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ABSTRACT

Privilege separation is an effective technique to improve software

security. However, past partitioning systems do not allow program-

mers to make quantitative tradeoffs between security and perfor-

mance. In this paper, we describe our toolchain called PM. It can

automatically find the optimal boundary in program partitioning.

This is achieved by solving an integer-programming model that

optimizes for a user-chosen metric while satisfying the remaining

security and performance constraints on other metrics. We choose

security metrics to reason about how well computed partitions

enforce information flow control to: (1) protect the program from

low-integrity inputs or (2) prevent leakage of program secrets. As

a result, functions in the sensitive module that fall on the optimal

partition boundaries automatically identify where declassification

is necessary. We used PM to experiment on a set of real-world

programs to protect confidentiality and integrity; results show that,

with moderate user guidance, PM can find partitions that have

better balance between security and performance than partitions

found by a previous tool that requires manual declassification.

CCS CONCEPTS

• Security and privacy→ Software and application security;

• Software and its engineering → Automated static analysis;

Dynamic analysis.
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1 INTRODUCTION

Privilege separation in software systems refers to the process of

decomposing a system intomultiplemodules, each loaded into a sep-

arate protection domain. Privilege separation prevents a software

system from being compromised completely by a single vulnerabil-

ity because any compromised protection domain cannot directly

access the code or data of the parts of the system running in other

protection domains. Calls to functions in other protection domains

are converted into remote procedure calls (RPCs) and data access

is restricted to protection domains where necessary.

While there is clear potential to improve software security through

the use of privilege separation, programmers face challenges in

leveraging privilege separation to achieve security guarantees, to

refactor software systems into working modules, and to maintain

efficient performance in the decomposed system. First, systems

that are privilege separated often aim to assign least privilege [22]

permissions to each protection domain, but it is unclear whether

such permission assignments achieve security guarantees. For ex-

ample, OpenSSH was manually refactored by Provos et al. [20]

into one privileged server process and many unprivileged monitor

processes, each of which handles a user connection. In this setup, a

compromised monitor process should not affect the server process

or other monitor processes. However, only later was it shown that

the privilege separated OpenSSH achieved an approximation of the

strong Clark-Wilson integrity model [23].

Second, manually privilege separating complex software is labor

intensive. Automatic privilege separation aims to partition software

with little user involvement. For instance, Privtrans [4] takes as

input C source code and user annotations about sensitive data

and declassification, and employs static analysis to separate the

application into a master process that handles privileged operations

and an unprivileged slave process. Automatic privilege separation

has great potential for improving software security.



Third, while security is the motivating goal in performing privi-

lege separation, the performance implications of the resulting pro-

gram must also be carefully considered. No matter how protection

domains are isolated (e.g., via the OS process isolation or via some

hardware mechanism such as Intel’s SGX), there is invariably a

performance cost when data and control cross protection-domain

boundaries; as a result, refactoring a monolithic application into

multiple modules in different protection domains comes with a

performance cost, incurred by changing local data/code accesses

into remote data/code accesses, which cross the partition boundary.

Importantly, the performance cost depends on how the application

is partitioned; that is, how boundaries of modules are drawn in the

application and what code is duplicated. If considering only per-

formance, one would just put all code into one protection domain,

reverting back to the original monolithic application; however, se-

curity would not be improved. Similarly, considering only security

could result in bad performance.

Therefore, being able to achieve security goals while still allow-

ing users to make tradeoffs between security and performance is

essential for the success of privilege separation.We call security and

performance partitioning factors, as they are critical for partition-

ing. Many previous tools [4, 14–16, 21, 29, 30], however, consider

only security during privilege separation. Some of these tools (e.g.,

[4, 15]) require user-specified data declassification, a process that

allows sensitive data flow from a sensitive domain (i.e., the domain

that processes sensitive data) to an insensitive domain, to prevent

leakage of secret data and/or use of low-integrity data. For exam-

ple, suppose there is an authentication function that uses a secret

password and a client function f that invokes the authentication

function. By declassifying the return value of the authentication

function, f can then be put into the insensitive domain. This man-

ual declassification process, however, burdens programmers as they

have to decide where to perform declassification. In general, pro-

grammers have to evaluate the performance impact of boundary

crossings and the possible security impact of information flows at

those boundaries, as well as the requirements for writing effective

declassifiers at each candidate boundary.

A few past systems [6, 12, 28] consider both security and per-

formance during partitioning, but none of them quantifies secu-

rity and supports users in making quantitative tradeoffs between

security and performance. We propose a new automatic privilege-

separation framework, called Program-mandering1, abbreviated as

PM. It makes a key observation that many applications’ security

goals are related to information flow and it therefore adopts quanti-

tative information flow as a metric for security. Consequently, PM

enables quantitative tradeoffs between security and performance,

while achieving meaningful security goals. In particular, PM makes

the following contributions:

1Gerrymandering refers to the process of manipulating the boundaries of voting
districts to favor one political party; program-mandering refers to the process of
carefully choosing partitioning boundaries to favor a good tradeoff between security
and performance.

• PM is a privilege-separation framework that guides users

to make quantitative tradeoffs between security and perfor-

mance. By converting privilege separation into an integer-

programming problem, it automatically computes the op-

timal partition, with respect to user-specified budgets on

security and performance.

• PM is the first system that combines quantitative information

flow with privilege separation. This not only provides a

security metric that aligns well with security goals common

in applications, but also reduces users’ burden of performing

manual declassification—the optimal partition computed by

PM automatically gives where data should be declassified.

• We have implemented PM and evaluated it on a set of real

world programs. Our experience shows that PM helps users

make quantitative trade-offs among multiple factors. After

observing initial partitions, users could use PM to improve

the balance between security and performance by setting

simple constraints, in an iterative process.

2 RELATEDWORK

Several tools have been proposed to assist programmers in man-

ually partitioning their applications, including Privman [13] and

Wedge [3]. However, they require programmers to manually figure

out a good partition boundary. A number of tools [4, 14–16, 21, 29,

30] have been created for automatically partitioning applications

using program analysis. These tools’ partitioning algorithms, how-

ever, consider only security but not other factors; as a result, they

do not allow tradeoffs among multiple factors. Further, these tools

partition programs, but lack consideration for helping users achieve

security goals; e.g., they expect users to manually choose where

to declassify information flows and sometimes do not account for

flows to external channels.

ProgramCutter [28], Swift [6], and SOAAP [12] are partitioning

systems that consider both security and performance, but none of

them enables a user to make quantitative tradeoffs between security

and performance since they lack metrics for quantifying security.

In detail, ProgramCutter [28] collects system calls that a function

makes and uses that information to isolate a set of functions that

access a sensitive resource. It does not consider the impact of in-

formation flow on partitioning, which is critical to preventing data

leakage and protecting data integrity. For example, if function A
reads a password from a password file and calls function B with that

password, ProgramCutter would not label function B as sensitive

since B does not directly read the file. In contrast, PM tracks how

function A propagates the password inside A and determines how

many bits of sensitive information are passed from A to B.
Swift [6] separates web application code into two components,

one that runs on the web client and one that runs on the web server.

Swift computes a partition that minimizes the number of boundary

crossings (i.e., between the client and server). However, it does

not quantify security. Further, Swift relies on the Jif programming

language [19] for writing the initial program, guaranteeing that

any partition will satisfy information flow requirements. However,

writing programs to satisfy information flow comprehensively of-

ten creates a significant manual burden (e.g., to define and place

declassifiers to resolve information flow errors).



SOAAP [12] is an interactive tool that asks a user to provide

source-level annotations to guide partitioning. SOAAP’s annotation

requirement is heavyweight; for example, it requires annotations

about the partition boundary and what global state can be accessed

by each security domain. In comparison, PM asks for only anno-

tations about sensitive data together with security/performance

budgets, and it automatically finds a partition boundary that sat-

isfies the budgets and is optimized for one metric. While SOAAP

includes a performance simulator to help users decide whether

a partition would meet a performance goal, it does not quantify

security nor does it provide a framework for users to explore the

quantitative tradeoff between security and performance.

Dong et al. [9] performed an empirical study on balancing be-

tween security and performance for a privilege-separated web

browser. Using past vulnerability and profiling data, the case study

quantifies the security and performance benefits for typical kinds

of privilege separation in the context of web browsers. However, it

does not offer a framework that allows users to make security and

performance tradeoffs to privilege separate general applications.

PM partitions programs to control the information flow between

the sensitive and the insensitive domains. DataShield [5] separates

sensitive and non-sensitive data and applies memory safety on

sensitive data and Software-based Fault Isolation [26, 27] on non-

sensitive data; no information flow is allowed between the two

memory regions. Although DataShield instruments each memory

instruction according to its privilege (whether sensitive data is ac-

cessed) and enforces a logical separation of code, it does not split

code into two separate domains. The danger of mixing code of

different privileges in the same domain is that the domain still has

to possess all privileges; the attacker might use a vulnerability to ex-

ecute code of higher privileges unexpectedly. In contrast, privilege

separation tools physically separate code into multiple domains

of differing privileges. Kenali [25] is similar to DataShield, except

that it works on OS kernel code, and applies data-flow integrity on

kernel data critical for access control.

3 A MOTIVATING EXAMPLE

Fig. 1 presents a toy program motivating the need for balancing

security and performance when performing privilege separation.

For brevity, we do not involve global variables in the toy program.

The program is a simplified version of how the thttpd web server

performs authentication. It accepts a username and a password

from the user and performs authentication by using a password

file. The password file can be any one of the five possibilities in the

fname array. The auth function iterates over the five possibilities

and invokes auth2, which checks if the password file exists and,

if so, performs authentication by comparing the user name and

password string with lines in the password file. In the worst case,

auth invokes auth2 five times. Note that the main function has a

vulnerability that can be used to cause a buffer overrun. As a result,

when all three functions are in the same protection domain, an

attacker can use the buffer overrun to take over the program and

learn information in the password file.

For better security, one partition is to put auth2 in its own

protection domain, with the privilege of reading the password

files, and the rest of the code stays in a different protection domain,

1 char ∗ fname [ 5 ] = { " / d1 / pwd " , " / d2 / pwd " , . . . } ;

2

3 / / r e t u r n −1 i f fn d o e s no t e x i s t ;

4 / / r e t u r n 1 i f userpwd found in fn ;

5 / / r e t u r n 0 i f use rpwd no t found in fn

6 in t auth2 ( char ∗ userpwd , char ∗ fn ) {

7 . . . / / c o d e om i t t e d

8 }

9

10 in t auth ( char ∗ userpwd ) {

11 for ( in t i = 0 ; i < 5 ; i ++) {

12 in t r e t = auth2 ( userpwd , fname [ i ] ) ;

13 i f ( r e t != −1) return r e t ;

14 }

15 return −1;

16 }

17

18 void main ( in t argc , char ∗ ∗ argv ) {

19 char ∗ username=argv [ 1 ] , ∗ pwd=argv [ 2 ] ;

20 char userpwd [ 5 0 0 ] ;

21 / / p o s s i b l e b u f f e r o v e r r un

22 s p r i n t f ( userpwd , "%s %s " , username , pwd ) ;

23 in t r e t = auth ( userpwd ) ;

24 i f ( r e t ==1) p r i n t f ( " Auth succeeded ! \ n " ) ;

25 e l se i f ( r e t ==0) p r i n t f ( " Auth f a i l e d ! \ n " ) ;

26 e l se p r i n t f ( " Password f i l e not found ! \ n " ) ;

27 }

Figure 1: A motivating example.

Figure 2: Call graph and partitions for Fig. 1 example.

which lacks access to any password file. As a result, less code has

access to the secret passwords. While this is a natural partition for

improving security, other choices might be better to have better

balance between security and performance.

To explore possible choices of partitioning, let us examine the

example’s call graph annotated with information about frequencies

of calls (represented by the numbers of calls for brevity) and po-

tential leakage of secret information, shown in Fig. 2. It shows that

main invokes auth once and auth potentially invokes auth2 five
times. The return value of auth2 potentially leaks one bit of the

secret password since its return value depends on the comparison

between the user-provided password and the real password. That

one bit is also propagated back from auth to main, since auth’s
return value depends on the result of calling auth2.

Fig. 2 also shows two possible partitions. Partition #1 is the one

we have already discussed. It minimizes the size of the sensitive

domain (assuming functions are the unit of partitioning). To pro-

duce partition #1 in systems that require declassification [4, 15],

one would manually declassify the return values of auth2. Partition
#2 puts auth and auth2 in the sensitive domain and main in the



insensitive domain. Partition #2 would likely cause less runtime

overhead than #1 because it has fewer cross-boundary function

calls (1 versus 5 calls), at the cost of an enlarged sensitive domain.

In addition, less data must be transferred between partitions, we

send only the requested password for partition #2, not the pass-

word file name as well. Therefore, partition #2 may be more desired

depending on how one considers different factors. In previous sys-

tems [4, 15], partition #2 can be achieved by manually declassify

the return result from auth to main.
This example shows that the best partition highly depends on

what the users’ tradeoffs are among multiple factors. Some earlier

work [4, 15] resorts to asking users to analyze the situation and

use manual declassification and code duplication to find a good

partition. However, such manual analysis is laborious and error-

prone. Therefore, what is needed is a flexible, automatic framework

that outputs the best partition according to users’ requirements.

4 SYSTEM OVERVIEW

Attack model. PM takes a program with some sensitive data and

splits it into a sensitive and an insensitive domain. Sensitive data

can be data of either high secrecy or low integrity. We assume pro-

grammers can identify such sensitive data and are able to annotate

the program to make sensitive data explicit. As we will explain, for

both secrecy and integrity, PM’s overall security goal of partition-

ing is based on information flow, particularly noninterference [11].

However, what the attacker controls in the case of secrecy differs

from the one for integrity. We next explain them separately (and

leave more details to Sec. 6).

When the goal is to prevent leakage of secret data, users use

PM to produce a sensitive, high-secrecy domain that holds and pro-

cesses a secret and an insensitive, low-secrecy domain for the rest

of the program. Here, we assume a strong attack model in which the

attacker can fully control the low-secrecy domain by modifying its

data and possibly its code or control flows (e.g., via code injection or

return-oriented programming); she can also control the interaction

from the low-secrecy domain to the high-secrecy domain given

the partition boundary. Given the attacker’s capabilities, PM aims

to produce a partition that achieves non-interference: the secret

data does not leak to the low-secrecy domain, modulo the data that

is declassified by the high-secrecy domain at the boundary. PM

does not determine how to declassify sensitive data automatically,

but enables assessment of the leakage rate for information flows

at boundaries to help users choose boundaries for implementing

declassifiers.

When the goal is to confine the use of low-integrity data, users

apply PM to produce a sensitive, low-integrity domain that pro-

cesses low-integrity data (e.g., untrusted data from the internet)

and an insensitive, high-integrity domain for the rest of the pro-

gram. In this case, we assume the low-integrity (sensitive) domain

can be fully controlled by the attacker because of the low-integrity

data (in contrast to the assumption that the insensitive domain can

be fully controlled in the case of secrecy). The attacker’s goal is

to influence the execution of the high-integrity domain through

controlling the interactions between the low-integrity to the high-

integrity domains. PM aims to produce a good partition that also

achieves non-interference: the low-integrity data cannot affect the

execution of the high-integrity domain, modulo the data that is en-

dorsed at the boundary from the low-integrity to the high-integrity

domain. Similarly to secrecy as described above, PM aids users in

the selection of partition boundaries for implementing endorsers.

System workflow. Fig. 3 presents PM’s workflow. It takes the

source code of an application as input and constructs a Program

Dependence Graph (PDG) for the application. We reuse our pre-

vious work [15] for PDG construction; detailed algorithms can be

found there. The user also annotates the application to tell PM what

the sensitive data is. PM then performs program analysis to quan-

tify security and performance using selected metrics. For instance,

it uses a dynamic information-flow tracker to measure the quan-

tity of sensitive flow among functions and global variables. Those

measurements are used to annotate the nodes and edges of the

PDG. Based on the annotated PDG and user-specified constraints

on the values of metrics, a partitioning algorithm searches for a

partition that satisfies the constraints and is optimal according a

user-specified goal (i.e., one of the metrics). The output is a sensitive

domain and an insensitive domain, each of which consists of both

data and code. In principle, this approach can be applied multiple

times to further decompose the resultant partitions.

We next clarify a few points. First, user-specified constraints

restrict the search space of what partitions are acceptable to users.

For instance, a user can specify that the sensitive information flow

from the sensitive domain to the insensitive one should be at most

2 bits. It can be difficult to get those constraints right in one shot;

so PM is intended as an interactive tool for users. A user specifies

some initial constraints and chooses the metric to optimize and

PM computes the optimal partition for that optimization metric

under those constraints; then the user inspects the results and pos-

sibly makes adjustments to the constraints to get further partitions.

Second, PM’s partitioning granularity is at the function level; it

does not partition individual functions. Our experiments show that

this level of granularity is sufficient for many programs; however,

there are some programs whose partitioning would require finer

granularity, as we will discuss.

5 GRAPH-BASED PARTITIONING

We next formalize program partitioning as graph partitioning. We

then show howwe can encode the problem in integer programming.

5.1 Graph partitioning

For ease of exposition, we present the formalization in two steps.

First, we assume the input program consists of a set of functions

and has no global variables; here we formalize program partitioning

as call-graph partitioning. In the second step, we consider the case

when the program has both functions and global variables; in this

step, program partitioning is modeled as partitioning a program-

dependence graph.

We model a program that has a set of functions but no global

variables as a call graph. It is a directed graph G = (V ,E), with
vertices V representing the program’s functions and edges E rep-

resenting call relations between functions. If function f1 can call



Figure 3: System flow of PM.

f2, there is a call edge from f1 to f2.
2 Without loss of generality,

we assume there is a single special function that reads in sensitive

data; we use s for the special function. For the example in Fig. 1,

auth2 is the special function since it reads the password file.

Definition 5.1 (Partitions). A partition of G = (V ,E), also called
a cut, is modeled as two sets of functions (S,T ): a sensitive domain

S ⊆ V and an insensitive domain T ⊆ V and they satisfy (1) S
contains the special function (i.e., s ∈ S), and (2) S ∪T = V .

Note that our partitions allow function replication; that is, S ∩T
may not be empty because there may be functions that are repli-

cated in both domains. We use R = S ∩T for the set of replicated

functions. In practice, duplicating common utility functions often

benefits performance. For instance, thttpd has a function called

my_snprintf, a custom implementation of snprintf. It is called
by many functions; without duplication, it would cause many do-

main crossings no matter what domain my_snprintf would be in.

Duplicating it in both domains benefits performance, at the cost of

larger domains.

The edges between two domains are called boundary edges; we

write BE to represent the set of boundary edges. There are two

kinds of boundary edges. Forward boundary edges are those from

S to T − R, defined as FB = {ei j | i ∈ S ∧ j ∈ T − R}. Backward
boundary edges are those fromT to S−R, defined as BB = {ei j | i ∈
T ∧ j ∈ S −R}. We have BE = FB∪BB. Note that self recursion does

not pose a problem to our formalization: if there is a call edge from

f to itself, it is not considered a boundary edge by the definitions.

Given a call graph, PM annotates its vertices and edges with

a set of weights, which represent measurements of security and

performance impact at the function level. For example, a function

vertex may be associated with a weight that specifies the code size

of the function, describing one aspect of the function’s impact on

the security of a partition based on the amount of code in a sensitive

domain that includes this function. Given a partition, weights in the

graph are used to compute metrics for the partition. PM is largely

independent of the choice of metrics, but we describe the metrics

chosen in our experiments in Section 6. We discuss in Sec. 6.2 about

the space of metrics and how PM can be switched to other metrics.

Given an annotated graph, users guide PM’s partitioning process

by specifying constraints and an optimization goal. Constraints are

in the form of budgets on metrics: bi ∈ B, where bi is a limit for the

2This formalization has just forward edges but no return edges; measurements for both
the call and the return are associated with forward edges. This makes the formalization
easier to present and implement.

value of metricmi ∈ M , B is the set of budgets, andM is the set of

metrics. The optimization goal is one of the metrics. PM’s goal is

to search for the optimal partition in the following sense:

Definition 5.2 (Optimal partitioning). For a set of metrics M , a

target metricmk to minimize, and budgets B, the optimal partition

P = (S,T ) is the one that minimizes the target metric and satisfies

the following constraint: ∀mi ∈ M,mi (P) ≤ bi , wheremi (P) is the
value of metricmi for partition P .

Global variables. When partitioning a program with both func-

tions and global variables, PM splits the program into two domains,

each with a set of functions and globals. For each global, a get-

ter function and a setter function are added. A domain can access

its own globals directly; however, to access a different domain’s

globals, RPCs are issued to the getter/setter functions. As a fur-

ther optimization, PM determines what global data are read only

and duplicates all read-only global data in both domains, reduc-

ing the frequency of context switches caused by accessing globals.

Given the above understanding, Appendix A presents necessary

adjustments to graph partitioning when the input program has

both functions and globals. Briefly, the graph becomes a Program

Dependence Graph (PDG). In this PDG, vertices represent either

functions or globals; edges are either call edges between functions,

or data-flow edges between functions and globals. Weights are

added on vertices and edges. Note that our implementation reuses

our previous work [15] to construct full-fledged PDGs [10], which

in addition contain control-dependence edges and data-dependence

edges within functions. PM, however, needs only the PDG’s call-

graph part as well as the data-dependence edges between functions

and globals, since it performs function-level partitioning.

5.2 Partitioning with integer programming

Given the formalization above, we now discuss how to find the

optimal partition using binary Integer Programming (IP). IP is linear

programming with only integral variables. Solving IP problems in

general is NP-complete, but practical IP solvers have been developed

and can solve moderately sized IP problems. A binary IP problem

is a special IP problem in which all variables are either 0 or 1. To

formulate an IP problem, one first needs to declare integral variables

with constraints. Constraints can be linear equations or inequations

on variables. Afterwards, one must define an objective function

to optimize. A solution to an IP problem is an assignment to all

declared variables that satisfies all the constraints and optimizes

the objective function.



Appendix B presents in detail how to encode optimal partition

as a binary IP problem for the metrics we introduce in Sec 6. Briefly,

we introduce binary variables that model (1) whether a function

(or a global variable) is only in the sensitive domain (or only in the

insensitive domain), and (2) whether an edge is a forward boundary

edge (or a backward boundary edge). Then constraints are added

to (1) allow only valid partitions (e.g., the special sensitive function

must be in the sensitive domain), and (2) limit a produced parti-

tion to respect the given budgets. Finally, an objective function is

formalized to minimize the target metric. Overall, this encoding

declares O(|E |) number of variables and constraints.

6 METRICS

Privilege separation has traditionally been applied to reduce the

privileges of individual domains to achieve least privilege. For ex-

ample, privilege separation for OpenSSH by Provos et al. [20] refac-

tored the program into one privileged server andmany unprivileged

monitors. Access to secret keys is removed from the monitors. The

server retains access to the files storing secret keys, but no longer

needs network access. However, least privilege may still permit

attacks from an unprivileged domain. For example, the SELinux

policy for the server allowed it to access files modifiable by un-

trusted monitors, which allowed unauthorized information flows

(i.e., from low-integrity monitors to high-integrity servers) that

may enable attacks. Researchers suggested modifications to the

SELinux policy and changes to access control enforcement to limit

the channels (i.e., particular system call invocations) through which

the server could access untrusted resources [23], approximating

Clark-Wilson integrity [8]. In particular, Clark-Wilson integrity

enforces an information-flow requirement that all low-integrity

data received by a high-integrity program may be received only if

the program can upgrade (e.g., endorse or filter) that data. Thus, a

privilege-separation method must enable users to configure parti-

tions that only allow authorized information flows.

In this section, we examine the information-flow security require-

ments that must be fulfilled in order to deploy sensitive domains

that process low-integrity data and high-secrecy data. Measuring

these requirements form a basis for key security metrics used by

PM to generate partitions. We then define the full set of security

metrics applied in our evaluation using PM.

Low-integrity domains. Low-integrity partitions are created to

receive untrusted, external input; the security goal is to protect the

program as much as possible from such untrusted inputs. For that,

we leverage PM to create a sensitive, low-integrity domain to collect

such untrusted inputs and an insensitive high-integrity domain to

guard itself from those untrusted inputs. When some low-integrity

information is sent to the high-integrity domain, that information

must be declassified (i.e., endorsed) in the high-integrity domain.

To guide PM to generate such partitions, we target noninter-

ference, which has two implications for partitioning. First, low-

integrity domains should have minimal code size. We want to min-

imize the amount of code that can be directly influenced by low-

integrity data. Second, the quantity of information conveyed from

the low-integrity domain to the high-integrity domain should be

minimized to reduce the amount of data to endorse or filter. We

note that the data may convey between domains directly, via RPCs,

and through indirect channels, such as the file system. The former

is controlled by where we place partition boundaries. The latter

is controlled by the least privilege permissions needed to execute

the partitions correctly. Ideally, the partitioning creates RPCs that

convey minimal information, and least privilege permissions that

do not require the high-integrity domain to use any data written to

the file system.

As the low-integrity domain cannot be entrusted with any se-

cret data, we prohibit any partition that enables the low-integrity

domain to access secret data from the high-integrity domain or the

file system.

High-secrecy domains. The purpose of high-secrecy domains

is to provide access to program secrets; so the security goal is to

prevent leakage of such secrets from the program, even if part of

the program comes under attacker control. Thus, we leverage PM

to create a sensitive, high-secrecy domain to access secrets and an

insensitive low-secrecy domain that must not have access to secret

information. The high-secrecy domain must declassify any data to

be sent via RPC to the low-secrecy one.

To guide the use of PM to generate such partitions, we again

target noninterference, which aims to ensure that any low-secrecy

programswill produce the same (low) outputs regardless of the high-

secrecy data processing. Thus, we aim to minimize the information

flow from the high-secrecy to the low-secrecy domain to reduce

the amount of data that must be declassified. The partitioning

boundary defines where the sensitive partition must declassify

data. In addition, if the sensitive partition outputs the secret data

to external resources, such as the file system, that partition must

also declassify that data. Ideally, secret data is not output to the file

system.

In order to protect the use of high-secrecy data, the integrity of

the high-secrecy domain must be protected. We should aim to mini-

mize the amount of low-integrity data received by the high-integrity

(and high-secrecy) domains. However, in this case, the partitioning

is to protect the high-secrecy and high-integrity functions, not to

protect the program at large from functions that receive untrusted

inputs. Thus, from a Clark-Wilson perspective, it is best to minimize

the amount of code performing security-critical functionality to

reduce its attack surface.

6.1 Definition of metrics

We define a set of metrics for quantifying the quality of a partition

in terms its security and performance. Based on the discussion

above, we introduce two metrics for measuring the security impact

of a partition: (1) the amount of sensitive information that flows

from the sensitive to the insensitive domain and (2) the percentage

of sensitive code. For performance, we define metrics to estimate

the performance overhead created by the partition using: (1) the

frequency of context switches (i.e., the frequency of domain cross-

ings between the two domains) and (2) the pointer complexity of

the interface between the two domains (i.e., the amount of data

conveyed on domain crossings).

An edge is annotated with information-flow measurements. Re-

call that an edge e represents a call relation between a caller and

a callee. For information flow, two weights are added to an edge:

for an edge e that represents calls from f1 to f2, fflow(e) is the



amount of sensitive information, measured in the number of bits,

in the arguments passed from f1 to f2; and bflow(e) is the amount

of sensitive information in return values from f2 to f1. We will

later discuss how PM uses a dynamic information-flow tracker to

measure fflow(e) and bflow(e). Then the total amount of sensitive

information flow from the sensitive to the insensitive domain is the

sum of forward flows on forward boundary edges and backward

flows on backward boundary edges:

Definition 6.1 (Sensitive information flow).

Flow(S,T ) =
∑

e ∈FB

fflow(e) +
∑

e ∈BB

bflow(e).

Each vertex is annotated with the code size of the corresponding

function.Wewrite sz(v) for the code size of the function represented
by vertexv . Therefore, the total code size of the sensitive domain in

a partition P = (S,T ) is defined as the sum of the sizes of functions

in the domain:

Definition 6.2 (Sensitive code percentage).

SCode(S,T ) = (
∑

v ∈S

sz(v))/(
∑

v ∈S∪T

sz(v)).

An edge from f1 to f2 is also annotated with a weight af(e)
(abbreviation for access frequency) for measuring the frequency of

calls of f2 by f1. When e is a boundary edge, af(e) corresponds to
the frequency of context switches caused by realizing e as an RPC.

Then the total frequency of context switches caused by a partition

is the sum of access frequency on boundary edges:

Definition 6.3 (Context switch frequency).

CSwitch(S,T ) =
∑

e ∈FB∪BB

af(e).

We also propose a metric for the cost per switch. However, esti-

mating that cost accurately is difficult because it depends on what

data is passed and how the context switch is implemented. RPCs

are implemented by marshalling the arguments from the caller to

the callee, who unmarshalls these values, executes the operation,

and performs the reverse process for return values. While data of

non-pointer types can be automatically marshalled, more cost is

incurred when marshalling C/C++ style pointer data. For example,

PtrSplit [15] tracks the buffer bounds of pointers at runtime and

copies the underlying buffers duringmarshalling, causingmore data

to cross the boundary. In addition, pointers to user-defined types

may further reference pointers to other types, possibly necessitat-

ing a “deep copy” to convey the necessary data between domains.

Alternatively, one may employ the opaque-pointer approach (e.g.,

used in [2]); however, passing multi-level pointers across the parti-

tion boundary opaquely creates frequent domain crossings, since

each time an opaque pointer is used the pointer has to be passed

back to the sender for processing. Therefore, in either deep copying

or opaque pointers, pointer types create significant cost. Given the

lack of analyses to estimate RPC overhead accurately at present,

we propose a coarse estimate of this overhead based on the pointer

complexity of the type signature of the callee function. In this paper,

the pointer complexity of a type is defined by the level of pointers

in the type. For example, the pointer complexity of a base type like

int is 0, the complexity of int** is 2, and the complexity of the

type of pointers to structs with a two-level pointer field is 3.

Given an edge e from f1 to f2 in the call graph, we use plevel(e)
for the sum of pointer complexity of the argument and return types

of f2. Then the pointer complexity is defined as the sum of type

complexity of all boundary edges:

Definition 6.4 (Pointer complexity).

Cplx(S,T ) =
∑

e ∈FB∪BB

plevel(e).

6.2 Alternative metrics

We next briefly discuss alternatives to our proposed metrics and

how PM could be changed to incorporate those metrics.

For software-security metrics, we emphasize that the research is

lacking, and there are no generally agreed-upon metrics for mea-

suring software security. One possibility is to measure the number

of past known vulnerabilities that can be mitigated through parti-

tioning. We did not use this because this metric reflects only the

past and does not consider unknown vulnerabilities. Another pos-

sibility is to measure the attack surface after partitioning, but how

to perform such a measurement is an open question. For perfor-

mance metrics, there are many other alternatives. In addition to

context-switch frequency and pointer complexity, one can dynami-

cally measure the amount of data passed for a cross-boundary call

or return, or statically compute the type complexity of parameters

(not just for pointers). In this paper, we do not attempt to design

new metrics, but reuse existing metrics and we find that the metrics

we propose are reasonable proxies of security and performance. A

follow-up study can investigate which metrics are most appropriate

by evaluating metrics on a larger number of benchmarks.

We note that PM is set up in a way that enables users to switch

to other metrics without changing its optimization framework for

finding the best partition according to a user-specified goal. A

new metric can be added as long as measurements at the PDG

node/edge level can be performed and the computation of going

from node/edge level measurements to partition-level measure-

ments can be encoded in IP. We believe most metrics satisfy these

requirements. As an example, for the number of past-known vul-

nerabilities, we can annotate each function node with the number

of vulnerabilities that have been discovered in that function; the

number of vulnerabilities mitigated through isolating an untrusted

domain is just the sum of numbers on the function nodes in the

domain, which can be easily encoded in IP.

7 IMPLEMENTATION

The prototype implementation of PM is implemented with the

help of several tools, including LLVM3, Flowcheck [18], Intel’s Pin

tool [17], and lp_solve [1]. We first explain the toolchain’s input

and output, followed by a discussion of how each component is

implemented.

Tool input and output. At a high level, PM’s implementation

takes two pieces of input from the user: (1) source code plus user

annotations about what sensitive functions and globals are; (2)

metric budgets and the optimization goal.

3Our original implementation was on LLVM 3.5; we recently migrated the PDG-
construction part to LLVM 5.0 and open sourced it (https://bitbucket.org/psu_soslab/
pdg-llvm5.0/src/pdg_plugin/). Other parts of the tool are being migrated to LLVM 5.0
and will be released when mature.



For the first input, the user uses C attributes tomake explicit what

sensitive functions/variables are. The following example shows how

to specify auth2 as a sensitive function:

int (__attribute__((annotate("sensitive"))) auth2)
(char* userpwd, char* fn) { ... }

The second piece of input is metric budgets and the optimization

goal. Budgets are in the form of (bc ,bf ,bs ,bx ), where bc is the bud-
get for the sensitive-code percentage, bf the budget for the amount

of sensitive information flow, bs the budget for the frequency of

context switches, and bx the pointer-complexity budget. A user

can allow some metrics have an unlimited budget, in which case _

is used for those metrics. Furthermore, the user specifies a metric

as the target metric to minimize; in notation, a “*” symbol is put

after the budget to indicate that it is the target metric. As an ex-

ample, (10%, 2∗, _, _) means that the budget for the sensitive code

percentage is 10%, the budget for sensitive information flow is 2 bits,

budgets for the context-switch frequency and pointer complexity

are unlimited, and the goal is to minimize the amount of sensitive

information flow.

With this input, PM then computes a partition in the form of a

set of functions and globals that should stay in the sensitive domain;

the rest of the code stays in the insensitive domain.

To evaluate the quality of a partition and be able to compare

different ways of partitioning for the same application, we over-

load the notation to also use a quadruple for the quality scores

of a partition: (c, f , s,x), where c is the sensitive-code percentage
of the partition, f the amount of sensitive information flow, s the
frequency of context switches, and x the pointer complexity. We

added a feature to PM that takes a partition of a program as input

and outputs its quality quadruple according to the program’s an-

notated PDG. This feature is useful when users want to use some

initial partition’s quality scores as a starting point to find better

partitions.

LLVMpasses. Clang is used to compile the input program’s source

code into LLVM IR code. The source code is assumed to include user

annotations about where sensitive data is. PM adds LLVM passes at

the IR level for PDG construction and performing measurements on

code size and pointer complexity. Our PDG construction reuses our

previous work [15], which allows modular PDG construction and

relies on only local but not global pointer analysis. LLVM passes

are also added to count the code sizes of functions and compute the

pointer complexity for the types of functions and global variables.

These measurements are then added to the PDG as weights.

Measuring information flow. PM measures sensitive informa-

tion flow at the function level, in particular, during function calls

and returns and between functions and globals. For this step, the

input is a piece of sensitive information. The output is forward

information flow fflow(e) and backward information flow bflow(e)
for each edge in the input program’s PDG. For instance, if f1 calls
f2 just once and passes a 32-bit secret password, the amount of

forward flow is 32 bits; if f2 returns the comparison result between

the password and a constant, the amount of backward flow is just

1 bit.

PM adapts Flowcheck [18] for measuring information flow; as

far as we know, it is the only publicly available tool that produces

quantitative information flow for realistic programs. It relies on

dynamic analysis to track sensitive information flow at runtime

for a particular input and uses a max-flow algorithm to quantify

the amount of flow. Measuring information flow becomes feasible

on a single run, with the downside that measurements may not

apply to other runs. However, Flowcheck is designed to measure

information flow between input and output at the level of a whole

program, while PM needs to measure information flow at the func-

tion level. Appendix C presents in detail how PM adapts Flowcheck

for function-level measurement of information flow and how it

aggregates information flow over multiple runs. We next give a

brief account.

Flowcheck is adapted to measure three kinds of information

flow at the function level: explicit, implicit, and potential flows. For

explicit flows, when a function gets called with some arguments,

it measures how much sensitive information is stored in the argu-

ments and how much in the function’s return value. For implicit

flows, when a function contains a conditional jump that depends

on sensitive information, it tracks that one bit of flow and propa-

gates it interprocedurally to the function’s callers. Potential flows

happen when pointers to sensitive buffers are passed interprocedu-

rally. Even if the callee function’s current code does not access the

underlying buffers, by our attack model an attacker may change

the callee’s computation (e.g., via return-oriented programming)

to access those buffers, after the callee has been taken over by the

attacker. Therefore, in our context, it is important to measure poten-

tial damage the attacker can cause by getting hold of capabilities to

access sensitive data and we call it potential flows. Note that this

kind of information flow is typically not considered in information-

flow literature since in that setting code is assumed to not change

dynamically.

Measuring context-switch frequency. To determine the context-

switch frequency when a call edge or a data-flow edge in the PDG

becomes a boundary edge after partitioning, PM uses Intel’s Pin

tool [17] to profile program execution. During the execution of a

program, our Pin-based tool produces a logfile that records caller-

callee pairs of function calls, pairs of global variables and functions

when functions read from or write to global variables. Using the

logfile, PM computes the number of times a particular call site

executes. If function f1 can call f2 at multiple call sites, the call

times for all call sites are summed into a total call time from f1 to
f2. Similarly, PM computes the number of times a global variable is

read or written by a function. Then, we divide the access amount

with the execution time to compute the frequency. Finally, average

frequencies over multiple runs are used as af(e) in the PDG.

Integer programming solving. Given a PDG annotated with

weights, PM converts it into an integer-programming problem fol-

lowing Appendix B. During implementation, we discovered that

currently popular RPC libraries (e.g., Sun RPC and Google’s gRPC)

do not support bidirectional control transfers. An example is when

function f1 in domain 1 calls function д in domain 2 and function

д in turn calls back function f2 in domain 1 (e.g., via a function

pointer). Due to this limitation, we add further constraints to our IP

model so that only single-directional RPC is allowed.4 In detail, the

4ntirpc claims to have bidirectional RPC support, but their developers told us that the
implementation was “sketchy” in private emails; when it becomes mature, we should



new constraints allow only edges from the insensitive domain to

the sensitive domain to appear on the RPC boundary; any function

that the sensitive domain invokes (e.g., through callbacks) has to

stay or replicated in the sensitive domain. The sensitive domain

effectively becomes a passive server listening for RPC requests from

the insensitive side. After conversion to IP, PM solves it using a

generic integer programming solver. We use lp_solve, although
other integer programming solvers should also be compatible. The

output of the solver tells us what functions and global variables

should be in the sensitive domain and in the insensitive one.

Implementing partitions. PM is designed for producing infor-

mation about how to partition a program. Implementing a partition

still needs user involvement. It provides some automation for im-

plementing a partition through process separation. In particular,

it automatically generates interface definitions in Sun RPC’s IDL

(Interface Definition Language). rpcgen is then run on the IDL code
to generate interface code between the sensitive and the insensitive

domain. The user then manually splits files, adjusts compilation

scripts to link with the interface code, and compiles the original

application into two executables: one for the sensitive domain, and

one for the insensitive domain. During runtime, the two domains

are loaded into separate OS processes and the process for the in-

sensitive domain issues RPC calls to the process for the sensitive

domain to request services.

In some circumstances, a partition can be implemented by other

privilege-separation primitives such as dropping privileges or prim-

itives based on hardware (e.g., Intel’s SGX). This will require further

engineering to generate interface code that is compatible with spe-

cific privilege-separation primitives; we leave this for future work.

8 EXPERIENCE REPORT

It can be hard for users to come up with the right budgets when

using PM. By our experience, PM is best used as an interactive tool:

a user starts with some initial budgets and gets a partition from

PM. Based on that partition’s quality scores, the user adjusts the

scores to make tradeoffs; the new set of budgets is then used by PM

to produce a new partition, with its own quality scores. Multiple

rounds may be needed before the user decides on the final partition.

During the evaluation of PM, we used some high-level strategies

to tune metric budgets in order to find good partitions, which are

discussed next.

Strategies to tune budgets. The first kind of strategy is about how

to get the initial budgets. An approachwe found useful is to specify a

target dimension for optimization, and apply unlimited budgets for

all other dimensions. For instance, (_∗, _, _, _) asks for the smallest

sensitive domain, without constraining other dimensions. Another

strategy is to use PM to get the quality scores of a known partition

(such as the one that has only the sensitive functions/globals in the

sensitive domain) and use those as the initial budgets.

The second kind of strategy is for making adjustments to budgets

based on a particular set of partition scores to better satisfy the

user’s goals. We discuss two such strategies:

be able to plug it into our tool and remove the single-directional RPC constraints from
the IP model.

Program SLOC Func. Glob. Sensitive data; Annot.

chsh (3.3.2) 564 8 10 pwd file; 1

chage (3.3.2) 948 14 25 pwd file; 1

passwd (3.3.2) 1,168 14 33 pwd&shadow files; 1

useradd (3.3.2) 2,395 24 49 pwd&shadow files; 4

telnet (1.9.4) 11,120 180 139 data from internet; 3

thttpd (2.25) 11,403 145 128 authentication file; 1

wget (1.18) 61,217 666 176 data from internet; 29

nginx (1.9.5) 160,293 1,064 422 authentication file; 1

Table 1: Benchmarks used during evaluation.

• Tradeoff strategy 1. A user decreases the budget (i.e., im-

proves the score) for a target dimension, sets an unlimited

budget on a sacrifice dimension, and optimizes the sacrifice

dimension. The intention is to produce a partition that trades

off the sacrifice dimension for a bounded improvement on

the target dimension, while making the least sacrifice on

the sacrifice dimension. An example use of this strategy was

for thttpd discussed later. We had a partition with quality

(9.15%, 1.0, 1455.6, 9.0) and then we chose to trade off the

sensitive-code percentage for a smaller context-switch fre-

quency by specifying (_∗, 1.0, 1455.5, 9.0). The new budgets

led PM to find a partitionwith quality (9.27%, 1.0, 1411.2, 8.0);

the performance improved due to a smaller context-switch

frequency, which was obtained at the expense of a larger

sensitive-code domain.

• Tradeoff strategy 2. A user reduces the budget on a target

dimension, increases the budget on a sacrifice dimension,

and optimizes the target dimension. The intention is to pro-

duce a partition that trades off the sacrifice dimension for

the best improvement on the target dimension within the

budget for the sacrifice dimension. As an example, we had a

partition with quality (9.15%, 1.0, 1455.6, 9.0) in thttpd. To

follow strategy 2 to trade off the sensitive-code percentage

for a smaller context-switch frequency, we used new budgets

(10.00%, 1.0, 1455.5∗, 9.0), which led to a new partition with

quality (9.62%, 1.0, 1400.1, 8.0).

Benchmarks. We evaluated PM using a set of benchmarks listed

in Table 1. The first four programs are small and from Linux’s

shadow-utils package. For each benchmark, the table lists the name,

the version, the source lines of code, the total number of functions,

and the total number of globals. Further, it lists what sensitive data

is used in our evaluation and the number of lines of annotations

that are added to each program to mark sensitive data. Overall, the

annotation burden is modest; most applications require only a few

lines of annotations.

For each benchmark, we designed an extensive set of test cases

to collect security and performance metrics, as PM relies on some

dynamic analysis for collecting measurements on the metrics we

discussed. With the collected measurements, we ran evaluation on

each program to test whether PM can compute meaningful parti-

tions with reasonable user guidance. For generated partitions by

PM, we performed security and performance assessment. For those

benchmarks that were also used in a recent system PtrSplit [15],



we also compared PM’s results with PtrSplit’s results. All evalua-

tion were on systems running x86-64 Ubuntu 14.04 with the Linux

kernel version 3.19.0, an Intel Core i5-4590 at 3.3GHz, and 16GB of

physical memory.

8.1 Evaluation with thttpd

We evaluated PM on thttpd, an open-source http server program.

The server is set up for receiving incoming connections and com-

munications. Clients can connect to the server and, after authen-

tication, request to download documents from a directory, called

the top document directory, and its sub-directories set up by the

server. thttpd stores user authentication information (username

and password) in a file named .htpasswd. During authentication,
a user provides a username and a password and thttpd looks up

.htpasswd to check if there is a match. If there is, the authenti-

cation succeeds and follow-up actions requested by the user are

authorized. Therefore, in this experiment, we treat the password

file as sensitive data and perform partitioning to have a sensitive,

high-secrecy domain that processes the password file.

In thttpd, two major functions are involved in authentication:

auth_check (abbreviated as ac) and auth_check2 (abbreviated as

ac2). If thttpd is configured to use a global password file, function

ac first invokes ac2 and passes the user-input authentication data

and the server top directory; ac2 then tries to open .htpasswd
under the top directory and performs authentication. However, if

.htpasswd is not found, ac2 returns failure to ac, which then calls

ac2 again with the local directory from which the user requested a

document. If a local password file is found, ac2 uses it to perform
authentication. Therefore, for one user connection, acmay call ac2
twice. In fact, our toy program used in Sec. 4 is inspired by this

authentication pattern.

Partitioning process. In thttpd, ac2 is the only function that

interacts with the password file. A natural partition would be to

put only ac2 into the sensitive domain. However, it would require

bidirectional RPC support as ac2 invokes several other functions.
Since only single-directional RPCs are supported, this choice is not

feasible. Therefore, we used PM to explore partitioning choices

of thttpd and Table 2 includes a summary of the result. For each

partition, the table lists the budgets we used, the amount of IP-

solving time to produce the optimal partition, the quality scores

of the produced partition, and also the runtime overhead of the

partitioned thttpd when downloading files. Next we discuss in detail

about how these partitions were produced.

We started with unlimited budgets and optimized for the smallest

sensitive domain: (_∗, _, _, _), for which PM produced partition

1 in Table 2. This partition has the smallest sensitive domain

among all single-directional choices; further, it leaks only one bit of

information, common during authentication. This initial partition

could be acceptable, but we used PM further to make tradeoffs, in

an attempt to reduce performance overhead.

By following tradeoff strategy 1, we chose the context-switch fre-

quency as the target and the sensitive-code percentage as the sacri-

fice and revised the previous partition’s quality (9.15%, 1.0, 1455.6, 9.0)

to the new budgets (_∗, 1.0, 1455.5, 9.0). PM found a partition with

quality (9.27%, 1.0, 1411.2, 8.0), shown as partition 2 in Table 2.

Further improvements can be made by repeating the same strategy.

For example, with onemore step based on partition 2 ’s quality met-

rics, budgets (_∗, 1.0, 1411.1, 8.0) produced another tradeoff choice

shown as partition 3 in the table.

Alternatively, by following tradeoff strategy 2 on the quality

metrics of partition 1 , we gave budgets (10.00%, 1.0, 1455.5∗, 9.0).

PM happened to produce the same partition as partition 3 .

We inspected thttpd’s source code to understand the three par-

titioning choices produced by PM. Partition 1 separates ac and

ac2 to maintain the smallest sensitive domain. Partition 2 further

adds a logging function into the sensitive domain to reduce the

number of context switches. Partition 3 cuts at a higher execution

level, which separates ac and its caller, since ac is executed less fre-
quently than ac2 in typical situations. In all, the three partitions are

reasonable choices that would be produced by manual partitioning

when making tradeoffs between security and performance.

Assessing security and performance. In terms of security, all

three choices separate ac2 into the sensitive domain. After inspec-

tion, we determined that the sensitive-domain code in all three

choices only reads from the password file. Furthermore, the code

does not write to the file system using any I/O operation; thus it

cannot leak secret passwords through the file system. As a result,

the only sensitive information that can be leaked is the one bit of

authentication response, acceptable during authentication.

For evaluating performance, we implemented the three parti-

tions and experimented with different settings. The most realistic

setting is to download moderate-sized (1M) files from a remote

thttpd server as this matches its typical use case. However, for com-

pleteness, we also evaluated other settings, including downloading

small-sized (1K) files and downloading from a local thttpd server

(on the same machine as the client). Table 2 presents the runtime

overhead of partitioned thttpd in different settings, when compared

with unpartitioned thttpd. In general, all three choices have small

overheads for the typical case of downloading moderate-sized files

from a remote server. Partition 3 has significantly less overhead

compared to the other two, justifying the benefit of performing

iterative refinement via PM. Further, the results show that our met-

rics of context-switch frequency and pointer complexity positively

correlate with performance overhead.

Comparison with PtrSplit. PtrSplit also partitioned thttpd and

produced one single choice with the help of manual declassifica-

tion. Its partitioning result is similar to the third choice in Table 2,

except that it simplified thttpd’s functionality to remove logging

and accessing to remote global variables. In contrast, our partitions

support both. To make a fair comparison, we augmented PtrSplit’s

result with the ability of logging and remote global variable access-

ing and experimented with this new partition. The overhead data

for the remote server case is 0.5% (1M files) and 35.7% (1K files);

for the local server case, it is 28.4% (1M) and 36.5% (1K). It has a

higher overhead than our partition 3 because our partition puts a

logging function into the sensitive domain. PtrSplit’s partition puts

the logging function in the insensitive domain; so it has to invoke

an RPC function to access some global data in the sensitive domain.

8.2 Evaluation with wget

wget is a program for downloading files from web servers. We

annotated the incoming data from a server as sensitive, since that



Budgets (bc ,bf ,bs ,bx )
IP-Solving

SCode(%) Flow CSwitch Cplx
Overhead(%) (FileSize: 1M/1K)

Time (s) Remote Local

1 (_*, _, _, _) 0.10 9.15 1.0 1455.6 9.0 1.2/54.7 37.1/63.1

2 (_*, 1.0, 1455.5, 9.0) 0.21 9.27 1.0 1411.2 8.0 1.1/51.1 35.5/60.9

3 (_*, 1.0, 1411.1, 8.0) 0.18 9.62 1.0 1400.1 8.0 0.4/34.2 25.1/30.9

Table 2: Partitioning choices for thttpd.

Budgets (bc ,bf ,bs ,bx )
IP-Solving

SCode(%) Flow CSwitch Cplx
Overhead(%) (FileSize: 1M/1K)

Time (s) Remote Local

1 (_*,_,_,_) 0.80 11.03 4047.0 1213.8 117.0 1493.0/6.2 13799.0/13.4

2 (50.00%, 999.0*, 38.2, _) 2.03 49.12 8.0 38.2 45.0 1.6/1.9 6.4/2.1

3 (16.00%, _, _*, _) 1.13 15.68 4052.0 198.5 137.0 412.0/7.2 1440.0/7.9

4 (_*, 2.0, 38.2, _) 1.56 78.42 2.0 38.2 14.0 1.5/2.3 7.6/3.3

Table 3: Partitioning choices for wget.

data contained potentially malicious data (i.e., low-integrity data).

The goal of partitioning is to produce a sensitive, low-integrity

domain that interacts with the server, and an insensitive domain

for the rest of the program. The goal is to protect the insensitive

domain from compromise due to untrusted file input retrieved from

servers, enabling sandboxing of the file download.

Partitioning process. During partitioning, we marked all func-

tions that interact with the internet as sensitive. We started with

the smallest sensitive domain by using budgets (_∗, _, _, _) and af-

ter a simple iteration we found an initial partition with quality

(11.03%, 4047, 1213.8, 117.0), which is shown as partition 1 in Ta-

ble 3. This initial partition has a small sensitive domain, but the

model reported high sensitive information flow and performance

overhead; so this partition should not be adopted in practice. But

to validate our performance model, we implemented the partition

and collected its runtime overhead, shown in Table 3. The overhead

was significant, consistent with the prediction of our performance

model.

To get better performance and information-flow security, we set

the budget on information flow dimension to be 999 and PM pro-

duced amore secure partitionwith quality (39.81%, 17.0, 1122.2, 74.0).

This result implied that any partition for wget that prevents large

sensitive information flow would contain a large sensitive domain.

Therefore, we decided to relax the requirement on the sensitive-

code percentage as a way of improving performance. By interac-

tively using PM via similar strategies discussed earlier for thttpd, we

got a partitioning choice that achieves a good balance between per-

formance and security, with quality (49.12%, 8.0, 38.2, 45.0), which

is shown as partition 2 in Table 3. The measured runtime perfor-

mance overhead is much less than the first partition, with less than

2% overhead for the remote-server setting. This justifies the benefit

of performing iterative refinement.

Assessing security and performance. We investigated the two

partitions to understand why their security and performance were

dramatically different. Fig. 4 presents the call graph of wget for the

its main functions involved in implementing the FTP protocol. In

particular, main eventually invokes fd_read_body, which retrieves

a file from an FTP server and writes the file content into a local file.

Figure 4: Call graph and partitions for wget.

Partition 1 cuts between fd_read_body and lower-level func-

tions; as a result, pointers to buffers holding the file content are

passed from the sensitive domain to the insensitive one. This re-

sults in no protection from low-integrity data. Our model correctly

predicts high information flow as it uses potential flow to mea-

sure the sizes of those buffers (which contain tainted data). Further,

since fd_read_body is invoked many times (because it is transi-

tively called by ftp_loop), this partition also results in bad per-

formance due to many context switches. Partition 2 , however,

keeps ftp_loop in the sensitive domain, meaning that downloaded

data does not cross the boundary, which achieves good integrity

protection and a negligible overhead.

Based on this investigation, lifting the boundary to higher execu-

tion levels seems beneficial for reducing overhead and sensitive in-

formation flow, while moving the boundary to lower levels reduces

the percentage of sensitive code. To validate this understanding, we

used PM to discover partitions 3 and 4 in Table 3: the first cuts

between getftp and fd_read_body, and the second cuts between

main and retrieve_url. Partition 3 set the boundary at a lower

level than 2 ; it reduced the percentage of sensitive code, at the cost

of larger sensitive flow and performance overhead. For partition



4 , the information flow was decreased. However, the majority of

the program was in the sensitive partition.

In all, partition 2 has the best balance between security and per-

formance. We investigated its security in terms of how the sensitive

domain can influence the insensitive one (for integrity protection).

The reported 8 bits are all implicit information flows through return

values, instead of more dangerous explicit and potential flows. In

terms of influence through the file system, the sensitive domain (1)

writes the downloaded data to a local file and (2) writes data into a

log file. None of these influences the sensitive domain, which does

not read from those files.

Comparison with PtrSplit. We compared our best partition ( 2 )

with PtrSplit’s result on wget. Our partition achieves less runtime

overhead than PtrSplit’s reported result (PM: 1.9% v.s. PtrSplit: 6.5%).

However, our partition puts 304 functions into the sensitive domain,

while PtrSplit reported only 8. After investigation, we realized that

PtrSplit treated only the content of the downloaded file as sensitive,

while we considered all data from the internet as sensitive. For

example, communication messages between the server and wget

are not treated as sensitive by PtrSplit and it puts functions that deal

with such communication into the insensitive domain. Furthermore,

PtrSplit did not count duplicated functions when reporting the size

of the sensitive domain. When considering duplication, PtrSplit’s

partition actually had 31.53% of code in the sensitive domain.

8.3 Evaluation with telnet

telnet is a tool often used for controlling a remote machine. After

a successful login, telnet sets up a bidirectional terminal-based

communication interface. Data from the remote side is received

and displayed in the local terminal; command-line operations are

parsed from the local terminal and sent to the remote machine to

be executed. Since telnet communicates with a remote server there

is also a risk of receiving low-integrity data from the server. Our

primary goal is to isolate the component that processes untrusted

internet data.

Partitioning process. During partitioning, we first marked func-

tions process_rings, netflush, and tn as sensitive, since they

interact with the internet. Then, we used a budget (_∗, 999, _, _) to

discover an initial partition, which is shown as partition 1 in Ta-

ble 4. According to its quality, the smallest sensitive domain already

contains a majority of the code. Therefore, we switched to search

for a low-overhead partition. In three iterations, we discovered

partition 2 in Table 4.

Assessing security and performance. To understand why the

sensitive domain had to be large, we investigated telnet’s source

code and found that the main function in telnet directly invokes tn
after parsing the command-line options. Since main has to stay in

the insensitive domain and only single-directional RPC is supported,

partition 2 can cut only between main and tn, which is near the

top of execution. As a result, only main, the command-line parsing

component, and functions that perform clean-ups (e.g., Exit) were
put into the insensitive domain. Partitioning at other places would

require bidirectional RPC support, as shown in Fig. 5.

tn
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ttyiring
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telrcv

netiring
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Internet
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partition 2

Figure 5: PDG and partitions for telnet.

Therefore, the fundamental reason was the lack of bidirectional

RPC support when implementing partitions. To check whether al-

lowing bidirectional RPCs would produce interesting partitions

(although we would not be able to implement them), we config-

ured PM to discover partitions with bidirectional boundaries. After

several iterations, we discovered a partition with a small sensitive

domain (13.10% code), shown as partition 3 in Table 4.

Assessing security/performance and comparisonwithPtrSplit.

Without the bidirectional RPC support, we cannot avoid a large sen-

sitive domain for telnet. Through manual inspection we determined

that the sensitive domain in 2 does not influence the insensitive

domain through the file system (the sensitive domain writes only to

stdout). In terms of runtime performance, our implementation had

a lower runtime overhead compared with PtrSplit’s result (9.6%).

After understanding PtrSplit’s result, we realized that partition 3

was the same as PtrSplit’s result. However, PM predicted large per-

formance overhead for PtrSplit’s partition. After inspection, we

believe that PtrSplit’s partition was manually rewritten to accom-

modate single-directional RPC and, as a result, not all functionality

was preserved after partitioning.

8.4 Evaluation with nginx

nginx is a web server and supports the username/password au-

thentication. In our experiment, we partition nginx to protect the

server-side password file from being leaked.

Partitioning process and implementation. We marked func-

tion ngx_http_auth_basic_handler as sensitive, since it reads

the password file.We started with the smallest sensitive domain that

prevents potential flows resulting from pointers to the password

file with budgets (_∗, 999, _, _). As shown in Table 5, the metrics for

partition 1 indicate a large performance overhead. However, after

inspecting the source code, we found there was only one function

call across the boundary. Furthermore, all of the global variables

used by the sensitive domain are read only. Therefore, we repli-

cated those global variables and implemented data-synchronization

by RPC. With such global variables duplicated, we have another

boundary shown as 2 in the table, which we implemented and



Budgets (bc ,bf ,bs ,bx )
IP-Solving

SCode(%) Flow CSwitch Cplx
Overhead(%)

Time (s) Remote Local

1 (_*,999,_,_) 0.41 74.11 3.0 609.0 146.0 N/A N/A

2 (_*,999,16.0,15.0) 2.30 86.32 0.0 16.0 15.0 7.9 34.33

3 (_*,999,_,_) 0.21 13.10 26.0 13305.0 227.0 N/A N/A

Table 4: Partitioning choices for telnet; “N/A” are for partitions that were not implemented.

Budgets (bc ,bf ,bs ,bx )
IP-Solving

SCode(%) Flow CSwitch Cplx
Overhead(%)

Time (s) Remote Local

1 (_*,999,_,_) 2.67 2.89 1.0 136.2 437.0 N/A N/A

2 (_*,999,_,_) N/A 2.89 1.0 14.0 32.0 34.1 21.4

Table 5: Partitioning choices for nginx; “N/A” are for partitions that were not implemented.

Program Version Vulnerability Mitigated by

thttpd 2.25

CVE-2013-0348 1 2 3

CVE-2009-4491 1 2 3

CVE-2006-4248 1 2 3

wget 1.18

CVE-2018-0494 2 4

CVE-2017-6508 4

CVE-2017-13090 2 3 4

CVE-2017-13089 2 4

telnet 1.9.4

CVE-2005-0468 1 2 3

CVE-2005-0469 1 2 3

Exploit-DB-459825 1 2 3

nginx 1.9.5 CVEs from 2016 to 20186 2

Table 6: Mitigated vulnerabilities by different partitions.

collected the runtime overhead of partitioned authentication over

unpartitioned authentication. Note that the overheads shown in

the table are only for authentication; the partition does not incur

overhead for common operations of nginx, such as serving web

pages.

Assessing security and performance. In 2 , the password file is

only accessible to the sensitive domain. The only one bit of leakage

is the authentication response. As for the possible leakage through

the file system, the sensitive domain may write to log files; however,

the insensitive domain does not read from the log files. PtrSplit

does not partition nginx; therefore, we did not compare with it.

8.5 Evaluation with Linux shadow-utils

We also experimented on a set of programs from the Linux shadow-

utils package. There are over 30 small programs in this package.

Many of them do not access security-sensitive information; for

example, program "groups" just prints a user’s group information.

Some of the programs are difficult to set up and experiment with;

for example, "login" starts a login session. So we excluded those.

For the remaining programs, we performed partitioning with PM.

During the process, we realized that there were potential flows from

5multiple overflows https://www.exploit-db.com/exploits/45982
6including CVE-2018-16845, CVE-2018-16844, CVE-2018-16843, CVE-2017-7529, CVE-
2016-0747, CVE-2016-0746,CVE-2016-0742, and CVE-2016-4450.

Prog SCode Flow CSwitch Cplx Overhead

(%) (%)

chsh 51.52 0.0 0.5 2.0 1.00

useradd 50.94 0.0 1781.4 29.0 11.33

passwd 82.33 0.0 846.2 13.0 7.50

chage 6.57 0.0 77.0 2.0 80.63

Table 7: Partitioning choices for chsh and useradd

the secret to the main functions in passwd and chage. However,
since main had to stay in the insensitive partition, there would

be no way of preventing the insensitive partition from holding

sensitive data, for function-level partitioning. Hence, we manually

changed the main functions of passwd and chage by extracting

operations that read and update the password and shadow files to

separate functions. The changed passwd and chage then became

partitionable at the function level. The other two programs (chsh
and useradd) required no changes. For these four programs, we

used PM iteratively to find one partition for each program and

tested runtime overhead. We show the results in Table 7. Note that

these programs are small, which excluded us from finding multiple

interesting partitions.

8.6 Vulnerabilities mitigated by partitioning

The security metrics in PM are quantitative information flow and

sensitive code percentage. There are many benefits of using these

metrics. Another possible security metric is the amount of past

known vulnerabilities (e.g., used in [9]) that can be mitigated. We

have argued against incorporating it into PM since it does not

consider unknown vulnerabilities. On the other hand, if a partition

can mitigate most of the past known vulnerabilities, it provides

some evidence about the partition’s security strength. Therefore,

we searched for all vulnerabilities in the National Vulnerability

Database (https://nvd.nist.gov/vuln) for the versions of software we

used in evaluation.We excluded those Linux shadow-utils programs

as their vulnerability dataset is too small to draw any meaningful

conclusion. Table 6 lists all CVEs for the versions of programs we

used, and whether a CVE can be mitigated by a partition produced

by PM.



thttpd and nginx are about preserving confidentiality. According

to our attack model, we consider a vulnerability mitigated by a

partition if it resides in the insensitive (low-secrecy) domain of the

partition. For any of the three partitions of thttpd, all CVEswe found

can be mitigated since the CVEs reside in the insensitive domain.

Therefore, even if an attacker can successfully hijack the insensitive

domain, she cannot steal passwords in the authentication file using

the vulnerabilities. For nginx version 1.9.5, there are 8 CVEs in

total. We inspected these CVEs and none of them resides in the

authentication module, which means our partition 2 can mitigate

all these vulnerabilities.

wget and telnet are about protecting integrity. According to our

attack model, we consider a vulnerability mitigated by a partition

if it resides in the sensitive (low-integrity) domain of the partition.

Table 6 shows that the best partition PM found for wget ( 2 ) can

mitigate three out of four CVE vulnerabilities; the best partition for

telnet( 2 ) can mitigate all three vulnerabilities

9 DISCUSSION AND FUTUREWORK

We discuss limitations of PM, some of whichwere discovered during

evaluation, and how it can be extended to address them. First, simi-

lar to other tools, PM performs partitioning at the level of functions.

As discussed before, partitioning a program at a granularity finer

than functions, such as basic blocks or instructions, is sometimes

necessary to produce good partitions. This issue is exacerbated by

the lack of bidirectional RPC support, as demonstrated by telnet

and some of the shadow-utils programs. When a top-level function

f in the call graph (e.g., main) accesses sensitive data, all func-

tions f invokes transitively have to stay in the sensitive partition,

implying a large sensitive domain. This issue can be resolved by

either providing bidirection RPC or splitting f (as demonstrated by

shadow-utils programs). Implementing finer-grained partitioning

would pose no theoretical difficulty, but introduce engineering and

practical challenges in terms of collecting measurements at a finer

granularity and implementing partitions.

Second, currently PM partitions a program into two domains

according to a security lattice of two points. We plan to extend it

to support more complex lattices that can result in more than two

domains (e.g., mixing confidentiality and integrity), such as what

Swift [6] does. This introduces the complication of allowing further

code duplication at different security levels.

Third, PM’s optimization framework currently supports only one

optimization metric. A natural alternative to having four metrics

would be to weight each of them so that we can optimize a single

linear function of all four metrics in one step. We will need to

further study methods to produce weights for this alternative and

the effectiveness of those methods.

Fourth, PM is a framework that automatically produces informa-

tion about how to partition a program, but does not offer complete

automation in implementing a partition. Given information about a

partition, a user needs to manually split files and adjust compilation

scripts. This can be labor intensive, which was the major reason

why we tested only a few partitions for programs during evalu-

ation. Automating these steps is feasible, but requires additional

engineering effort.

Fifth, PM’s implementation relies on dynamic analysis for mea-

suring information flow and context-switch frequency. On the one

hand, dynamic analysis is the only known technique for measuring

information flow rates in realistic programs. Most past studies on

using static analysis to measure information flow (see [24] for a re-

cent survey) have been theoretical and not produced practical tools.

For instance, Clark et al. [7] described a static analysis that over-

approximates quantitative information flow in programs. However,

it is on an idealized language that does not support function calls,

memory allocation/deallocation, and many other features. On the

other hand, dynamic analysis applies to particular runs and requires

a set of test cases. Designing test cases with good coverage is diffi-

cult; this issue can be mitigated to a certain degree by deriving test

cases based on typical use cases and techniques such as fuzzing.

Finally, by generating the optimal partition, PM automatically

computes where data should be declassified. This enables automatic

computation of declassification points for patterns such as authen-

tication, which compress sensitive information. However, it does

not work well for declassification patterns that scramble sensitive

information. A typical example is encryption, in which dynamic

information-flow tracking would report the amount of sensitive

information flow from the key to the ciphertext is the key size. For

these cases, additional techniques or manual declassification would

be needed.

10 CONCLUSIONS

We have proposed PM, a quantitative framework for assisting privi-

lege separation. It is based on our philosophy that, through quantita-

tive information flow, a practical partition can be produced through

a careful balancing between security and performance. This balanc-

ing cannot be fully automated as it has to take user requirements

into account. PM provides users an interactive way for exploring

partitioning choices, while making their intentions explicit via bud-

gets and a goal. Our experience with real applications suggests that

PM, while with some limitations, lets users explore the partitioning

space in a principled fashion, helps users produce partitions that

would be hard to obtain manually, and finds partitions that balances

security and performance better.
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A PROGRAM-DEPENDENCE-GRAPH
PARTITIONING

To model a program with both functions and global variables, we

use a Program Dependence Graph (PDG). In the PDG, vertices

represent either functions or globals. We write FV for the set of

functions, GV for the set of globals. We have V = FV ∪ GV .

Edges represent either call edges or data-flow edges. Data-flow

edges have two kinds: read edges and write edges. If function f
reads a global д, there is a directed read edge from д to f . On the

other hand, if function f writes to a global д, we add a directed

write edge from f to д. We write CE = {ei j | i, j ∈ FV } for the set

of call edges, RE = {ei j | i ∈ GV ∧ j ∈ FV } for the set of read

edges, and WE = {ei j | i ∈ FV ∧ j ∈ GV } for the set of write

edges. We have E = CE ∪ RE ∪WE.

In PDG partitioning, we further allow globals to be sensitive. A

partition P = (S,T ) is defined as before, except that S and T are

now sets of functions and globals. R = S ∩T is the set of duplicated

functions and globals.

There are three kinds of forward boundary edges: (1) forward

boundary call edges FBC = {ei j ∈ CE | i ∈ S ∧ j ∈ T − R}; (2)
forward boundary read edges FBR = {ei j ∈ RE | i ∈ S−R ∧ j ∈ T };
(3) forward boundary write-edges FBW = {ei j ∈ WE | i ∈ S ∧ j ∈
T − R}. We have FB = FBC ∪ FBR ∪ FBW . Similarly, there are three

kinds of backward boundary edges: (1) backward boundary call

edgesBBC = {ei j ∈ CE | i ∈ T ∧ j ∈ S−R}; (2) backward boundary
read edges BBR = {ei j ∈ RE | i ∈ T − R ∧ j ∈ S}; (3) backward
boundary write edges BBW = {ei j ∈ WE | i ∈ T ∧ j ∈ S −R}. We

have BB = BBC ∪ BBR ∪ BBW .

Furthermore, weights presented in Sec. 6 are also adjusted. First,

a node for a global variable has zero code size. Second, information-

flow weights are added for data-flow edges. Information can flow

only along the direction of edges; that is, information flows to a

function from a global variable on a read edge and flows to a global

variable from a function on a write edge. Therefore, conceptually

there should be no backward flow on data-flow edges. But to be

uniform with the weights on call edges, we still give two weight

functions for a data-flow edge e : fflow(e) is the amount of informa-

tion flow on the edge and bflow(e) is always zero.
Third, for a read edge e from global д to function f , we use af(e)

for the frequency of f reading from д during profiling; similarly,

for a write edge e from function f to global д, af(e) is the frequency
of f writing to д during profiling. Lastly, for a data-flow edge e
that connects a function f to a global д, plevel(e) represents the
complexity of д’s type signature. This is because, if the function and

the global are in separate domains, the function has to read/write

the global through an RPC to a getter or a setter function. Therefore,

the type complexity of the global is used to represent the complexity

of implementing the RPC.

With these adjustments, the definitions of sensitive code percent-

age, sensitive information flow, context-switch overhead, pointer



complexity, and optimal partitioning are exactly the same as the

case for call graphs and are not repeated.

B ENCODING OPTIMAL PARTITIONING AS
IP

Solution variables and objective. We first declare two binary

vairables αv and βv for each vertex v in the PDG. Recall that a

vertex represents either a function or a global variable. αv is 1 iff v
is in the sensitive partition S but not replicated; βv is 1 iff v is in

the insensitive partition T but not replicated. That is, they satisfy

v ∈ S −R ⇔ αv = 1 and v ∈ T −R ⇔ βv = 1. As a result, v ∈ R
(v is replicated) iff αv = 0 ∧ βv = 0. We term the two kinds of

variables as solution variables.

For the objective function, we use the goal of minimizing sensi-

tive code percentage as an example; other objective functions can

be modeled in a similar way. Since the total code size of the input

program is a constant, minimizing the sensitive code percentage

can be converted to minimizing the code size in S , which is the same

as maximizing the code size in T − R, where R = S ∩T . Therefore,
we can use the following objective function:

max
∑

i ∈V

sz(i) · βi .

Intermediate variables and constraints. The following con-

straints model that (1) the special sensitive function or the special

sensitive global variable s must be in S − R only, and (2) every

function or global variable i cannot stay in both S − R and T − R:

αs = 1 ∧ βs = 0 ∧ ∀i,αi + βi ≤ 1.

When αi + βi = 0, it means that the function or global variable i
represents is replicated (that is, it is in R).

Since the direction of an edge matters when measuring sensitive

information flow, we further declare two intermediate variables xi j
and yi j to represent if the edge is a forward boundary edge or a

backward boundary edge. Specifically, xi j = 1 ⇔ ei j ∈ FB; and

yi j = 1 ⇔ ei j ∈ BB.

With the input budgets bc ,bf ,bs , and bx , we can construct the

following constraints for all measurements based on Def 5.2:

(
∑

i ∈V

sz(i) · (1 − βi ))/totalSize ≤ bc ;

∑

i, j ∈V

fflow(ei j ) · xi j + bflow(ei j ) · yi j ≤ bf ;

∑

i, j ∈V

af(ei j ) · (xi j + yi j ) ≤ bs ;

∑

i, j ∈V

plevel(ei j ) · (xi j + yi j ) ≤ bx .

The first constraint limits the sensitive code percentage, assuming

totalSize is the total code size. The second limits the total of sensitive

information flow. The third limits the RPC context-switch frequency

during runtime. And the fourth limits the pointer complexity.

The next step is to constrain variables xi j and yi j with their

related four solution variables αi , α j , βi , and βj . In our problem

formalization, we have three different boundary edge sets for three

types of edges. Therefore, constraints are introduced differently

for different types of edges. We first discuss what logical formulas

need to be encoded for each type of edges and then present how

those logical formulas can be encoded by IP inequality constraints.

For an edge ei j from vertex i to vertex j in the graph,

1) if ei j is a call edge,

xi j = 1 ⇔ ei j ∈ FBC ⇔ βi = 0 ∧ βj = 1 ⇔ ¬βi ∧ βj ;

yi j = 1 ⇔ ei j ∈ BBC ⇔ αi = 0 ∧ α j = 1 ⇔ ¬αi ∧ α j ;

2) if ei j is a read edge,

xi j = 1 ⇔ ei j ∈ FBR ⇔ αi = 1 ∧ α j = 0 ⇔ αi ∧ ¬α j ;

yi j = 1 ⇔ ei j ∈ BBR ⇔ βi = 1 ∧ βj = 0 ⇔ βi ∧ ¬βj ;

3) if ei j is a write edge,

xi j = 1 ⇔ ei j ∈ FBW ⇔ βi = 0 ∧ βj = 1 ⇔ ¬βi ∧ βj ;

yi j = 1 ⇔ ei j ∈ BBW ⇔ αi = 0 ∧ α j = 1 ⇔ ¬αi ∧ α j .

To transform the above logical formulas into linear inequations,

we use two classic IP techniques: (1) ¬x is equivalent to 1 − x ; and
(2) the relation y = 1 ⇔ x1∧x2∧ · · ·∧xn can be linearly modeled

as

y ≤ xi , ∀i = 1, 2, . . . ,n

y ≥ x1 + x2 + · · · + xn − (n − 1).

For brevity, we only show how xi j and yi j are constrained when

ei j is a call-edge:

xi j ≤ 1 − βi ,

xi j ≤ βj ,

xi j ≥ βj − βi ,

yi j ≤ 1 − αi ,

yi j ≤ α j ,

yi j ≥ α j − αi .

So far, we have declared 2|V | + 2|E | binary variables and con-

structed |V | + 6|E | + 5 constraints.

C MEASURING INFORMATION FLOW

In Flowcheck users specify what file opened by the program or

what buffer used by the program is sensitive. Flowcheck’s dynamic

analysis then constructs a flow graph during program execution.

For a relevant operation during execution, a graph structure is

generated to represent the sensitive information flow happened

in the operation. Edges in the graph represent how sensitive data

is processed in the program and are annotated with the amount

of sensitive data being processed; that is, edges represent explicit

information flows. For instance, a comparison between a 32-bit

secret with a constant would produce (1) a 32-bit edge from the

node for the secret to a new node for the comparison, and (2) a 1-bit

edge from the comparison node to a new node for the comparison

result. Implicit flows are also reported at the instruction level. If

Flowcheck encounters a conditional jump and the processor flag

that the jump depends on has 1-bit sensitive information (because of

an earlier instruction that sets the flag using sensitive information),

then Flowcheck reports that the jump has one bit of implicit flow.

The flow graph constructed by Flowcheck, however, does not

directly report inter-procedural information flowPM is interested in.

Next we discuss how this is calculated in PM on top of information



provided by Flowcheck. This is presented in several steps: we first

discuss how explicit flows through arguments, return values, and

global variables are quantified and an optimization method for

improving precision; we then discuss how implicit flows are treated;

finally, we briefly discuss how PM aggregates flow quantities across

multiple calls and multiple runs.

Explicit flows. When a function gets called with some arguments,

PM needs to know how much sensitive information is stored in the

arguments and how much in the function’s return value. The flow

graph constructed by Flowcheck, however, does not directly give

such information, as explained below.

First, Flowcheck generates a graph structure for an operation

only when sensitive information is involved in the operation. Func-

tion calls/returns, on the other hand, do not directly manipulate

sensitive information. Take the following code as an example. For

clarity, this example and other examples use a pseudo-code syntax,

instead of the x86 assembly code syntax; in particular, we use “:=”

for an assignment.

eax := ebx xor ecx
...
ret

In the default x86 calling convention, register eax contains the

return value at the end of the function. Thus PM needs to know

how much sensitive information is in eax when ret is executed.

However, since ret itself does not manipulate eax, Flowcheck does
not generate a graph structure related to eax. It instead would gen-

erate a graph structure when eax was assigned earlier in “eax :=
ebx xor ecx”, assuming ebx or ecx contains sensitive information.

Consequently, PM would have to trace back from ret to the earlier

assignment and use the assignment’s graph structure to know the

amount of information in eax at the time of the return.

Second, Flowcheck uses an optimization to avoid generating a

huge flow graph; it generates graph structures for operations that

combine different pieces of data or transform data, but not when

data is moved around completely unchanged. Take the following

as an example:

edx := ebx xor ecx
...
eax := edx
...
ret

A graph structure is generated for “edx := ebx xor ecx”, as-
suming ebx or ecx contains sensitive information; however, no

graph structure is generated for “eax := edx” since it only moves

sensitive information around without changing it. This example

shows that, to calculate the amount of sensitive information in eax
at the place of a return, one could perform dependence analysis to

identify the last operation that affected eax and for which some

graph structure was generated.

PM adopts an easier solution, which performs assembly-level

rewriting to force Flowcheck to generate graph structures for func-

tion arguments and return values at the places of function calls and

returns. Source code is first compiled to assembly code by using

the x86 cdecl calling convention. At the assembly code level, a

sequence of “eax := not eax; eax := not eax” is inserted
before a return. This sequence was chosen because (1) the net ef-

fect of the sequence is a no-op: no registers or flags are affected;7

(2) if eax contains sensitive information, the not operations force

Flowcheck to generate graph structures immediately before the

return instruction, making it easy for PM to identify the amount of

sensitive information in eax at the time of the return.

Similar rewriting is performed for function arguments and global

variables so that PM can identify the amount of sensitive informa-

tion in arguments and global variables during runtime. For function

arguments, in the default x86 calling convention, arguments are

passed on the stack. Before a function call, move instructions are

used to move arguments from registers to the stack. Therefore,

before such a move instruction, a sequence of “r := not r; r
:= not r” is inserted, assuming r is the register used in the move.

Reads from or writes to global variables are also realized through

move instructions. These move instructions are identified with the

help of symbol tables, which tell where global variables are stored

and a similar sequence of “r := not r; r := not r” is inserted
before such a move.

We note that the rewriting is performed purely for measuring

sensitive information flow. After the measurement, the rewritten

program is discarded and PM’s partitioning is performed on the

original program.

Mincut for better precision. After getting the amount of sensi-

tive information in function arguments, return values, and global

variables, one could directly add those numbers as weights to the

PDG. For instance, if at a function call there are two arguments and

each is measured to have 32-bit sensitive information, we could

say that there are 64 bits of flow for the function call. However, the

problem is that the two arguments’ information may overlap and

the actual amount of sensitive information may be less than 64 bits.

To improve precision, PM performs a refinement. We discuss the

case for function arguments; the cases for return values and global

variables are similar. For a function call’s arguments, the refinement

(1) starts from the nodes for the arguments, (2) performs backward

reachability on the flow graph to find a subgraph of nodes that

can reach the starting nodes, up to k nodes, and (3) then performs

the mincut algorithm on the subgraph to find the max capacity of

sensitive information in the starting nodes.

As a toy example, suppose there is a 32-bit secret, and a function

call passes two arguments; the first argument is a copy of the secret,

and the second is the result of one’s complement of the secret. The

following figure shows the relevant graph structure generated by

Flowcheck for this example.

7 The “not” instruction in x86 is like C’s one’s complement (~) operation, but not C’s
logical not (!) operation.



The mincut algorithm tells us that the amount of information in

the two arguments is just 32 bits, since both are derived from the

same 32-bit secret. In our implementation, the threshold k for the

subgraph size is 10. We note that any k would affect only precision,

not soundness.

Implicit flows. When executing a conditional jump instruction

that depends on sensitive information, Flowcheck would report

that there is an implicit flow. However, the implicit flow is not

propagated further by Flowcheck. For instance, if there is a subse-

quent operation that assigns a constant to eax, no graph structure

is generated for the assignment even though eax contains sensi-

tive information because the assignment is dependent upon the

conditional jump.

To alleviate this, PM propagates implicit flows interprocedurally

and aggregate them with explicit flows. As an example, suppose f1
calls f2 and there is a 1-bit implicit flow in f2 because it contains a
secret-dependent conditional jump; and its return value contains

2-bit secret information because of explicit flows. Then in the PDG

constructed by PM, the backward flow for the edge from f1 to f2
(i.e., bflow(e)) is annotated with 3 bits (by adding the quantities of

implicit and explicit flows). Furthermore, the 1-bit implicit flow from

f2 to f1 is propagated in the PDG following both data dependence

and control dependence. For instance, if the call from f1 to f2 is
caused by a call from h to f1 and f2’s return value has 1-bit implicit

flow, then f1’s return value is also considered to have a 1-bit implicit

flow when it returns to h.

Potential flows. In an unpartitioned program, passing a pointer

that points to a secret between functions does not necessarily cause

the secret information to flow into the callee function, because the

pointer itself is not sensitive. For example, suppose function f calls

д with a pointer that points to the secret, and д passes the pointer

to h but does not deference the pointer. Then there is no explicit

information flow in д reported by Flowcheck since no manipulation

of secret information is performed in д.
However, after partitioning, a function call is turned into an RPC,

during which PM performs deep copying on pointers. For the same

example above, if f and д are in separate partitions, the call from f
to д is turned into an RPC, whose deep copying not only copies the

pointer but also the secret data the pointer points to. As a result, the

partition where д resides has the potential of reading the secret data
through the pointer, if the partition is taken over by an attacker. In

other words, even if д itself does not perform dereferencing, if the

partition where д is taken over, the attacker may have the ability

of inducing arbitrary computation within д’s partition and get the
secret. To measure the potential information flow, PM marks the

pointer that points to sensitive data and performs static tainting to

locate function invocations that pass tainted pointers (i.e., pointers

to sensitive data). For example, if f1 calls f2 with a pointer to a

secret encryption key of size 1K, then the amount of potential flow

is 1K, since f2 has the potential of dereferencing the pointer to get

the secret key.

Aggregation over multiple calls and runs. Flowcheck is a dy-

namic analysis tool; therefore, during the execution of a program,

a function f1 may call f2 multiple times. The steps discussed so far

produce a flow quantity for each call and a flow quantity for each

return. Since PM produces a static PDG in which there is only one

edge from f1 to f2, it aggregates flow quantities associated with

multiple calls. In particular, forward information flow fflow(e) is
the sum of forward flow quantities in multiple dynamic calls that

correspond to the same call edge e; the same goes for bflow(e). A
similar aggregation process happens when a function reads from

or writes to some global variable multiple times.

Dynamic analysis also suffers from the problem of code coverage.

To alleviate the issue, in experiments we designed an extensive

suite of test cases for each benchmark and ran the benchmark

multiple times with different tests; PM then aggregates the flow

quantities over multiple runs. In particular, for a call edge (or a

data-flow edge), PM takes the max quantity over multiple runs.

The hypothesis is that there is a single number that represents the

maximum amount of information a single run of the program could

ever produce; then the maximum from the individual tests is the

best under-approximation of that ideal measurement. Another way

of aggregation is to add flow amounts over multiple runs and is

a conservative way of counting the amount of information flow

through the whole test suite.


