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EXTREMAL SPECTRAL GAPS FOR PERIODIC SCHRÖDINGER

OPERATORS∗

Chiu-Yen Kao1,∗∗ and Braxton Osting2

Abstract. The spectrum of a Schrödinger operator with periodic potential generally consists of bands
and gaps. In this paper, for fixed m, we consider the problem of maximizing the gap-to-midgap ratio
for the mth spectral gap over the class of potentials which have fixed periodicity and are pointwise
bounded above and below. We prove that the potential maximizing the mth gap-to-midgap ratio
exists. In one dimension, we prove that the optimal potential attains the pointwise bounds almost
everywhere in the domain and is a step-function attaining the imposed minimum and maximum values
on exactly m intervals. Optimal potentials are computed numerically using a rearrangement algorithm
and are observed to be periodic. In two dimensions, we develop an efficient rearrangement method
for this problem based on a semi-definite formulation and apply it to study properties of extremal
potentials. We show that, provided a geometric assumption about the maximizer holds, a lattice of disks
maximizes the first gap-to-midgap ratio in the infinite contrast limit. Using an explicit parametrization
of two-dimensional Bravais lattices, we also consider how the optimal value varies over all equal-volume
lattices.
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1. Introduction

As described by Floquet-Bloch theory, the spectrum of a self-adjoint, linear differential operator with periodic
coefficients consists of spectral bands, and perhaps, spectral gaps. Spectral gaps are significant in a variety of
physical applications, where they often describe frequency intervals at which waves cannot propagate. Examples
abound, but spectral gaps are used to control the propagation of electromagnetic waves in a photonic crystal
and the energy spectrum of an electron in a solid-state device. In this paper, we study the spectral gaps of a
periodic Schrödinger operator.

We consider the periodic Schrödinger operator, HV : H2(Rd)→ L2(Rd), given by

HV = −∆+ V.
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Here, V ∈ L∞(Rd) is a real-valued, Γ -periodic function for a Bravais lattice, Γ . For a general discussion of the
spectrum of HV , see, e.g., the recent review [28]. The spectral problem is to find (E,ψ) satisfying

HV ψ = E ψ (1.1a)

ψ bounded. (1.1b)

We say that ψ(x; k) = eik·xp(x) for a Γ -periodic function p ∈ H2(Rd) is a Bloch-Floquet solution with quasi-
momentum k ∈ B. Here, B ⊂ Rd is the Brillouin zone, taken as the Voronoi cell of the origin in the reciprocal
lattice, Γ ∗. We can decompose H2 into spaces with different quasi-momenta, H2

k . It is convenient to define the
twisted Schrödinger operator,

HV (k) = −(∇+ ik) · (∇+ ik) + V,

which acts on Γ -periodic functions. Thus, the spectral problem (1.1) can be rewritten as the eigenvalue problem,

HV (k) p = E p (1.2a)

p(x+X) = p(x) X ∈ Γ. (1.2b)

Using periodicity, we can restrict p(x; k) to the torus Rd/Γ . The dispersion relation (Bloch variety), is given by

BH = {(k,E) ∈ Rd+1 : HV has a Bloch-Floquet solution ψ with quasi-momentum k}
= {(k,E) ∈ Rd+1 : HV (k) has a Γ -periodic solution p}

For any k ∈ B, the twisted Schrödinger operator HV (k) has a discrete spectrum, so it is convenient to decompose
BH into spectral bands Ej(k). Eigenvalues, Ej(k), are Γ ∗-periodic with respect to k, so can be considered over
the first Brillouin zone, B.

The spectrum of HV is then given by

σ(HV ) =
⋃
k∈B

σ (HV (k))

and generally consists of bands and gaps. For a given potential V ∈ A, denote the left and right edges of the
mth gap in the spectrum, σ(HV ), by

αm = max
k∈B

Em(k) and βm = min
k∈B

Em+1(k).

If the mth gap is non-empty, then βm > αm but we allow for the possibility that the mth gap is empty. For
m ∈ N+ fixed, we define the gap-to-midgap ratio,

Gm[V ] :=
βm − αm

(αm + βm)/2
. (1.3)

For Γ a fixed Bravais lattice and V+ > 0, we define the admissible set

A(Γ, V+) := {V ∈ L∞(Rd) : V (x+X) = V (x) and V (x) ∈ [0, V+] (1.4)

for almost all x ∈ Rd and all X ∈ Γ}.
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We consider the optimization problem of maximizing the gap-to-midgap ratio, Gm, over potentials in A =
A(Γ, V+). The following Theorem is immediate.

Theorem 1.1. For fixed m ∈ N+, V+ > 0, and Bravais lattice Γ , there exists V ?m,Γ,V+
∈ A(Γ, V+) such that

Gm[V ?m,Γ,V+
] = G?m,Γ,V+

:= sup
V ∈A(Γ,V+)

Gm[V ]. (1.5)

Proof of Theorem 1.1. For β ≥ α ≥ 0, we have that 0 ≤ Gm ≤ 2. Let {V`}∞`=1 be a maximizing sequence, i.e.,
G?m,Γ,V+

= lim`↑∞Gm[V`]. Since A is weak* compact, there exists V ? ∈ A and a weak* convergent subsequence

V`
w∗−−→ V ?. The mappings V 7→ αm[V ] and V 7→ βm[V ] are weak* continuous over A; see the proof of [9],

Proposition 2.1(ii). It follows that V 7→ Gm[V ] is also weak* continuous over A. Thus Gm[V ?] = G?m,Γ,V+
.

We remark that V ?m,Γ,V+
is never unique since Gm is invariant to translations. We consider the gap-to-midgap

ratio of the mth spectral gap, Gm, in (1.3) rather than just the length of the mth spectral gap because it is a
non-dimensional quantity. We also prefer this quantity to fixing ω0 and maximizing the objective, min{βm −
ω2
0 , ω

2
0 − αm}, as in [8, 9], since (i) this involves the introduction of an additional parameter, ω0, and (ii) from

the optimization viewpoint, introduces additional non-differentiability.

1.1. Overview

The goal of this work is twofold: (i) develop and study efficient computational methods for finding optimal
potentials satisfying (1.5) and (ii) study the properties of optimal potentials using both computational and
analytical methods.

In one dimension, we prove that the optimal potential is a step function attaining the imposed minimum
and maximum values on exactly m intervals. Such potentials are sometimes referred to as bang-bang. Optimal
potentials are computed numerically using a rearrangement algorithm (Algorithm 1) and observed to be periodic
with period X/m. In Proposition 2.13, we prove that periodic potentials are optimal in the high contrast limit
(V+ =∞).

In Section 3, we change variables in the two-dimensional periodic problem posed on the torus to obtain a
formulation of the problem on a square. In Section 4, we develop an efficient rearrangement method for this
problem based on a semi-definite reformulation (Algorithm 2). We prove in Proposition 4.1 that the optimal
potential has at least one grid point x at which either V (x) = 0 or V (x) = V+, a property that we refer to as
weakly bang-bang. Using the KKT conditions for optimality, we explain in Proposition 4.2 how this algorithm
generalizes Algorithm 1, used in one dimension. We use Algorithm 2 to compute optimal potentials with the
translational symmetries of the square and triangular lattices for m = 1, 2, . . . , 8; see Figures 6–9. We also study
the dependence of the optimal potentials on the parameter V+. We observe from the computational results that
the optimal potential as V+ → ∞ that the region where V = 0 consists of m disks in the primitive cell; see
Figure 10. We prove, in Propositions 4.7 and Corollary 4.10, the infinite contrast asymptotic result (V+ =∞),
that for m ≥ 1, subject to a geometric assumption, that the optimal potential has {V = 0} on exactly m equal-
size disks. Finally, using a parameterization of two-dimensional Bravais lattices, we also consider how G?m,Γ,V+

varies over all equal-volume Bravais lattices, Γ .

1.2. Related work

Our one-dimensional results are most similar to [2] and [34].
In [2], the problem of minimizing the width of the lowest spectral band for the one-dimensional Schrödinger

operator is studied using methods of proof similar to the present paper. In particular, potentials which maximize
the length of the gap between the two lowest Neumann and the gap between the first Neumann and the first
Dirichlet eigenvalues are studied. It is shown that such potentials are bang-bang and a necessary condition for
the optimal potentials in terms of the associated eigenfunctions is presented. These results are also discussed



4 C.-Y. KAO AND B. OSTING

and put in context of [18], Chapter 8, which is a good general reference for extremal eigenvalue problems, though
with less emphasis on extremal properties of the spectrum for periodic operators studied in the present work.

In [34], the gap-to-midgap ratio for a one-dimensional periodic Helmholtz operator is studied. It is shown
that the Bragg structure (a.k.a. quarter-wave stack) uniquely maximizes the first spectral gap-to-midgap ratio
within an admissible class of pointwise-bounded, periodic coefficients. This structure also arises asymptotically
in the study of long-lived solutions to the wave equation in an infinite domain [35].

In two dimensions, the spectrum of Schrödinger operators is considerably more complex which causes the
study of its extremal properties to be yet more challenging. One of the first studies in this area and arguably
the closest to the present work is [8, 9]. Here, the authors study the spectrum of the TE and TM Helmholtz
operators. The objective function to be maximized is min{βm−ω2

0 , ω
2
0−αm} with a given ω0. Optimal potentials

are proven to exist within an admissible set and characterized via. optimality conditions. In addition, optimal
potentials are studied via. a numerical method based on the subdifferential of the objective function. The paper
focuses on refractive indices with the symmetries of the square lattice.

In [23], the authors consider gaps for the two-dimensional Helmholtz operator by using a level set approach to
capture the interface between two materials of different dielectrics and shape derivative to deform the interface
to find the optimal structure. The optimal solutions computed there reveal additional symmetries, which in
part motivates the present study. In later work [15], both shape derivatives and topological derivatives are
incorporated with level set methods in order to flexibly allow changes in the topology so that optimal structures
with holes can be easily identified.

In [38], an exhaustive search on a coarse grid and topology optimization were used to find periodic coefficients
in both the TE and TM Helmholtz operators for which the gap-to-midgap ratio is maximized. Based on these
numerical results, Sigmund and Hougaard reached the bold conjecture that the globally optimal structure has a
particular structure related to a centroidal Voronoi tessellation (CVT). The generators of this CVT correspond
to the optimal TM coefficients and the walls of the tessellation correspond to the optimal TE coefficients.

In recent work [32], it has been shown that the optimization problem of maximizing the gap-to-midgap ratio
can be reformulated using subspace methods and cast as a sequence of linear semidefinite programs (SDP). In
the current work, we follow this approach as well. Numerical results are given for both the TE and TM Helmholtz
operators for a square lattice. These methods have been extended to study spectral gaps of Helmholtz operators
in three dimensions, with applications to photonic crystals [31].

We refer to the numerical methods developed in this work as rearrangement methods. Rearrangement methods
were introduced by Schwarz and Steiner and have wide applications in variational problems [3, 14, 18, 25, 37].
They involve a sequence of steps which rearrange the domain or a coefficient in an operator as to provably reduce
an objective function. Recently, rearrangement methods have been used to devise computational methods for
shape optimization problems, including Krein’s problem [4, 7, 24, 26], population dynamics [6, 19, 22], Dirichlet
partitions [36], and biharmonic vibration [5, 20], and have proven to be extremely efficient in practice. In one
of the examples studied in [24], a method based on rearrangement is able to find an optimal solution in as little
as 4 iterations, compared to the 200 iterations (each of equal computational cost) required by a gradient-based,
level-set-method evolution [33].

Finally, we mention another connection with the present work. If we consider the spectral problem (1.1) with
V ≡ 0, the spectral gaps close. In [21], the authors, together with Rongjie Lai, consider the periodic problem
with k = 0. Denoting the eigenvalues of the periodic problem by λm, it is shown that among flat tori of volume
one, the mth eigenvalue has a local maximum with value

λm = 4π2
⌈m

2

⌉2(⌈m
2

⌉2
− 1

4

)− 1
2

.

1.3. Outline

In Section 2, we study the one-dimensional problem. In Section 3, we present some background material
needed for the study of spectral gaps for the two-dimensional problem. In Section 4, we describe the SDP
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reformulation of the problem and present a rearrangement algorithm based on this formulation. The results
from several computational experiments are presented. We conclude in Section 5 with a discussion.

2. One-dimensional case

In this section, we consider (1.2) in one-dimension, which is sometimes also referred to as Hill’s equation. We
assume that the potential, V , is assumed to be admissible, as in (1.4). The one-dimensional case is considerably
simpler since the edges of a nonempty spectral gap are characterized by either anti-periodic (m odd) or periodic
(m even) eigenproblems, for which the eigenvalues are simple. In fact, for even gaps with k = 0, this problem
reduces to maximizing the mth gap between eigenvalues for a Schrödinger operator on S1 where the potential
is point-wise bounded. The results proven here are analogous to the results proven in [34] for the Helmholtz
operator.

Recall the definition of Gm = βm−αm
(αm+βm)/2 from (1.3). The following Propositions give the variation of Gm

with respect to the potential.

Proposition 2.1. Let (p,E) be a simple eigenpair satisfying (1.2), for a potential V0 ∈ A, normalized such
that

∫
Rd/Γ |p(x)|2 dx = 1. The Fréchet derivative of E(V ) at V = V0 is

δE =

∫
Rd/Γ

|p(x)|2δV (x) dx =⇒ δE

δV
= |p|2.

Proposition 2.2. Let d = 1 and fix m ∈ N+. Let (α,ψα) and (β, ψβ) denote eigenpairs satisfying (1.1) corre-
sponding the left and right edges of the mth gap in the spectrum. If β > α, then the variation of Gm with respect
to V is given by

δGm
δV

=
αβ

(α+ β)2/4

(
ψ2
β/β − ψ2

α/α
)
.

Proof. If β > α, then α and β are simple eigenvalues. The proof then follows from Proposition 2.1 and the fact
that ψα and ψβ are real.

Theorem 2.3. Let d = 1 and fix m ∈ N+. The maximizer of Gm[V ] over A is piecewise constant and achieves
the prescribed point-wise bounds, 0 and V+, almost everywhere, i.e., V ?m is a bang-bang control. Furthermore,
any local maximizer Ṽ ∈ A with corresponding eigenpairs (α,ψα) and (β, ψβ) with nonzero gap (i.e. α 6= β)
satisfies

Ṽ (x) =

{
V+ x ∈ Ω+ := {x : ψ2

α(x)/α < ψ2
β(x)/β}

0 x ∈ Ω− := {x : ψ2
α(x)/α > ψ2

β(x)/β}.
(2.1)

Proof. Let Ṽ ∈ A be any local maximizer. Consider the set A = {x ∈ [0, X] : 0 < Ṽ (x) < V+} and let S ⊂ A be
arbitrary. For δV (x) = 1S(x), the indicator function on S, by Proposition 2.2, local optimality of Ṽ requires〈

δG

δV
[Ṽ ], 1S

〉
= 0 ⇐⇒ αψ2

β = βψ2
α a.e. on A, (2.2)

where (α,ψα) and (β, ψβ) are eigenpairs for Ṽ . We consider an interval where both ψα and ψβ 6= 0. Multiplying
ψα by −1 if necessary, we have that

√
αψβ =

√
βψα.
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Applying HV to both sides, we obtain

√
αβψβ =

√
βαψα =⇒ β = α.

But this contradicts the assumption that the gap is nonempty. Thus, A has zero measure, i.e., Ṽ (x) ∈ {0, V+}
for a.e. x ∈ [0, X].

We now consider a set Ω− = {x ∈ [0, X] : Ṽ (x) ≡ 0} and let S ⊂ Ω− be arbitrary. The perturbation δV (x) =
1S(x) is admissible. Local optimality requires that〈

δG

δV
[Ṽ ], 1S

〉
≤ 0 ⇐⇒ αψ2

β ≤ βψ2
α a.e. on Ω−,

as desired.
A similar perturbation argument for the set Ω+ = {x ∈ [0, X] : Ṽ (x) ≡ V+} completes the proof.

Theorem 2.4. Let d = 1, fix m ∈ N+, and let Ṽ (x) ∈ A be a local maximizer of Gm with Gm(Ṽ ) > 0. Then
there are only a finite number of transitions between where Ṽ is 0 and V+ and therefore Ṽ is a step function.

Proof. Suppose there are an infinite number of transition points {xj}. Then there exists an accumulation point,
say x? ∈ [0, X), such that, along a subsequence which we again denote by {xj}, xj → x?. By (2.1), at each xj ,
we have βψ2

α(xj) = αψ2
β(xj). Taking ψα(x?) ≥ 0 and ψβ(x?) ≥ 0, we can pass to a further subsequence so that√

βψα(xj) =
√
αψβ(xj). Taking the limit as xj → x?, we obtain√

βψα(x?) =
√
αψβ(x?).

We also have that

0 = lim
j→∞

(√
βψα(xj)−

√
αψβ(xj)

)
−
(√
βψα(x?)−

√
αψβ(x?)

)
xj − x?

=
√
βψ′α(x?)−

√
αψ′β(x?),

where the prime denotes a spatial derivative. Define

ψ̃β =

√
α

β
ψβ so that ψ̃β(x?) = ψα(x?) and ψ̃′β(x?) = ψ′α(x?).

By assumption, Gm(Ṽ ) > 0 which implies that β > α. It follows that (β, ψ̃β) and (α,ψα) are periodic or semi-
periodic eigenpairs satisfying (1.1) for different values of E, but have the same Cauchy data at x = x?. We show
that this is a contradiction. We recall that the Sturm Oscillation Theorem implies that ψα and ψβ take the
same number of zeros on any interval of length X ([10], Thm. 3.1.2).

Without loss of generality, we may assume that ψα(x?) = ψβ(x?) > 0. If ψα(x?) = ψβ(x?) = 0, then since
β > α, the Sturm Oscillation Theorem would imply that ψβ takes at least one more zero on [x?, x? +X) than
ψα, but this is a contradiction.

Let a, b be successive zeros of ψα with x? ∈ (a, b). Claim: the solution ψ̃β takes two zeros in (a, b): one in
(a, x?) and another in (x?, b). But this completes the proof since ψβ must also take a zero between any other
consecutive zeros of ψα, contradicting the fact that they take the same number of zeros on any interval of length
X.

To prove the claim, consider the Wronskian, W (x) = ψ̃β(x)ψ′α(x)− ψα(x)ψ̃′β(x). Using (1.1), we compute

W (x) = (β − α)

∫ x

x?

ψα(y)ψ̃β(y)dy.



EXTREMAL SPECTRAL GAPS FOR PERIODIC SCHRÖDINGER OPERATORS 7

Suppose ψ̃β > 0 on (a, x?). Then on one hand W (a) = ψ̃β(a)ψ′α(a) > 0 and on the other W (a) = −(β −
α)
∫ x?
a
ψα(y)ψ̃β(y)dy < 0 which is a contradiction.

Similarly, suppose ψ̃β > 0 on (x?, b). Then on one hand W (b) = ψ̃β(b)ψ′α(b) < 0 and on the other W (b) =

(β − α)
∫ b
x?
ψα(y)ψ̃β(y)dy > 0 which is a contradiction.

2.1. Reduction of (1.5) to the Kronig-Penney model for m = 1

The optimality result in (2.2) means that the potential is bang-bang, i.e., it attains the imposed pointwise
bounds almost everywhere.

Theorem 2.5. For m = 1, every locally optimal potential of (1.5) with β > α can be translated to take the
simple form

Vb(x) =

{
V+ x ∈ [0, b]

0 x ∈ [b,X],

where b is a positive real number.

Proof. We assume that V ? is a locally optimal potential for m = 1 with more than two (but by Thm. 2.4 a
finite number) of transition points. Let (α,ψα) and (β, ψβ) be the eigenpairs corresponding to the spectral band
edges of the first gap. Recall that ψα and ψβ vanish at exactly one point each, say xα and xβ , with xα 6= xβ . By
translating x if necessary, we may assume xβ > xα. By changing signs if necessary, we may assume that ψα > 0
and ψβ > 0 on (xα, xβ).

We consider the Wronskian, W (x) = ψβ(x)ψ′α(x) − ψα(x)ψ′β(x). Clearly W (xα) > 0 and W ′(x) = (β −
α)ψαψβ > 0 on (xα, xβ). Thus, on (xα, xβ)

W > 0 =⇒ ψ′α
ψα

>
ψ′β
ψβ

=⇒ d

dx
log

(
ψα(x)

ψβ(x)

)
> 0. (2.3)

It follows that log
(
ψα(x)
ψβ(x)

)
is strictly increasing on (xα, xβ).

We now suppose that there are more than one transition points of V (x) in the interval (xα, xβ). Let y and
z be two such distinct points. By the optimality condition (2.1), we have that ψα(x)/

√
α = ψβ(x)/

√
β at both

x = y and x = z. But this implies that

log

(
ψα(y)

ψβ(y)

)
= log

(
ψα(z)

ψβ(z)

)
= log

(√
α√
β

)
,

which contradicts the fact that log
(
ψα(x)
ψβ(x)

)
is strictly increasing on (xα, xβ). Thus, there can be only transition

point in (xα, xβ). A similar argument shows that there can only be one transition point in [0, X] \ [xα, xβ ].

Theorem 2.5 shows that the optimal potential is given by the Kronig-Penney model, which has been well-
studied in solid-state physics [27]. In this case, (1.5) reduces to a one-dimensional optimization problem – find
the value of b ∈ [0, X] so that G1 is maximized.

Remark 2.6. Since the interval can be translated so that the optimal potential is symmetric, it follows that the
semi-periodic eigenfunctions are either symmetric or antisymmetric. It follows from the proof of Theorem 2.5
that for the optimal potential for m = 1, ψ′β and ψα simultaneously vanish and visa-versa.



8 C.-Y. KAO AND B. OSTING

Remark 2.7. For the analogous Helmholtz problem, the maximal first spectral gap-to-midgap ratio is obtained
by the Bragg structure [34]. For the Schrödinger operator, it isn’t obvious if the optimal potential can be written
explicitly.

2.1.1. Numerical computation

In the following, we develop some notation so that we can compute the solution to (1.2) in one dimension
and find optimal potentials. Fix X,V +, b, k. Denote

Q =
√
V + − E, K =

√
E, and a = X − b.

Continuity of ψ(x; k) and ψ′(x; k) at x = 0 and x = b requires that Q and K satisfy

Q2 −K2

2QK
sinh(Qb) sin(Ka) + cosh(Qb) cos(Ka) = cos(Xk).

For k = π/X (ψ is an anti-periodic solution), this yields the two equations

Q2 −K2

2QK
sinh(Qb) sin(Ka) + cosh(Qb) cos(Ka) = −1 (2.4a)

Q2 +K2 = V+. (2.4b)

The solutions Q(E),K(E) of these equations determine the eigenvalues E that correspond to the odd spectral
gap edges.

Thus, the objective can be evaluated by solving either (1.1), (1.2), or (2.4). In Figure 1 (left), for fixed V+, we
illustrate that the eigenfunctions corresponding to the optimal potential satisfy the optimality conditions (2.1).
In Figure 1 (right) we plot the optimal value of b for different values of log10 V+. From the plot we additionally
observe that the value of b which maximizes G1 is unique.

In Figure 2, we study how the eigenfunctions change as V+ is varied. It is known that as V+ → ∞, the
eigenfunctions vanish on the set {V = V+} (see Thm. 4.5). In particular, for small V+, say V+ = 1 as in the top
left panel, the second eigenfunction (ψβ) takes large values in the region {V = V+}. However, as V+ is increased,
the second eigenfunction takes smaller values on this region; the eigenfunction transitions from having a single
maximum to having two. As V+ →∞, the eigenfunctions converge to the Dirichlet-Laplace eigenfunctions for
the set {V = 0}.

2.1.2. Asymptotics for m = 1

Here, we consider the optimal value of b as V+ → 0 and V+ →∞.

Proposition 2.8. Using the notation of Theorem 2.5, as V+ → 0, the optimal value of b is X/2.

Proof. We apply the perturbation formula in (2.2). For V+ = 0 the anti-periodic eigenfunctions are sin(πx/X)
and cos(πx/X) which both correspond to the spectral value E = π2/X2. The largest perturbation will occur if we
set Ω+ = {x ∈ [0, X] : | cos(πx/X)| > | sin(πx/X)|}. Using periodicity, this corresponds to taking b = X/2.

Proposition 2.9. As V+ →∞, the value of G1 for any b and any X is 6
5 .

Proof. As V+ → ∞, the potential barrier forces the eigenfunction to be zero on Ω+. In this case, we get

a Dirichlet-Laplace eigenvalue equation with eigenvalues
(

nπ
X−b

)2
, so the value of G1 for any b is given by

2 22−12
22+12 = 6

5 .
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Figure 1. Left: An illustration of the optimality condition in (2.1) for X = 1, V+ = 100, and
m = 1. The set {x : V (x) = V+} = {x : |ψα(x)|2/α < |ψβ(x)|2/β} is indicated on the x-axis by
a thick black line. Right: Take X = 1. For different values of b (x-axis) and V+ (y-axis), we plot
the contours of G. For each value of V+, the value of b that maximizes G1 is indicated by the
red line.

The results in Propositions 2.8 and 2.9 are observed in Figure 1 (right). From this plot, we also observe that
the optimal value of b tends to 0 as V+ →∞.

2.1.3. Rearrangement algorithm

The idea for the rearrangement algorithm is to use the optimality criterion (2.1) to define a sequence of
potentials; see Algorithm 1. In the first step, for fixed V , we compute the eigensolutions corresponding to the
edges of the mth spectral gap. In the second step, we redefine the potential via. (2.1). These steps are repeated
until a potential satisfying the necessary conditions for optimality (2.1) is identified.

In Figure 3, we plot iterations of Algorithm 1 for the first gap (m = 1) with X = 1 and V+ = 100. We
observe that the algorithm converges in 10 iterations for the initial condition with b = |Ω+|/|Ω| = 0.8. The
optimal configuration has |Ω+|/|Ω| = 0.42, as can also be seen in Figure 1(left).

Remark 2.10. We observe that the value of Gm is strictly increasing for non-stationary iterations of the
rearrangement algorithm (Algorithm 1).

2.2. Optimal potentials of (1.5) for m ≥ 2

By arguing as in the proof of Theorem 2.5, one may prove the following corollary.

Corollary 2.11. Fix m ∈ N+. Every locally optimal potential of (1.5) with β > α is a step function with exactly
2m transition points. In other words, there are m intervals where V = V+ and m intervals where V = 0.

The next result gives an upper bound on Gm[V ] for any V ∈ A(X,V+).

Proposition 2.12. Let V ∈ A(X,V+). Then

Gm[V ] ≤ 2X2V+
2π2m2 +X2V+

.
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Figure 2. Let X = 1 and m = 1. For V+ = 1 (top left), V+ = 10 (top right), V+ = 100 (bottom
left), and V+ = 1000 (bottom right), we plot the eigenfunctions corresponding to the optimal
potential. The shapes of the eigenfunctions change with respect to V+; see text for a discussion.
In particular, the eigenfunctions converge to the eigenfunctions of the Dirichlet-Laplace operator
on the set {V = 0}.

Proof. For V ∈ A(X,V+), we have the semidefinite ordering

−(∂x + ik)2 � −(∂x + ik)2 + V � −(∂x + ik)2 + V+

which implies that

µj(k) ≤ Ej(k) ≤ µj(k) + V+,

where µj(k) are the eigenvalues of H0(k) with periodic boundary conditions.
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Figure 3. An illustration of iterations 0, 1, and 10 of the rearrangement method in one
dimension for m = 1, X = 1, and V+ = 100. Left: The eigenfunctions corresponding to the
spectral gap edges are plotted together with the set {x : V (x) = V+} indicated on the x-axis
by a thick black line. Right: The dispersion relation for the Schrödinger operator.
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Algorithm 1. The rearrangement algorithm for the one-dimensional problem in (1.5).

Input: Fix V+ > 0, m ∈ N+. Initialize V in A(V+) defined in (1.4).

while the potential is not stationary do
1. Compute eigensolutions (α,ψα) and (β, ψβ) satisfying (1.1) corresponding the edges of the mth spectral
gap.

2. Rearrange the potential by defining

V (x) =

{
V+ x ∈ {x : ψ2

α(x)/α < ψ2
β(x)/β}

0 x ∈ otherwise.

end while

The mth gap occurs at k = 0 for m even and k = π for m odd. Recall that µ1(0) = 0 and µ2j(0) = µ2j+1(0) =(
2jπ
X

)2
. For an even m = 2j and k = 0, we now write

Gm = 2
Em+1(0)− Em(0)

Em+1(0) + Em(0)
≤ 2

µ2j+1(0) + V+ − µ2j(0)

µ2j+1(0) + V+ + µ2j(0)
=

2X2V+
2π2m2 +X2V+

.

Here we have used the fact that f(α, β) = 2α−βα+β is increasing in α and decreasing in β for α, β > 0. Recall that

µ2j−1(π) = µ2j(π) =
(

(2j−1)π
X

)2
. For an odd m = 2j − 1 and k = π, we have that

Gm = 2
Em+1(π)− Em(π)

Em+1(π) + Em(π)
≤ 2

µ2j(π) + V+ − µ2j−1(π)

µ2j(π) + V+ + µ2j−1(π)
=

2X2V+
2π2m2 +X2V+

.

Putting the even and odd bounds together gives the desired result.

2.2.1. High-contrast asymptotic results for m ≥ 1

Proposition 2.13. In the high-contrast limit (V+ = ∞), the periodic arrangement where all m intervals are
the same length attains the maximum of Gm with value G?m = 6

5 .

Proof. In the high contrast limit, the eigenvalues converge to the Dirichlet-Laplacian eigenvalues for m intervals.
We denote the length of the m intervals where V = 0 by L1, L2, . . . ,Lm and without loss of generality we can
assume that L1 ≤ L2 ≤ · · · ≤ Lm. The eigenvalues are then given by{(

2πj

Lm

)2

,

(
2πj

Lm−1

)2

, . . . ,

(
2πj

L1

)2
}
, j ∈ N+.

If the mth gap in the spectrum is between the eigenvalues
(

2π
L1

)2
and

(
2 2π
Lm

)2
, then the gap-to-midgap ratio

is

2

(
2 2π
Lm

)2
−
(

2π
L1

)2
(

2 2π
Lm

)2
+
(

2π
L1

)2 = 2
4L2

1/L
2
m − 1

4L2
1/L

2
m + 1

= f

(
4L2

1

L2
m

)
, (2.5)
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where f(α) = 2α−1α+1 . Since f(α) is increasing and L1 ≤ Lm, (2.5) is maximized when L1 = Lm, which implies

all intervals are of the same length and Gm = f(4) = 6
5 .

If not, the mth gap must lie in one of the intervals((
2πn

Lm

)2

,

(
2π(n+ 1)

Lm

)2
)
, n = 1, . . . ,m.

Then we obtain the bound

Gm ≤ 2

4π2(n+1)2

L2
m

− 4π2n2

L2
m

4π2(n+1)2

L2
m

+ 4π2n2

L2
m

= f

(
(n+ 1)2

n2

)
.

Since g(n) := (n+1)2

n2 is decreasing on (0,∞) and f is increasing, we have that the composition f ◦ g(n) is
a decreasing function. It follows that f ◦ g(n) < f ◦ g(1) = f(4) for all n = 2, . . . ,m. Since we can con-
struct a configuration where Gm = f(4), we conclude that the optimal mth gap must lie in the interval((

2π
Lm

)2
,
(

2 2π
Lm

)2)
. But clearly the mth gap must lie above m eigenvalues, so it must be that the gap lies in

the interval

((
2π
L1

)2
,
(

2 2π
Lm

)2)
, as considered above.

2.3. Rearrangement algorithm

For m ≥ 2, we use the rearrangement algorithm (Algorithm 1) to find the optimal potentials in (1.5). We
initialize the algorithm with the potential

V (x) =

{
V+ if cos(2πmx/X) > 0

0 otherwise.

For this initialization, the algorithm converges in just a few iterations; similar results were observed for other
initializations. As in Remark 2.10, we observe that the value of Gm is increasing on non-stationary iterations.
In Figure 4, we plot the optimal potentials and eigenfunctions corresponding to spectral band edges (left) and
the dispersion relation (right). We make the following observations:

1. As is well-known from the theory of Hill’s equation, the eigenfunctions associated with the edges of the
mth gap have exactly m zeros. Note that from Figure 2, depending on the value of V+, the eigenfunction
may exhibit positive local minima.

2. The result in Corollary 2.11 is observed; the potential maximizing Gm has m intervals where V = V+.
Additionally, the optimal potential is X/m-periodic. Although we can prove this result in the high contrast
limit (see Prop. 2.13), we are unable to prove this observation at this time for finite contrast, V+.

3. In Figure 4, we observe that many of the spectral gaps are trivial. For example, in Figure 4 for m = 3, the
gaps numbered 1,2,4,5,. . . are trivial. Assuming that the optimal potential is X/m-periodic, this follows
from the following easily proven Proposition.

Proposition 2.14. Let V be a periodic potential with period X/m. Then the nth spectral gap of the
operator HV acting on H1[0, X] can be non-trivial only if m | n.

4. Where one of the eigenfunctions (either ψα or ψβ) takes a zero, the other eigenfunction has zero derivative;
see Remark 2.6.

5. The value of G?m is decreasing in m; see Table 1 and Proposition 2.12.
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Figure 4. Fix X = 1 and V+ = 100. Each row corresponds to the maximizer of Gm for
m = 2, . . . , 5. Left: The eigenfunctions corresponding to the spectral gap edges are plotted
together with the set {x : V (x) = V+} indicated on the x-axis by a thick black line. Right: The
dispersion relation for the Schrödinger operator. For m = 1, see Figure 3.
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Table 1. For X = 1 and V+ = 100, the values of G?m for m = 1, . . . , 5.

m G?m

1 1.12370
2 0.74391
3 0.46766
4 0.30895
5 0.21550

3. The two-dimensional eigenvalue problem

We consider computing solutions of the eigenvalue problem (1.2) for fixed Γ, V, and k.

3.1. Transformation of (1.2) to a square domain

Let Γ be a unit-volume lattice. It is shown in Appendix A that one can find parameters (a, b) ∈ U such that
Γ is isometric to the lattice with basis

Ba,b =

(
1√
b

a√
b

0
√
b

)
.

We denote this lattice by Γa,b and the associated (a, b)-torus by Ta,b = R2/Γa,b. We consider the linear
transformation T0,1 → Ta,b given by

y = Ba,bx =⇒ ∇y = B−t∇x,

where B−t is the inverse transpose matrix of B. Transforming variables in (1.2), we obtain

− (B−ta,b∇x + ik) · (B−ta,b∇x + ik)p+ Ṽ p = Ep (3.1a)

p periodic on T0,1. (3.1b)

Here Ṽ (x) = V (y) is the transformed potential. Thus, for an arbitrary lattice, we have transformed (1.2) to a
problem on the square. We refer to

HV (k; a, b) : = −(B−ta,b∇x + ik) · (B−ta,b∇x + ik) + Ṽ

= −(∇x + iBta,bk) · (Bta,bBa,b)−1(∇x + iBta,bk) + Ṽ

as the transformed twisted Schrödinger operator.

3.2. Discretization

We consider a square grid discretization of T0,1. We use a simple nine point finite difference approximation to
find spectrum of the transformed twisted Schrödinger operator in (3.1). Denoting N = (BtB)−1 and kp = B−1k,
the stencil for this discretization with lattice spacing h is given by

N(2,1)+N(1,2)
4h2 −N(2,2)

h2 − i
hkp(2) −N(2,1)+N(1,2)

4h2

−N(1,1)
h2 + i

hkp(1) 2N(1,1)+N(2,2)
h2 + ktk −N(1,1)

h2 − i
hkp(1)

−N(2,1)+N(1,2)
4h2 −N(2,2)

h2 + i
hkp(2) N(2,1)+N(1,2)

4h2

 .
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Let La,b denote the matrix for this discretization of the transformed twisted Schrödinger operator incorporating
the periodic boundary conditions. Abusing notation, we use V to denote the discretization of the transformed
potential, Ṽ . We obtain the parameterized family of eigenvalue problems

[La,b(k) + diag(V )] u = E u, k ∈ B. (3.2)

Note that La,b(k) + diag(V ) is a Hermitian matrix. The dispersion surfaces are approximated by Ej(k).

3.3. Symmetry and discretization of the Brillouin zone

Symmetries within the Brillouin zone can be used to further reduce the number of eigenvalue problems need
to be solved for the optimization problem (1.5). In this section, we review these well-known symmetries.

For any real potential, the dispersion relation is symmetric with respect to k 7→ −k. This follows from taking
the complex conjugate of both sides of (1.2a),

HV (−k) p = HV (k) p = E p = E p.

In one dimension, this symmetry can be observed in Figure 4.
If the potential has the full symmetry of a lattice (both translational and rotational) then additional symmetry

is inherited by the Brillouin zone. In two dimensions, square and triangular lattices have rotational symmetries.

Let Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
denote the matrix which rotates points about the origin in the counterclockwise

direction by angle θ. We denote the operator Rθ : L2(R2)→ L2(R2) defined by

Rθf(x) = f(Rtθx).

If V is Rθ invariant, then we have that

Rθ HV (k) f = −Rθ
(
∆+ 2ikt∇− ktk

)
f +RθV f

= −
(
∆+ 2i(Rθk)t∇− (Rθk)t(Rθk)

)
Rθf + VRθf

= HV (Rθk) Rθ f.

Here, we have used the facts that the Laplacian commutes with Rθ, the identity Rθ∇ = Rtθ∇Rθ, and that Rθ
is unitary. If (E, p) is an eigenapair satisfying (1.2), we compute

HV (Rθk) (Rθp) = Rθ (HV (k) p) = Rθ (E p) = E (Rθp).

This implies that (E,Rθp) is also an eigenpair of (1.2) with quasi-momentum Rθk.
The rotational and inversion symmetries for the square and triangular lattice together imply that the Brillouin

zones have eight-fold and twelve-fold symmetry. The region modulo this symmetry is referred to as the irreducible
Brillouin zone (IBZ). The IBZ for the square and triangular lattices are colored in blue in Figure 5. We label the
vertices and origin of the IBZ in the standard way. In computations involving the square and triangular lattices,
we use this symmetry.

As described in [28], it was formally conjectured and widely believed that the extrema of spectral bands
were attained at the boundary of the IBZ. Although this has been shown to be false in general, in practice for
generic potentials, extrema are often located at such symmetry points. We do not understand which classes of
potentials satisfy this condition.

Nonetheless, this observation motivates the following heuristic for studying extremal gaps, and in particular
solving (1.5), which was introduced in [8, 9]. First we find a potential which attains the maximal gap-to-
midgap ratio for quasi-momentum only on the boundary of the IBZ. It may be the case that the spectral bands
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Figure 5. The irreducible Brillouin zones (IBZ) for the square (left) and triangular (right)
lattices, along with the traditional names of the vertices of the IBZ.

corresponding to this potential has extrema at the boundary or interior of the IBZ. If it happens that the
extrema are attained at the boundary, a condition that can easily be checked ex post facto, then this potential
is optimal for (1.5). This is the approach taken here, and it is observed that the extrema for the potentials
attaining the maximum in (1.5) have extremal spectra on the interior of the IBZ.

For computations for the square and triangular lattices we discretize the boundary of the IBZ by uniformly
distributing 15 points on each side of the triangles Γ -X-M and Γ -K-M in Figure 5, respectively. In Section 4.8,
when we consider other lattices besides the square and triangular lattices, we’ll discretize half of the Brillouin
zone, as justified by the fact that the potential is real (see above).

4. Optimization problem in two dimensions

We consider the optimization problem (1.5) in two dimensions. Theorem 1.1, guarantees the existence of an
optimal potential in two dimensions for fixed Γ . The computational challenge for the two-dimensional problem
is that the eigenvalue may no longer be simple and so the Fréchet derivative in Proposition 2.1 may no longer be
valid. In particular, if the rearrangement algorithm (Algorithm 1), introduced in Section 2, is applied directly, one
finds that the potential will alternate between non-optimal potentials. We modify the rearrangement algorithm,
by reformulating the eigenvalue problem as a semi-definite inequality. Discretizing this reformulation gives a
semi-definite program (SDP).

4.1. SDP formulation

The optimization problem (1.5) of maximizing the mth gap can be fully written out as

max
β − α

(α+ β)/2
(4.1a)

s.t. Em(V, k) ≤ α and Em+1(V, k) ≥ β k ∈ B (4.1b)

HV (k) pj(x) = Ej pj(x) x ∈ R2/Γ, k ∈ B, j = m,m+ 1 (4.1c)

pj is Γ -periodic j = m,m+ 1 (4.1d)

0 ≤ V (x) ≤ V+ x ∈ R2/Γ. (4.1e)

Note that here we have introduced two additional parameters α, β > 0. At the optimum, the constraints in
(4.1b) will be active for some value of k ∈ B so that α = maxk∈B Em(V, k) and β = mink∈B Em+1(V, k). The
equivalence of (1.5) and (4.2) then follows from the fact that the objective in (4.1a) is monotonically increasing
in β and decreasing in α.
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Let H1
per denote the space of periodic H1 functions on the torus, R2/Γ . For each k ∈ B, let Πk

m : H1
per → H1

per

be a rank m projection. Then we can further rewrite the constraints for the optimization problem (4.2), as

max
β − α

(α+ β)/2
(4.2a)

s.t. Πk
m (HV (k)− αId)Πk

m � 0 k ∈ B (4.2b)

(I −Πk
m) (HV (k)− βId) (I −Πk

m) � 0 k ∈ B (4.2c)

Πk
m is a rank m projection k ∈ B (4.2d)

0 ≤ V (x) ≤ V+ x ∈ R2/Γ. (4.2e)

The advantage of this formulation is that it no longer references the (non-differentiable) eigenvalues. At the
optimum, for the values of k ∈ B which attain maxk∈B Em(V, k), the rank m projection will have the from

Πk
mu(x) =

∑
j∈[m]

pj(x, k)

∫
R2/Γ

pj(y, k) u(y) dy.

That is, Πk
m will be the projection onto a space spanned by the first m eigenfunctions of HV (k).

Finally, the objective function in (4.2) is a linear fractional function. A homogenization transformation of
the variables can be used to equivalently rewrite (4.2) as an optimization problem with linear objective [32].
Namely making the substitutions α = α̃/θ, β = β̃/θ, and V = Ṽ /θ, we obtain the equivalent problem

max β̃ − α̃ (4.3a)

s.t. Πk
m

(
θH(k) + Ṽ − α̃Id

)
Πk
m � 0 k ∈ B (4.3b)

(I −Πk
m)
(
θH(k) + Ṽ − β̃Id

)
(I −Πk

m) � 0 k ∈ B (4.3c)

Πk
m is a rank m projection k ∈ B (4.3d)

0 ≤ Ṽ (x) ≤ θV+ x ∈ R2/Γ. (4.3e)

α̃+ β̃ = 2 (4.3f)

We used the discretizations described in Section 3.2 to obtain a family of finite-dimensional eigenvalues
problems. Further discretizing the Brillouin zone {kj}j∈[q] ⊂ B, gives a finite-dimensional approximation of the
optimization problem (4.3).

As in Algorithm 1, we will employ an algorithm which alternates between two steps. In the first step,
the potential V is fixed and a subspace corresponding to the projections Πk

m is computed. In the second
step, the projections are fixed and a linear SDP (a convex optimization problem) is solved by using CVX, a
package for specifying and solving convex programs [12, 13] to update the potential. The details are given in
Algorithm 2. Note that for simplicity, in (4.4), we have written SDP with a linear fractional objective, but the
same homogenization transformation made just above (4.3), can be used to rewrite (4.4) as a linear SDP.

4.2. Karush Kuhn Tucker (KKT) conditions

We derive the KKT equations for the semi-definite optimization problem in (4.4). Since the constraints are
linear, the KKT equations are necessarily satisfied at every maximum point (α∗, β∗, V ∗). To reduce notation,
we understand a, b to be fixed and denote Lj = La,b(kj). Introducing the dual variables Aj ∈ Sm and Bj ∈ Sµ
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Algorithm 2. The rearrangement algorithm for the two-dimensional problem in (1.5).

Input: Fix V+ > 0, m ∈ N+. Initialize V in A(Γ, V+) defined in (1.4).

while the potential is not stationary do
1. For an n-point spatial discretization, {x`}n`=1 ⊂ T0,1, and discretization of the Brillouin zone, {kj}j∈[q] ⊂
B, compute eigenfunctions ui(kj) ∈ Cn solving (3.2) for i = 1, . . . ,m+ µ. Form the matrices

Uα,j = [u1(kj)| · · · |um(kj)] ∈ Cn×m, j ∈ [q]

Uβ,j = [um+1(kj)| · · · |um+µ(kj)] ∈ Cn×µ, j ∈ [q].

2. Solve the linear fractional SDP

max
a,b,V

β − α
(α+ β)/2

(4.4a)

s.t. U∗α,j [La,b(kj) + diag(V )− αId]Uα,j � 0 j ∈ [q] (4.4b)

U∗β,j [La,b(kj) + diag(V )− βId]Uβ,j � 0 j ∈ [q] (4.4c)

0 ≤ V` ≤ V+ ` ∈ [n]. (4.4d)

end while

for j ∈ [q] and f+, f− ∈ Rn, we have the Lagrangian

L(α, β, V ;Aj , Bj , f+, f−) =
β − α

(α+ β)/2
+ 〈f+ , V+ − V 〉+ 〈f− , V − 0〉

−
∑
j∈q

〈
Aj , U

∗
α,j [Lj + diag(V )− αI]Uα,j

〉
F

+
∑
j∈q

〈
Bj , U

∗
β,j [Lj + diag(V )− βI]Uβ,j

〉
F
.

The stationarity conditions are obtained from the equations ∂L
∂α = 0, ∂L

∂β = 0, and ∇V L = 0. The first two
conditions are given by

∑
j∈[q]

tr(Aj) =
4β

(α+ β)2
(4.5a)

∑
j∈[q]

tr(Bj) =
4α

(α+ β)2
. (4.5b)

The third stationary condition is given by∑
j∈[q]

Uβ,jBjU
∗
β,j − Uα,jAjU∗α,j = diag(f+ − f−). (4.6)

The primary feasibility conditions (4.4b)–(4.4d) must hold. The dual feasibility conditions are given by

Aj � 0, j ∈ [q] (4.7a)
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Bj � 0, j ∈ [q] (4.7b)

f+, f− ≥ 0. (4.7c)

Finally, the complementary slackness conditions state that

〈f+ , V+ − V 〉 = 0 (4.8a)

〈f− , V − 0〉 = 0 (4.8b)〈
Aj , U

∗
α,j [Lj + diag(V )− αI]Uα,j

〉
F

= 0 (4.8c)〈
Bj , U

∗
β,j [Lj + diag(V )− βI]Uβ,j

〉
F

= 0. (4.8d)

4.3. Properties of Algorithm 2

In this section we use the KKT equations for the linear-fractional SDP (4.4), derived in Section 4.2, to prove
properties about Algorithm 2.

We say a potential V , defined on a grid {x`}n`=1, and constrained so that V` ∈ [0, V+] for all ` ∈ [n] is bang-
bang if V` ∈ {0, V+} for every ` ∈ [n]. We say that the potential is weakly bang-bang if there exists at least one
grid point ` ∈ [n] at which either V` = 0 or V` = V+.

Proposition 4.1. At every iteration of Algorithm 2 such that β 6= α, the potential is weakly bang bang.

Proof. In the second step of Algorithm 2, we obtain a new potential by solving the linear-fractional SDP in
(4.4). Such a potential necessarily satisfies the KKT equations, given in (4.4b)–(4.8).

Proceeding by contradiction, assume that V` ∈ (0, V+) for every ` ∈ [n]. By (4.8a) and (4.8b) we have that

f+ = f− = 0.

From (4.6), we obtain ∑
j

Uβ,jBjU
∗
β,j =

∑
j

Uα,jAjU
∗
α,j .

Taking the trace of both sides and using the circular trace identity and U∗·,jU·,j = I, we have that∑
j

tr(Bj) =
∑
j

tr(Aj).

But, by the identities in (4.5), this would imply that α = β.

The following proposition shows that Algorithm 2 generalizes Algorithm 1 to higher dimensions.

Proposition 4.2. The sequence of potentials defined in Algorithm 1 solve the KKT conditions for the linear
fractional SDPs (4.4) in Algorithm 2.

Proof. Since the spectral bands in one dimension are monotonic on the intervals [−π, 0] and [0, π], we may
assume that q = 1 and the subspaces are of dimension one (p = 1). Let k = 0 for m even and k = π for m odd
so that α = Em(k) and β = Em+1(k). We also have that the bases for the subspaces in Algorithm 2 are given
by Uα = um(k) = ψα and Uβ = um+1(k) = ψβ .

The stationary conditions in (4.5) reduce to

A =
4β

(α+ β)2
and B =

4α

(α+ β)2
.
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Table 2. For V+ = 100, and m = 1, . . . , 8, the optimal values, G?m, for the unit-volume square
and triangular lattices.

m Square Triangular

1 0.7722 0.7963
2 0.5461 0.4773
3 0.4130 0.4973
4 0.3957 0.3674
5 0.1663 0.2262
6 0.1572 0.2075
7 0.1978 0.2087
8 0.1939 0.09982

On any set of grid points where V = V+, we have that V 6= 0 so by the complementary slackness condition,
we have that f− = 0. It follows from (4.6) that on such nodes, `, we must have

(f+)` =
4α

(α+ β)2
(ψ2
β)` −

4β

(α+ β)2
(ψ2
α)` ≥ 0.

Similarly, on any set of grid points where V = 0, we must have

(f−)` =
4β

(α+ β)2
(ψ2
α)` −

4α

(α+ β)2
(ψ2
β)` ≥ 0.

But the potential chosen in Algorithm 1 defines the potential by choosing the sets {V = V+} and {V = 0}
exactly so that these two inequalities are satisfied.

4.4. Computational results

We study the dependence of G?m,Γ,V+
and the optimizer on the parameters m for fixed V+ = 100 and lattice

Γ . In this section, we will take Γ to either be the square or triangular lattice. In Section 4.6, we discuss the
optimizer as the parameter V+ varies and in Section 4.8 we discuss the dependence on the lattice, Γ .

For V+ = 100, the optimal potentials and corresponding dispersion relations for m = 1, . . . , 8 are plotted for
the square (Figs. 6 and 7) and triangular lattices (Figs. 8 and 9). The periodic extension of the potential is
plotted on a 3 × 3 array of the primitive cell. The dispersion relations are plotted over the boundary of the
irreducible Brillouin zone as shown in Figure 5. The optimal values found are recorded in Table 2.

We used a 64× 64 square grid T0,1 for the computations of the spectrum for each value k. The values of k
used come from discretizing the boundary of IBZ using 45 points. To generate these computational results, we
initialized the potential using a variety of different guesses and report the potentials found with largest objective
values.

We make the following observations:

1. For a fixed lattice, the values of G?m(V+, Γ ) are not necessarily decreasing in m, see m = 6, 7 for either
the square or triangular lattice.

2. As in Remark 2.10, we observe that the value of Gm is strictly increasing for non-stationary iterations of
Algorithm 2.

3. In Proposition 4.1, we prove that the potentials at every iteration of Algorithm 2 are weakly bang-bang.
In practice, we observe them to be bang-bang.

4. When Gm is maximized, the mth and (m+ 1)th spectral bands are very flat.
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Figure 6. For the square lattice and V+ = 100, (left) the potential maximizing Gm and
(right) corresponding dispersion relation over the irreducible Brillouin zone are plotted for
m = 1, 2, 3, 4.
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Figure 7. For the square lattice and V+ = 100, (left) the potential maximizing Gm and
(right) corresponding dispersion relation over the irreducible Brillouin zone are plotted for
m = 5, 6, 7, 8.
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Figure 8. For the triangular lattice and V+ = 100, (left) the potential maximizing Gm and
(right) corresponding dispersion relation over the irreducible Brillouin zone are plotted for
m = 1, 2, 3, 4.
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Figure 9. For the triangular lattice and V+ = 100, (left) the potential maximizing Gm and
(right) corresponding dispersion relation over the irreducible Brillouin zone are plotted for
m = 5, 6, 7, 8.
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5. For triangular potentials with honeycomb symmetry, e.g., m= 1, 2, 3, and 4, we observe that the spectral
bands feature Dirac points at the K points of the Brillouin zone; see [11].

4.5. An asymptotic result for m→∞
Similar to Proposition 2.12, we prove the following asymptotic result for Gm as m→∞.

Proposition 4.3. Let Γ be a Bravais lattice and T = R2/Γ . Let V ∈ A(Γ, V+). Then

Gm ≤
λDm+1 + V+ − λNm
λNm+1 + V+ + λNm

.

Here λDj and λNj denote the jth eigenvalue of the Dirichlet- and Neumann-Laplacian on T respectively.

Proof. For V ∈ A(Γ, V+), we have the semidefinite ordering

−∆N � H0(k) � H0(k) + V � H0(k) + V+ � −∆D + V+,

where ∆D and −∆N denote the Dirichlet- and Neumann-Laplacians respectively. The ordering follows from the
variational formulation for (1.1) and realizing that the admissible set satisfies H1

0 ⊂ H1
k ⊂ H1, where H1

k is the
set of H1 functions that have quasi-momentum k ∈ B. This semidefinite ordering implies that

λNj ≤ Ej(k) ≤ λDj + V+.

We then compute

Gm = 2
mink∈B Em+1(k)−maxk∈B Em(k)

mink∈B Em+1(k) + maxk∈B Em(k)

≤ 2
λDm+1 + V+ − λNm
λNm+1 + V+ + λNm

.

Here, as in the proof of Proposition 2.12, we have used the fact that f(α, β) = 2α−βα+β is increasing in α and
decreasing in β for α, β > 0.

Taking m→∞ in Proposition 4.3, and using Weyl’s law, λNm, λ
D
m = 4π

|T |m+O(1), we have that

Gm ≤ 2
V+ + 4π

|T | +O(1)

V+ + 4π
|T | (2m+ 1) +O(1)

= O(m−1).

4.6. Computational results for varying V+

In Figure 10, we also plot the optimal potentials and dispersion surfaces for m = 3 and the square lattice
(fixed Γ ) as we vary the strength of the potential, V+. Of course, the maximum value, G∗m,V+

, is non-decreasing

in V+, since the admissible set, A(Γ, V+), is enlarging. Numerically we observe both a change in the symmetries
of the optimal potential and the number of components per unit cell on the set where V = 0. For V+ large,
the optimal potential consists of three regions where V = 0, that are roughly disk-like arranged in a triangular
grouping. As V+ is decreased, the regions merge.

This leads us to ask the natural question: For fixed m ∈ N+ and Bravais lattice, Γ , what is the smallest value
of V+ such that G∗m,V+,Γ

> 0? We find that the 3rd gap with a square-lattice potential can be open if V+ is
greater than ≈40.
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We study this question further in Figure 11. Here we plot G∗m,Γ,V+
vs. V+ for m = 1, 2, 3 and Γ the square

and triangular lattices. An approximate answer to the question is given by the x-intercept of these curves. Note
that for m = 1, 3 a triangular lattice potential can have a spectral gap for smaller values of V+ than a square
lattice potential. The opposite is true for m = 2.

4.7. An asymptotic result in the high contrast limit (V+ →∞)

Motivated by the computational results in Section 4.4, throughout this section, we will make the following
assumption.

Assumption 4.4. Fix m ∈ N+, V+ > 0, and Γ . Let T = R2/Γ . Assume any potential attaining the maximum
of (1.5) is of the bang-bang form

V (x) =

{
V+ x ∈ Ω+ ,

0 x ∈ Ω− ,
(4.9)

where Ω− ∈ Θ and Ω+ = T \Ω−. Here Θ denotes the class of domains

Θ = {Ω : Ω is an open subset, compactly contained in T ⊂ R2}.

We recall the following preliminary result.

Theorem 4.5 ([17]). Using the notation and assumptions in Assumption 4.4, we consider the periodic
Schrödinger problem (1.2). For every k ∈ B, and j ∈ N+, we have Ej(k)→ λj as V+ →∞, where λj is the jth
eigenvalue of the Dirichlet-Laplace operator on Ω−, satisfying

−∆u = λu in Ω− , (4.10a)

u = 0 on Ω+. (4.10b)

We’ll denote by λj(Ω−) the Laplace-Dirichlet eigenvalue of Ω− ∈ Θ and Ej(Ω−, V+, k) the jth eignevalue
with quasi-momentum k ∈ B of the twisted Schrödinger operator with potential given as in (4.9). If we fix
Ω− ∈ Θ, by Theorem 4.5, we have as V+ →∞ that

Ej(Ω−, V+, k)→ λj(Ω−)

and

Gm →
λm+1 − λm

(λm + λm+1)/2
= 2

λm+1/λm − 1

λm+1/λm + 1
.

It follows that, with Assumption 4.4, in the high contrast limit (V+ =∞), the maximal Schrödinger gap problem
is equivalent to the shape optimization problem,

sup
Ω∈Θ

f

(
λm+1(Ω)

λm(Ω)

)
, where f(α) = 2

α− 1

α+ 1
. (4.11)

Since f is an increasing function, this is equivalent to taking the supremum of λm+1(Ω)
λm(Ω) over Ω ∈ Θ. It is an

open problem to show that the supremum in (4.11) is attained for m > 1; see open problem 16 in [18].
However, for the first gap (m = 1), the shape optimization problem (4.11) is well-defined. We recall the

following result, conjectured by Payne, Pólya, and Weinberger and proven by Ashbaugh and Benguria.
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Figure 10. For the square lattice and m = 3, (left) the potential maximizing Gm and (right)
corresponding dispersion relation over the irreducible Brillouin zone are plotted for different
values of V+. As V+ increases, the number of components per periodic cell where V = 0 changes.
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Figure 11. A plot of G∗m,Γ,V+
vs. V+ for m = 1, 2, 3 and Γ the square lattice (red) and

triangular lattice (blue). We observe that G∗ is increasing with V+ and that for all values of V+,
the triangular lattice has a larger first and third gap than the square lattice, while the opposite
is true for the second gap.

Theorem 4.6 ([1]). Among all connected, open domains Ω ⊂ R2, only a disk attains the maximum of the ratio
of the second to first Dirichlet-Laplace eigenvalues, so we have the isoperimetric inequality

λ2(Ω)

λ1(Ω)
≤ λ2(B)

λ1(B)
≈ 2.539.

Since f is strictly increasing, by the Ashbaugh-Benguria inequality (Thm. 4.6), we have that Gm as V+ →∞
is maximized only if Ω− is a disk. The previous discussion is summarized in the following proposition.

Proposition 4.7. Let m = 1 and assume Assumption 4.4 holds. For V+ =∞, any Ω− such that the potential
of the form (4.9) maximizing G1[V ] over A(Γ, V+) is a disk and the maximal value satisfies

G?1,V+,Γ → g, where g := 2
j21,1 − j20,1
j21,1 + j20,1

≈ 0.8697,

Here, jk,` is the kth positive zero of the `th Bessel function. Furthermore, for any finite V+ > 0, we have that
G?1,V+,Γ

≤ g.

The last statement of Proposition 4.7 follows from the fact that G?1,V+,Γ
is non-decreasing in V+.

The numerics for m = 1 for both the square lattice (top panel of Fig. 6) and triangular lattice (top panel
of Fig. 8) support Proposition 4.7 and further suggests that a periodic array of disks maximizes G1 for finite
V+. This conjecture has been made several times; see [38]. We remark that the optimal configuration of disks is
insensitive to the radii of the disks is analogous to the one-dimensional result in Proposition 2.9.

We now consider the higher gaps m > 1 in the high contrast limit (V+ =∞). We consider a simpler problem
than (4.11), where the admissible set consists of exactly m disjoint disks,

sup
Ω∈Θm

f

(
λm+1(Ω)

λm(Ω)

)
. (4.12)

Here

Θm = {Ω : Ω is the union of exactly m disjoint, open disks, compactly contained in T ⊂ R2} ⊂ Θ.
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Assumption 4.8. In addition to Assumption 4.4, assume any potential attaining the maximum of (1.5) is of
the bang-bang form (4.9) where Ω− ∈ Θm and Ω+ = T \Ω−.

The following proposition is then the two-dimensional analogue of Proposition 2.13.

Proposition 4.9. Let m ≥ 1 be fixed. Assume Assumption 4.8 holds. The solution of (4.12) is uniquely attained
by the union of m disks of equal radius.

Proof. We denote the radii of m disks by R1, R2, . . . Rm and without loss of generality we can assume that
R1 ≤ R2 ≤ · · · ≤ Rm. The eigenvalues are then given by{

j2k,`
Rm

,
j2k,`
Rm−1

, . . . ,
j2k,`
R1

}
, k ∈ N+, ` ∈ N,

where jk,` is the kth positive zero of the `th Bessel function.

If the mth gap in the spectrum is between the eigenvalues
j20,1
R1

and
j21,1
Rm

, then the gap-to-midgap ratio is

2

j21,1
Rm
− j20,1

R1

j21,1
Rm

+
j20,1
R1

= 2

j21,1R1

j20,1Rm
− 1

j21,1R1

j20,1Rm
+ 1

= f

(
j21,1R1

j20,1Rm

)
, (4.13)

where f(α) = 2α−1α+1 . Thus (4.13) is maximized when R1 = Rm, which implies all radii are of the same size and

Gm = f(
j21,1
j20,1

) ≈ 0.8697.

If not, the mth gap must lie in one of the intervals(
j2k,1
Rm

,
j2k+1,1

Rm

)
, k = 0, 1, . . . ,m.

It is known that jk,`/k decreases as k increases for 0 < ` <∞ [29]. We then have

jk+1,1

jk,1
<
k + 1

k
, k = 0, 1, . . . ,m.

When k ≥ 2,
jk+1,1

jk,1
< 1.5 <

j1,1
j0,1
≈ 3.8317

2.4048 , so the optimal gap cannot be in any of these intervals. The optimal

gap also can’t be in the k = 1 interval, since
j2,1
j1,1
≈ 5.1356

3.8317 ≈ 1.3403 <
j1,1
j0,1

. It follows that the optimal gap is

in the interval
(
j20,1
Rm

,
j21,1
Rm

)
. Since the mth gap must lie above m eigenvalues, the only possibility is that the

optimal gap is in the interval
(
j20,1
R1
,
j21,1
Rm

)
, as considered above.

From Proposition 4.9 and the preceding discussion, we have the following corollary.

Corollary 4.10. Let m ≥ 1 be fixed. Assume Assumption 4.8 holds. For V+ = ∞, any Ω− such that the
potential of the form (4.9) maximizing Gm[V ] over A(Γ, V+) is the disjoint union of m equal-radius disks and
the maximal value satisfies

G?m,V+,Γ → g.

Furthermore, for any finite V+ > 0, we have that G?m,V+,Γ
≤ g.
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Figure 12. For fixed m = 1, 2 and V+ = 100, we plot G∗m for lattice Γ = Γ (a, b) where (a, b)
varies over U . The set U , which gives a parameterization of two-dimensional lattices is described
in Appendix A and, in particular, illustrated in Figure A.1.

Note that in Corollary 4.10, the optimal value G?m,V+,Γ
does not depend on m or Γ .

4.8. Optimization over lattices

In the previous sections, we have fixed the lattice Γ (either square or triangular) and studied properties
of optimal potentials. In this section, we study how the optimal value, G?m,Γ,V+

and optimal potentials, V ?

vary as we vary Γ over equal-volume Bravais lattices Γ . Computing the extremal gaps for general Γ is a more
challenging problem since there are no rotational symmetries giving a small irreducible Brillouin zone. Using
the fact that the potential is real, we discretize half of the Brillouin zone; see Section 3.3.

A parameterization of equal-volume, two-dimensional lattices is given in Appendix A. In particular, see
Figure A.1, where the set U in Proposition A.1 is illustrated. Using this parameterization of lattices, Γ = Γ (a, b),
in Figure 12, we plot G?m,Γ (a,b),V+

as (a, b) varies over U for fixed m = 1, 2 and V+ = 100.

For m = 1, we observe that the triangular lattice (a, b) =
(

1
2 ,
√
3
2

)
is optimal. The optimal potential and

corresponding dispersion surface along the boundary of Brillouin zone are shown in Figure 8 (first row).
For m = 2, the optimal lattice has parameters a = 0 and b ≈

√
3. In Figure 13 we plot the optimal potential

and corresponding dispersion surfaces over the entire Brillouin zone. The optimal potential has the symmetry of
the triangular lattice, even though the primitive cell is rectangular. The lattice spacing in this triangular lattice
is 3−1/4, which is smaller than the lattice spacing for the triangular lattice with unit area, equal to

√
2 · 3−1/4.

5. Conclusion and discussion

For fixed m, we have considered the problem of maximizing the gap-to-midgap ratio for the mth spectral
gap over the class of potentials which have fixed periodicity and are pointwise bounded above and below. We
show solutions of this problem exist in Theorem 1.1.

In Section 2, we prove that the optimal potential in one dimension attains the pointwise bounds almost
everywhere in the domain and is a step function attaining the imposed minimum and maximum values on
exactly m intervals. Optimal potentials are computed numerically using a rearrangement algorithm and found
to be periodic. In Proposition 2.13, we prove that periodic potentials are optimal in the high contrast limit
(V+ =∞).
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Figure 13. The optimal potential (left) and first four surfaces of the dispersion relation (right)

that maximize the m = 2 gap for lattice parameters (a, b) = (0,
√

3); see also Figure 12. The
first two dispersion surfaces are very close to each other.

In Section 4, we develop an efficient rearrangement method for the two-dimensional problem based on a
semi-definite program formulation (Algorithm 2) and apply it to study properties of extremal potentials. In
two-dimensional numerical simulations, we study the potential that maximizes the mth bandgap, Gm,Γ,V+ , for
m = 1, . . . , 8 for a fixed V+ on both square and triangular lattices. Although we are only able to prove in
Proposition 4.1 that the solution is weakly bang-bang, the computational results suggest that the solution is
bang-bang. We also study the dependence of the optimal potentials on the parameter V+. We observe from
the computational results that the optimal potential as V+ → ∞ that the region where V = 0 consists of m
disks in the primitive cell. We prove, in Propositions 4.7 and Corollary 4.10, the infinite contrast asymptotic
result (V+ =∞), that for m ≥ 1, subject to a geometric assumption, that the optimal potential has V = 0 on
exactly m equal-size disks. Ultimately, we study the problem over equal-volume Bravais lattices. For m = 1, the

triangular lattice gives the maximal bandgap. For m = 2, the maximal bandgap is achieved at (a, b) = (1
2 ,
√
3
2 ).

Even though the primitive cell is a rectangle but the optimal potential has the symmetry of the triangular
lattice.

The numerical and asymptotic results suggest that for finite, but large values of V+, the maximal potentials
for Gm are of the bang-bang form in (4.9), where Ω− is the union of m connected sets, possibly disks. For the
TM Helmholtz problem, it was conjectured by Sigmund and Hougaard that the optimal refractive index is given
by a configuration of equal-sized disks with centers at the CVT [38]. This would be a reasonable conjecture for
this problem as well.

There are several open questions for this work. First, there are several questions for the rearrangement
algorithms, namely, can it be proven that the rearrangement algorithms are decreasing for non-stationary
iterations? Can we estimate the number of iterations needed? It is also desirable to establish under what
conditions is the solution to the SDP in Algorithm 2 is bang-bang. Can more information about the solution to
the SDP in Algorithm 2 be used to speed up the implementation?

As for properties of optimal potentials, in dimension d ≥ 2, is the solution bang-bang? (See Assumption 4.4.)
While we have proven a partial result for an infinite contrast potential (see Props. 4.7 and 4.9), it is of interest
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Figure A.1. The set U in Proposition A.1. Parameters (a, b) corresponding to square,
triangular, rectangular, rhombic, and oblique lattices are also indicated.

to study the large but finite contrast case. One strategy for this is along the recent lines by R. Lipton and R.
Viator [16, 30], which we hope to pursue in future work.

Appendix A. Parameterization of lattices

Let B = [b1, . . . , bn] ∈ Rn×n have linearly independent columns. The lattice generated by the basis B is the
set of integer linear combinations of the columns of B,

L(B) = {Bx : x ∈ Zn}.

Let B and C be two lattice bases. We recall that L(B) = L(C) if and only if there is a unimodular1 matrix U
such that B = CU . Thus, there is a one-to-one correspondence between the unimodular 2× 2 matrices and the
bases of a two-dimensional lattice.

We say that two lattices are isometric if there is a rigid transformation that maps one to the other. The
following proposition parameterizes the space of two-dimensional, unit-volume lattices modulo isometry.

Proposition A.1. Every two-dimensional lattice with volume one is isometric to a lattice parameterized by the
basis

Ba,b =

(
1√
b

a√
b

0
√
b

)
,

where the parameters a and b are constrained to the set

U :=
{

(a, b) ∈ R2 : b > 0, a ∈ [0, 1/2], and a2 + b2 ≥ 1
}
.

The set U defined in Proposition A.1 is illustrated in Figure A.1.

Proof. Consider an arbitrary lattice with unit volume. We first choose the basis vectors so that the angle between
them is acute. After a suitable rotation and reflection, we can let the shorter basis vector (with length 1√

b
) be

1A matrix A ∈ Zn×n is unimodular if detA = ±1.
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parallel with the x axis and the longer basis vector (with length
√

a2

b + b =
√

1
b (a2 + b2) ≥

√
1
b ) lie in the first

quadrant (so a ≥ 0). Multiplying on the right by a unimodular matrix,

(
1 1
0 1

)
, we compute

(
1√
b

a√
b

0
√
b

)(
1 1
0 1

)
=

(
1√
b

a+1√
b

0
√
b

)
.

Since this is equivalent to taking a 7→ a+ 1, it follows that we can identify the lattices associated to the points
(a, b) and (a+ 1, b). Thus, we can restrict the parameter a to the interval [0, 1/2].

Acknowledgements. Braxton Osting would like to thank the IMA, where he was visiting while most of this work was
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[14] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press (1952).
[15] L. He, C.-Y. Kao and S. Osher, Incorporating topological derivatives into shape derivatives based level set methods. J. Comput.

Phys. 225 (2007) 891–909.
[16] R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling limit: properties of periodic media.

Commun. Partial Differ. Equ. 25 (2000) 1445–1470.
[17] R. Hempel and O. Post, Spectral gaps for periodic elliptic operators with high contrast: an overview, in Progress in Analysis.

World Scientific Publishing Company (2003) 577–587.
[18] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag (2006).
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