

A new type of insulated molecular wire: a rotaxane derived from a metal-capped conjugated tetrayne[†]

Nancy Weisbach, Zuzana Baranová, Sébastien Gauthier, Joseph H. Reibenspies and John A. Gladysz*

Received 8th May 2012, Accepted 31st May 2012

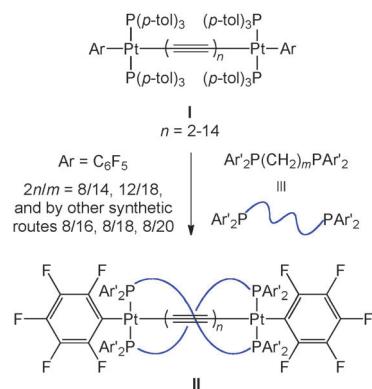
DOI: 10.1039/c2cc33321j

The platinum butadiynyl complex *trans*-(C₆F₅)(*p*-tol₃P)₂Pt-(C≡C)₂H and a CuI adduct of a 1,10-phenanthroline based 33-membered macrocycle react in the presence of K₂CO₃ and I₂ or O₂ to give a rotaxane (ca. 9%) in which the macrocycle is threaded by the sp carbon chain of *trans,trans*-(C₆F₅)(*p*-tol₃P)₂Pt(C≡C)₄-Pt(P*p*-tol₃)₂(C₆F₅). The crystal structure and macrocycle/axle electronic interactions are analyzed in detail.

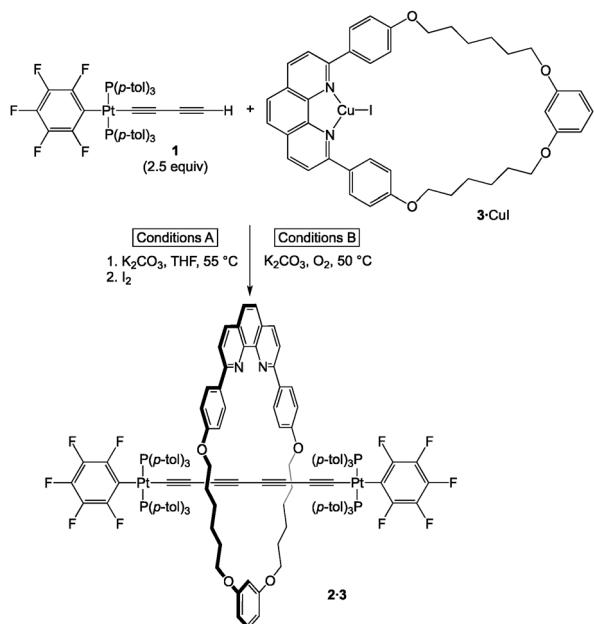
There has been much interest in the synthesis and redox chemistry of complexes in which two metals are separated by an unsaturated linker, especially with respect to the electronic properties associated with each accessible redox state.^{1,2} Many phenomena involving electron delocalization or transfer between the termini have been documented, and such systems have often been referred to as molecular wires.³ However, there have been fewer studies directed at the “insulation” of the unsaturated linkers in these assemblies.^{4,5} In one limit, this would have the potential of suppressing linker/solvent and linker/linker reactions, leading to longer-lived species, and diminishing the solvent or counter-ion reorganization energy associated with mixed valence states.⁶ In the opposite limit, the insulation could respond to a redox or charge transfer event in a defined chemical or mechanical manner.⁷

We⁸ and others² have had an ongoing interest in dimetallic polyynediyl complexes, L_mM(C≡C)_nML_m, which feature the most fundamental unsaturated carbon linker. In previous efforts, we have synthesized a series of diplatinum adducts **I** (Scheme 1),^{8b} and analogs in which the phosphine ligands on opposite termini are linked by sp³ methylene chains (**II**).⁵ In the solid state, the sp³ chains adopt chiral double helical conformations about the sp chains, and oxidations to mixed valence Pt(II)/Pt(III) species become more reversible. However, the two enantiomers rapidly interconvert in solution, the mechanism of which involves the uncoiling of the protective helices.

Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA.

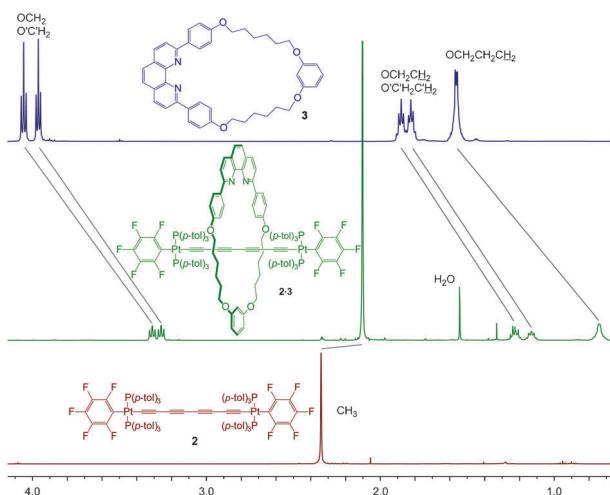

E-mail: gladysz@mail.chem.tamu.edu; Fax: +1-979-845-5629;
Tel: +1-979-845-1399

† Electronic supplementary information (ESI) available: Experimental procedures, crystallographic data, and additional figures. CCDC 881310. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2cc33321j


We have therefore sought to sterically protect the sp carbon chains in ways that would not be compromised by dynamic processes. Our attention was drawn to a report of the oxidative homocoupling of an organic terminal alkyne with bulky end-groups, (*p*-PhC₆H₄)₃C(CH₂)₆-*p*-OC₆H₄C≡CH, by copper complexes of 1,10-phenanthroline containing macrocycles.⁹ In what has been termed an “active template synthesis”,¹⁰ rotaxanes featuring 1,3-butadiyne based axles could be isolated. Other 1,3-butadiyne containing rotaxanes have been similarly prepared since.^{11,12} Given the many terminal polyynes with bulky organometallic endgroups that have been prepared in our laboratory,⁸ we were naturally curious whether this method could be extended to rotaxanes with dimetallic polyynediyl axles.

The platinum butadiynyl complex *trans*-(C₆F₅)(*p*-tol₃P)₂Pt(C≡C)₂H (**1**) undergoes ready oxidative homocoupling to the diplatinum octatetraynediyi complex *trans,trans*-(C₆F₅)(*p*-tol₃P)₂Pt(C≡C)₄Pt(P*p*-tol₃)₂(C₆F₅) (**2**) under Hay conditions (O₂, cat. CuCl/TMEDA, acetone).^{8b} However, for this study the recipe used to access rotaxanes from the alkyne (*p*-PhC₆H₄)₃C(CH₂)₆-*p*-OC₆H₄C≡CH was applied. Thus, **1**, K₂CO₃, and the copper iodide complex of the 1,10-phenanthroline based macrocycle **3** shown in Scheme 2 (3·CuI)^{9a} were combined in THF (2.5:4.0:1.0 mol ratio) at 55 °C (Conditions A). Then a THF solution of I₂ (2.0 equiv) was added dropwise. A silica gel column gave a mixture of the target rotaxane **2·3** accompanied by free **3**.

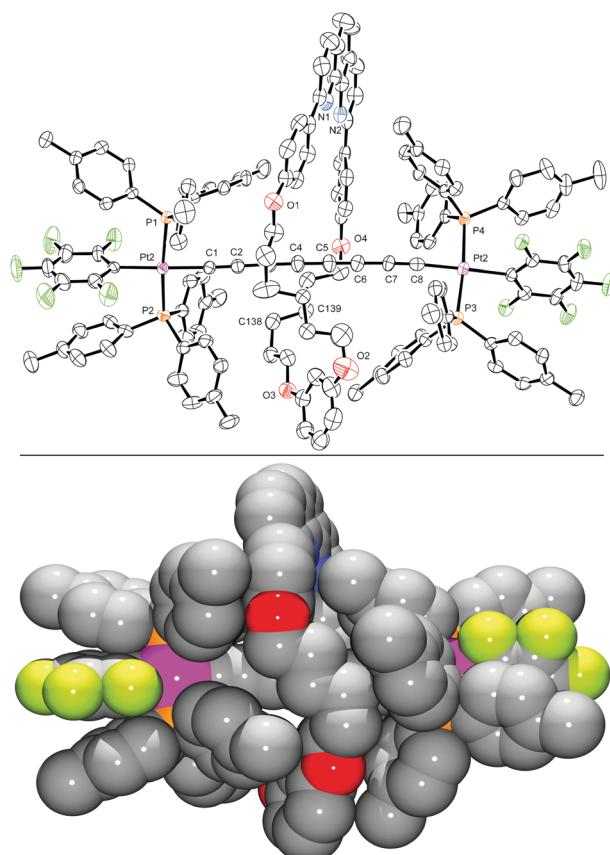
The yields of **2·3** in replicate reactions were low, and little or no homocoupling product **2** was detected. Interestingly, NMR


Scheme 1 Previously synthesized diplatinum polyynediyl complexes.

Scheme 2 A rotaxane derived from a diplatinum polyyne complex.

data suggested the dominant formation of an iodinated $\text{PtC}\equiv\text{CCHI}\equiv\text{CHI}$ species, which could be independently generated from **1** and I_2 . Hence, an alternative procedure involving **3-CuI**, O_2 , and the base K_2CO_3 ($50\text{ }^\circ\text{C}$) was investigated (Conditions B). Comparable quantities of **2-3** were obtained. An alumina column separated the **2-3**/ **3** mixtures, affording the former as a light yellow air stable solid in an average yield of 9%.

The structure of the rotaxane **2-3** was supported by a variety of data. The ^1H NMR spectra showed distinctive changes in chemical shifts, as exemplified in Fig. 1. The $\text{OCH}_2\text{CH}_2\text{CH}_2$ signals of the macrocycle **3** shifted $0.65\text{--}0.82$ ppm upfield, consistent with the modern interpretation of the magnetic shielding anisotropy of a polyyne.¹³ As depicted in Fig. S1 (ESI[†]), the signal for the $p\text{-C}_6\text{H}_4$ protons closest to the OCH_2 substituent also shifted upfield (0.21 ppm), as did that for the *m*- C_6H_4 proton *ortho* to the two OCH_2 groups (0.34 ppm). However, the other *m*- C_6H_4 signals shifted slightly downfield, consistent with an *exo* orientation with respect to the polyyne chain.


Fig. 1 Shifts in ^1H NMR signals upon rotaxane formation.

The methyl signals of the *p*-tol₃P ligands also shifted upfield (0.24 ppm, Fig. 1), perhaps due to shielding by the arene rings of the macrocycle. Analogous but often less pronounced upfield ^1H NMR shifts can be observed with diyne-based rotaxanes and catenanes.^{9,11,12}

Crystals of a solvate of **2-3** could be grown from CH_2Cl_2 /hexanes. The crystal structure was solved as described in the supporting information, and two views are provided in Fig. 2. The former illustrates the close proximity of the sp carbon chain to the macrocycle atoms whose NMR chemical shifts become more shielded (average $\text{C}(\text{sp})/\text{C}(\text{sp}^3)$ distance 4.21 \AA). The latter shows that the sp chain is substantially shielded by the macrocycle, with the closest contacts ($\text{C}138$, 3.403 \AA ; $\text{C}139$, 3.320 \AA) slightly less than the sum of the van der Waals radii of sp³ and sp hybridized carbon atoms ($1.70 + 1.78\text{ \AA}$).¹⁴ Only a few crystal structures have been reported for rotaxanes with diyne-based axles.^{11c,12c,d}

The platinum diphosphine endgroups are clearly sufficiently bulky to block dethreading of the sp chain. In fact, the van der Waals contacts between the endgroups and the macrocycle suggest that the sp chain does not have much translational freedom to “slip” within the rotaxane, in contrast to the diynes in some previously prepared systems.^{9,11} The bond lengths and angles associated with the PtC_8Pt linkage are close to those previously reported for **2** (Table S2, ESI[†]).^{8b}

The IR $\nu_{\text{C}\equiv\text{C}}$ bands of **2-3** are at slightly higher frequencies than those of **2** (2149 vs. 2139 cm^{-1} (m/m) and 2008 vs. 1996 cm^{-1} (w/w) under side-by-side conditions). However, UV-visible

Fig. 2 Structure of **2-3**: top, thermal ellipsoid plot (55% probability contour); bottom, space filling representation.

spectra do not show any evidence for a significant electronic interaction between the rotaxane components. The spectrum of **2-3** (nm, 4.37×10^{-6} M in CH_2Cl_2 (ϵ , $\text{M}^{-1} \text{cm}^{-1}$) 267 (69 000), 293 (120 000), 325 (129 000), 355 (27 000), 381 (9000), 414 (5000); see Fig. S3†) is essentially identical to that of a 1 : 1 mixture of **2** and **3**. Only the absorption at 293 nm appeared slightly enhanced (*ca.* 15% relative to the mixture).

The redox properties of **2** as well as lower and higher homologs and derivatives of the type **II** (Scheme 1) have been studied in detail.^{5,8b,15} Cyclic voltammograms ($7\text{--}9 \times 10^{-4}$ M, CH_2Cl_2 , $n\text{-Bu}_4\text{N}^+ \text{PF}_6^-$ or $n\text{-Bu}_4\text{N}^+ \text{BF}_4^-$, 23.0 ± 1 °C, Pt working and auxiliary electrodes, Ag wire or Ag/AgCl reference electrode; 100 mV s⁻¹; ferrocene, $E^\circ = 0.46$ V) show that oxidations become less reversible as the sp chains become longer. Those of **2** exhibit an oxidation (E° 1.20–1.18 V, ΔE 118–91 mV) with a cathodic current comparable to the anodic current (Fig. S4;† $i_{\text{c/a}} = 0.48\text{--}0.94$ depending upon conditions), indicating significant chemical reversibility. The cyclic voltammogram of macrocycle **3** shows oxidations ($E_{\text{p,a}}$ 1.40, 1.71 V) that are entirely irreversible, as evidenced by the absence of any cathodic current. The cyclic voltammogram of a 1 : 1 mixture of **2** and **3** exhibits oxidations at potentials close to those of the components ($E_{\text{p,a}}$ 1.27, 1.40 V), but no cathodic current, indicating some type of redox process involving both species.¹⁶ That of **2-3** is, outside of a gradually increasing anodic current, featureless.

In summary, the availability of a new type of rotaxane featuring dimetal polyy nediy axles has been established. To our knowledge, this is the first rotaxane based upon a conjugated polyyne longer than butadiyne.¹⁷ Furthermore, higher homologs should be readily accessible, as oxidative homocouplings become more facile as the sp chain in **1** is lengthened,^{8b} and endgroup/macrocycle steric interactions should diminish. Efforts towards this end,^{16b} will be reported in due course.

We thank the US National Science Foundation (CHE-0719267, CHE-1153085) for support.

Notes and references

- (a) S. Barlow and D. O'Hare, *Chem. Rev.*, 1997, **97**, 637; (b) D. Astruc, *Acc. Chem. Res.*, 1997, **30**, 383; (c) F. Paul and C. Lapinte, *Coord. Chem. Rev.*, 1998, **178**–**180**, 431; (d) J. A. McCleverty and M. D. Ward, *Acc. Chem. Res.*, 1998, **31**, 842; (e) P. Aguirre-Etcheverry and D. O'Hare, *Chem. Rev.*, 2010, **110**, 4839.
- (a) N. Le Narvor, L. Toupet and C. Lapinte, *J. Am. Chem. Soc.*, 1995, **117**, 7129; (b) M. I. Bruce, P. J. Low, K. Costuas, J.-F. Halet, S. P. Best and G. A. Heath, *J. Am. Chem. Soc.*, 2000, **122**, 1949; (c) H. Jiao, K. Costuas, J. A. Gladysz, J.-F. Halet, M. Guillemot, L. Toupet, F. Paul and C. Lapinte, *J. Am. Chem. Soc.*, 2003, **125**, 9511, and earlier work cited therein; (d) G.-L. Xu, G. Zou, Y.-H. Ni, M. C. DeRosa, R. J. Crutchley and T. Ren, *J. Am. Chem. Soc.*, 2003, **125**, 10057, and earlier work cited therein; (e) S. N. Semenov, O. Blacque, T. Fox, K. Venkatesan and H. Berke, *J. Am. Chem. Soc.*, 2010, **132**, 3115, and earlier work cited therein; (f) E. C. Fitzgerald, N. J. Brown, R. Edge, M. Helliwell, H. N. Roberts, F. Tuna, A. Beeby, D. Collison, P. J. Low and M. W. Whiteman, *Organometallics*, 2012, **31**, 157, and earlier work cited therein.
- (a) *Molecular Wires From Design to Properties*, Top. Curr. Chem., ed. L. de Cola, Springer, Berlin, 2005, vol. 257; For a widely accepted definition, see: (b) J.-M. Lehn, *Supramolecular Chemistry*, VCH, Weinheim, 1995, ch. 8.3.2.
- One-two lead references from each of several active groups: (a) E. J. F. Klotz, T. D. W. Claridge and H. L. Anderson, *J. Am. Chem. Soc.*, 2006, **128**, 15374(b); M. J. Frampton, T. D. W. Claridge, G. Latini, S. Brovelli, F. Cacialli and H. L. Anderson, *Chem. Commun.*, 2008, 2797; (c) A. P. H. J. Schenning, J.-D. Arndt, M. Ito, A. Stoddart, M. Schreiber, P. Siemsen, R. E. Martin, C. Boudon, J.-P. Gisselbrecht, M. Gross, V. Gramlich and F. Diederich, *Helv. Chim. Acta*, 2001, **84**, 296; (d) P. H. Kwan and T. M. Swager, *Chem. Commun.*, 2005, 5211; (e) C. Li, M. Numata, A.-H. Bae, K. Sakurai and S. Shinkai, *J. Am. Chem. Soc.*, 2005, **127**, 4548; (f) A. Ajayaghosh, V. K. Praveen, C. Vijayakumar and S. J. George, *Angew. Chem., Int. Ed.*, 2007, **46**, 6260 (*Angew. Chem.*, 2007, **119**, 6376); (g) Y. R. Leroux, C. Fave, D. Zigah, G. Trippe-Allard and J. C. Lacroix, *J. Am. Chem. Soc.*, 2008, **130**, 13465; (h) J. Terao, Y. Tanaka, S. Tsuda, N. Kambe, M. Taniguchi, T. Kawai, A. Saeki and S. Seki, *J. Am. Chem. Soc.*, 2009, **131**, 18046; (i) K. Sugiyasu, Y. Honsho, R. M. Harrison, A. Sato, T. Yasuda, S. Seki and M. Takeuchi, *J. Am. Chem. Soc.*, 2010, **132**, 14754; (j) J. Terao, K. Kimura, S. Seki, T. Fujihara and Y. Tsuji, *Chem. Commun.*, 2012, **48**, 1577.
- (a) J. Stahl, W. Mohr, L. de Quadras, T. B. Peters, J. C. Bohling, J. M. Martín-Alvarez, G. R. Owen, F. Hampel and J. A. Gladysz, *J. Am. Chem. Soc.*, 2007, **129**, 8282; (b) L. de Quadras, E. B. Bauer, W. Mohr, J. C. Bohling, T. B. Peters, J. M. Martín-Alvarez, F. Hampel and J. A. Gladysz, *J. Am. Chem. Soc.*, 2007, **129**, 8296; (c) L. de Quadras, E. B. Bauer, J. Stahl, F. Zhuravlev, F. Hampel and J. A. Gladysz, *New J. Chem.*, 2007, **31**, 1594; (d) G. R. Owen, J. Stahl, F. Hampel and J. A. Gladysz, *Chem.-Eur. J.*, 2008, **14**, 73.
- K. D. Demadis, C. M. Hartshorn and T. J. Meyer, *Chem. Rev.*, 2001, **101**, 2655.
- Redox events involving the axle components of rotaxanes have been used to induce macrocycle motion. See (a) J.-P. Sauvage, *Acc. Chem. Res.*, 1998, **31**, 611; (b) D. W. Steuerman, H.-R. Tseng, A. J. Peters, A. H. Flood, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart and J. R. Heath, *Angew. Chem., Int. Ed.*, 2004, **43**, 6486 and the extensive earlier literature cited therein.
- (a) R. Dembinski, T. Bartik, B. Bartik, M. Jaeger and J. A. Gladysz, *J. Am. Chem. Soc.*, 2000, **122**, 810; (b) W. Mohr, J. Stahl, F. Hampel and J. A. Gladysz, *Chem.-Eur. J.*, 2003, **9**, 3324; (c) Q. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel and J. A. Gladysz, *Chem.-Eur. J.*, 2006, **12**, 6486.
- (a) S. Saito, E. Takahashi and K. Nakazono, *Org. Lett.*, 2006, **8**, 5133; see also (b) Y. Sato, R. Yamasaki and S. Saito, *Angew. Chem., Int. Ed.*, 2009, **48**, 504 and 2630.
- (a) J. D. Crowley, S. M. Goldup, A. L. Lee, D. A. Leigh and R. T. McBurney, *Chem. Soc. Rev.*, 2009, **38**, 1530; (b) J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh and R. T. McBurney, *Angew. Chem., Int. Ed.*, 2011, **50**, 9260.
- (a) J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, A.-L. Lee and D. A. Leigh, *Angew. Chem., Int. Ed.*, 2007, **46**, 5709; (b) J. D. Crowley, S. M. Goldup, N. D. Gowans, D. A. Leigh, V. E. Ronaldson and A. M. Z. Slawin, *J. Am. Chem. Soc.*, 2010, **132**, 6243; (c) M. J. Langton, J. D. Maticak, A. L. Thompson and H. L. Anderson, *Chem. Sci.*, 2011, **2**, 1897.
- Rotaxanes with 1,3-diyne containing axles synthesized by other methods: (a) F. Diederich, C. Dietrich-Buchecker, J.-F. Nierengarten and J.-P. Sauvage, *J. Chem. Soc., Chem. Commun.*, 1995, 781; (b) P. N. Taylor, A. J. Hagan and H. L. Anderson, *Org. Biomol. Chem.*, 2003, **1**, 3851; (c) I. Yoon, O. S. Miljanic, D. Benítez, S. I. Khan and J. F. Stoddart, *Chem. Commun.*, 2008, 4561; (d) I. B. Shir, S. Sasmal, T. Mejuch, M. K. Sinha, M. Kapon and E. Keinan, *J. Org. Chem.*, 2008, **73**, 8772.
- C. S. Wannere and P. v. R. Schleyer, *Org. Lett.*, 2003, **5**, 605.
- A. Bondi, *J. Phys. Chem.*, 1964, **68**, 441.
- F. Zhuravlev and J. A. Gladysz, *Chem.-Eur. J.*, 2004, **10**, 6510.
- (a) When the switching potential is shifted to 1.350 V, the first oxidation becomes partially reversible ($i_{\text{c/a}} = 0.66$); (b) The oxidations associated with **3** are likely based in the resorcinol moiety: M. K. Carter, *J. Mol. Struct.*, 2007, **831**, 26.
- Other examples have recently been reported: L. D. Movsisyan, D. V. Kondratuk, M. Franz, A. L. Thompson, R. R. Tykwienski and H. L. Anderson, *Org. Lett.*, 2012, DOI: 10.1021/ol301392t.