

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Vapor-Deposited Ethylbenzene Glasses Approach “Ideal Glass” Density

Journal:	<i>The Journal of Physical Chemistry Letters</i>
Manuscript ID	jz-2019-01508x.R1
Manuscript Type:	Letter
Date Submitted by the Author:	26-Jun-2019
Complete List of Authors:	Beasley, Madeleine; University of Wisconsin Madison, Chemistry Bishop, Camille; University of Wisconsin Madison, Chemistry Kasting, Benjamin; University of Wisconsin Madison, Chemistry Ediger, Mark; University of Wisconsin Madison, Chemistry

SCHOLARONE™
Manuscripts

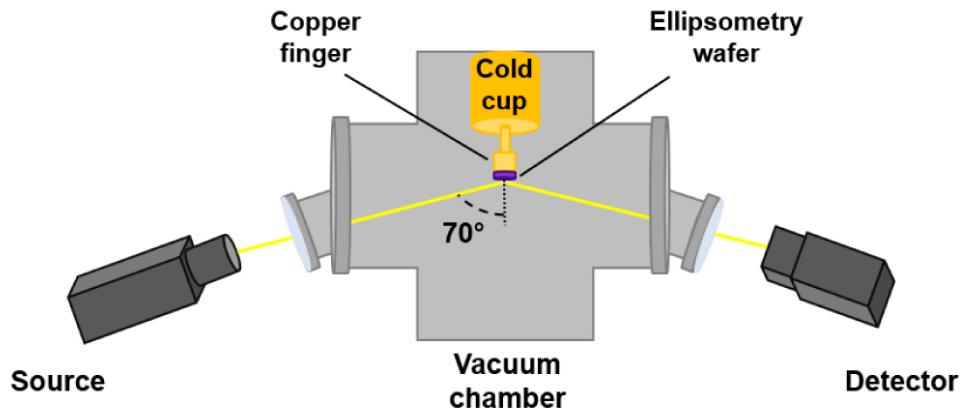


Figure 1. Schematic of in situ ellipsometry experiment. The source and detector are both fixed at a 70° angle relative to the surface normal of the silicon substrate.

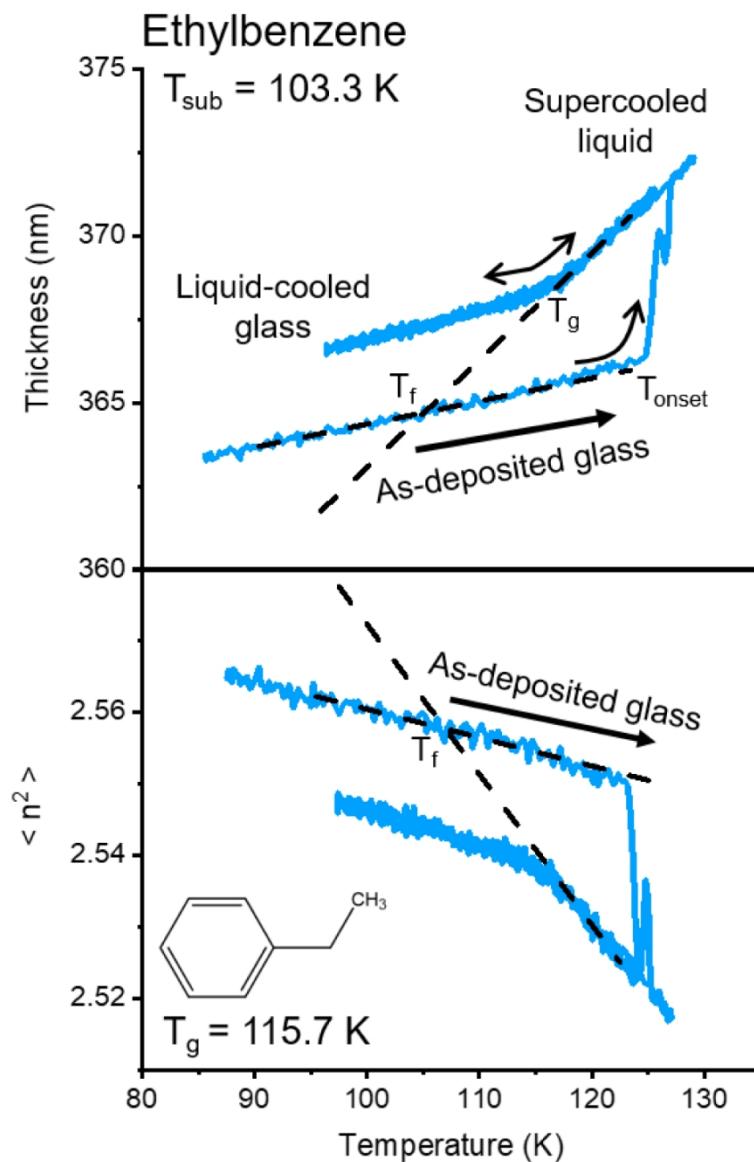


Figure 2. In situ ellipsometry data from ramping experiments of ethylbenzene deposited at $T_{\text{sub}} = 103.3 \text{ K}$ ($0.89 T_g$) with a rate of 0.7 nm/s illustrating the increased density and kinetic stability of the PVD glass. The top panel shows the thickness of the as-deposited glass in comparison with the liquid-cooled glass. The bottom panel shows mean-squared refractive index ($\langle n^2 \rangle$). The black dashed lines are fits to the data for the glasses and supercooled liquid. The intersection of the extrapolated supercooled liquid line and as-deposited glass fit defines the fictive temperature, T_f . The intersection of the supercooled liquid and liquid-cooled glass fits define T_g . The structure of ethylbenzene is shown in the bottom panel.

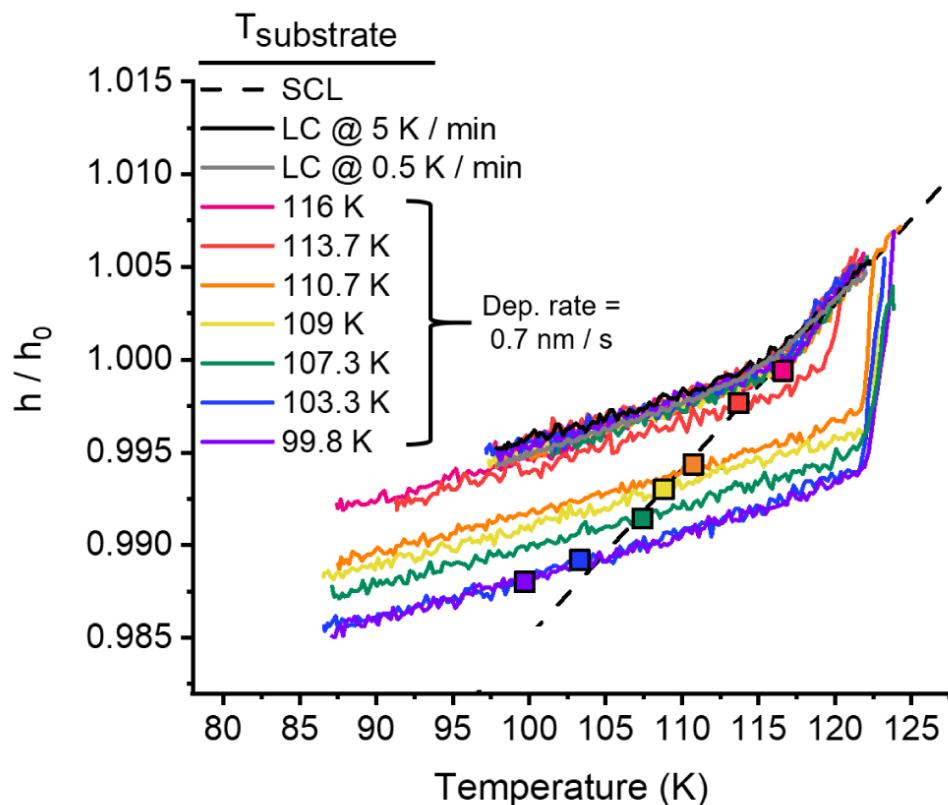


Figure 3. Normalized change in thickness as a function of temperature for glasses of ethylbenzene deposited at 0.7 nm/s. The colored curves represent PVD glasses prepared at the indicated substrate temperatures. The heating curve for the as-deposited glass and the first heating curve for the corresponding liquid-cooled glass are shown. The black and grey curves show results for liquid-cooled glasses cooled at 5 K/min and 0.5 K/min, respectively. The black dashed line is the extrapolation of the equilibrium supercooled liquid. Colored squares represent the normalized change in thickness at the deposition temperature. When these squares lie on the dashed line, the densities measured are consistent with the density expected for the supercooled liquid. For clarity, only the glasses prepared with a deposition rate of 0.7 nm/s are shown.

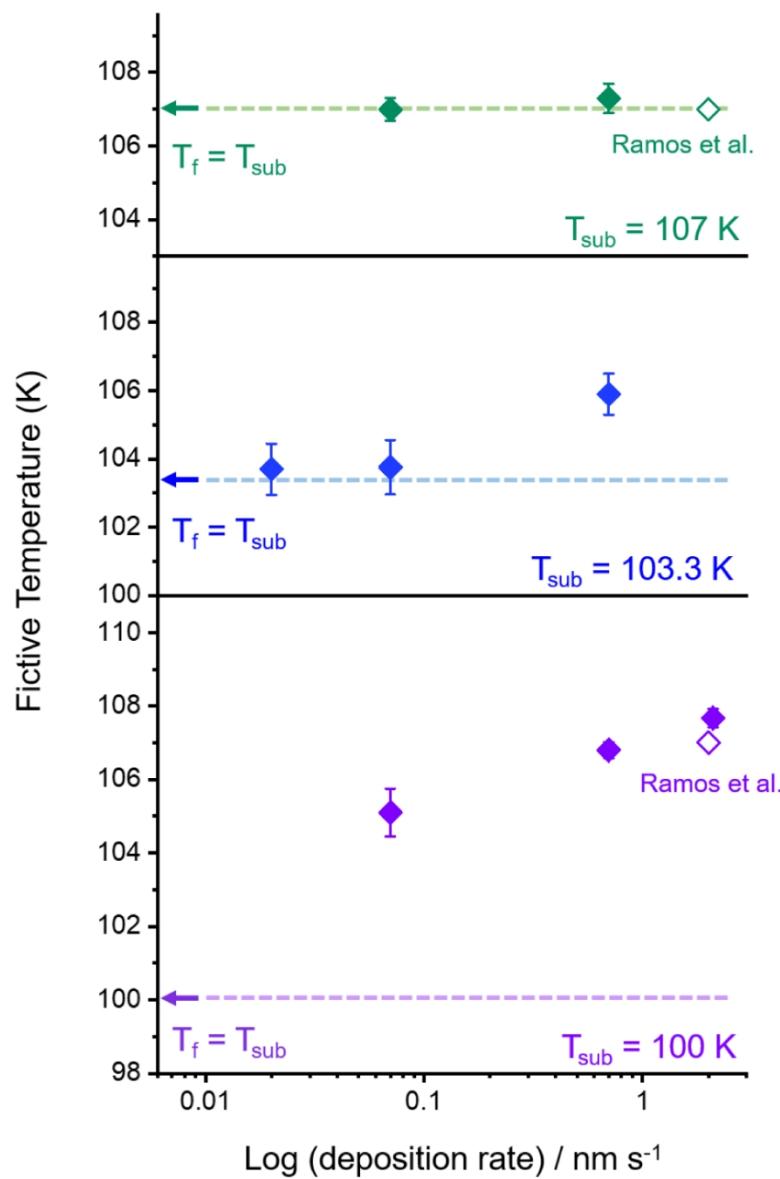


Figure 4. Fictive temperatures as a function of deposition rate for glasses deposited at 107 K (green, top), 103.3 K (blue, middle) and 100 K (purple, bottom). The solid points are fictive temperatures calculated from density measurements. Arrows and dashed lines indicate where $T_f = T_{\text{sub}}$. The open points represent enthalpy measurements by Ramos et al.³²

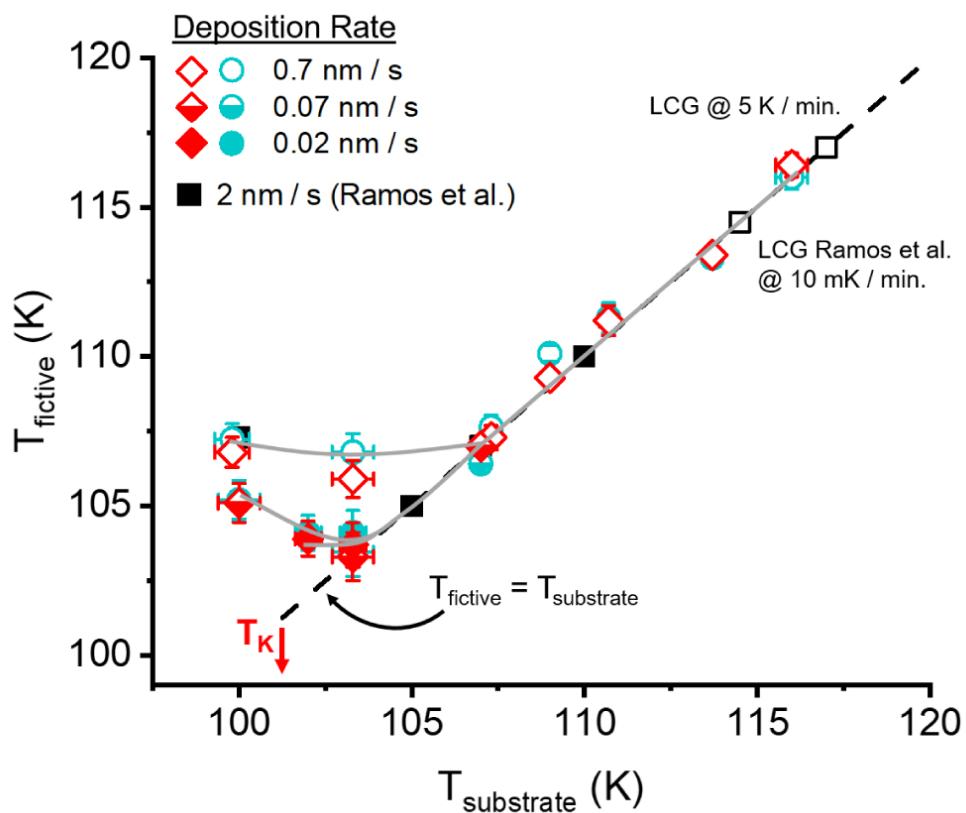
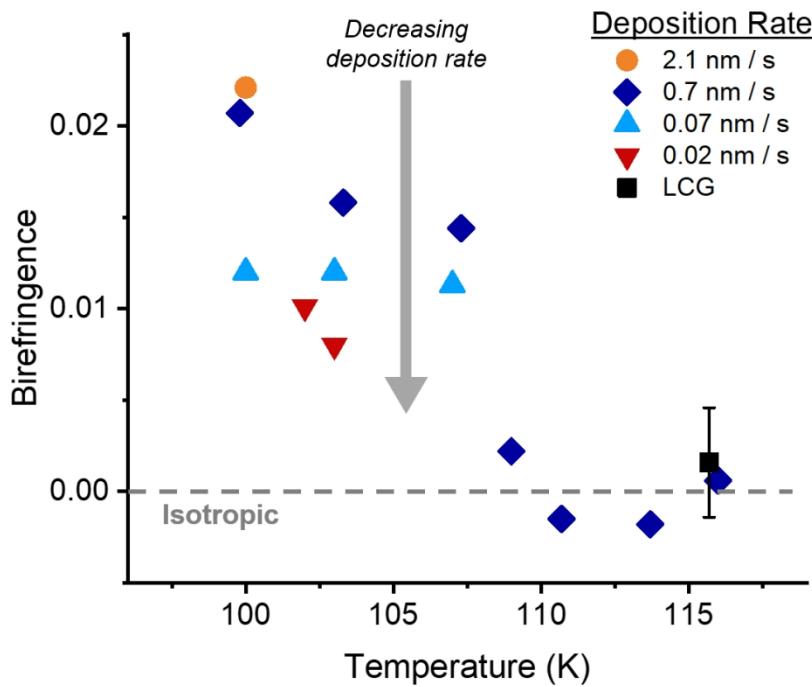
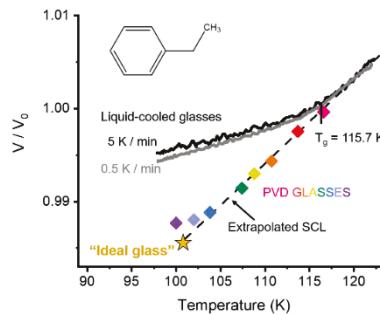


Figure 5. Fictive temperature as a function of substrate temperature during deposition for ethylbenzene glasses prepared at several rates. At low deposition rates, PVD glasses have the properties expected for the supercooled liquid to within 2 K of T_K . Red symbols are calculated from thickness measurements, teal symbols are calculated from refractive index measurements, and black squares from enthalpy measurements.³² Open squares represent liquid-cooled glasses with cooling rates indicated. The arrow indicates the location of T_K as reported by Ref. 7. The grey solid lines are guides to the eye illustrating trends for different deposition rates.




Figure 6. Birefringence as a function of substrate temperature for vapor-deposited glasses of ethylbenzene, with deposition rates indicated in the legend. The black open square is the average birefringence of all glasses prepared by cooling the liquid at 5 K/min; the error bar indicates one standard deviation. Error bars for the PVD glasses are expected to be comparable.

229x175mm (150 x 150 DPI)

1
2
3 Vapor-Deposited Ethylbenzene Glasses Approach “Ideal Glass” Density
4 M.S. Beasley^{*1}, C. Bishop¹, B.J. Kasting¹, and M.D. Ediger¹
5
6

7 ¹Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706,
8 United States
9 *Corresponding author
10 To be submitted to the *Journal of Physical Chemistry Letters*

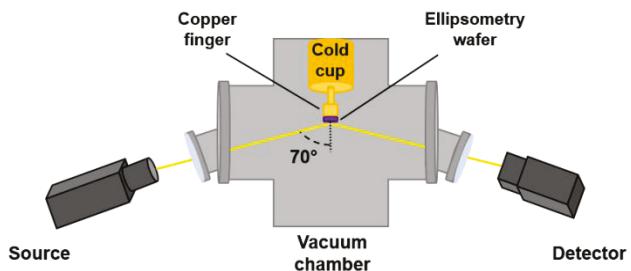
11
12 **TOC Figure:**

Abstract: Spectroscopic ellipsometry was used to characterize vapor-deposited glasses of ethylbenzene ($T_g = 115.7$ K). For this system, previous calorimetric experiments have established that a transition to the ideal glass state is expected to occur near 101 K (the Kauzmann temperature, T_K) if the low temperature supercooled liquid has the properties expected based upon extrapolation from above T_g . Ethylbenzene glasses were vapor-deposited at substrate temperatures between 100 K ($\sim 0.86 T_g$) and 116 K ($\sim T_g$), using deposition rates of 0.02 – 2.1 nm/s. Down to 103 K, glasses prepared in the limit of low deposition rate have densities consistent with the extrapolated supercooled liquid. The highest density glass is within 0.15% of the density expected for the ideal glass. These results support the hypothesis that the extrapolated properties of supercooled ethylbenzene are correct to within just a few Kelvin of T_K , consistent with the existence of a phase transition to an ideal glass state at T_K .

1
2
3 Glasses are non-equilibrium materials and thus their properties depend upon how they are
4 prepared. For example, for a typical liquid with a positive thermal expansion coefficient, the glass
5 prepared by cooling at 1 K/min will be denser than the glass prepared by cooling at 10 K/min.
6
7 Slower cooling allows the liquid to remain in equilibrium down to lower temperatures where the
8 density is higher. This scenario might suggest that the liquid density would continue to rise if the
9 liquid could be equilibrated even as temperature approached $T = 0$ K, but there are good reasons
10 to think that this is not the case. Kauzmann described how the entropy provides a bound on the
11 properties of the amorphous state.¹ The entropy of a supercooled liquid typically decreases more
12 rapidly with temperature than does the crystal entropy. If this trend continued unabated down to
13 $T=0$ K, the entropy of the liquid would be less than the entropy of the crystal, in violation of the
14 3rd law of thermodynamics.² For understanding glass formation, it is useful to consider the
15 configurational part of the liquid entropy as this quantity decreases rapidly with decreasing
16 temperature and must remain positive. In the limit in which a liquid is cooled infinitely slowly, a
17 number of scenarios have been suggested to avoid the configurational entropy crisis, including a
18 phase transition to an “ideal glass” state at a temperature denoted the Kauzmann temperature
19 (T_K).³⁻⁴ Conventionally, T_K is defined as the temperature where the extrapolated configurational
20 entropy is zero. In this scenario, the ideal glass is the amorphous state with the lowest position on
21 the potential energy landscape.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 One current theoretical approach supports the idea of a phase transition at T_K , positing a
46 random first order transition to the ideal glass.⁵ Some recent computer simulations support this
47 scenario, showing a precipitous decrease of the liquid entropy as temperature is decreased and
48 direct indications of an increasing structural length scale associated with this loss of entropy.⁶⁻⁷
49
50 While many experiments⁸ are consistent with a transition to an ideal glass at T_K , this is clearly not
51
52
53
54
55
56
57
58
59
60

1
2
3 the only possible resolution to the entropy crisis.² Alternatively, a first-order phase transition could
4 occur between T_g and T_K ; evidence for liquid-liquid transitions has been reported triphenyl
5 phosphite⁹⁻¹⁰, Al_2O_3 - Y_2O_3 ¹¹, and water.¹²⁻¹⁵ The free volume models of Cohen and Grest¹⁶ and the
6
7 cooperative bond-lattice excitation models of Angell¹⁷⁻¹⁸ also suggest a first-order phase transition
8 as the resolution to the entropy crisis. Another possibility, a continuous change in liquid properties,
9 without a phase transition, has also been suggested;¹⁹ behavior of this type has been obtained from
10 two-state models²⁰ and computer simulations of specific systems.²¹⁻²⁴
11
12

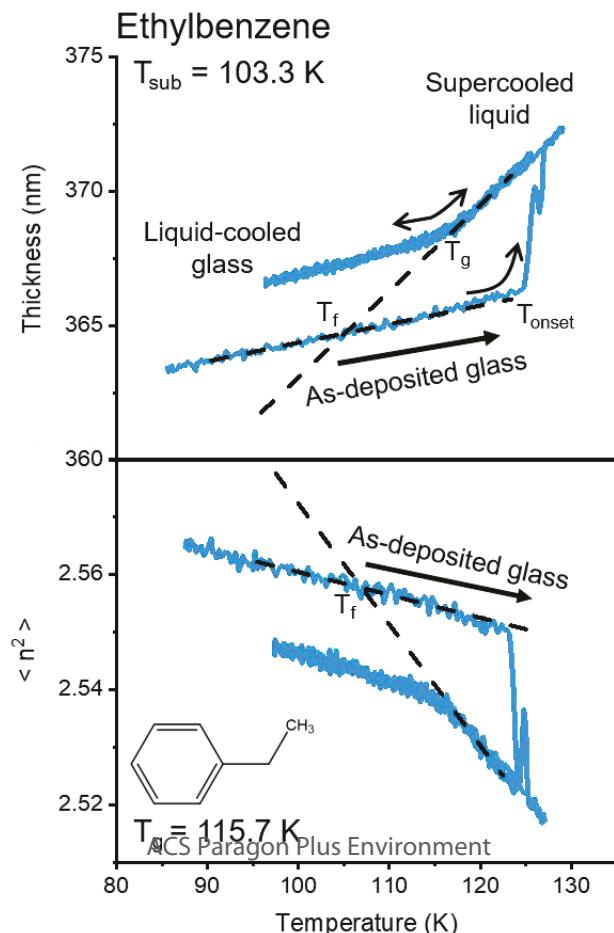

13 While it is important to understand the resolution to the Kauzmann entropy crisis, it is
14 difficult to do so because the liquid must remain in equilibrium as T_K is approached. Liquids cooled
15 from above the melting temperature get “stuck” on the energy landscape well above T_K ; as the
16 system is cooled at a fixed rate, it falls out of equilibrium when the time required for molecular
17 motion exceeds that available.²⁵⁻²⁶ Since molecular motions slow down dramatically as
18 temperature is lowered, cooling times well beyond experimental timescales would be required to
19 attain equilibrium even halfway from T_g to T_K . This limitation naturally leaves the question “do
20 supercooled liquids below the glass transition temperature have the properties expected by
21 extrapolation?” unanswered. In order to understand how the entropy crisis might be resolved, non-
22 traditional preparation techniques must be utilized to access states lower in the potential energy
23 landscape. Experiments on geologically aged glasses²⁷ and swap Monte Carlo computer
24 simulations are possible routes for approaching the ideal glass state.⁶⁻⁷ The swap Monte Carlo
25 simulations have been used to prepare equilibrium supercooled liquids down to much lower
26 temperatures than previously possible,⁶⁻⁷ and are consistent with a phase transition to an ideal glass
27 state at T_K .²⁸⁻³⁰
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Physical vapor deposition (PVD) is a promising route for the preparation of glasses low on the potential energy landscape.³¹⁻³⁴ PVD glasses have properties expected for glasses cooled at extremely low rates since rapid surface equilibration during deposition allows the kinetic restrictions of bulk cooling to be circumvented. In 2011, Ramos et al. published high precision adiabatic calorimetry measurements on PVD glasses of ethylbenzene ($T_g \approx 116$ K).³³ They found that glasses deposited at substrate temperatures from 105 to 110 K had the enthalpies expected for the extrapolated supercooled liquid at the given substrate temperatures and are thus very low in the potential energy landscape. One interpretation of these results is that, at the deposition rate used (2 nm/s), glasses vapor-deposited with substrate temperatures down to 105 K ($T_K + 4$ K) are accurate models for the equilibrium supercooled liquid. Still, this calorimetry work left significant questions unanswered: Are the properties of these PVD glasses independent of deposition rate, as would be expected if equilibrium had been attained? Are PVD glasses of ethylbenzene structurally isotropic, as expected for the equilibrium supercooled liquid? Can glasses with properties consistent with the extrapolated supercooled liquid be obtained even closer to T_K ?

In order to answer these questions, we investigate how the densities of PVD glasses of ethylbenzene depend on a wide range of substrate temperatures and deposition rates. In addition to the work of Ramos et al.³³, ethylbenzene has been well-characterized by dielectric spectroscopy³⁵, adiabatic calorimetry²⁵, nanocalorimetry^{34, 36-38} light scattering experiments³⁹⁻⁴⁰, and atomistic simulations.⁴¹ We find that glasses of ethylbenzene deposited at temperatures between 107 K and 116 K have densities consistent with the extrapolated supercooled liquid when prepared with deposition rates near 0.7 nm/s. In this temperature range, the enthalpy of PVD glasses of ethylbenzene is also consistent with high temperature extrapolations.³³ If slower deposition rates are used, either 0.07 nm/s or 0.02 nm/s, we can prepare ethylbenzene glasses at a

1
2
3 substrate temperature of 103 K that also have the density expected for the extrapolated supercooled
4 liquid. Based on these results, we expect that PVD glasses can serve as accurate models for the
5 equilibrium supercooled liquid. Our results support the hypothesis that the extrapolated properties
6 of supercooled ethylbenzene are correct to within just a few Kelvin of T_K , consistent with the
7 existence of a phase transition to an ideal glass state at T_K .
8
9
10
11
12
13

14
15 *In situ* spectroscopic ellipsometry was used to characterize PVD glasses of ethylbenzene
16 as schematically illustrated in Figure 1. Glass films roughly 400 nm thick were deposited onto a
17 temperature-controlled silicon wafer. The ellipsometer source and detector were attached to the
18 vacuum chamber and both fixed at a 70° angle relative to the surface normal of the silicon wafer.
19
20 The ellipsometric data were fit in the 350 – 1000 nm wavelength range to an anisotropic Cauchy
21 model. Further modelling details are provided in the Methods section.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

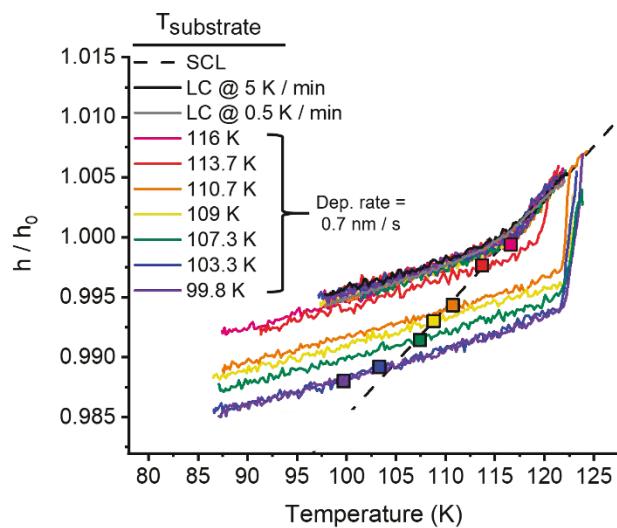

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 *Figure 1. Schematic of in situ ellipsometry experiment. The source and detector are both fixed at a 70° angle relative to the surface normal of the silicon substrate.*

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101

glass was then heated and cooled two additional times. All heating and cooling was performed at 5 K/min. As expected based on previous results⁴², the PVD glass is thinner and thus denser than the liquid-cooled glass. Additionally, the PVD glass has a higher refractive index. Since ethylbenzene glasses can be anisotropic (birefringence is discussed below) we report the mean-squared refractive index,⁴²⁻⁴³ $\langle n^2 \rangle$, as follows:

$$\langle n^2 \rangle = \frac{n_e^2 + 2n_o^2}{3} \quad (1)$$

Here, n_e is the refractive index out of the plane of the substrate and n_o is the refractive index in the plane of the substrate. Figure 2 also illustrates the definition of the fictive temperature (T_f). We extrapolate the fitted line of the supercooled liquid to intersect the as-deposited glass curve; the intersection point is T_f . Each experiment yields two fictive temperatures, characterizing the density and refractive index of the vapor-deposited glass; $T_f = T_{\text{sub}}$ means that the as-deposited glass has the density or refractive index expected for the (extrapolated) supercooled liquid.

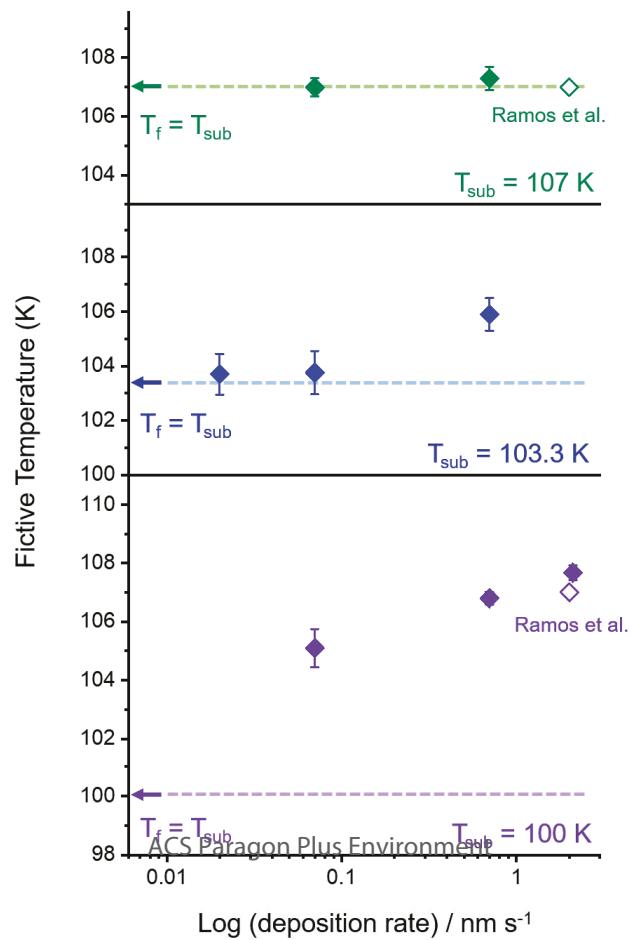


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 2. In situ ellipsometry data from ramping experiments of ethylbenzene deposited at $T_{sub} = 103.3$ K (0.89 T_g) with a rate of 0.7 nm/s illustrating the increased density and kinetic stability of the PVD glass. The top panel shows the thickness of the as-deposited glass in comparison with the liquid-cooled glass. The bottom panel shows mean-squared refractive index ($\langle n^2 \rangle$). The black dashed lines are fits to the data for the glasses and supercooled liquid. The intersection of the extrapolated supercooled liquid line and as-deposited glass fit defines the fictive temperature, T_f . The intersection of the supercooled liquid and liquid-cooled glass fits define T_g . The structure of ethylbenzene is shown in the bottom panel.

Figure 3 compares all glasses of ethylbenzene deposited at 0.7 nm/s over a range of substrate temperatures and illustrates that PVD glasses prepared with substrate temperatures as low as 107 K have densities consistent with the supercooled liquid. The colored curves show the normalized thickness change of the as-deposited glasses upon initial heating and the subsequent heating scan for the corresponding liquid-cooled glass. The change in thickness is inversely proportional to the change in density. The black and grey curves show data for liquid-cooled glasses prepared at two cooling rates, 5 K/min and 0.5 K/min, respectively. The solid points show the normalized change in thickness at each substrate temperature. The black dashed line is the extrapolation of the equilibrium supercooled liquid. Down to substrate temperatures of 107.3 K, the PVD glasses prepared with a deposition rate of 0.7 nm/s have densities consistent with those

expected for the supercooled liquid. This substrate temperature range also results in PVD glasses with enthalpies that are consistent with high temperature extrapolations.³³ For substrate temperatures below 107.3 K, deposition at 0.7 nm/s does not produce glasses that have densities consistent with those expected for the supercooled liquid (as illustrated by the colored squares that do not lie on the line).


1
2
3
4
5
6
7 *Figure 3. Normalized change in thickness as a function of temperature for glasses of ethylbenzene*
8 *deposited at 0.7 nm/s. The colored curves represent PVD glasses prepared at the indicated*
9 *substrate temperatures. The heating curve for the as-deposited glass and the first heating curve*
10 *for the corresponding liquid-cooled glass are shown. The black and grey curves show results for*
11 *liquid-cooled glasses cooled at 5 K/min and 0.5 K/min, respectively. The black dashed line is the*
12 *extrapolation of the equilibrium supercooled liquid. Colored squares represent the normalized*
13 *change in thickness at the deposition temperature. When these squares lie on the dashed line, the*
14 *densities measured are consistent with the density expected for the supercooled liquid. For clarity,*
15 *only the glasses prepared with a deposition rate of 0.7 nm/s are shown.*

16
17
18
19
20
21

22 Figure 4 illustrates how lower deposition rates can be used to increase the range of substrate
23 temperatures for which the extrapolated supercooled liquid density is attained. For glasses
24 deposited at 107 K (green, top panel), films prepared at two different rates have fictive
25 temperatures equal to the substrate temperature; we interpret this to mean that both rates are slow
26 enough to achieve the equilibrium density during deposition. For glasses deposited at 103.3 K
27 (blue, middle panel), lowering the deposition rate from 0.7 nm/s produces denser glasses as
28 indicated by the lower fictive temperatures. The good agreement between fictive temperatures for
29 the two slower depositions suggests that the equilibrium density is attained already with the
30 intermediate deposition rate. For the lowest substrate temperature shown, 100 K (purple, bottom
31 panel), lowering the deposition rate smoothly increases the density. We conclude that even lower
32 deposition rates would be required to reach the equilibrium density. The fictive temperatures in
33 Figure 4 are in excellent agreement with those obtained from the enthalpy measurements of Ramos
34 et al.³³ In comparison with reference ³³, lower deposition rates could be achieved with the
35 ellipsometry measurements since much thinner films can be utilized, allowing us to extend the
36 temperature range where PVD glass properties match those of the extrapolated supercooled liquid.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Based on the extrapolation of Tatsumi et al.⁸, equilibration at 103.3 K instead of 105 K lowers the configurational entropy by 30%.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 4. Fictive temperatures as a function of deposition rate for ethylbenzene glasses deposited at 107 K (green, top), 103.3 K (blue, middle) and 100 K (purple, bottom). The solid points are fictive temperatures calculated from density measurements. Arrows and dashed lines indicate where $T_f = T_{sub}$. The open points represent enthalpy measurements by Ramos et al.³³

By utilizing lower deposition rates, ethylbenzene glasses can be prepared that have properties consistent with the extrapolated supercooled liquid down to a temperature only a few Kelvin above T_K . Figure 5 illustrates the fictive temperatures of glasses prepared with a range of substrate temperatures and deposition rates. The black dashed line shows $T_f = T_{sub}$; the points that fall on this line represent glasses that have properties consistent with those expected for the supercooled liquid. Three different properties are compared in Figure 5. The colored points show fictive temperatures for the density and refractive index for the ethylbenzene glasses prepared in this work. The black squares represent the enthalpy measurements of Ramos et al.³³ for glasses deposited at 2 nm/s. There is excellent agreement between the fictive temperatures calculated from these three observables. In other words, in the limit of low deposition rates, the density, enthalpy, and refractive index of vapor-deposited glasses are all consistent with the values expected for the

supercooled liquid. Figure 5 establishes that PVD glasses of ethylbenzene can approach the limit of “ideal glass” packing. The glasses deposited at 0.02 nm/s at $T_{\text{sub}} = 103.3$ K are only 0.15% less dense than the ideal glass (based upon extrapolation to 101 K).

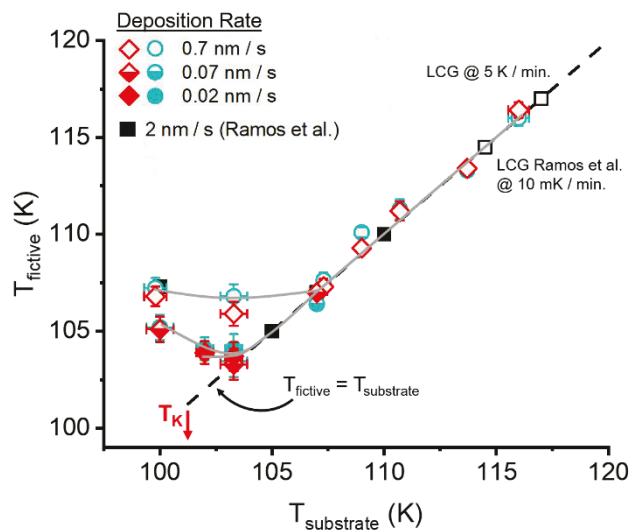


Figure 5. Fictive temperature as a function of substrate temperature during deposition for ethylbenzene glasses prepared at several rates. At low deposition rates, PVD glasses have the properties expected for the supercooled liquid to within 2 K of T_K . Red symbols are calculated from thickness measurements, teal symbols are calculated from refractive index measurements, and black squares from enthalpy measurements.³³ Open squares represent liquid-cooled glasses with cooling rates indicated. The arrow indicates the location of T_K as reported by Ref. ⁸. The grey solid lines are guides to the eye illustrating trends for different deposition rates.

While Figure 5 illustrates the progress gained toward the Kauzmann temperature by depositing glasses more slowly, it is worth noting that there is potential uncertainty in the value of T_K . Based upon adiabatic calorimetry data on the crystal, supercooled liquid, and liquid-cooled glass of ethylbenzene, Yamamuro et al. reported a Kauzmann temperature of 101 K.⁸ Their calculation of the configurational entropy of the supercooled liquid includes a term that corrects

1
2
3 for the difference in vibrational entropy between the glass and crystal. However, recent work³⁶ has
4 shown that PVD glasses of ethylbenzene deposited near 103 K have heat capacities in the
5 temperature range just below T_g that are roughly 2.5% lower than a liquid-cooled glass. If we
6 accept that the highest density vapor-deposited glass is a better model for the ideal glass than is
7 the liquid-cooled glass, the value of T_K will shift. To estimate the magnitude of this correction,
8 we apply the 2.5% decrease in heat capacity in the temperature window from 90 K to 116 K.
9 Previous work has shown a correlation between the diminished heat capacity and suppression of
10 secondary relaxations in PVD glasses of toluene,⁴⁴ and the temperature window above is a
11 reasonable estimate of the regime where secondary relaxations might contribute to the heat
12 capacity of the liquid-cooled glass of ethylbenzene.⁴⁵ Accounting for this difference in heat
13 capacity, Yamamuro et al.'s value of T_K is lowered by 0.7 K, to just above 100 K. Our
14 recalculation of T_K clearly makes a significant assumption that could be tested with heat capacity
15 measurements on PVD glasses over a wide temperature range.
16
17

18 One potential criticism of PVD glasses serving as models for the supercooled liquid is that
19 deposited glasses can be anisotropic.^{42, 46-48} Thus, the birefringence of these PVD glasses (also
20 obtained from ellipsometry) provides a further test of the extent to which the as-deposited films
21 have the structure expected for the supercooled liquid. Birefringence values for glasses deposited
22 at all substrate temperatures and deposition rates are shown in Figure 6. For substrate temperatures
23 above 109 K, all the as-deposited glasses are isotropic within measurement error. At lower
24 substrate temperatures, the glasses are birefringent, with the maximum value equal to 0.02. In this
25 regime, as the deposition rate is lowered, the birefringence values decrease significantly. This
26 behavior supports the view that PVD glasses approach the isotropic structure of the supercooled
27 liquid in the limit of low deposition rates.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

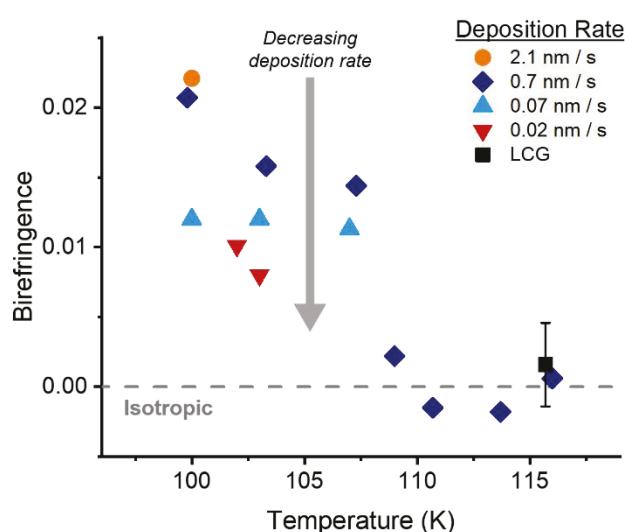


Figure 6. Birefringence as a function of substrate temperature for vapor-deposited glasses of ethylbenzene, with deposition rates indicated in the legend. The black open square is the average birefringence of all glasses prepared by cooling the liquid at 5 K/min; the error bar indicates one standard deviation. Error bars for the PVD glasses are expected to be comparable.

The results presented here are significant in establishing that PVD glasses can be useful models for the equilibrium supercooled liquid. We have shown that the density and refractive index values obtained in the limit of low deposition rates are consistent with those expected for the supercooled liquid down to 103 K. By combining our results with previous measurements, we show that the density, refractive index, and enthalpy of PVD ethylbenzene glasses all have the values expected for the equilibrium supercooled liquid down to 105 K. While the glasses obtained at 103 K are mildly anisotropic, those prepared at the lowest deposition rate are substantially more isotropic than those prepared at higher deposition rates. These results, taken together, strongly suggest that the properties of the supercooled liquid, obtained by extrapolation from above T_g , are accurate down to a few Kelvin above T_g .

1
2
3 These new results on PVD glasses provide insight into the resolution of the Kauzmann
4 entropy crisis. At some point, the extrapolation of the supercooled liquid entropy must fail. Prior
5 to work on PVD glasses, we understood that the entropy crisis for ethylbenzene should somehow
6 be resolved between T_g (116 K) and T_K (~101 K). As one extreme, the extrapolation might fail
7 gradually as the temperature is lowered below T_g with continuously larger deviations between the
8 actual supercooled liquid properties and those obtained by extrapolation. At the opposite extreme,
9 the extrapolation might fail at the lowest possible temperature (T_K) via a phase transition. The
10 results presented here on PVD glasses of ethylbenzene, in combination with those from ref ³³,
11 establish with reasonable certainty that the extrapolated properties of the supercooled liquid of
12 ethylbenzene are accurate down to within a few Kelvin of T_K . For this system, the entropy crisis
13 is not resolved by a gradual failure of the high-temperature extrapolation as temperature is lowered.
14 Rather, the properties of the supercooled liquid must adjust fairly abruptly below 103 K, either
15 continuously or via a phase transition. Thus, these experiments on PVD glasses substantially
16 increase the likelihood of a phase transition to the ideal glass of ethylbenzene at the Kauzmann
17 temperature. It is possible that other liquids may resolve the entropy crisis differently; for example,
18 systems exhibiting polyamorphism may undergo a liquid-liquid transition instead.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Based on results in the literature, PVD is most likely to access equilibrated states close to T_K for low molecular weight systems without hydrogen bonding.⁴⁹ In order to test the generality of the results presented here for ethylbenzene, it would be useful for future experiments utilizing low deposition rates to study toluene as there is evidence from calorimetry^{34, 37} that glasses with fictive temperatures close to T_K can also be prepared for this system.

1
2
3 **Methods:** Ethylbenzene glasses were prepared by PVD in a vacuum chamber described
4 previously.⁵⁰⁻⁵² Ethylbenzene was obtained from Sigma Aldrich (anhydrous, 99.8% purity) and
5 used without further purification. The molecules are introduced into the vacuum chamber (base
6 pressure $\sim 10^{-9}$ torr) via a fine leak valve. All films deposited were about 400 nm thick.
7
8

9
10 For *in situ* ellipsometry measurements, ethylbenzene molecules are deposited directly onto
11 a 1" silicon wafer with a 25 nm oxide layer. The silicon wafer is in thermal contact via indium foil
12 with a copper finger cooled by nitrogen gas. The copper finger houses a platinum RTD (resistance
13 temperature detector) and a cartridge heater that are used to control the temperature of the silicon
14 wafer in conjunction with a Lakeshore 340 temperature controller. Due to imperfect thermal
15 contact between the copper finger and the silicon wafer, a correction of 3-4 K was applied to obtain
16 the temperature of the PVD glass on the silicon wafer. We use the T_g value obtained upon heating
17 the liquid-cooled glass (cooling and heating both at 5 K/min) as our reference temperature. Based
18 upon dielectric relaxation measurements, Chen et al.³⁵ report that the structural relaxation time has
19 a value of 100 s at 115.7 K and we use this value for T_g for the glass prepared by cooling at 5
20 K/min. All the liquid-cooled glasses discussed in this paper were prepared by cooling at 5 K/min
21 except for one data set shown in Figure 3 (cooled at 0.5 K/min).
22
23

24 Ellipsometry measurements were performed using a J. A. Woollam M-2000U ellipsometer
25 with an incident angle of 70°. The ellipsometric data were analyzed using an anisotropic Cauchy
26 model to describe the organic layer and fit in the wavelength range of 350 – 1000 nm. The Cauchy
27 model is shown in Equation (2) and has been used previously for anisotropic organic films⁴².
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

$$n_o(\lambda) = A_o + \frac{B}{\lambda^2}; n_e(\lambda) = A_e + \frac{B}{\lambda^2} \quad (2)$$

1
2
3 During the heterogeneous transformation⁴² of vapor-deposited glasses (from 123 to 125 K in
4 Figure 2), this model is not adequate to quantitatively describe the data; this has no impact on
5 Figures 4 or 5, or our conclusions.
6
7

8
9 Ellipsometry data was obtained during heating at 5 K/min and was fit following the
10 procedure outlined in 2001 by Dalnoki-Veress et al.⁵³ using the function described by Equation
11
12 (3):
13
14
15

$$h(T) = w \left(\frac{M - G}{2} \right) \ln \left[\cosh \left(\frac{T - T_g}{w} \right) \right] + (T - T_g) \left(\frac{M + G}{2} \right) + c \quad (3)$$

16
17
18
19
20
21
22
23
24
25
26 This fit results in the values of T_{onset} for the as-deposited glass and the value of T_g for the liquid-
27 cooled glass. The fit also provides the “ h_0 ” value used to normalize the data in Figure 3. To obtain
28 the fictive temperatures for both the thickness and refractive index data, the high-temperature
29 linear portion of the fit to the supercooled liquid data was extended to intersect with the fit for the
30 as-deposited glass, similar to the procedure in Reference⁵⁴. Sample fits are provided in the
31 Supporting Information. Vertical error bars in Figures 4 and 5 represent the error in the
32 determination of the fictive temperature due to the uncertainty in fitting equation (3). Horizontal
33 error bars in Figure 5 represent the uncertainty in the temperature. Note that our ellipsometry
34 measurements were not used to determine absolute densities; the density of the as-deposited glass
35 relative to the liquid-cooled glass allows the determination of T_f .
36
37
38
39
40
41
42
43
44
45
46
47

51 Acknowledgements

52
53
54
55
56
57
58
59
60

We would like to thank Marie Fiori for assistance in analyzing ellipsometry results and
Diane Walters for experimental assistance. We would also like to thank Ludovic Berthier, Ranko

1
2
3 Richert, Birte Riechers, and Amanda Young-Gonzales for helpful discussions. This work was
4
5 supported by the U.S. National Science Foundation (Grant No. CHE-1564663 and CHE-1854930).
6
7
8
9

10 **Supporting Information**
11

12 Sample fits of ellipsometry data to the model of Dalnoki-Veress et al.⁵³.
13
14
15

16 **References**
17

18
19 (1) Kauzmann, W., The Nature of the Glassy State and the Behavior of Liquids at Low
20 Temperatures. *Chem. Rev.* **1948**, *43*, 219-256.
21
22 (2) Stillinger, F. H.; Debenedetti, P. G.; Truskett, T. M., The Kauzmann Paradox Revisited.
23 *The Journal of Physical Chemistry B* **2001**, *105*, 11809-11816.
24
25 (3) Gibbs, J. H.; DiMarzio, E. A., Nature of the Glass Transition and the Glassy State. *The*
26 *Journal of Chemical Physics* **1958**, *28*, 373-383.
27
28 (4) Adam, G.; Gibbs, J. H., On the Temperature Dependence of Cooperative Relaxation
29 Properties in Glass-Forming Liquids. *The Journal of Chemical Physics* **1965**, *43*, 139-146.
30
31 (5) Lubchenko, V.; Wolynes, P. G., Theory of Structural Glasses and Supercooled Liquids.
32 *Annu. Rev. Phys. Chem.* **2007**, *58*, 235-266.
33
34 (6) Ninarello, A.; Berthier, L.; Coslovich, D., Models and Algorithms for the Next Generation
35 of Glass Transition Studies. *Physical Review X* **2017**, *7*, 021039.
36
37 (7) Berthier, L.; Ozawa, M.; Scalliet, C., Configurational Entropy of Glass-Forming Liquids.
38 *The Journal of Chemical Physics* **2019**, *150*, 160902.
39
40 (8) Tatsumi, S.; Aso, S.; Yamamuro, O., Thermodynamic Study of Simple Molecular Glasses:
41 Universal Features in Their Heat Capacity and the Size of the Cooperatively Rearranging Regions.
42 *Phys. Rev. Lett.* **2012**, *109*, 045701.
43
44 (9) Tanaka, H.; Kurita, R.; Mataki, H., Liquid-Liquid Transition in the Molecular Liquid
45 Triphenyl Phosphite. *Phys. Rev. Lett.* **2004**, *92*, 025701.
46
47 (10) Kobayashi, M.; Tanaka, H., The Reversibility and First-Order Nature of Liquid–Liquid
48 Transition in a Molecular Liquid. *Nature Communications* **2016**, *7*, 13438.
49
50 (11) Aasland, S.; McMillan, P. F., Density-Driven Liquid–Liquid Phase Separation in the
51 System Al_2O_3 – Y_2O_3 . *Nature* **1994**, *369*, 633-636.
52
53 (12) Poole, P. H.; Sciortino, F.; Essmann, U.; Stanley, H. E., Phase Behaviour of Metastable
54 Water. *Nature* **1992**, *360*, 324-328.
55
56 (13) Debenedetti, P. G., Supercooled and Glassy Water. *J. Phys.: Condens. Matter* **2003**, *15*,
57 R1669.
58
59 (14) Tanaka, H., Bond Orientational Order in Liquids: Towards a Unified Description of Water-
60 Like Anomalies, Liquid-Liquid Transition, Glass Transition, and Crystallization. *The European*
Physical Journal E **2012**, *35*, 113.

(15) Amann-Winkel, K.; Gainaru, C.; Handle, P. H.; Seidl, M.; Nelson, H.; Böhmer, R.; Loerting, T., Water's Second Glass Transition. *Proceedings of the National Academy of Sciences of the United States of America* **2013**, *110*, 17720-17725.

(16) Cohen, M. H.; Grest, G. S., Liquid-Glass Transition, a Free-Volume Approach. *Physical Review B* **1979**, *20*, 1077-1098.

(17) Angell, C. A.; Rao, K. J., Configurational Excitations in Condensed Matter, and the ``Bond Lattice'' Model for the Liquid-Glass Transition. *The Journal of Chemical Physics* **1972**, *57*, 470-481.

(18) Matyushov, D. V.; Angell, C. A., Gaussian Excitations Model for Glass-Former Dynamics and Thermodynamics. *The Journal of Chemical Physics* **2007**, *126*, 094501.

(19) Stillinger, F. H., Supercooled Liquids, Glass Transitions, and the Kauzmann Paradox. *The Journal of Chemical Physics* **1988**, *88*, 7818-7825.

(20) Macedo, P. B.; Capps, W.; Litovitz, T. A., Two-State Model for the Free Volume of Vitreous B₂O₃. *The Journal of Chemical Physics* **1966**, *44*, 3357-3364.

(21) Saika-Voivod, I.; Poole, P. H.; Sciortino, F., Fragile-to-Strong Transition and Polyamorphism in the Energy Landscape of Liquid Silica. *Nature* **2001**, *412*, 514-517.

(22) Saika-Voivod, I.; Sciortino, F.; Poole, P. H., Free Energy and Configurational Entropy of Liquid Silica: Fragile-to-Strong Crossover and Polyamorphism. *Physical Review E* **2004**, *69*, 041503.

(23) Saksengwijit, A.; Reinisch, J.; Heuer, A., Origin of the Fragile-to-Strong Crossover in Liquid Silica as Expressed by Its Potential-Energy Landscape. *Phys. Rev. Lett.* **2004**, *93*, 235701.

(24) Wolfgardt, M.; Baschnagel, J.; Paul, W.; Binder, K., Entropy of Glassy Polymer Melts: Comparison between Gibbs-Dimarzio Theory and Simulation. *Physical Review E* **1996**, *54*, 1535-1543.

(25) Yamamuro, O.; Tsukushi, I.; Lindqvist, A.; Takahara, S.; Ishikawa, M.; Matsuo, T., Calorimetric Study of Glassy and Liquid Toluene and Ethylbenzene: Thermodynamic Approach to Spatial Heterogeneity in Glass-Forming Molecular Liquids. *The Journal of Physical Chemistry B* **1998**, *102*, 1605-1609.

(26) Ediger, M. D.; Angell, C. A.; Nagel, S. R., Supercooled Liquids and Glasses. *The Journal of Physical Chemistry* **1996**, *100*, 13200-13212.

(27) Zhao, J.; Simon, S. L.; McKenna, G. B., Using 20-Million-Year-Old Amber to Test the Super-Arrhenius Behaviour of Glass-Forming Systems. *Nature Communications* **2013**, *4*, 1783.

(28) Kob, W.; Berthier, L., Probing a Liquid to Glass Transition in Equilibrium. *Phys. Rev. Lett.* **2013**, *110*, 245702.

(29) Berthier, L.; Jack, R. L., Evidence for a Disordered Critical Point in a Glass-Forming Liquid. *Phys. Rev. Lett.* **2015**, *114*, 205701.

(30) Berthier, L.; Charbonneau, P.; Coslovich, D.; Ninarello, A.; Ozawa, M.; Yaida, S., Configurational Entropy Measurements in Extremely Supercooled Liquids That Break the Glass Ceiling. *Proceedings of the National Academy of Sciences of the United States of America* **2017**, *114*, 11356-11361.

(31) Swallen, S. F.; Kearns, K. L.; Mapes, M. K.; Kim, Y. S.; McMahon, R. J.; Ediger, M. D.; Wu, T.; Yu, L.; Satija, S., Organic Glasses with Exceptional Thermodynamic and Kinetic Stability. *Science* **2007**, *315*, 353-356.

(32) Ediger, M. D., Perspective: Highly Stable Vapor-Deposited Glasses. *The Journal of Chemical Physics* **2017**, *147*, 210901.

(33) Ramos, S. L.; Oguni, M.; Ishii, K.; Nakayama, H., Character of Devitrification, Viewed from Enthalpic Paths, of the Vapor-Deposited Ethylbenzene Glasses. *J. Phys. Chem. B* **2011**, *115*, 14327-14332.

(34) Leon-Gutierrez, E.; Sepúlveda, A.; Garcia, G.; Clavaguera-Mora, M. T.; Rodríguez-Viejo, J., Stability of Thin Film Glasses of Toluene and Ethylbenzene Formed by Vapor Deposition: An In Situ Nanocalorimetric Study. *PCCP* **2010**, *12*, 14693-14698.

(35) Chen, Z.; Richert, R., Dynamics of Glass-Forming Liquids. XV. Dynamical Features of Molecular Liquids That Form Ultra-Stable Glasses by Vapor Deposition. *The Journal of Chemical Physics* **2011**, *135*, 124515.

(36) Ahrenberg, M.; Chua, Y. Z.; Whitaker, K. R.; Huth, H.; Ediger, M. D.; Schick, C., In Situ Investigation of Vapor-Deposited Glasses of Toluene and Ethylbenzene Via Alternating Current Chip-Nanocalorimetry. *The Journal of Chemical Physics* **2013**, *138*, 024501.

(37) Leon-Gutierrez, E.; Sepúlveda, A.; Garcia, G.; Clavaguera-Mora, M. T.; Rodríguez-Viejo, J., Correction: Stability of Thin Film Glasses of Toluene and Ethylbenzene Formed by Vapor Deposition: An in Situ Nanocalorimetric Study. *PCCP* **2016**, *18*, 8244-8245.

(38) Bhattacharya, D.; Sadtchenko, V., Vapor-Deposited Non-Crystalline Phase Vs Ordinary Glasses and Supercooled Liquids: Subtle Thermodynamic and Kinetic Differences. *The Journal of Chemical Physics* **2015**, *142*, 164510.

(39) Ishii, K.; Okamura, T.; Ishikawa, N.; Nakayama, H., A Novel Change of Light Transmission in Supercooled Liquid State of Ethylbenzene. *Chem. Lett.* **2001**, *30*, 52-53.

(40) Ishii, K.; Nakayama, H.; Hirabayashi, S.; Moriyama, R., Anomalously High-Density Glass of Ethylbenzene Prepared by Vapor Deposition at Temperatures Close to the Glass-Transition Temperature. *Chem. Phys. Lett.* **2008**, *459*, 109-112.

(41) Antony, L. W.; Jackson, N. E.; Lyubimov, I.; Vishwanath, V.; Ediger, M. D.; de Pablo, J. J., Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films. *ACS Central Science* **2017**, *3*, 415-424.

(42) Dalal, S. S.; Ediger, M. D., Molecular Orientation in Stable Glasses of Indomethacin. *The Journal of Physical Chemistry Letters* **2012**, *3*, 1229-1233.

(43) Vuks, M. F., On the Theory of Double Refraction of Liquids and Solution in an Electric Field. *Opt. Spectrosc.* **1966**, *21*, 383-388.

(44) Yu, H. B.; Tylinski, M.; Guiseppi-Elie, A.; Ediger, M. D.; Richert, R., Suppression of Beta Relaxation in Vapor-Deposited Ultrastable Glasses. *Phys. Rev. Lett.* **2015**, *115*, 185501.

(45) Goldstein, M., Viscous Liquids and the Glass Transition. V. Sources of the Excess Specific Heat of the Liquid. *The Journal of Chemical Physics* **1976**, *64*, 4767-4774.

(46) Liu, T.; Exarhos, A. L.; Alguire, E. C.; Gao, F.; Salami-Ranjbaran, E.; Cheng, K.; Jia, T.; Subotnik, J. E.; Walsh, P. J.; Kikkawa, J. M., *et al.*, Birefringent Stable Glass with Predominantly Isotropic Molecular Orientation. *Phys. Rev. Lett.* **2017**, *119*, 095502.

(47) Dalal, S. S.; Walters, D. M.; Lyubimov, I.; de Pablo, J. J.; Ediger, M. D., Tunable Molecular Orientation and Elevated Thermal Stability of Vapor-Deposited Organic Semiconductors. *Proceedings of the National Academy of Sciences of the United States of America* **2015**, *112*, 4227-4232.

(48) Walters, D. M.; Antony, L.; de Pablo, J. J.; Ediger, M. D., Influence of Molecular Shape on the Thermal Stability and Molecular Orientation of Vapor-Deposited Organic Semiconductors. *The Journal of Physical Chemistry Letters* **2017**, *8*, 3380-3386.

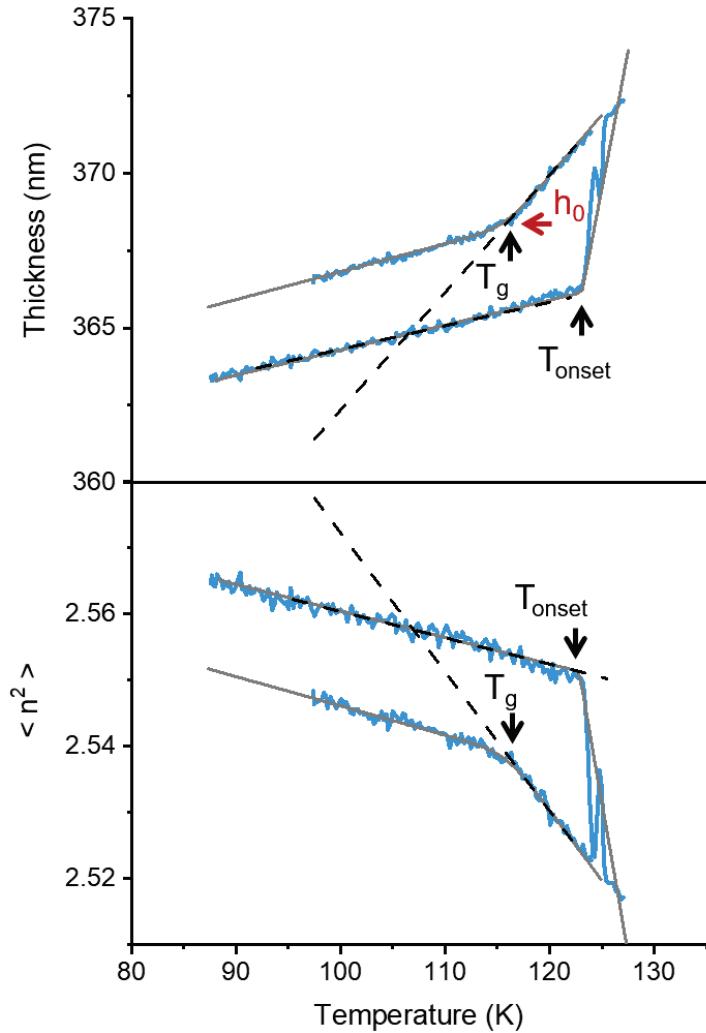
1
2
3 (49) Tylinski, M.; Chua, Y. Z.; Beasley, M. S.; Schick, C.; Ediger, M. D., Vapor-Deposited
4 Alcohol Glasses Reveal a Wide Range of Kinetic Stability. *The Journal of Chemical Physics* **2016**,
5 *145*, 174506.
6 (50) Whitaker, K. R.; Scifo, D. J.; Ediger, M. D.; Ahrenberg, M.; Schick, C., Highly Stable
7 Glasses of Cis-Decalin and Cis/Trans-Decalin Mixtures. *The Journal of Physical Chemistry B*
8 **2013**, *117*, 12724-12733.
9 (51) Tylinski, M.; Sepulveda, A.; Walters, D. M.; Chua, Y. Z.; Schick, C.; Ediger, M. D., Vapor-
10 Deposited Glasses of Methyl-M-Toluate: How Uniform Is Stable Glass Transformation? *J. Chem.*
11 *Phys.* **2015**, *143*, 244509.
12 (52) Ahrenberg, M.; Shoifet, E.; Whitaker, K. R.; Huth, H.; Ediger, M. D.; Schick, C.,
13 Differential Alternating Current Chip Calorimeter for in Situ Investigation of Vapor-Deposited
14 Thin Films. *Rev. Sci. Instrum.* **2012**, *83*, 033902.
15 (53) Dalnoki-Veress, K.; Forrest, J. A.; Murray, C.; Gigault, C.; Dutcher, J. R., Molecular
16 Weight Dependence of Reductions in the Glass Transition Temperature of Thin, Freely Standing
17 Polymer Films. *Physical Review E* **2001**, *63*, 031801.
18 (54) Zhang, Y.; Woods, C. N.; Alvarez, M.; Jin, Y.; Riggleman, R. A.; Fakhraai, Z., Effect of
19 Substrate Interactions on the Glass Transition and Length-Scale of Correlated Dynamics in Ultra-
20 Thin Molecular Glass Films. *The Journal of Chemical Physics* **2018**, *149*, 184902.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Supporting information: Vapor-Deposited Ethylbenzene Glasses Approach “Ideal Glass” Density

M.S. Beasley^{*1}, C. Bishop¹, B.J. Kasting¹, and M.D. Ediger¹

¹Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States

*Corresponding author


Fits of ellipsometry data

In Figure S1 we provide an example showing the fitting procedure used with ellipsometry data obtained during temperature-ramping. The figure shows thickness and refractive index data obtained as the temperature is increased for the same data set shown in Figure 2 of the main text. We fit the data to an equation (S1) described by Dalnoki-Veress et al.⁵³

$$h(T) = w \left(\frac{M - G}{2} \right) \ln \left[\cosh \left(\frac{T - T_g}{w} \right) \right] + (T - T_g) \left(\frac{M + G}{2} \right) + c \quad (S1)$$

This procedure is intended to eliminate potential bias associated with manually extracting T_g and T_{onset} values.

Figure S1 illustrates that Equation S1 fits the data well except for the transformation of the as-deposited glass into the supercooled liquid, between 123 K and 125 K. (The non-monotonic behavior displayed in the data over this 2 K range is indicative of transformation via a growth front. The rest of the fit is not affected.) The arrows in Figure S1 indicate the meaning of the values extracted from the fit for T_g , T_{onset} , and h_0 . T_g is the glass transition temperature for the liquid-cooled glass, obtained upon heating; T_{onset} is the beginning of the transformation for the PVD glass; h_0 is the thickness at T_g and is used to normalize the y-axis data in Figure 3. The temperature axis in Figure S1 has been corrected by subtracting the difference between the fitted value of T_g and the reference T_g value of 115.7 K. (See methods for details.)

Figure S1. Fits of equation S1 to the heating curves for the as-deposited glass and the liquid-cooled glass for the data presented in Figure 2 of the main text. The blue lines are the thickness and refractive index data, the grey lines are the fits to equation S1, and the black dashed lines are linear extrapolations of the fits to the supercooled liquid data. The intersection between the supercooled liquid extrapolation and the glass data defines the fictive temperature T_f . Arrows indicate values that are extracted from the fits to equation S1.