝟎 ∀ 𝑡 ∈ [𝑡0, 𝑡𝑓 ] (46)

and facilitates further its numerical treatment. Taking into account
Eq. (24), the solution z∗ to the above problem yields the most probable
path in the form x̂𝑐 (𝑡) = 𝝍(𝑡) + H(𝑡)z∗. Next, a single point of the
system response transition PDF can be determined via the semi-classical
approximation of Eq. (21) as

𝑝(x𝑓 , ẋ𝑓 , 𝑡𝑓 |x0, ẋ0, 𝑡0) ≈ 𝐶 exp

(
−∫

𝑡𝑓

𝑡0

𝑟(x̂𝑐 , ̇̂x𝑐 , ̈̂x𝑐 )d𝑡
)

(47)

where 𝐶 is a normalization constant.

4.3. Linear constraints

The special case of function g𝑠 in Eq. (34) taking the linear form
g𝑠(x, ẋ) = C𝑠ẋ + K𝑠x, where C𝑠 ∈ R

𝑚×𝑛 and K𝑠 ∈ R
𝑚×𝑛, leads to

linear constraint functions in Eq. (42). This considerable simplifica-
tion facilitates a computationally efficient numerical treatment of the
optimization problem of Eqs. (45)–(46). In particular, a solution is
pursued by restricting the optimization within the space of solutions
of Eq. (46) via a nullspace approach. Specifically, linearity of the
constraint equations ensures that 𝜙̂(z, 𝑡) is a vector of 𝑚 polynomial
functions of 𝑡, each of degree 𝐿 + 4 (see Eqs. (23)–(25), (38) and
(44)), with coefficients linear in the 𝑛𝐿 unknown expansion parameters
z. Setting these polynomial coefficients equal to zero yields a set of
𝑚(𝐿 + 4) linear equations with 𝑝 = 𝑛𝐿 unknown variables. Next, these
equations are cast as a linear system of the form

Fz = d (48)

where F ∈ R
𝑠×𝑝, d ∈ R

𝑠 and 𝑠 = 𝑚(𝐿 + 4). Of course, for any well-
posed constrained optimization problem, the number of independent
constraints is smaller than the dimension of z. For the herein concerned
problem, this yields 𝑚(𝐿 + 4) < 𝑝, which provides the lower bound
𝐿 >

4𝑚

𝑛−𝑚
for the number 𝐿 of trial functions used in the polynomial

expansion. The system in Eq. (48) is underdetermined, while F may
not have full row rank, i.e., 𝑟𝐹 ≤ 𝑠. It is now possible to restrict
minimization of the objective function 𝐽𝑟 = 𝐽𝑟(z), where z ∈ R

𝑝, to
the set of solutions of Eq. (48) that lie on a lower dimensional space
of dimension 𝑝 − 𝑟𝐹 . To elaborate further, note that the vector space
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𝑈 ⊆ R
𝑝 of solutions of the system Fz = 𝟎, can be fully described with

the aid of a basis S = [s1 s2... s𝑝−𝑟𝐹 ] for the nullspace of F [47], where
S ∈ R

𝑝×(𝑝−𝑟𝐹 ). In this regard, any element z ∈ 𝑈 can be represented by
an element v ∈ 𝑉 ⊆ R

𝑝−𝑟𝐹 as z = Sv, and the vector space 𝑈𝑑 ⊆ R
𝑝

of solutions of Fz = d can be obtained as an affine transformation
of 𝑈 [48]. More specifically, the solutions z ∈ 𝑈𝑑 of Eq. (48) can be
represented as

z = Sv + z𝑝 (49)

where z𝑝 is any particular solution of Eq. (48) [47,48]; see also [49].
This approach enables the corresponding constrained optimization
problem

min
z∈R𝑝

𝐽𝑟(z) subject to Fz = d (50)

of dimension 𝑝 to be recast into a lower dimensional unconstrained
problem of dimension 𝑝 − 𝑟𝐹 as

min
v∈R𝑝−𝑟𝐹

𝐽𝑟(Sv + z𝑝) (51)

Note that the minimizer z∗ of Eq. (50) can be obtained by the mini-
mizer v∗ of Eq. (51) using the relationship in Eq. (49).

Further, it is worth highlighting the special case of a linear oscillator
with non-singular diffusion matrix (unconstrained problem), where the
most probable path can be derived in closed-form. Specifically, the
linear oscillator yields a quadratic objective function in Eq. (29) that
can be written as

𝐽 (z) =
1

2
zTQz + bTz (52)

where matrix Q and vector b can be calculated numerically (see
Eqs. (17), (22), (24) and (29)). Given that Q is positive definite, 𝐽 (z)
has the unique minimizer z∗ = −Q−1b and the most probable path can
be determined in closed-form via Eq. (24). This result can be utilized
in conjunction with the nullspace approach described earlier in this
section, to determine the most probable path of a linear oscillator with
singular diffusion matrix in closed-form as well. This is the case where
the constraint function is linear (g𝑠(x, ẋ) = C𝑠ẋ+K𝑠x) and function g𝑟
in Eq. (34) is also linear, i.e., g𝑟(x, ẋ) = C𝑟ẋ+K𝑟x, where C𝑟 ∈ R

(𝑛−𝑚)×𝑛

and K𝑟 ∈ R
(𝑛−𝑚)×𝑛, while the optimization problem of Eq. (51) takes the

form

min
v∈R𝑝−𝑟𝐹

1

2
[Sv + z𝑝]

TQ[Sv + z𝑝] + b
T[Sv + z𝑝] (53)

Next, solving the problem in Eq. (53) with respect to v leads to the
unique stationary point

v∗ = −(STQS)−1[zT
𝑝
QS + bTS] (54)

which, in conjunction with Eqs. (24) and (49), yields the following
closed-form expression for the most probable path, i.e.,

x̂𝑐 (𝑡) = 𝝍(𝑡) +H(𝑡)
[
S(STQS)−1[zT

𝑝
QS + bTS] − z𝑝

]
(55)

4.4. Nonlinear constraints

In the more general case of arbitrary nonlinear constraints, it is
possible to formulate an optimization problem with nonlinear equal-
ity constraints to be solved by an appropriate numerical technique,
such as a Newton scheme in conjunction with a Lagrange multiplier
approach for the enforcement of constraints. Specifically, a necessary
and sufficient condition for Eq. (46) to hold is

𝝃(z) ∶=

√

∫
𝑡𝑓

𝑡0

𝝓̂
2
(z, 𝑡)d𝑡 = 𝟎 (56)

where integration and square root are performed element-wise, and
thus, the corresponding optimization problem can be formulated as

min
z∈R𝑝

𝐽𝑟(z) subject to 𝝃(z) = 𝟎 (57)

Next, two typically utilized methods for the solution of nonlinear
optimization problems with equality constraints of the form of Eq. (57)
are presented.

4.4.1. Sequential Quadratic Programming (SQP)
The optimization problem with equality constraints in Eq. (57) can

be solved by using a Lagrange multiplier approach and by employing
the corresponding Karush-Kuhn–Tucker (KKT) conditions [41]. To this
aim, the Lagrangian function 𝐿𝑀 is defined as

𝐿𝑀 (z,𝝀) = 𝐽𝑟(z) − 𝝀
T𝝃(z) (58)

where 𝝀 ∈ R
𝑚 is a vector of Lagrange multipliers, and the Jacobian of

the constraints is denoted as

𝐴(z)T =
[
∇𝜉1(z),∇𝜉2(z),… ,∇𝜉𝑚(z)

]
(59)

The first-order KKT conditions for the optimization problem with equal-
ity constraints in Eq. (57) take the form of an 𝑛+𝑚 system of equations
with 𝑛 + 𝑚 unknowns z and 𝝀 as

𝐹 (z,𝝀) =

[
∇𝐽𝑟(z) − 𝐴(z)

T𝝀

𝝃(z)

]
= 𝟎 (60)

while the Jacobian of Eq. (60) becomes

𝐹 ′(z,𝝀) =

[
∇2
zz
𝐿𝑀 (z,𝝀) −𝐴(z)T

𝐴(z) 0

]
(61)

Next, a Newton scheme is utilized for the solution of the KKT system
in Eq. (60). The corresponding Newton step at the 𝑘th iteration (z𝑘,𝝀𝑘)

takes the form[
z𝑘+1

𝝀𝑘+1

]
=

[
z𝑘

𝝀𝑘

]
+

[
𝒑𝑘

𝒑𝑘
𝜆

]
(62)

where 𝑝𝑘 and 𝑝𝑘
𝜆
are obtained by solving the Newton-KKT system

[
∇2
zz
𝐿𝑀 (z𝑘,𝝀𝑘) −𝐴(z𝑘)T

𝐴(z𝑘) 0

] [
𝒑𝑘

𝒑𝑘
𝜆

]
=

[
−∇𝐽𝑟(z

𝑘) + 𝐴(z𝑘)T𝝀𝑘

−𝝃(z𝑘)

]
(63)

Solving the system in Eq. (63) and utilizing Eqs. (60) and (62), the
update formulas for 𝝀𝑘+1 and z𝑘+1 are given by

𝝀𝑘+1 =
[
𝐴𝑘𝐵

−1
𝑘
𝐴T
𝑘

]−1 [
−𝝃𝑘 + 𝐴𝑘𝐵

−1
𝑘
𝐺𝑘

]
(64)

𝒑𝑘 = 𝐵−1
𝑘

(
𝐴T
𝑘
𝝀𝑘+1 − 𝐺𝑘

)
(65)

z𝑘+1 = z𝑘 + 𝛼𝑘𝒑
𝑘 (66)

where 𝐴𝑘 ∶= 𝐴(z𝑘) ∈ R
𝑚×𝑝, 𝐵𝑘 ∶= ∇2

zz
𝐿𝑀 (z𝑘,𝝀𝑘) ∈ R

𝑝×𝑝, 𝝃𝑘 ∶= 𝝃(z
𝑘) ∈

R
𝑚 and 𝐺𝑘 ∶= ∇𝐽𝑟(z

𝑘) ∈ R
𝑝.

In passing, it is noted that the above proposed Newton solution
scheme for the KKT system of Eq. (60) can be identified as a Sequen-
tial Quadratic Programming (SQP) methodology, which is a broader
class of optimization algorithms capable of treating both equality and
inequality constraints [41]. Further, in Eq. (66), 𝒑𝑘 is the step direction
and 𝛼𝑘 is a step size parameter that is equal to 1 in the standard
implementation of the scheme (see Eq. (62)). In practice, however, a
smaller value is typically chosen for the step size 𝛼𝑘 as the iterations ap-
proach the local minimum. This yields faster convergence potentially,
while the value of 𝛼𝑘 at each iteration can be determined by an ap-
propriate line search algorithm. In the following, a line search scheme
based on Wolfe conditions and described in [50] is adopted in the
numerical examples. Moreover, regarding numerical implementation
of the optimization scheme, the standard Broyden–Fletcher–Goldfarb–
Shanno (BFGS) formula [51,52] is employed herein for approximating
the inverse of the Hessian matrix ∇2

zz
𝐿𝑀 ; see also [41] for a broader

perspective.

4.4.2. Augmented Lagrangian Method (ALM)
A relatively popular alternative approach for the solution of the

constrained optimization problem in Eq. (57) is the Augmented La-
grangian Method (ALM) [53–55]. The ALM approximates the solution
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by successively minimizing the augmented Lagrangian function

𝐿𝐴(z,𝝀;𝜇) = 𝐽𝑟(z) −

𝑚∑
𝑗=1

𝜆𝑗𝜉𝑗 (z) +
𝜇

2

𝑚∑
𝑗=1

𝜉2
𝑗
(z) (67)

for a sequence of penalty factors 𝜇 with increasing values. Therefore,
a sequence of unconstrained subproblems is formulated, where the
solution of the previous problem is used as the initial guess for the next
one, i.e.,

z𝑘+1 = argmin
z∈R𝑝

z𝑖𝑛𝑖𝑡=z
𝑘

𝐿𝐴(z,𝝀
𝑘;𝜇𝑘) (68)

where the Lagrange multiplier vector 𝝀 = [𝜆𝑗 ]𝑚×1 at each step is given
by the explicit estimate

𝝀𝑘+1 = 𝝀𝑘 − 𝜇𝑘𝝃(z𝑘) (69)

and z𝑖𝑛𝑖𝑡 denotes the initial guess for the solution of the corresponding
optimization problem. The ALM has shown to improve the ill-posedness
of the quadratic penalty method (QPM), as it can approximate the
solution of the original problem even with moderate values of the
penalty factor 𝜇 [41]. Also, the augmented Lagrangian function in
Eq. (67) can be derived as the dual of the corresponding quadratic
penalty function of the QPM, as shown in [56].

5. Numerical examples

To assess the reliability of the herein developed technique for deter-
mining the response PDF of stochastically excited MDOF systems with
singular diffusion matrices, two indicative examples are considered in
this section. The first example pertains to a 2-DOF oscillator, where
only one DOF is stochastically excited. It is shown that the special
case of a linear oscillator under Kanai–Tajimi earthquake excitation,
which yields a singular diffusion matrix, can also be cast in that form
and treated under the same framework. The second example refers
to a single-degree-of-freedom (SDOF) Bouc–Wen hysteretic oscillator,
where hysteresis is modeled by introducing an additional auxiliary state
equation. The WPI-based system response PDF estimates are compared
with pertinent MCS data (10,000 realizations) for assessing the ac-
curacy of the herein developed technique. In this regard, a standard
fourth-order Runge–Kutta numerical integration scheme is employed
for solving the governing equations of motion within the MCS context.

5.1. 2-DOF oscillator with only one DOF stochastically excited

The following 2-DOF oscillator with only one DOF stochastically
excited is considered in the present example. Specifically, the equation
of motion takes the form

𝑴ẍ + 𝑪ẋ +𝑲x + 𝜀g𝑛𝑙(x, ẋ) =

[
𝑤(𝑡)

0

]
(70)

where

M =

[
1 0

0 1

]
, C =

[
0.2 −0.1

−0.1 0.1

]
, K =

[
2 −1

−1 1

]
(71)

and 𝑆0 = 0.1, whereas three different forms are considered next for the
nonlinear function g(x, ẋ).

5.1.1. Linear oscillator with linear constraints
First, a linear version of the 2-DOF oscillator of Eq. (70) with 𝜀 = 0

is considered. The WPI technique in conjunction with the closed-form
expression in Eq. (55) for the most probable path is utilized, and the
joint response PDF 𝑝(x, ẋ) is calculated for two indicative time instants
𝑡 = 2 s and 𝑡 = 8 s. The corresponding marginal response PDFs are
shown in Fig. 1 demonstrating a high degree of accuracy based on com-
parisons with the exact solution obtained by numerically solving the
related Lyapunov differential equation for the time-dependent response
covariance matrix (see for instance [34]).

5.1.2. Linear oscillator under Kanai–Tajimi earthquake excitation
A widely utilized earthquake excitation model relates to the Kanai–

Tajimi power spectrum introduced in [57,58] and further generalized
in [59] and [60]. The rationale behind the Kanai–Tajimi modeling
relates to approximating the bedrock acceleration as a white noise
process filtered through the soil deposit, which is modeled as a SDOF
oscillator, i.e.,

𝑦̈ + 2𝜁𝑔𝜔𝑔 𝑦̇ + 𝜔
2
𝑔
𝑦 = −𝑤(𝑡) (72)

where 𝑦, 𝑦̇ and ÿ are the ground displacement, velocity and accelera-
tion, respectively, relative to the bedrock, while 𝑤(𝑡) is a white noise
process with E[𝑤(𝑡)𝑤(𝑡 − 𝜏)] = 2𝜋𝑆0𝛿(𝜏). In Eq. (72), 𝜁𝑔 is the damping
ratio and 𝜔𝑔 is the natural frequency of the ground whose values are
taken equal to 𝜁𝑔 = 0.6 and 𝜔𝑔 = 5𝜋 rad/s [60]. The absolute ground
acceleration in this case can be expressed as

𝑥̈𝑔(𝑡) = 𝑦̈(𝑡) +𝑤(𝑡) (73)

characterized by the Kanai–Tajimi power spectrum

𝑆𝑥̈𝑔
(𝜔) = 𝑆0

𝜔4
𝑔
+ 4𝜁2

𝑔
𝜔2
𝑔
𝜔2

(𝜔2
𝑔
− 𝜔2)2 + 4𝜁2

𝑔
𝜔2
𝑔
𝜔2

(74)

Next, the equation of motion of a linear SDOF oscillator, with mass 𝑚0,
damping coefficient 𝑐0 and stiffness 𝑘0, under Kanai–Tajimi earthquake
excitation takes the form

𝑚0𝑥̈ + 𝑐0𝑥̇ + 𝑘0𝑥 = −𝑚0𝑥̈𝑔(𝑡) (75)

Further, dividing Eq. (75) by 𝑚0 and considering Eqs. (72) and (73),
the overall system can be written in the form

Mz̈ + Cż + Kz =

[
−1

−1

]
𝑤(𝑡) (76)

where

z =

[
𝑥

𝑦

]
, M =

[
1 1

0 1

]
, C =

[
𝑐0∕𝑚0 0

0 2𝜁𝑔𝜔𝑔

]
and

K =

[
𝑘0∕𝑚0 0

0 𝜔2
𝑔

]
(77)

Clearly, the white noise process 𝑤(𝑡) in Eq. (76) can be equivalently ex-
pressed as a sum of two independent white noise processes, i.e., 𝑤(𝑡) =
𝑤1(𝑡) +𝑤2(𝑡). In this regard, Eq. (76) becomes

Mz̈ + Cż + Kz =

[
−1 −1

−1 −1

] [
𝑤1(𝑡)

𝑤2(𝑡)

]
(78)

and hence, Eq. (76) takes the form of Eq. (13) withw(𝑡)=[𝑤1(𝑡), 𝑤2(𝑡)]
T.

It can be readily seen in Eq. (78) that the white noise vector process
[𝑤1(𝑡), 𝑤2(𝑡)]

T is multiplied by a rank-one matrix. Thus, matrix D in
Eq. (14) is also rank-one (it has the value of 2 in all its entries) which
leads to a singular diffusion matrix B̃. Next, Eq. (78) can be multiplied
by the non-singular transformation matrix

T =

[
1 0

−1 1

]
(79)

and written, alternatively, as

TMz̈+TCż+TKz = T

[
−1 −1

−1 −1

] [
𝑤1(𝑡)

𝑤2(𝑡)

]
=

[
−1 −1

0 0

] [
𝑤1(𝑡)

𝑤2(𝑡)

]
=

[
−𝑤(𝑡)

0

]

(80)

Note that Eq. (80) has exactly the form of Eq. (70) with 𝜀 = 0, and
thus, can be treated by the herein developed technique. Further, since
Eq. (80) is linear, the solution approach of Section 4.3 can be applied,
where the most probable path is given by Eq. (55) in closed form.
The corresponding marginal response PDFs are shown in Fig. 2 for an
oscillator with parameters 𝑚0 = 1, 𝑐0 = 0.2, 𝑘0 = 1 and 𝑆0 = 0.5.
Comparisons with MCS data obtained by utilizing the spectral repre-
sentation method [61] to generate realizations compatible with the
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Fig. 1. Marginal response PDFs of a stochastically excited 2-DOF linear oscillator with linear constraints; comparisons with exact solutions.

Fig. 2. Marginal response PDFs of a SDOF linear oscillator under Kanai–Tajimi earthquake excitation; comparisons with MCS data (10,000 realizations).

Kanai–Tajimi power spectrum of Eq. (74) demonstrate a high degree
of accuracy.

5.1.3. Nonlinear oscillator with linear constraints

Next, a version of the 2-DOF oscillator of Eq. (70) with stiffness and
damping nonlinearities in the first equation and linear second equation
is considered; thus, yielding linear constraints in the herein devel-
oped computational framework. In particular, the nonlinear function
g𝑛𝑙(x, ẋ) takes the form

g𝑛𝑙(x, ẋ) =

[
𝑐11𝑥̇

3
1
+ 𝑘11𝑥

3
1

0

]
(81)

where 𝑥1 is the first component of the response vector x, 𝑐11 and 𝑘11
are the upper left elements of matrices C and K, respectively, and the
magnitude of the nonlinearity 𝜀 is taken equal to 0.5.

The WPI technique in conjunction with the methodology described
in Section 4.3 is utilized next, and the joint response PDF 𝑝(x, ẋ) is
calculated for two indicative time instants 𝑡 = 2 s and 𝑡 = 8 s. The
corresponding marginal response PDFs are presented in Fig. 3, and
compared with pertinent MCS data (10,000 realizations). The accuracy
degree exhibited by the WPI is generally high, whereas slight deviations
from the MCS-based estimates, such as in Fig. 3(c), may be attributed
not only to the various approximations involved in the WPI technique
(see Section 3), but also to the specific accuracy characterizing the
MCS-based estimate given the utilized number of realizations.

8



I. Petromichelakis, A.F. Psaros and I.A. Kougioumtzoglou Probabilistic Engineering Mechanics 60 (2020) 103044

Fig. 3. Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator with linear constraints; comparisons with MCS data (10,000 realizations).

5.1.4. Nonlinear oscillator with nonlinear constraints

Further, a third version of the 2-DOF oscillator in Eq. (70) with
stiffness nonlinearities in both equations is considered; thus, yielding
nonlinear constraints in the proposed computational framework. In this
case, the nonlinear function g𝑛𝑙(x, ẋ) takes the form

g𝑛𝑙(x, ẋ) =

[
𝑘11𝑥

3
1

𝑘22𝑥
3
2

]
(82)

where 𝑥1 and 𝑥2 are the first and second components of the response
vector x, 𝑘11 and 𝑘22 are the upper left and lower right elements of
matrix K, respectively, and the nonlinearity magnitude 𝜀 is taken equal
to 0.5.

The WPI technique in conjunction with the SQP method described
in Section 4.4.1 is utilized next. In this regard, each point of the
joint response PDF 𝑝(x, ẋ) at time 𝑡 = 1 s is obtained as described
in Section 3.2.3 by utilizing the SQP algorithm combined with a line
search scheme and by employing the BFGS formula, with an initial
guess z𝑖𝑛𝑖𝑡 = 𝟎. Following integration of the joint response PDF, the cor-
responding marginal PDFs are obtained and presented in Fig. 4. Com-
parisons with pertinent MCS data (10,000 realizations) demonstrate a
high degree of accuracy.

Further, the joint response PDFs 𝑝(𝑥1, 𝑥2), 𝑝(𝑥1, 𝑥̇1) and 𝑝(𝑥2, 𝑥̇2) are
also shown in Figs 5, 6 and 7, respectively, for the two time instants
𝑡 = 1 s and 𝑡 = 3 s. In a similar manner as before, satisfactory accuracy
is observed based on comparisons with corresponding MCS data.

Next, the WPI technique in conjunction with the ALM method
described in Section 4.4.2 is utilized. In this context, each point of the
joint response PDF 𝑝(x, ẋ) at time 𝑡 = 1 s is obtained by successively
minimizing the augmented Lagrangian function of Eq. (67), for the
sequence of penalty factors with increasing values 𝜇 = 3𝑘 for 𝑘 = 0,
2, 4, 6, 8, 10, 12. Following integration of the joint response PDF, the
corresponding marginal PDFs are obtained for three indicative values

of 𝜇 and presented in Fig. 8. A comparison with pertinent MCS results
(10,000 realizations) shows the convergence of the marginal PDFs to
the MCS-based estimates for increasing values of 𝜇.

It is seen that both the SQP and the ALM optimization schemes of
sections 4.4.1 and 4.4.2, respectively, perform satisfactorily in solving
the problem of Eq. (57) with relatively high accuracy. Nevertheless,
there are cases where the SQP algorithm may not converge to the
optimum value for various reasons, such as poor choice of the initial
guess or non-smooth and numerically ill-behaved governing/constraint
equations. In such cases, the ALM or an appropriate combination of the
SQP and ALM schemes may yield a more robust and efficient solution
approach. An indicative example is considered next.

5.2. Bouc–Wen hysteretic oscillator

A SDOF Bouc–Wen nonlinear oscillator, which has been widely
utilized in engineering dynamics for modeling systems exhibiting hys-
teresis, is considered in this numerical example. The introduction of
the smooth and versatile Bouc–Wen hysteretic model [62,63] was
followed by its successful application to various engineering mechanics
related fields. Besides its versatility in efficiently capturing a broad
range of hysteretic behaviors, corresponding equivalent linear elements
can be readily determined in an explicit manner [64]. Specifically,
a statistical linearization method (e.g., [34]) was proposed in [65]
that involved deriving closed-form expressions for the equivalent lin-
ear elements of the Bouc–Wen model. Furthermore, a wavelet-based
statistical linearization method was developed in [66] to determine
the response evolutionary power spectrum. Indicatively, the Bouc–Wen
formalism and its variants have been employed recently for modeling
the inelastic behavior of steel beams with hysteretic damping [67],
while in [68] a Bouc–Wen model compatible with plasticity postulates
has been developed. A detailed presentation of the applications and the

9
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Fig. 4. Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at 𝑡 = 1 s and 𝑡 = 3 s; comparisons with MCS data (10,000
realizations).

Fig. 5. Joint response PDF 𝑝(𝑥1 , 𝑥2) of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at 𝑡 = 1 s and 𝑡 = 3 s.
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Fig. 6. Joint response PDF 𝑝(𝑥1 , 𝑥̇1) of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at 𝑡 = 1 s and 𝑡 = 3 s.

Fig. 7. Joint response PDF 𝑝(𝑥2 , 𝑥̇2) of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at 𝑡 = 1 s and 𝑡 = 3 s.

extensions of the Bouc–Wen model can be found in [16] and in review
papers such as [69] and [70].

The Bouc–Wen oscillator is generally described by the system of
coupled differential equations

𝑥̈ + 2𝜁0𝜔0𝑥̇ + 𝛼𝜔
2
0
𝑥 + (1 − 𝛼)𝜔2

0
𝑧 = 𝑤(𝑡) (83)
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Fig. 8. Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at 𝑡 = 1 s for increasing values of the penalty factor 𝜇; comparisons
with MCS data (10,000 realizations).

Fig. 9. Marginal response PDFs of a SDOF Bouc–Wen oscillator at 𝑡 = 10 s by employing various optimization schemes; comparisons with pertinent MCS data (10,000 realizations).

𝑧̇ + 𝛾|𝑥̇|𝑧|𝑧|𝜈−1 + 𝛽𝑥̇|𝑧|𝜈 − 𝐴𝑥̇ = 0 (84)

where in Eq. (83) 𝛼 can be viewed as a form of post-yield-to-pre-yield
stiffness ratio. In the Bouc–Wen model, the additional auxiliary state 𝑧
is related to the response 𝑥 via Eq. (84). Various both softening and
hardening behaviors can be modeled by appropriately choosing the
constant parameters 𝛾, 𝛽 and 𝐴 (see e.g., [70]).

Clearly, Eqs. (83)–(84) can be construed as a coupled system of
a SDE (Eq. (83)) and a homogeneous ODE (Eq. (84)). This can be
readily cast in the form of Eq. (32), and thus, treated by the herein
developed solution technique. In passing, it is worth mentioning that,
due to Eq. (84) being first-order, the system augmented mass matrix
M in Eq. (13) is singular. Nevertheless, this poses no difficulties in

applying the solution technique in a rather straightforward manner;
see also discussion following Eq. (17). Moreover, it is noted that the
Bouc–Wen model in Eqs. (83) and (84) has some special characteristics
that affect the form of the corresponding optimization problem. In
particular, Eq. (83) is linear, which yields a corresponding objective
function of a quadratic form (see Eq. (52)). This suggests that the SQP
method presented in Section 4.4.1 is expected to perform satisfactorily,
as it is essentially a quasi-Newton method. However, due to the form
of Eq. (84) containing multiplicative relations involving absolute value
functions, the constraint function takes a relatively complex form that
can be locally non-differentiable; thus, leading to a potentially ill-posed
optimization problem.

12
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Fig. 10. Marginal response PDFs of a SDOF Bouc–Wen oscillator determined by the combined ALM/SQP approach at 𝑡 = 1 s and 𝑡 = 10 s.

Fig. 11. Joint response PDF 𝑝(𝑥, 𝑥̇) of a SDOF Bouc–Wen oscillator determined by the combined ALM/SQP approach at 𝑡 = 1 s and 𝑡 = 10 s.

Next, for the parameter values 𝜁0 = 0.01, 𝜔0 = 1, 𝛼 = 0.01, 𝛾 = 0.5,
𝜈 = 1, 𝛽 = 0.5 and 𝐴 = 1, the joint response PDF 𝑝(𝑥, 𝑧, 𝑥̇) is obtained by
employing the SQP method of Section 4.4.1 with an initial guess z𝑖𝑛𝑖𝑡 =
𝟎. The corresponding marginal PDFs of the response displacement 𝑥 and
velocity 𝑥̇ are plotted in Fig. 9 (line with x markers) for an indicative
time instant 𝑡 = 10 s. Clearly, based on comparisons with pertinent MCS
data, this solution approach does not exhibit a satisfactory accuracy
degree. As explained earlier, this may be due to a potentially ill-
posed optimization problem, or due to the initial guess z𝑖𝑛𝑖𝑡 not being
sufficiently close to the optimum. In this regard, it can be argued that
an ALM solution treatment may be, perhaps, a more appropriate choice.
Specifically, for a sequence of penalty factors starting from zero, the
initial ALM optimization problem becomes unconstrained and convex
(quadratic form); thus, yielding a unique solution. Next, given that the
sequence of penalty factors is sufficiently long and densely discretized,
the ALM solution approach could potentially converge to the global

optimum, at the expense, however, of considerable computational cost
due to the large number of optimization subproblems; see Eq. (68).

In this regard, an alternative hybrid solution approach is proposed,
which attempts to benefit from the advantages of both the ALM and
the SQP schemes. Specifically, an ALM run is performed first by using
a small number of penalty factors with moderate values and by setting
large convergence tolerances to accelerate convergence. Of course, this
ALM step is not expected to yield the optimum with high accuracy
(see line with o markers in Fig. 9). Instead, it is aimed to be used as
a reasonable initial guess for the SQP methodology, which can now
converge to a solution of relatively high accuracy (see line with *
markers in Fig. 9) as compared to corresponding MCS data (10,000
realizations). Further, in Fig. 10 the marginal PDFs 𝑝(𝑥) and 𝑝(𝑥̇) are
plotted for two indicative time instants as obtained by the above
proposed hybrid ALM/SQP solution approach. In a similar manner as in
Fig. 9, comparisons with relevant MCS data (10,000 realizations) show
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a relatively high degree of accuracy exhibited by the WPI technique.
Indeed, despite the non-smooth character of the nonlinearities involved
in the Bouc–Wen model (e.g., absolute value functions in Eq. (84)) that
render the problem rather challenging, the herein developed technique
has performed satisfactorily in determining the response statistics. The
corresponding joint response PDF 𝑝(𝑥, 𝑥̇) is shown in Fig. 11.

6. Concluding remarks

A methodology based on the WPI has been developed for deter-
mining the joint response transition PDF of a broad class of nonlinear
dynamical systems with singular diffusion matrices. In this regard, the
WPI technique has been extended herein to account for systems that
can be represented, generally, as an underdetermined system of SDEs
coupled with a set of ODEs. Indicative examples include (but are not
limited to) systems with only some of the DOFs excited, hysteresis mod-
eling via additional auxiliary state equations, and energy harvesters
with coupled electro-mechanical equations. Next, interpreting the set of
ODEs as constraint equations leads to a constrained variational problem
to be solved for the most probable path, and thus, the joint response
PDF is determined. To this aim, a direct functional minimization formu-
lation has been applied, coupled with a standard Rayleigh-Ritz solution
approach. This has reduced the constrained variational problem to an
ordinary constrained optimization problem. It has been shown that a
nullspace solution approach appears computationally efficient for cases
of linear constraints, whereas a SQP scheme has been employed for the
general case of nonlinear constraints. Further, a herein proposed hybrid
ALM/SQP solution approach appears more appropriate for cases of non-
smooth and numerically ill-behaved nonlinear constraint equations. In
this paper, the reliability of the technique has been demonstrated by
considering diverse numerical examples, including various 2-DOF oscil-
lators with only one DOF excited. Interestingly, it has been shown that
the special case of a linear oscillator under Kanai–Tajimi earthquake
excitation, which yields a singular diffusion matrix, can also be cast in
the aforementioned form and treated under the same framework. Fur-
ther, the SDOF Bouc–Wen nonlinear hysteretic oscillator has also been
considered. Comparisons with pertinent MCS data have demonstrated
a relatively high degree of accuracy.
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