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This article presents a type-based analysis for deriving upper bounds on the expected execution cost of
probabilistic programs. The analysis is naturally compositional, parametric in the cost model, and supports
higher-order functions and inductive data types. The derived bounds are multivariate polynomials that are
functions of data structures. Bound inference is enabled by local type rules that reduce type inference to
linear constraint solving. The type system is based on the potential method of amortized analysis and extends
automatic amortized resource analysis (AARA) for deterministic programs. A main innovation is that bounds
can contain symbolic probabilities, which may appear in data structures and function arguments. Another
contribution is a novel soundness proof that establishes the correctness of the derived bounds with respect
to a distribution-based operational cost semantics that also includes nontrivial diverging behavior. For cost
models like time, derived bounds imply termination with probability one. To highlight the novel ideas, the
presentation focuses on linear potential and a core language. However, the analysis is implemented as an
extension of Resource Aware ML and supports polynomial bounds and user defined data structures. The
effectiveness of the technique is evaluated by analyzing the sample complexity of discrete distributions and
with a novel average-case estimation for deterministic programs that combines expected cost analysis with
statistical methods.

1 INTRODUCTION

Probabilistic programming [Kozen 1981; Mclver and Morgan 2005] is an effective tool for customiz-
ing probabilistic inference [Carpenter et al. 2017; Goodman and Stuhlmiiller 2014; Mansinghka
et al. 2018] as well as for modeling and analyzing randomized algorithms [Tassarotti and Harper
2019], cryptographic protocols [Barthe et al. 2009], and privacy mechanisms [Barthe et al. 2012].
In this paper, we study probabilistic programs as models of the execution cost (or resource use)
of programs. Execution cost can be defined by a cost semantics or a programmer-defined metric.
For such a cost model, a probabilistic program defines a distribution of cost that depends on the
distribution of the inputs as well as the probabilistic choices that are made in the code.

The problem of statically analyzing the cost distribution of probabilistic programs has attracted
growing attention in recent years. Kaminski et al. [Kaminski et al. 2016; Olmedo et al. 2016] have
built on the work of Kozen [Kozen 1981], studying weakest-precondition calculi for deriving upper
bounds on the expected worst-case cost of imperative programs, as well as reasoning about lower
bounds [Hark et al. 2020]. It has been shown that this calculus can be specialized to automatically
infer constant bounds on the sampling cost of non-recursive Bayesian networks [Batz et al. 2018]
and polynomial bounds on the worst-case expected cost of arithmetic programs [Chatterjee et al.
2016a,b; Ngo et al. 2018]. The key innovation that enables the inference of symbolic bounds is a
template-based approach that reduces bound inference to efficient linear-program (LP) solving,
a reduction which has been previously applied non-probabilistic programs [Carbonneaux et al.
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2017, 2015]. This technique has been extended to best-case bounds and non-monotone cost [Wang
et al. 2019] as well as to incorporate higher-moment reasoning for deriving tail bounds using
linear [Wang et al. 2020] and non-linear [Kura et al. 2019] constraint solving,.

The only existing technique for analyzing the expected cost of probabilistic (higher-order)
functional programs, is the recent work of Avanzini et al. [Avanzini et al. 2019]. It applies an affine
refinement type system, called {RPCF, to derive bounds on the expected worst-case cost for an affine
version of PCF [Plotkin 1977]. {RPCF can be seen as a probabilistic version of d(PCF [Dal Lago and
Gaboardi 2011]. While the refinement types of {RPCF are expressive and flexible, a disadvantage is
that the complexity of the corresponding refinement constraints hampers type inference. It seems
unclear if type checking {RPCF is decidable.

This article presents the first automatic analysis of worst-case bounds on the expected cost of
probabilistic functional programs. It is based on automatic amortized resource analysis (AARA) [Hoff-
mann et al. 2011; Hofmann and Jost 2003], a type system for inferring worst-case bounds. The
expressivity of AARA’s type-based approach for probabilistic programs goes beyond existing
techniques for imperative integer programs in the following ways:

(1) The analysis infers expected cost bounds for higher-order programs.
(2) Bounds can be functions of the sizes of values of (potentially nested) inductive types
(3) Bounds can be functions of symbolic probabilities.

In addition, AARA for probabilistic programs preserves many advantageous features of classical
AARA for deterministic programs, which include

- efficient type checking (linear in the size of the type derivation),

- reduction of type inference for polynomial bounds to linear programming,

- use of the potential method to amortize operations with varying expected cost, and
- natural compositionality, as types summarize the cost behavior of functions.

Nonetheless, while AARA for deterministic programs naturally derives bounds on the high-water
mark of non-monotone resources that can become available during evaluation (like memory), this
is not the case for AARA for probabilistic programs. Reasoning about high-watermark resource
usage of probabilistic programs is in fact an open problem even for manual reasoning systems for
first-order languages. This problem is out of the scope of this article and we limit the development to
monotone resources like time. The technical difficulties with non-monotone resources are discussed
in more detail in §3.

To focus on the novel ideas, we present the analysis for a simple probabilistic functional language
with probabilistic branching and lists (§3) with linear potential functions (§4). However, the results
carry over to multivariate polynomial potential functions and user-defined inductive data structures.
We implemented the analysis as an extension of Resource Aware ML (RaML) [Hoffmann et al. 2017]
that we call pRaML (§6).

The main technical innovations are the introduction of a type rule for probabilistic branching,
and a new type for symbolic probabilities (§2 and §4). While these new features are fairly intuitive,
proving their soundness with respect to a cost semantics is not. The existing proof method for deter-
ministic AARA does not directly generalize to the probabilistic setting because of the complexities
introduced by a probabilistic cost semantics. To address the challenges of the probabilistic setting,
we present a novel soundness proof with respect to a probabilistic operational cost semantics based
on Borgstrom et al’s trace-based and step-indexed-distribution-based semantics [Borgstrém et al.
2016] (§5). The details are discussed in §3.

We evaluate the effectiveness of pRaML by analyzing textbook examples (§6) and by exploring
novel problem domains (§7). The first domain (§7.1) is the implementation and analysis of discrete
probability distributions. Specifically, we use pRaML to analyze the sample complexity of the
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distributions, i.e., on average, how many steps a program needs to produce a sample from the
target distribution. Low sample complexity has recently become an important criterion for efficient
sampler implementations, as many probabilistic inference methods require billions of random
samples [Djuric 2019]. We also verify some more complex fractional bounds in pRaML using
a scaled model. The second domain (§7.2) is the estimation of average-case cost of functional
programs on a specific input distribution as a three step process. First, we gather statistics on the
branching behavior of conditional branches by evaluating the program on small inputs that are
representative for the input distribution. Second, the conditionals are replaced with probabilistic
branches that mirror the observed branching behavior on the small inputs. Third, the resulting
program is analyzed with pRaML to determine a symbolic bound on the expected cost of the
resulting probabilistic program for all input sizes.
In summary, we make the following contributions:

(1) Design of a novel type-based AARA for probabilistic programs

(2) Type soundness proof with respect to a probabilistic operational cost semantics

(3) Implementation as an extension of RaML

(4) Application of RaML to automatically analyze sample complexity

(5) Automatic average-case analysis that combines the use of RaML with empirical statistics

2 TOPIC OVERVIEW

AARA. The type system of automatic amortized resource analysis (AARA) is a pre-existing
framework for inferring cost bounds for deterministic functional programs [Hoffmann et al. 2017;
Hofmann and Jost 2003; Jost et al. 2010]. It imbues its types with potential energy so as to perform the
physicist’s method (or potential method) of amortized analysis [Tarjan 1985]. When performing type
inference, the system generates linear constraints on this potential that, when solved, provide the
coefficients of polynomials or other functions. These functions express concrete (non-asymptotic)
bounds on worst- or best-case [Ngo et al. 2017] execution costs, parameterized by input size.

In more detail, the potential method works as follows. We say that ® : State — Q» is a valid
potential function if, for all states S € State and operations 0 : S — S, the following holds.

(S) =0 and D(S) = cost(S, o(S)) + D(o(S)).
The second inequality states that the potential of the current state is sufficient to pay for the cost
of the transition from S to o(S) and potential of the next state. It then follows that the potential of
the initial state establishes an upper bound on the worst-case cost of a sequence of operations.

The AARA type system is designed to automatically assign such potential functions to functional
programs, where we view evaluation steps as operations on machine states of an abstract machine.
Automation is enabled by fixing the format potential functions to linear combinations of base
functions, and then incorporating them into the types of values. Consider for example the function
exists from the OCaml List module in Fig. 9a. We model its cost behaviour using explicit tick(q)
expressions that consume g > 0 € Q when evaluated. The function exists pred Ist has a cost of 1 for
in every recursive call, and therefore the worst-case cost is equal to the length of Ist in addition to
the cost of the calls to the function pred.

To automatically derive this bound in linear AARA we assign the following type template where
qo> 91,9, p, r and r” are yet unknown non-negative coefficients.

exists : {{r,r) — (bool, ), qo) — (LP(r), q:) — (bool, q)
A valid instantiation of the potential annotation would for instance be the following type.
exists : ((r,0) — (bool,0),0) — (L'(r),0) — (bool, 0)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.



1:4 Di Wang, David M Kahn, and Jan Hoffmann

let rec rdwalk lst =
match lst with

let rec bernoulli 1lst =
match 1st with

let rec exists pred lst =
match 1st with

| [1 — false | [1 — false | 11 -0
| hd::tl — | hd::tl — | p:ips —
let _ = tick 1 in let _ = tick 1 in let _ = tick 1 in
if pred hd match flip 0.5 with match flip p with
then true | H — true | H — rdwalk (0.2::0.4::ps)
else exists pred tl | T — bernoulli tl | T — rdwalk ps
(a) (b) (©)

Fig. 1. Implementations of probabilistic programs in pRaML.

If we ignore the potential annotations in 7 and the cost of evaluating the function pred, then
this type expresses that the cost of evaluating exists pred Istis 1 - |Ist|, as marked by requiring a list
argument with 1 unit of potential per element. Another valid typing is

exists : ((r,2) — (bool,0),0) — (L3(r),0) — (bool, 0) .
It now expresses that the cost of evaluating exists pred Ist is 3 - |Ist] if the cost of evaluating pred is
raised to 2. The pred function here is typed to take 2 units of potential to run, but is balanced by
each element of the list argument being paired with 3 units of potential, 2 more than previously.

In general, type inference constrains this type’s annotation variables with p > r + 1 and ¢q; > g,
and leaves the other annotations unconstrained. This aids in the compositionality of the approach,
as the specific constants chosen can be adapted to the arguments, including arguments that are
themselves functions like pred here.

To exemplify such compositionality, consider some function fthat merely iterates over a list,
consumes 1 resource every iteration, and then returns the list. It can be typed (L? (), 0) — (L4(r), 0)
where p > g + 1. If we chain its application to some list Ist as f (f Ist), then we might instantiate
the type of the inner application with p = 2, ¢ = 1, and the outer with p = 1, g = 0, composing the
costs naturally. In this case, we would also type Ist as L*(t).

Of course, AARA cannot do the impossible of successfully analyzing all programs. AARA uses
structural reasoning methods that cannot pick up on semantical properties that the program may
depend on, like Peano arithmetic. Further, not all resource usage can be accurately expressed in a
given class of resource functions. For instance, polynomials will over-approximate logarithms, and
simply cannot express exponentials. The resource functions we present in this paper are linear, but
we make use of polynomial resource functions in our implementation.

Probabilistic programming. In this paper, we extend AARA to deriving bounds on the expected
cost of probabilistic programs. In contrast to a deterministic program, a probabilistic program
may not always evaluate to the same value (if any), but rather to a distribution over values and
divergence. Similarly, the evaluation cost of a probabilistic program is given by a distribution.

Consider for example the function bernoulli in Fig. 1b. It is similar to the function exists, but the
conditional is replaced with the probabilistic construct match flip 0.5. Intuitively, this construct
means that we flip a coin and evaluate the heads or tails branch based on the outcome. In probabilistic
programming, we assume that such flips are truly random (as opposed to an implementation that
may rely on a pseudorandom number generator). As a result, function bernoulli describes a Bernoulli
process across the elements of an input list. It terminates with probability 1 and has the same linear
worst-case cost as exists, namely 1 - |Ist|. However, the expected cost of bernoulli is only 1.

For an example with a more interesting expected cost, consider the function rdwalk in Fig. 1c.
Its argument is a list of probabilities that are used, one after another, to determine the odds in
a probabilistic branch that either pops the head off the list (in the tails case) or adds two new
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probabilities to the list (in the heads case). The random walk consumes 1 tick in each iteration and
terminates if the argument list is empty. One can show that the function rdwalk terminates with
probability 1 and the expected cost is a function of the argument [py,...,p,] as

This is an example of a program with non-terminating execution that may nonetheless have
expected costs that can be bounded. If only finite cost is accrued on non-terminating execution,
nontermination may even occur with positive probability and still yield a finite bound. Conversely,
programs that terminate with probability 1 may still have unbounded expected cost, e.g., a symmetric
random walk over natural numbers that stops at 0 [MclIver and Morgan 2005].

AARA for Expected Cost. Now reconsider the potential method in the presence of probabilistic
operations, that is, the cost and the next state of an operation are given by distributions. Let o(S)
denote the probability distribution over possible next states induced by o operating on S. One can
derive bounds on the worst-case expected cost by requiring that the following inequality for the
potential function holds over all states S and operations 0. We use the notation Eg'.o(s) (defined in
§3) to weight expected cost over states S” by the probability given by o(S)(S’).

D(S) = Egro(s)(cost(S,S") + D(S")) = Egr~o(s)(cost(S, S")) + Esro(s)(P(S")),
The intuitive meaning of the inequality is that the potential ®(S) > 0 is sufficient to pay for the
expected cost of the operation o from the state S, and the expected potential of the next state S’
with respect to the probability distribution o(S).

Further, if for some operation o we have ®(S’) > Egr_q/(sy(cost(S’, S”)) + Egr .o (s)(P(S”)) for

each state S’ the could succeed S under o, then we can compose the reasoning for o and o’ as follows.
®(S) = Egro(s)(cost(S,S")) + Esr~o(s)(P(S"))

> Egro(s)(cost(S, 5")) + Bsr~o(s) [Bsr~or(sy(cost(S',8”)) + Esror(s1((S”))]

= Egr~o(s),57~0'(57)(c0st(S, ") + cost(S’, §")) + Esro(s),57~0(57)(P(S”)).
Thus, the potential ®(S) is sufficient to cover the expected cost of operations o and 0’, as well as the
expected potential of the final state. This can be sequenced indefinitely to cover all operations of
an entire program. A valid potential assignment for the initial state of the program then provides
an upper bound on the expected total cost of running the program.

In §4, we extend the AARA type system to support this kind of potential-method reasoning
while preserving the benefits of AARA such as compositionality and reduction of type inference to
LP solving. For example, our probabilistic extension to AARA can type the code of the function
bernoulli in Fig. 1b as

bernoulli : (L°(7), 1) — (bool, 0)
where the input can be typed as a list with 0 units of potential per element (assuming 7 does
not assign potential). To cover the expected cost, it only needs 1 available potential unit per run,
indicated by the 1 paired with the input type. When typing the probabilistic flip, this single unit of
potential can pay for the expected cost of the two equally-likely branches: The H branch costs 0,
the T branch costs 2 (1 each for the recursive call and for bernoulli to consume), and they average to
1. As bernoulli can be typed to consume 1 unit of potential, the upper bound AARA finds is exact.

The functions bernoulli and exists form an example of the automatic average-case estimation
algorithm that we introduce in §7.2. Assume that you want to run exists on a certain distribution of
inputs and you want to determine the average cost of exists on this distribution. To approximately
answer this question, we collapse code like exists into code like bernoulli and use pRaML to estimate
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that the average cost is 1. In this case, such a collapse would be justified by finding empirically that
pred holds with probability 0.5.

The technical innovation that makes possible the typing of bernoulli is a new typing rule for
probabilistic branching. Another innovation is the introduction of the type P for probabilities.
The introduction form for values of type P simply takes a rational number 0 < p < 1 and the
elimination form is a probabilistic branch. We can assign potential

®(p: PG = qupqr-(1-p)
to a value p of type P. The potential g and g7 then becomes available in the head and tails cases,
respectively, of the probabilistic branching.

Consider for example the function rdwalk in Fig. 1c again. Our probabilistic analysis can auto-
matically derive the typing

rdwalk : (L'(Py),0) — (unit, 0) .
The potential of the argument
O[pr,....pal s (L@, =n+ > 5p;,
1<i<n
corresponds to the exact bounds on the expected cost.

Here we present these novel ideas for a simple functional language with lists and linear potential
functions. However, the results carry over to user-defined inductive types and multivariate polyno-
mial potential functions of RaML [Hoffmann et al. 2017] that we use in the implementation. The
main theorem of this paper (see §5) states that the expected cost bounds are sound, with respect to
a step-indexed distribution-based operational semantics inspired by Borgstrom et al’s semantics
for the probabilistic lambda calculus [Borgstrom et al. 2016]. We then extend the semantics with
partial evaluations to capture the resource behavior of non-terminating executions of a probabilistic
program. This novel extension enables an improved soundness result, which implies that expected
bounds on run-times ensure termination with probability 1.

3 LANGUAGE AND SEMANTICS

In this section, we introduce a subset of pRaML as a functional ML-like language that includes
units, lists, recursion, pattern match, and a new flip expression for probabilistic branching. We then
present an initial form of our operational cost semantics for probabilistic programs, which keeps
track of both the probability and the cost of executions. We will use this language and semantics to
formalize and justify our type-based expected cost analysis in §4 and §5.

Syntax. We only consider expressions in share-let-normal-form [Hoffmann et al. 2011]. This is a
syntactic form that uses variables instead of arbitrary terms whenever possible, without loss of
expressivity. This is done through maximizing the use of let-expressions. The syntax also must use
share(x; x1, x,.€) to allow multiple uses of a variable x in an expression e, due to linear properties
of the type system. The abstract and concrete syntax of our probabilistic programming language is
given by the grammar in Fig. 2. Abstract syntax is given via abstract binding trees [Harper 2016].
While the concrete syntax matches the intuitive meaning of each expression, the abstract syntax
conveys the same information and compacts some overly large expressions, allowing them to be
written down more succinctly.

The syntactic form flip{e;; e;}(p) is introduced to execute e; or e; at random. The intuitive
meaning of the flip expression is to flip a biased coin, which shows heads with probability p and
tails with probability (1 — p), then execute e; if the coin shows heads, or execute e; if the coin
shows tails. Additionally, the introduction form prob{p} and the elimination form flips(x; ey, e2)
are provided for the new probability type: prob{p} encapsulates a rational number 0 < p < 1 for
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Abstract Concrete

e = x x variable
triv % null tuple
nil [ empty list
cons(xy;x2) X1t Xo cons list
maty {eg; X1, x2.€2}(x)  case x {nil < ey | cons(x1,x2) < ez} pattern match
fun(f, x.e) fun fx=e function
app(x1; x2) x1(x2) application
tick{q} tick ¢ cost
let(eq; x.e2) let x =e1 in ey definition
share(x; x1, x2.€) share x as xq1,x2 ine sharing
flip{e1; e2}(p) flipp{H —e | T — ez} coin flip
prob{p} p probability
flips (x; €1, e2) flips x {H — e | T < ey} symbolic flip

Fig. 2. Syntax of the language

probability, and flips(x; e;, e2) is essentially the same as flip expressions except that the branching
probability is specified by a variable x of probability type. The syntactic form share(x; x, x;.€) has
to be used to allow multiple uses of a variable x in an expression e.

Elementary probability theory. We recount some essential concepts from elementary probability
theory. You can find more serious mathematical development of probabilities in textbooks on
measure theory [Billingsley 2012; Williams 1991].

Consider a random experiment. Let Q denote the set of all the possible outcomes, called the sample
space. A discrete probability space is a pair (Q2, P), where P : Q — [0, 1] is a probability distribution
on Q,ie, Y ,cq P(w) = 1. The probability of an event E C Q, written P(E), is defined as ;< P(w).
We often write P(0) for the probability of a statement 0, i.e., P({w | 8(w) is true}). A random variable
X : Q — RU {—o00, +00} is a function from a probability space to the extended real numbers. The

expected value of a random variable X is the weighted average E,,(q,p)(X) “ Y wea X(0) - P(w).
We often write E(X) if there is no ambiguity in the choice of the probability space. An important
property of expected value is linearity: If X and Y are random variables and a, b € R, then (aX +bY)
is a random variable and E(aX + bY) = aE(X) + bE(Y).

Obstacles for probabilistic semantics. To define the expected resource usage of probabilistic pro-
grams, we formulate a cost semantics based on an evaluation dynamics. This turns out to be
challenging. Previous work on AARA cost semantics for non-probabilistic programs lack the in-
frastructure to reason about certain effects of probabilistic phenomena. One such example is the
poor behaviour of high-water marks: the well-known probabilistic Martingale betting strategies
have an unbounded expected high-water mark, even while having finite expected net gain. In this
section we describe the sorts of problems faced from the perspective of the cost semantics.

The notion of values in the cost semantics can proceed unchanged: value v € Val is either a
null tuple (), an empty list [], a cons list v; = vy, or a function closure clo(V; f, x.e) that consists
of an environment V : Var — Val and a function definition fun fx = e. However, the evaluation
cost dynamics surrounding such values must be altered to deal with probability. In prior work on
AARA [Hoffmann and Hofmann 2010a], the cost semantics is defined by a judgment of the form

Vielvl(q.q)

This judgment means that, under an evaluation environment V, the expression e evaluates to the
value v using a high-water mark of ¢ € Q5 resources and leaving q” € Q5 resources leftover. By
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tracking both the high-water mark and leftover resources, non-probabilistic AARA was able to
reason about resources that might be returned after use, like space. This tracking is performed by
the resource monoid [Hoffmann and Hofmann 2010a], which algebraically composes the high-water
mark/leftover pairs (g, g").

Unfortunately, this operational judgment does not adapt to the probabilistic domain. Firstly, it
distinguishes a particular value v for evaluation, rather than a distribution. Further, the resource
monoid does not compose under probability. Both points must be remedied to soundly model cost.

To illustrate the resource monoid problem, we first define it. The following accounts for how the
high-water mark and leftover resource constraints change under non-probabilistic composition.

(a,b) - (c,d) o (a + max(c — d,0),d + max(d — ¢, 0))
Now consider the following two expressions. Letting e; have the associated resource monoid
term (0, 0), e; have (4, 2) and e3 have (2, 1), we see both have an expected high-water mark resource
usage of 2 and expected leftover of 1.

1
fIipE{H e | Teoe} vs e

However, we cannot represent the resource constraints of both expressions uniformly with
the term (2, 1). This becomes apparent if we precede both expressions by a copy of es, as then
the expected high-water mark of each differs. The latter can be correctly calculated to be 3 with
(2,1) - (2,1) = (3, 1). However, the high-water mark of the former would be 3.5 since half the time
it would be 2 and half the time 5. There is no way to get two different results as a function of the
same input (2, 1), so two-place resource monoid terms cannot be salvaged for probabilistic use.

To avoid this problem, we forgo the high-water mark/leftover resource distinction, and reason
only about resources that monotonically decrease, like time. It then suffices to track only the net
cost with a more well-behaved one-place term. As a result, the AARA system described here only
consumes resources, and never provides them.

This restriction to monotonically consumed resources solves an additional problem for the cost
semantics concerning the well-definedness of expected cost in the presence of nontermination.
Even programs with finite expected cost may have nonterminating executions. However, if the
execution can be non-terminating, there can be an infinite number of execution traces, and thus the
expected value of their cost is defined over an infinite sum. Such a sum must converge absolutely to
represent an expected value, and if the costs for operations can have different signs this is not clearly
the case. Recent work [Wang et al. 2019] has proposed techniques to reason about non-monotone
resources for imperative programs; adapting these techniques to analyze functional programs is
beyond the scope of this paper, but is an interesting future research direction.

Besides the cost, a probabilistic semantics must also account for probabilistic execution resulting
in a distribution of values, rather than 1 particular value. To solve this problem, one might first
think to reason about individual executions separately by adding a component that tracks the
probability of a particular value resulting. By collecting such judgments with probabilities adding
to 1, one could then recover the desired value distributions. For this approach, one might create the
judgment V + e | v | ¢ which would mean that there exists an execution where the expression
e evaluates to the value v with net cost g and probability p. However, this approach has a subtle
problem: There might be multiple different executions with the same evaluation result, cost, and
probability. For example, consider the following program

1
e= fIipE{H — tick 2| T < let _ = tick 1 in tick 1}.
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ViotrelP v|q “inenvironment V, with trace o, expression e evaluates to value v with cost g and probability p”

- (EVAR) ———————— (ETrv) —————— (E:Nm)
Villrx V() [0 vill v 0 1o Vil
Vv = Vv = Vix) = Viot i
(x1) =01 (x2) = v2 (E:Cons) () =11 oral’vlg (E:MATL-1)
V[ F cons(xi; x2) U o1 = 03 |0 V5o +maty {x; e, x1.x2}(e1) IF v | q
Vix) =0 = v, s B ?
(x) = 01 = v xi oL usoke [P olg (E:MaTL-2) : : (E:T1cK)
Vo + maty, {x; e, x1.x2 }(e1) U v | ¢ Vil +tick{q} | () | q
Vior ke P o | ¢ V.xmousorel” vulg (E:LET)

Vio1 @ oz + let(er; x.e2) [P1P2 vy | q1 + g

- (E:Fun)
V[l fun(f, x.e) | clo(V;f, x.e) | 0

V(x1) = clo(V’; f, x.e) V(x) = vo V', fco(Vif,x.e),x > vyorellPv|q

(E:Arp)
Vo kapp(xi;x2) IP v | g
Viore [Pl o Vio ke P2 vy | qo
U7 o | g (E:Fuip-1) — (E:FLp-2)
ViH o +flip{er; e2}(p) PP o1 | ViT ok flip{eis e }(p) U772 v, | gy
Vix)=v V,xi— o, x> v,okel|P o
(x) ! 2 L Kl (E:SHARE) : (E:PrOB)
V;o + share(x; x1, x2.€) [P @' | q V:[] +prob{p} |" prob(p) | 0
V(x) = prob Vior P1 V(x) = prob Viore [P2 o
(x) = prob(p) ote Pl o | q (E-FLIpS-1) (x) = prob(p) 1—2 W ol (E:FL1pS-2)
Vi;H = o+ flips(x; e1, e2) JPPL vy | q1 VT = o+ flips(x; er, e2) Y=z oy | q2

Fig. 3. Evaluation rules of the trace-based cost semantics

Although the program has two possible syntactically-distinct executions, there is only one valid
evaluation relation derivable from the given rules, which is

kel ()2
This thwarts the idea of collecting relations with probabilities summing to 1, as some relations
would need to be counted multiple times, and the present components to the judgment leave no
way to determine the multiplicity. To solve these problems, we present the following cost semantics.

Trace-based cost semantics. We deal with obstacles surrounding cost semantics by adapting
Borgstrom et al’s trace-based semantics for lambda calculus [Borgstrom et al. 2016] to our setting.
The key observation is that an execution is uniquely determined by the trace of outcomes of the
coin flips in the execution. We augment the evaluation relation with a component for traces, i.e., a
finite sequence of elements in {H, T}. The trace-based evaluation judgment then has the form

Vierelfoulg,
The intuitive meaning is that under the environment V, with a sequence ¢ of coin-flip outcomes,
the expression e evaluates to a value v with cost g and probability p.

Fig. 3 presents the rules for this trace-based evaluation dynamics. We write [] for empty traces,
01 @ 0, for trace concatenation, and H = ¢ or T = ¢ to observe a new coin flip and prepend the
outcome to o. In the rule E:LET, we multiply the probabilities of an execution of e; and an execution
of e;, as well as concatenate their traces of coin flips.
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1:10 Di Wang, David M Kahn, and Jan Hoffmann

Recall that in order to reason about expected resource usage, we need a notion of probability
distributions over executions, and found that accounting for the multiplicity of operational judg-
ments made this difficult. With the trace-based dynamics, we can now capture all the terminating
executions uniquely. This is because the result value v, the net cost g, and the probability p, are
determined uniquely by the environment V, the expressions e, and the trace of coin flips .

By induction on the structure of expression e, we prove the lemma below.

LEmMA 3.1. ForallV, e and o, there is at most one combination of v, q andp s.t. Vio e [P v | q.

Therefore, for fixed V and e, the set of all finite traces induces a “distribution” over terminating
executions. We can extract a “distribution” [[e]]l‘f on values v and costs q as follows:

def

[[e]]l‘f(v, q) = Zpg where o’s are finite traces satisfying V;o e |77 v | q.
o

Note that if there are non-terminating executions with non-zero probabilities, the map defined
above is a subprobability distribution in the sense that the probabilities do not sum up to one. In
other words, the probability that e diverges under environment V is (1 — X, o) [[e]]l‘f(v, q)).

With this trace-based cost semantics in hand, we can finally define the expected cost of evaluating
some terminating expression e with variable bindings given the values of V. The expected cost is
just the sum of costs ¢ weighted by probability p over all execution traces o.

> pa= ) lelj@9-q
o:ViorelPou|q V,v,q

However, generalizing this definition for non-termination would be nontrivial. As probability
is only countably additive, and the set of infinite traces of a non-terminating execution may be
uncountable, the above sum could no longer be used. It would appear that a more complicated
summation mechanism like integration over a cost density function would be required to deal with
such divergence, and we do not deign to develop that here. Instead, to deal with this concern and
others, the cost semantics will be revisited in §5. There we will do like [Borgstrom et al. 2016] and
convert from trace-based to distribution-based semantics.

4 TYPESYSTEM

In this section, we develop an AARA type system to carry out expected cost analysis for probabilistic
programs. To focus on the changes that probabilistic choice induces on the type system, we describe
its action here in linear AARA, where all potential functions are linear in terms of list sizes. In
other work, potential functions have been expanded to cover polynomials [Hoffmann et al. 2011;
Hoffmann and Hofmann 2010b] and exponentials [Kahn and Hoffmann 2020], but this extension
to AARA is orthogonal to probabilistic choice. Indeed, we have carried over the implementation
and soundness of probabilistic AARA to support multivariate-polynomial potential functions and
user-defined datatypes without problem, which we use to perform analyses in §6 and beyond.

Types and potentials. Fig. 4 presents the types

that are supported in linear AARA. Aside from Abstract Concrete

usual types like the nullary 1 and binary prod- ¢ := unit 1 nullary product
uct 7; X 75, there are three special types that have list(A) L9(1) list
potential-related components. The first is the po- arr(A; B) A— B arrow

tential pairing (r, q), which represents storing a prob{qm;qr} PaY probability
constant ¢ € Qs units of potential alongside a A B = pot(r;q) (t.q) potential

value of type 7. The second is the list type L9(7)—a
Fig. 4. Syntax of the type system
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compact representation of list({z, g))—which rep-
resents a list with g € Q¢ units of potential per
element. The combination is sufficient to express potential functions that are linear combinations
of input list lengths and constants. The last is the probability type prob{qm; gr}. As introduced in
§2, it represents gy units of potential for head cases and qr units for tail cases after a coin flip.

Formally, the potential function ®(- : 7) or ®(- : A), which maps values of type 7 or A to non-
negative rational numbers, is defined as follows.

def

®(() : unit) £ 0, ®(v : pot(r;q)) = ®(v: 1) + ¢,

def def

o([] : list(A)) & o, D(v; vy : list(A)) E @(v; : A) + (v, : list(A)),

®(clo(V; f,x.e) : arr(A; B)) £ 0, ®(prob(p) : prob{qu:qr}) = qar - p + qr - (1 p).
From the inductive definition above, we can derive the following closed form for the potential of
alist € = [vy, - -, vy] with respect to a type L9(r), which is linear in the length of the list ¢.

O :LUr))=q-n+ Z (v; : 7).
i=1

Note that these definitions leave potential as a function of both type and value. Different values
of the same type may differ in their total potential. For instance, in the case of lists, one term in the
above closed form for potential depends on the length of the list, so lists of differing lengths but
the same type may differ in total potential.

Static semantics. The typing judgment for linear AARA the form I';q + e : A, the intuitive
meaning of which is that the potential given by I and q is sufficient to cover the expected evaluation
cost of e and the expected potential of the evaluation result with respect to A.

As existing AARA type systems, our typing rules form an affine linear type system, which
ensures that every variable is used at most once [Walker 2002]. Fig. 5 lists the typing rules. It turns
out that most of the rules coincide with those of non-probabilistic linear AARA systems. This fact
indicates that our type system is a conservative extension of non-probabilistic AARA for monotonic
resources, and our type system is able to derive worst-case cost bounds for deterministic programs.

To understand the new rule L:FLip for probabilistic branching, consider the expression
flip{es; e2}(p), where e; requires ®; units of potential and e, requires ®,. The evaluation of the flip
expression should expect to require a weighted average of ®; and ®;, specifically p - ®; + (1 —p) - ,.
This should be paid out of the typing context I' and constant potential g, both of which are shared
between branches. The distribution of this sharing is expressed using a sharing relation t Y (ty, 72),
which apportions the potential indicated by 7 into two parts to be associated with 7; and 7,, along-
side a potential-scaling operation. We formally define these relations and prove they capture the
correct intuition with Lemmas 4.1 and 4.2, but first we explain why the rule does not also perform
expected value calculations for the type A.

One might think that a similar weighted average could be used to combine the types of e; and e,
to get expected type A, rather than require both expressions have type A exactly. Perhaps equally
likely types L3(r) and L!(r) could convert to expected type L(r). However, the value produced in
each branch might differ, and for lists of type L9(r) total potential is a scalar g of length; taking
the expected value of the scalars without accounting for length does not succeed in finding the
expected potential. Thus, the rule L:FL1P cannot be made more permissive in that manner.

Nonetheless, note that the same return type for both branches in L:Frip still can leave differing
potential after each branch, which is necessary for expected cost reasoning. For example, consider
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1:12 Di Wang, David M Kahn, and Jan Hoffmann

the following program where the function append requires 1 unit of potential per element in its
first argument.

append (flip 0.5 | H = [1;2;3]1 | T — [e]) [5;6]

The return types of the two branches of the flip expression are the same (L2(int)), but the actual
potential in the results is different: the heads branch returns a list with 3 units of potential, and the
tails branch returns 1 unit. This shows that the analysis properly composes and correctly reasons
that expected cost of the program is 2. This also works for symbolic lists and can derive the bound
|x| + |y| for the function

fun x y — append (flip 0.5 | H -y | T — (append x y)) []

Now we formalize the sharing and scaling relations. The sharing relation for types is defined as
follows. Note that the sharing relation is also used in L:SHARE to make “copies” of a variable, while
ensuring that the total potential over copies is preserved.

AY(A1, Az)

———— (Sm:Un1T) (SH:L1sT)
unit Y (unit, unit) list(A) Y(list(Aq), list(Az))
(1) (2) (1) (2)
qH =4 9 ar =qr +4q
(SH:ARROW) A ) L (Tz) o (Sm:ProB)
arr(A; B) Y(arr(A; B), arr(A; B)) prob{gm; g7} Y(prob{qy/; q;' }, prob{qy;;q;'})

=q+q tV(n,n)
pot(z; q) Y(pot(1; q1), pot(r2; g2))
We extend the sharing relation to typing contexts, as it has previously only been used on a per-type
basis. This splits the potential across all types in I' across 2 new contexts of the same base types.
—— (Sm:EmpTY) Y@, 1) T ¥(n, =) (SH:EXTEND)
“Y(, ) Fox:oYT,x:71,1,x: 1)
Potential-scaling can be defined syntactically as follows. Intuitively, p X 7 (resp., p X A) produces
a type with as much potential as that of the original type 7 (resp., A) scaled by the factor p.

(Su:Pot)

p X unit < unit, p X pot(z;q) « pot(p X 7;p - q),
p % list(A) e list(p X A), p X arr(A; B) = arr(A; B),

p X prob{g; gr} = prob{p - qu;p - qr}.
Also, we extend the scaling operation to typing contexts.
def

px()=- px(I‘,x:r)dzeprF,x:(pXT).
By induction on the structure of value v, we prove the following lemmas that ensure the sharing
and scaling relations are consistent with their intuitive meaning.

LEMMA 4.1. For any value v of type T (resp., A), if T Y (11, 72) (resp., AY (A1, Az)), then ®(v : 1) =
O(v:n)+D(v: 1) (resp., P(v: A) = D(v: Ar) + P(v: Ap)).

LEMMA 4.2. For any probability p and value v of type t (resp., A), ®(v : pX 1) = p - P(v : T) (resp.,
Dw:pXA)=p-O(v:A))

We now discuss the rule L:ProB and L:FL1pS for the new probability type PZ? . To type a probability
encapsulation prob{p}, we need ®(prob(p) : [P’Z?) =p-qy + (1 - p) - gr units of potential in the
context to cover its expected value. Then to type an expression flips(x; ey, e;) that flips a variable
x with type PZ, one might want to use the potential-scaling operation as the rule L:FLip does.
However, the probability x here is symbolic, thus we cannot define the scaling operation in linear
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AARA." The rule L:FL1pS avoids the problem by forcing e; and e, to be typed under the same
context, appealing to the equality ® = x - ® + (1 — x) - ® for any x and ®. Note that it assigns
qu units of potential to type e;, and gr units to type ez; this assignment is sound because we pay
x - qu + (1 —x) - qr to create x : PZ¥.

Finally, we briefly explain other typing rules. In the rule L:Cons, we have to provide potential p
to account for the potential of the new list element. Conversely, the potential of the head x; of the
list x : L?(7) becomes available in the cons branch of the pattern match in the rule L:MATL. As a
result, we have constant potential p + q available when typing e;. In the rule L:App, we require
that we have the exact potential annotations (x; : 7 and g) that are required by the argument.
The resulting potential is given by the result type B. In the rule L:Fun for (recursive) function
abstraction, we require that the potential of the variables captured in the context T is zero. We
write |I'| for the context I' in which every potential annotation q is replaced by 0. This is formally
defined below. The reason for this requirement is that we allow functions to be used an arbitrary
number of times (recall the definition of sharing). If I would carry potential then we could use
this potential multiple times to account for cost, which is not sound. Since functions do not carry
potential, we do not have to restrict the type of the recursively defined function f in a similar way.
An alternative would be to remove the premise I' = |I'| and to treat functions in an affine way.

|unit]| £ unit, |pot(z; q)| « pot(|z|;0),

def

[list(A)| = list(JA]), |arr(A; B)| E arr(A; B),
[prob{gs: gr}| = prob{; 0}.
Note that for function types, we do not have to recursively eliminate potential with | - | since the
potential of a function is already 0. The definition is then lifted point-wise to annotated contexts I'.

def def
1= IT,x: 7] = [Tl x « |z].

The structural rules L:Sus, L:Sup, L:WEAK, and L:RELAX can be applied to every expression.
The weakening rule L:WEAK is standard. However, there is another form of weakening: The rule
L:RELAX, states that, given a judgment T';p + e : (r,p’), we can also have more potential g in the
context and give up some of the potential p’. Additionally, the rule also covers the case in which
we pass through additional potential ¢ > 0 yielding the judgment T';p + ¢ + e : (z,p’ + ¢). The
subtyping rules L:Sus and L:Sup enable us to relax the potential requirements for potential in data
structures in the same way as T:RELAX does for constant potential. The subtyping relation for types
is defined by the following rules.

A<:B
unit <: unit list(A) <: list(B)
Ap <: A By <: By qg) > qg) q(71~) > qgﬁ) q1 2 q2 71 <: Ty
arr(Ay; By) <: arr(Ag; By) prob{q(bl[);q(;)} < prob{qg; q(;)} pot(71; q1) <: pot(zz; q2)

By induction on the structure of value v followed by inversion on the subtyping judgment, we
prove the following lemma.

LEmMA 4.3. If 7t <: 7/ then ®(v : 7) < ®(v : 1) for any value v of type T.

Example. To illustrate the type system in action, we apply it to a random-walk program in
concrete syntax below. Consider the function brdwalk which performs a biased random walk over

n our implementation of pRaML, we use multivariate polynomial AARA to support symbolic scaling, which unifies the two
distinct flip operations presented here. We also incorporate the ability to multiply and complement symbolic probabilities.
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1:14 Di Wang, David M Kahn, and Jan Hoffmann

I;gre:A “incontext I with constant potential g, expression e has potential-annotated type A” ‘

— (L:VaRr) — (L:Un17) —— (L:Nm)
x:7;0F x:{7,0) -0 F triv : (unit, 0) -0+ nil : (list(A), 0)
A= (r,
{r.p) (L:Cons)
x1: 7T, x2 : list(A); p + cons(x1; x2) : (list(A), 0)
A= {r, T;qgtey:B T,x1:7,x:list(A);g+pte :B
(r,p) q*eo 1 2 lis(Akg tpr e (L:MarL) (L:Tick)
T, x : list(A); g + maty, {ep; x1, x2.€1 }(x) : B -5 q + tick{q} : (unit, 0)
Ti;qgre:(r, L,x:7t;prey: B A={(r,
vgre:{n.p) : pre (L:LET) (. 9) (L:Arpr)
I, q + let(er; x.ez) : B x1 : arr(A; B), x3 : 7;q F app(x1; x2) : B
A=(r,q) T=]I]
I,f :arr(A;B),x: 7;9+e: B T Y(11, T I',x1:7,x3:2;9+e: B
f (4; 5) 1 (L:Fun) Y. m) UL (L:SHARE)
T;0 + fun(f, x.e) : (arr(A; B), 0) T, x : 7;q + share(x; x1, xz.€) : B
I'Y(pxTIi,(1-p)xIy) q=p-q1+(1-p)-q2 I;qr e A Isqetex: A
- (L:Frp)
T;q - flip{essez}(p) : A
=p. +(1-p)- T;q+ Fe A Tiq+ Fex: A
9=p -qu*0-p) a1 (L:PrOB) I L q qr " e (L:FrrpS)
5 q + prob{p} : (prob{qm;qr},0) I, x : prob{qm;qr}; q  flipg(x;e1, e2) : A
Iigre: (7', q <7 I,x:7;qre:B <7
1 (. 4) (L:SuB) il (L:Sup)
Tiqre:(r,q) I,x:7';qre:B
I;gre:B Tipre:{(r,p > -qgd=2p-p
_arer? (L:WEAK) P {r.£) =9 179 =pP7F (L:RELAX)
I''x:7;q+e: B Tigre:(r,q)

Fig. 5. Typing rules

the length of its input list, stopping whenever the list is empty. With % probability of shrinking the
list and ; of growing it, we expect the list length to shrink by # per iteration of the walk. Thus, we
expect a stopping time of twice the input list’s length.
brdwalk = fun f€ =
case £ {[] — ()

_uxy o let _=tick 1in flip3a{H < f(x2) | T < f() =) = x2)}}
We now derive the type (L%(1),0) — (T, 0) for brdwalk, which indicates using twice the input list’s
length for initial potential. This amount of potential provides an upper bound on expected stopping
time which happens to be exact.

In the tails case, we need four units of extra constant potential to construct the argument list.
(L:VAR)

[ (L21),0) = (1,0), x : L*(1):0 k xz = (L*(1), 0)
[ (E2(1),0) = (1,0), %2 - LA(1): 2+ () 5 22 : (L2(1), 0)
Fi(E(1),0) = (1,0), % : LX(1);4 F () = () = x5 : (L*(1), 0)
Fi (L (1),0) = (1,0), %z : LX(1);4 F £(() = () = x2) : (1, 0)
Otherwise, if the coin flip shows heads, the type derivation goes as follows:
(L:App)

(L:Cons)

(L:Cons)

(L:Arpr)

f:(LA(1),0) — (1,0), x2 : LE(1);0 + f(o2) : (1,0)
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‘ v:t(orv:A) “value v hastype 7 or A” ‘

— (V:UnrT) (V:PrOB) -
() : unit prob(p) : prob{qm;qr} []: list(A)

A = pot(r; q) V:T

(V:N11)

v A vy : list(A) v:T IT|, f :arr(A; B), x : 759 - e : B
————— (V:Cons) —— (V:AnNO) (V:Fun)
vy vy ¢ list(A) v : pot(7; q) clo(V;f, x.e) : arr(A; B)
Fig. 6. Typing rules for values
Via the definition of potential scaling, we find that
LA YClax LA(1),(1 =3/ x L2(1)) and 1=3/-0+ s- 4.
Then we apply the rule L:Frip, deriving the desired type (L%(1),0) — (1, 0) for brdwalk.
F 2 (L2(1),0) = (1,0), %2 : LA(1); 0 f(xz) : (T, 0)
fi(L2(1),0) = (1,0), x5 : LA(1);4 F £ = () = x2) : (1,0)

(L:Fr1p)

FAL2),0) = (1,0), 22 : L2 1k flip 34 {H = f(x2) | T = f(() = () = x2)} 2 (1,0)

5 SOUNDNESS

In this section, we formalize our intuition that our type system derives expected cost bounds
and sketch a soundness proof (Thm. 5.3). We also study nontrivial non-termination behavior of
probabilistic programs, and prove a stronger result (Thm. 5.7) which implies that derived expected
bounds on resources like time imply that the analyzed program terminates with probability one
(Cor. 5.8). Proofs are included in appendix A.

Values. Before we can state the theorem, we need to properly extend the definition of potential
to typing contexts and evaluation environments. We introduce a type judgment v : 7 (or v : A) for
values, which is defined in Fig. 6. This relation ignores potential annotations and checks only the
values are well-typed. An evaluation environment V is said to have type context I, written V : T, if
for all x bound in T, we have V(x) : I'(x). The most interesting rule is the rule V:Fun for function
closures. It uses the type rule L:Fun for expressions and existentially quantifies over the context I'.
This rule ensures that we only consider functions that are well-formed with respect to the type
system, which is necessary to prove the soundness of the analysis.

Let V : T'. We define the potential of V with respect to I as follows.

OV :T)E Z O(V(x) : T(x)).

xedom(T)

A first attempt. With the trace-based evaluation dynamics, we might state the soundness theorem
for probabilistic programs as follows. Intuitively, it says that the initial potential is sufficient to pay
for the expected evaluation cost and the typing of the result.

LetT;qre:Aand V : I. Then

OV :T)+q> D po- (@ s A) + qo).
00:V300re}P0 1| qo
Note that the summation is taken over traces oy, and by Lem. 3.1, the tuple (po, vy, qo) is uniquely
determined by V, e, and 0y. However, it is unclear how to prove the theorem by induction on
the evaluation judgment. The reason is that we now have to deal with a collection of evaluation
judgments, instead of one. Intuitively, the trace-based evaluation dynamics talks about individual
executions, while the goal of our resource analysis for probabilistic programs is to reason about
aggregated information over all possible executions. We therefore develop another evaluation
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dynamics that deals with distributions of executions more directly, and show that it agrees with
our previous semantics.

First we illustrate why a naive approach here will not work. One might start with a new judgment
V + e = p where y is a distribution over pairs (v, q), v is the evaluation result, and q is the net cost.
Then one might use the following rule for composition under probabilistic branching.

Vl—elﬁyl VI—€2=>[12

Vrflip{lese}(p) = p-pr+ (1 =p) - o
Here, we denote the weighted sum of two distributions p; and pz by p - 1 + (1 — p) - pi2, defined as
Aw.p - pi(w) + (1= p) - pa(w).
For the leaf cases, such as unit values, one might then introduce the rule where §(w) = Ao’.[w =
«’] denotes the point distribution on w, and where the Iverson brackets [-] are defined by [¢] = 1 if
¢ is true and otherwise [¢] = 0.

(BaD:FLIP)

- (BAD:TRIV)
V I triv = 6(), 0)

However, the attempt does not work well for almost-sure termination, i.e., terminating with
probability 1. The issue is that the inductive definition of such a distribution dynamics will fail if
there is a non-terminating execution. Consider the following program

o1
f=funf_=Alip S {H > OIT < O}
and suppose that we want to derive an evaluation judgment for f(()). There does not exist a

distribution y such that V + f({)) = p, because if we try to apply the rules inductively, we will
end up with a derivation tree with an infinite depth.

——— (BaAD:TRr1v) —
V()= 3800,0 VE () =277

VEflipla{H > )| T f)}=7??
V()=

(BAaD:Arp)

(BAD:FL1P)

(BAD:App)

Distribution-based semantics. To cope with possible non-terminating executions, we develop
a partial-evaluation-like dynamics equivalent to our trace-based one. Unlike partial evaluation
dynamics used in AARA literature to deal with non-termination [Hoffmann and Hofmann 2010a],
we do care about the evaluation results. For our new dynamics, we adapt the distribution-based
semantics of [Borgstrom et al. 2016], which index judgments by their derivation depth to be able to
construct a “complete” semantics from the “partial” ones. To this end, we need only modify the
subprobability distributions to be over value-cost pairs, resulting in judgments of the following
form:

Vie="p.

The meaning is that the expression e reduces to a subprobability distribution with an at-most-n
derivation depth. We use subprobability distributions, whose probabilities sum to possibly less than
one, because there could be terminating executions with a derivation tree whose depth is more than
n. Fig. 7 presents the rules for this distribution-based semantics. In addition to the syntax-directed

rules, we introduce a special base case where n = 0 and p is set to a zero distribution 0 L \w.o.
We can now approximate the distribution over terminating executions using the depth-indexed
distributions by making use of the following lemma.

LEMMA 5.1. IfV e =" 1,V ke =" py andn < m, then iy < i, pointwise. As a consequence,

we can define [e] ¥, déf sup{tn : V+e =" p,} = lim,_,c pn as the subprobability distribution of all
possible terminating executions of a probabilistic program e under environment V.
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‘ Vie="pu “in environment V, expression e reduces to result distribution p within n steps

>0 >0
———— (DE:BasE) " (DE:VAR) "7 (DE:TRIv)
Vie="0 Vix="68V(x),0) V + triv =™ §((), 0)

>0 >0 14 = 14 =
n (DE:NIL) n (x1) =1 (x2) = v2
V +nil =" 5((], 0)

(DE:Cons)
V + cons(x1; x2) =" §(v1 = vg, 0)

V(x) =01 %02

Vix) =] Vie="pu (DEMaTL-1) V,xi v, x> 0mke =" p
1 : -
u

DE:MATL-2
V + maty {eg; x1, x2.€1 }(x) ="* V + maty {eg; x1, x3.€1 }(x) =" ( )

n>0 n>0

(DE:Tick) (DE:Fun)
V  tick{q} =" 5§({), q) V + fun(f, x.e) =" 8(clo(V; f, x.e), 0)
V(x1) =clo(V’; f, x.e V(xy) =v V,feco(V;f,x.e),x — vy ke ="
(1) (Vs f, x.e) (x2) = vz f : (V'3 f, x.e) 2 ﬂ(DE:APP)
V rapp(xi; x2) =" p
Ve =" Y(vq, € su V, x> v ke =" g,
1 rl:l+1 (o1 01) € suppls — Hova) (DE:LET)
Vklet(ersx.e2) =™ Yoy q1) Loz, qz) H(V15 q1) * Hoy,q1) (2, q2) - 8(v2, q1 + q2)
V(x)=v
V,xi— v,x3— vke=" Vie =" Vie ="
! 2 ; a (DE:SHARE) : i ] 2 He (DE:Fv1p)
V  share(x; x1, xp.€) =™ V flip{esex}(p) =™ p -+ (1-p) - 112
n>0 V(x) = prob Vie =" Ve ="
(DE:Pro) (x) = prob(p) L= A 2= 2 (DEFues)
V k prob{p} =" 8(prob(p), 0) V klips(xser, e) =™ popu+ (1—p) - 2

Fig. 7. Evaluation rules of the distribution-based cost semantics

Proor. By induction on the derivation of V e =™ p,, followed by inversionon V e =7 ;.
The existence of the sequence appeals to the Monotone Convergence Theorem. O

Recall the problem case from attempting a non-indexed distribution-based operational semantics:

1
f=funf_=flip {H = OIT = O}
With the depth-indexed distribution-based dynamics, we can now derive the following judgments:
VEF() =10, VEFO) =7 e 5(0),0),
VE Q) =71/ 8(0,0)+ 13- 8(0,0), -, VEFO) =T T L) -8(0),0).
Letting k approach infinity, we derive that [f({))]Y, = 8((),0), i.e., the program terminates with
probability one. Further, the evaluation result is always unit, and the net cost is always zero.

Finally, we show that the distribution-based dynamics is equivalent to the trace-based one, so
we can proceed to prove soundness with respect to the distribution-based semantics.

PROPOSITION 5.2. LetV be an environment and e be an expression. Then [e]Y, = [[e]]l‘f.

Proor. We proceed by proving both [e]Y, < [[e}]ﬁ/ and [[e]]l‘f < [e] Y. For the first inequality, it is
sufficient to show that y, < [[e]]l‘f for all n € N where V + e =" p,,. For the second one, it suffices

to show that v, < [e]Y, for all n € N where v, is a sub-distribution of executions in [[e]]l‘f whose
trace has length at most n. Both cases are done by induction on n. O
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Soundness. We now restate and prove the soundness theorem using the distribution-based se-
mantics. Again, it states that the initial potential can pay for the expected evaluation cost and the
typing of the result.

THEOREM 5.3 (SOUNDNESS OF AARA). LetT;qre:AandV : T. Then

oV:T)+q2 > [e]% (w0 g0) - (®(vn : A) + go)-
(v0.90)

Proor. It suffices to prove for every n € N, if V I e =" 1, then

OV :TI)+q= Z (v, qo) - (D(vg : A) + qo)-
(v0.90)
Proceed by induction on n with inversion on V + e =" y then inner inductiononI;g+-e: A. O

Non-termination. So far we have only considered terminating executions in the evaluation dy-
namics, dealing with non-termination indirectly. Recall that the distribution over e’s evaluations in

environment V is defined as
def

[[e]]l‘f(v, Q) = Zpg where o’s are finite traces satisfying V;o + e [P” v | q,
o

thus infinite traces (e.g., non-terminating executions) are totally ignored. Hence, the soundness
theorem (Thm. 5.3) does not imply that the typing judgment I'; q + e : A (where e is instrumented
with ticks to count evaluation steps) entails that the expected termination time of e is finite. We
therefore now extend the dynamics to account for non-terminating behavior directly.

To deal with non-termination, we first introduce a dummy value o to represent some partial
evaluation. We can then enrich the distribution-based dynamics with partial evaluation by forcing
the result distribution y in the judgment V' + e =" p to be a full probability distribution instead of a
subprobability one. To achieve this, we extend p’s distributions to be over (ValU {o}) X (Qxq U {c0}),
including this new dummy value. Most of the rules stay unchanged, except the following two:

————— (PE:BasE)
Vie=05(c,0)
Vier="p Y(v1, q1) € supp(p): (v1 #0) = V,x > v ke =" H(vy.q1)

V klet(er; x.e2) =" Do ple, q1) - 8(0, 1) + Xy qp por20 Di(wg.qe) K01 @1) - Hioy.q) (2, q2) - 5(vz, g1 + q2)

(PE:LET)

However, we can no longer take the previous approach of defining [e]Y, by the limit of {1, } e
where V + e =" p,, because it no longer holds that, if n < m ,then y, < p,, pointwise. To get
around this, we define a new ordering on complete distributions, extending it to cover the dummy
value differently. We define y; C p5 as

e Vu,q: (v #0) = m(v,q) < p2(v, q), and

* Vg: pn((Val U {o}) x [0, ¢]) = p2((Val U {o}) x [0, q]).
For concrete values, the order above is the same as the pointwise order on subprobability dis-
tributions, but for divergence, we take the other direction—the property above implies that
p1({e} x [0,q]) = p2({o} x [0,q]) for all ¢ € Qs U {co}. Since we assume non-negative ticks,
the probability that the cost is smaller than any g with respect to y; should be greater than or
equal to that with respect to p;. Formally, we prove that C defines an w-complete partial order on
distributions.

LEMMA 5.4. The relation C defines a partial order on the distributions. Further, let {jin}nen be a
sequence such that iy E 1o C -+ - E p, C ---. Then there exists a least distribution y such that for all
n € N, u, E p. Further, we denote j1 by | |, en fin-

We now restate Lem. 5.1 in terms of the partial order E over distributions.
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LEMMA 5.5. If Ve =" 1, V ke =" puy andn < m, then y; E i, pointwise. As a consequence,
we can define [e]Y, e Ll ent fn as the distribution of all possible terminating and non-terminating

executions of a probabilistic program e under environment V.

Proor. By induction on the derivation of V + e =™ py, followed by inversion on V - e =" .
The existence of the sequence appeals to Lem. 5.4. O

Recall that in the soundness proof, we induct on the index n of V + e =" pu. The reason why
this approach works is that the expected cost with respect to y is w-continuous, i.e., monotone and
interchangeable with a limit operator. Although it is unclear whether the continuity still holds for
C or not, we can prove the following weaker result that is sufficient for our soundness proof.

LEmMA 5.6. Let h(u) E 2q B, @) g+ Ko, grozo KV, @) - (P(v : A) +q). Let {pn}nen be a sequence
suchthatpy; S pp C - Cpp, ©---.Let M € Ryo. Ifh(un) < M foralln € N, then h(| |, e fin) < M.

Now we can strengthen the soundness theorem to capture both termination and non-termination.

THEOREM 5.7 (SOUNDNESS OF AARA, IMPROVED). LetT;qt+e: AandV :T. Then
OV :D)+q2 Y [e]%eq0) g0+ D, [e]L@oq0) - (@(vo: A) + o).

90 (v0,q0):v0#0
Proor. By Lemmas 5.5 and 5.6 it suffices to prove for every n € N, if V + e =" 1, then

OV :T)+q2 ) po.qo) qo+ Y (o, qo) - (Boy : A)+ qo).
90 (v0,90)
Again proved by induction on n with inversionon V + e =" p,thenT;q F e : Ainner induction. O

CoRrOLLARY 5.8. LetT';q e : AandV :T.Ifaprograme is instrumented with ticks that account for
evaluation steps, then e terminates with probability one, i.e., [e]Y, (o, go) = 0 for all gy € Qo U {0}.

ProoF. For all gy € Qx, the probability [e]Y, (o, go) is zero because if an execution does not
terminate, the cost will keep increasing. For the case where gy = oo, by Thm. 5.7, [e] ¥, (o, o) - o0 is
bounded by ®(V : T) + q < oo, thus the probability [e]Y, (o, c0) must be zero. |

6 IMPLEMENTATION AND EXAMPLES

In this section we present some non-trivial probabilistic models which our implementation pRaML
can handle in the same manner as described in previous sections. We follow up with a collection of
experimental benchmarks from typing variants of our examples, and other examples from literature.

For these complex examples, we use our implementation pRaML of the probabilistic AARA
type system extended to multivariate polynomial potential functions with user-defined data types.
While the potential functions supported in linear AARA are already multivariate, as each addend
can depend on a different input size, the term multivariate in the setting of potential functions
refers to each addend depending on products of input sizes - and in this case, also products of
symbolic probabilities. With user-defined data types, those sizes can also measure the number
of particular constructor types. We also include additional support for symbolic probabilities by
allowing complementation (i.e., subtraction from 1). Extending the probabilistic type system laid
out here to these domains does not involve significant conceptual changes; the potential function
extensions - described in [Hoffmann et al. 2011] and [Hoffmann et al. 2017] - are orthogonal to the
new probabilistic operation.

Tab. 1 shows some analysis data given by pRaML on models described below and some examples
from literature. It displays the number of linear constraints generated by typing the program using
resource polynomials at a fixed degree for all programs of the same class, as well as how fast pRaML
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let rec goat below at above =
let _ = tick 1 in
match at with
| Lichen — match flip 0.75 with
| H — match below with

[ -0
let rec gr Alice Bob = | hd::tl — goat tl hd (at::above)
match Alice with | T — match above with
| 11 -0 | 1 -0
| ha::ta — | hd::tl — goat (at::below) hd tl
match Bob with | Grass — match flip 0.5 with
| [1 - O | H — match below with
| hb::th — | 1 -0
let _ = tick 1 in | hd::tl — goat tl hd (at::above)
match flip 0.5 with | T — match above with
| H — gr ta (ha::Bob) | 1 - 0O
| T — gr (hb::Alice) tb | hd::tl — goat (at::below) hd tl
(a) Gambler’s ruin (b) The life expectancy of a goat

Fig. 8. Implementations probabilistic programs in pRaML.

can complete type inference on consumer hardware. The literature examples include some example
probabilistic loop code and conditional sampling model [Gordon et al. 2014], the simulation of
a fair die with a fair coin using a Markov chain [Knuth and Yao 1976], a probabilistic variant of
example code demonstrating quadratic resource usage [Carbonneaux et al. 2017], and the program
miner [Ngo et al. 2018]. The final example, fill and consume, fills a list with probability values of /2
or !/s randomly according to a symbolic probability p, then iterates over the list, flipping a coin
biased by each probability, and paying cost 1 for each heads flip.

Random walks form the core of stochastic algorithms and simulations. The Internet is so large
that the tractability of measuring its contents is real concern, and it can be solved by random walks
[Bar-Yossef and Gurevich 2008]. Modeling problems from various fields also use random walks,
ranging from economics [Meese and Rogoff 1983], to biology [Codling et al. 2008], to ecology
[Visser 1997], to astrophysics [MacLeod et al. 2010], and beyond. However, many random walks are
non-trivial to analyze, which obscures properties like code efficiency from a non-expert programmer,
and obscures stochastic model properties from their users. Even knowing the bounds of complex
random walk first, the bounds can be nontrivial to verify by hand. Nonetheless, AARA can find
them quickly, giving non-experts automatic access to expert bounds.

Example 6.1 (Gambler’s Ruin). There is an old problem in probability called the Gambler’s Ruin.
Fig. 8a shows an implementation. It is set up so that Alice and Bob continually bet one dollar against
each other on the results of a coin-flip until one player runs out of money. This is essentially a
2-sided random walk. If the coin is fair, Alice starts with A dollars and Bob starts with B dollars,
then this series of bets is expected to take AB time. Our multivariate implementation finds this
bound exactly.

Example 6.2 (The Life Expectancy of a Goat). Consider modeling the following scenario: A moun-
tain goat lives high up in the Rocky Mountains, eating grasses and lichens from the rocks. Depending
on the food it find abundant, it either moves up or down the mountain. When it finds only lichens,
it moves down with probability 75% in an attempt to find better food sources. When it finds grasses,
it moves with equal probability in either direction. However, if the goat moves too far down the
mountain, it passes the treeline and gets hunted by wolves. On the other hand, if the goat tries to
go up the mountain when at the very top, it falls off a cliff. Given some distribution of grasses and
lichens on the mountain, and where the goat starts, what is the expected lifetime of the goat?
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Table 1. Experimental data of typing with pRaML.

Program description Bound #Constraints  Time (in sec.)
goat with 1,3 (B+1)(2(G + 1) - Gp) 2084 0.15
goat with £, 2 3B+3 2084 0.14
goatwith 1, 2,3 (B+1)(2(G +1.5) - Gg) 5336 0.25
goatwith 1, 2,23 (B + 1)(2(G + 2.5) - GB) 10996 1.95
trade with 3, 1 LT+ iTP+ AT 157 0.04
trade with 2, 1 1124 TP+ 3T 157 0.03
trade with %, 1 1—30T2 +TP + %T 157 0.03
trade with £, % LT?+iTP+ £T 157 0.04
probabilistic loop Ex 3 [Gordon et al. 2014] 4/3 probability 61 0.01
bayes sampling Ex 6 [Gordon et al. 2014] 3/5 probability 112 0.01
die simulation from coin [Knuth and Yao 1976] 1/6 per die face 5731 0.33
random no-op nested variant [Carbonneaux et al. 2017] M2+ M 205 0.03
miner from [Ngo et al. 2018] 15,M 31 0.01
fill and consume (% + %’)M 633 0.11

This is nontrivial to analyze by hand, but easy to code with the function goat in Fig. 8b. Then
pRaML can find a cost bound. Letting B be the distance from the goat to the treeline below, G4 be
the number of grassy areas above the goat, and G be the total number of grassy areas, the expected
lifetime is bounded above by (B + 1)(2(G + 1) — Gg). This bound is rather complex, but its generality
reveals some interesting cost dependencies. For instance, the derived bound is independent of the
actual distance to the top of the mountain. It also makes it easy to get a sense of cost behaviour for
particular cases: If the whole mountain is covered in lichen, then the expected lifespan is 2(B + 1),
in line with the goat’s expected movement of half-a-space down the mountain per iteration. On
the other hand, if the mountain is all grassy, then the lifetime more like the stopping time of the
Gambler’s Ruin experiment.

Tab. 1 lists the analysis data for many different movement probabilities for varying amounts of
plants. There we also use A to represent the distance to the top of the mountain.

Example 6.3 (Stock Buying). Stock prices may behave like a random walk. In Fig. 9c we simulate
a buyer occasionally buying some stock over time, similarly to [Ngo et al. 2018]. Analysis with
pRaML finds that the expected expenditure is ll—st + %TP + %T, where T is the time span and P is
the starting stock price. Results for other parameters for the price’s walk and buy rate, respectively,
may be found under trade in Tab. 1.

7 APPLICATIONS

In this section, we discuss two application domains of pRaML: analysis of discrete distributions
(§7.1) and estimation of average-case cost (§7.2).

let rec trade price time =
match time with

let reprice price = [ 11 -0

match flip 0.6 with let rec buy price = | it —

| H— match price with let () = match flip 1/3 with
match price with | 11— 0O | H — buy price
| [1 —I1 [ ot — [ T—-0
| _i:t >t let _ = tick 1 in in

| T — (::price buy t trade (reprice price) t

(a) (b) (0)

Fig. 9. Stock buying
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7.1 Analysis of Discrete Distributions

Although the only probabilistic fragment introduced by our programming language is probabilistic
branching, we are able to implement a broad suite of discrete probability distributions and analyze
their properties in our system. In this section, we demonstrate how our tool can be used to not only
verify that a program implements the desired distribution, but also analyze sample complexity of the
program, i.e., the expected number of flips consumed by the program to obtain a sample. Sampling
from probability distributions is a fundamental activity in many fields, e.g., Bayesian inference
on probabilistic programs [Goodman and Stuhlmiiller 2014; Wingate and Weber 2013], and the
efficiency of sampling algorithms becomes increasingly important because Monte Carlo methods for
probabilistic inference have a trend of requiring billions of random samples per second [Djuric 2019].
Our work provides an approach for understanding sample complexity of discrete distributions.

Case study: Discrete distribution generating (DDG) trees. Recent work provides a universal repre-
sentation of sampling algorithms for finite supports as discrete distribution generating (DDG) binary
trees [Saad et al. 2020]. The idea is to implement discrete distributions by only fair coin flips. Given
a DDG binary tree T, the sample algorithm starts at the root of T, then repeatedly flips a fair coin,
takes the left (resp., right) branch if the coin shows heads (resp., tails) until it reaches a leaf node
labeled with an outcome from the support of the distribution. Note the tree T may contain back
edges, i.e., the algorithm goes back to an ancestor after taking a branch of the current non-leaf node.
Back-edges are crucial for implementing non-dyadic probabilities, and they make the running time
of the sampling algorithm nontrivial because the algorithm can have non-terminating executions.

Fig. 10 presents two sample algorithms modified from an example in prior work [Saad et al. 2020].
Both programs are supposed to implement a distribution over {Red, Black}, and return Red with
probability 0.3, otherwise return Black. First, we verify that both programs correctly implement the
target distribution. We achieve this by inserting ticks such that the program has one unit of cost
when returning Red. Our tool then derives that the expected cost for both programs is bounded by
0.3 from above. Meanwhile, we insert ticks in original programs where the program returns Black
instead of Red, and our tool infers that the expected cost for both programs is at most 0.7. Because
the expectation of an indicator function for an event E equals to the probability of E, i.e.,

E(Aw.[E(w) is true]) = Z P(o) - [E(w) is true] = Z P(w) = P(E),
w w€E
we conclude that P(result is Red) < 0.3 and P(result is Black) < 0.7, thus the programs implement
the desired distribution, by the fact that probabilities sum up to one.

Then, we study the expected performance of the two sample algorithms in Figs. 10a and 10b. We
instrument the two programs with ticks to count the number of probabilistic choices made during
the execution. Our expected cost analysis successfully derives an upper bound for both programs:
2.0 for Fig. 10a, and 4.2 for Fig. 10b. By a manual analysis, we also verify that these bounds are tight.
The result suggests that Fig. 10a is better than Fig. 10b. We leave automatic tightness checking (e.g.,
by integrating a lower-bound analysis [Wang et al. 2020, 2019]) for future work.

Case study: Negative binomial distributions. Beyond distributions with fixed, finite supports, our
system is also capable of analyzing discrete distributions with infinite supports and symbolic
probabilities. Fig. 10c gives an implementation of negative binomial distributions; it returns a unit
list whose length is the number of heads in a series of independent coin flips with probability p
before |£| number of tails occurs. The consume expression is used to specify value-dependent costs,
which we explain later.

In this example, we want to study the program’s sample complexity with respect to p and €. At
first glance, the task seems impossible for our system, because while our AARA-based approach is
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let rec sample_slow () =

let _ = tick 1 in
let sample_fast () = match flip 0.5 with
let rec aux () = | H —»let _ = tick 1 in
let _ = tick 1 in match flip 0.5 with
match flip 0.5 with | H —»let _ = tick 1 in
| H —>let _ = tick 1 in sample_slow ()
match flip 0.5 with | T —»let _ = tick 1 in
| H —let _ = tick 1 in match flip 0.5 with
match flip 0.5 with | H—>
| H —let _ = tick 1 in sample_slow () let rec negative_binomial p 1 =
match flip 0.5 with | T —let _ = tick 1 in match 1 with
| H — aux () match flip 0.5 with | [1 — [1
| T — Red | H —> Red | _:1' —>
| T — Black | T — Black let _ =
| T — Black | T —»let _ = tick 1 in consume p : prob{@}{1}
| T — Red match flip 0.5 with in
in | H —»let _ = tick 1 in match flip p with
let _ = tick 1 in match flip 0.5 with | H—
match flip 0.5 with | H — Black () ::(negative_binomial p 1)
| H — aux | T — Red | T -
| T — Black | T — Black negative_binomial p 1'
(a) (b) (©)

Fig. 10. (a) and (b) are samplers that return Red with probability 0.3 or Black with probability 0.7. (c) is a
program for negative binomial distributions.

able to derive multivariate-polynomial bound, the expected number of flips for negative binomial
distributions involves fractions like #, which is not expressible in our system. Nevertheless,
we come up with a workaround that scales all the costs in program by a factor of (1 — p) to get
rid of the resource bound’s denominator. This is achieved by the consume expression. Intuitively,

consume x : 7 specifies a cost that equals to the potential of the value of x with respect to 7. Recall

that ®(p : prob{gu; qr}) < p-qu+(1—p)-qr; thus, the consume expression in the program introduces
a cost of (1 — p). Our type system succeeds in finding a linear bound |£| on the expected number of
flips. Taking the scale factor into account, we conclude that the expected sample complexity for
negative binomial distributions is at most %.

More examples. A summary of all the case studies in the analysis of discrete distributions carried
out in our system can be found in Tab. 2 . All the analyses were processed in around one second. The
fractional bounds are derived using the scaling technique mentioned above. For distributions dist
with integer supports, we also create a variant distg that specifies the value of the output sample as
the cost. For such a case, our tool essentially performs a first-moment analysis that computes the
mean value of the distributions.

7.2 Estimation of Average Case Cost

Understanding resource requirements of computer programs is important for software engineering.
Much of the research has been focused on analyzing worst-case resource usage and generating an
input that exhibits the worst-case performance, e.g. [Noller et al. 2018; Wang and Hoffmann 2019].
However, in practice, software performance can be sensitive to the distribution of the actual inputs.
For example, although quicksort has a worst-case quadratic time complexity, it usually outperforms
many other sorting algorithms (e.g., insertion sort) on randomly generated inputs. Understanding
the performance distribution induced by the real-world input distribution can then help carry out
important tasks in software development such as performance evaluation and algorithm selection.
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Table 2. Examples for sample-complexity or first-moment analysis of discrete distributions. In the bounds,
p is the value of the first probability argument, n is the length of the first list argument, and p;’s are the
probability-valued elements in the first list argument.

Function Description Inferred Bound
sample_fast : 1T — red_or_black Fig. 10a 2.00
sample_slow : T — red_or_black Fig. 10b 4.20

dice: 1 — dice A fair dice 3.67
von_neumann : P — bool Make a fair coin from a biased one ﬁ
binomial : P — L(1) — L(1) Binomial distribution n
binomialg : P — L(1) — L(1) Binomial distribution; output as cost p-n
geometric: P — L(1) Geometric distribution I%
geometricg : P — L(1) Geometric distribution; output as cost %
poisson_binomial : L(P) — L(1) Poisson binomial distribution n
poisson_binomialg : L(P) — L(1) Poisson binomial distribution; output as cost ~ X1<;j<p, pi
negative_binomial : P — L(1) — L(1) Negative binomial distribution #
negative_binomialg : P — L(1) — L(1) Negative binomial distribution; output as cost %

In this section, we illustrate how our tool can be used to characterize performance distributions of
deterministic programs by their average-case resource usage, through a combination with profiling
techniques.

Program tranformation. Profiling techniques, such as edge profiling and path profiling, have
been used for speculative optimization (especially of branch conditions) [Da Silva and Steffan
2006; Ramalingam 1996], symbolic execution [Filieri et al. 2013, 2014], and performance analy-
sis [Chen et al. 2016]. The idea is to approximate a deterministic branch condition as a probabilistic
choice, whose probability is determined by counting frequencies of the two branches executed by
a program on a collection of real-world inputs. For example, if the then-branch e; of the expres-
sion if x then e; else ey is executed 90% of the time, then we transform the conditional with a
probabilistic choice flip 0.9 {H < e; | T < e,}. Benefits of such profiling-based program trans-
formation are: (i) it does not require complicated analyses to account for the conditional probability
of branches, (ii) it provides insights how the input distribution influences the control-flow of a
program via an empirical probabilistic model, and (iii) it can accrue profiling information from
samples with small sizes but still generalize its average-case cost bounds to inputs with large sizes.

We have implemented an interpreter for the deterministic fragment of our programming lan-
guage, which executes programs with concrete inputs and collects profiling information including
frequencies of control-flow transitions. We then use the profiling information to transform branch
conditions to proper probabilistic choices. Note that we have also implemented a statistical inde-
pendence test to ensure that branch probabilities are constants, rather than dependent on structural
features (e.g., lengths of lists) of the input. Then we pass the transformed program to our type-based
expected cost analysis to obtain a symbolic bound as the average-case estimation for the cost of
the original program.

Case study: Sorting nearly-sorted lists. It is known that comparison-based sorting algorithms can-
not beat the ©(nlog n) time complexity for input lists of length n. However, if the sorting function
is intended to process nearly-sorted data—where every element may on average be misplaced by
at most some constant number k of positions from the correct sorted order—then some sorting
algorithms, e.g., insertion sort, can achieve linear time complexity. Fig. 11a presents an implementa-
tion for insertion sort that uses ticks to count the number of comparisons. Our tool derives that
the worst-case cost bound for isort({) is (lgl), which is quadratic in the length |¢| of the list £. The
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let rec insert x 1 =
match 1 with

let rec insert' x 1 =
match 1 with

| [1 — [x] | [1 — [x]
I y:iys = | yiiys —
let _ = tick 1.0 in let _ = tick 1.0 in

match (x > y) with
| true — y::(insert x ys)
| false — x::y::ys

let rec isort 1 =
match 1 with
| [1 — 01
| x::xs —
insert x (isort xs)

(a) Original

match flip 0.9 with
| H — y::(insert' x ys)
| T — x::y::ys

let rec isort' 1 =
match 1 with
| [1 — 01
| x::xs —
insert' x (isort' xs)

(b) Transformed

1:25

Fig. 11. Average-case cost estimation for insertion sort on nearly-sorted inputs

only conditional expression occurs when the insert function compares the inserted element x and
the head y of the sorted list ¢, and it recurses on the tail of € if x > y. Since an element may be
misplaced by k positions on average, intuitively, there should on average be k recursions when
inserting an element, which means that the condition x > y evaluates to true with a constant
probability %

In our experiments, our tool managed to detect from a set of nearly-sorted lists that the conditional
expression in insert can be approximated by a probabilistic choice with a constant probability.
Fig. 11b illustrates one case where the branching probability is about 0.9. Our tool derives that the
expected cost bound for isort'(€) is 10 - ||, which is linear in the length |£| of the list £. The linear
bound also reflects that the list £ should be nearly sorted, in the sense that every element in £, on
average, is misplaced by 10 positions from the correct sorted order.

Case study: Short-circuit Boolean interpretation. When implementing a compiler, one usually must
decide how to interpret Boolean expressions. Most commonly, the decision is made to short-circuit
the and and or connectives. That is, if the first term determines the whole expression - false for and
or true for or - then one skips evaluation of the second. Programmatically, this can be implemented
with conditionals as in the following code for interpret in Fig. 12a.

In the worst case, the code in Fig. 12a must iterate over every node of its input Boolean expression
tree, which is exactly the non-probabilistic bound given by our tool. Specifically, letting C be the
number of constants, B the number of binary connectives, and N the number of negations, the
bound is C + B + N. This is the same cost bound as naively evaluating every sub-expression, so it is
unclear what value short-circuiting provides. However, if the Boolean constants used are uniformly
random, one finds that the branching probability at each conditional can be approximated by a
constant: about 0.5 probability for each branch. Converting the code into interpret’, our tool now
finds a better expected cost bound of 1.5B + N. Because C is always equal to B + 1, this is a strictly
better cost bound.

Case study: Sequential insertions in a hash table. We implement a program in our language to
model the hash table function from prior work on worst-case analyisis [Noller et al. 2018; Wang
and Hoffmann 2019]. This is a complicated program where each key in the hash table is a string of
length 8 and the hash function is DJBX33A from a PHP implementation. The resource model is
defined as the number of hash collisions. In the worst case, our system derives that the number of
collisions is bounded by () where n is the number of insertions. The worst-case quadratic bound
makes sense because one may construct a list of different strings with the same hash key. However,
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let rec interpret exp =
let _ = tick 1 in
match exp with
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let rec interpret' exp =
let _ = tick 1 in
match exp with
| True — true
| False — false

| True — true | Or (a,b) —
| False — false let _ = interpret' a in
| Or (a,b) — match flip 0.5 with
match interpret a with | H —> true
| true — true | T — interpret' b
| false — interpret b | And (a,b) —
| And (a,b) — let _ = interpet' a in

match interpret a with
| true — interpret b
| false — false
| Neg a — not (interpret a)

(a) Original

match flip 0.5 with
| H — interpret' b
| T — false
| Neg a — not (interpret' a)

(b) Transformed

Fig. 12. Average-case cost estimation for short-circuiting Boolean interpretation across uniform inputs

if the hash table is used in a setting where security vulnerabilities like Denial-of-Service are not
crucial and the inputs are sufficiently random, then the quadratic bound is not meaningful because
it is usually assumed that an insertion into a hash table takes constant time.

In our experiments, from a set of randomly generated strings, our tool found out that both the
probability that two input strings have the same hash key—and the probability that two input
strings with the same hash key are different—are small constants. Our tool then derives 0.11 - n as
an expected cost bound for the transformed hash-table program with n insertions, which indicates
that the number of hash collisions should be linear in the number of insertions in practice.

8 RELATED WORK

We discuss the most-closely related work on expected cost analysis of probabilistic programs in
§1. Other related work includes cost analysis of deterministic programs and other (type-based)
analyses of probabilistic programs.

Cost analysis for deterministic programs. Automatic and semiautomatic resource bound analysis
for deterministic programs has been extensively studied. Our work is based on AARA, which was
initially introduced [Hofmann and Jost 2003] to automatically derive linear heap-space bounds for
first-order functional programs. AARA has been extended to polynomial bounds [Hoffmann et al.
2011; Hoffmann and Hofmann 2010b; Hofmann and Moser 2015], exponential bounds [Kahn and
Hoffmann 2020], logarithmic bounds [Hofmann and Moser 2018], higher-order functions [Hoff-
mann et al. 2017; Jost et al. 2010], user-defined datatypes [Hoffmann et al. 2017; Jost et al. 2009], and
separation logic [Atkey 2010]. The technique has also been generalized to imperative arithmetic
programs [Carbonneaux et al. 2017, 2015], as well as integrated into formal proof assistants [Char-
guéraud and Pottier 2015; Nipkow 2015].

Beyond AARA, there have been many other approaches to formal resource analysis of deter-
ministic programs. Some approaches, similarly to AARA, do so via a type system, including sized
types [Vasconcelos 2008] refinement types [Cigek et al. 2017, 2015; Knoth et al. 2019; Radicek et al.
2018; Wang et al. 2017; Xi 2002], linear dependent types [Dal Lago and Gaboardi 2011; Dal Lago
and Petit 2013], and annotated type systems [Crary and Weirich 2000; Danielsson 2008]. Such
a type-based approach usually involves constraint solving, some notion of linearity, and high
composability, like AARA. However, there is often a tradeoff in programmer burden, like requiring
more user annotation for better results. There are also non-typed-based approaches, recurrence
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solving [Albert et al. 2009, 2015; Danner et al. 2015; Flores-Montoya and Héhnle 2014; Kavvos et al.
2020; Kincaid et al. 2017], abstract interpretation [Blanc et al. 2010; Gulwani 2009; Sinn et al. 2014;
Zuleger et al. 2011], term-rewriting techniques [Avanzini and Moser 2013; Brockschmidt et al. 2014;
Frohn et al. 2016; Noschinski et al. 2013], defunctionalization [Avanzini et al. 2015], and symbolic
execution [Burnim et al. 2009; Noller et al. 2018]. These approaches vary more wildly from the
system used in this work.

Despite the number of such approaches to resource analysis, exceedingly few have been adapted
to the probabilistic domain, and even less automated. The work in this article represents the first
such automated system for probabilistic functional programs. Imperative probabilistic programs
have already enjoyed such automated resource analysis in prior work, first established through
imperative AARA techniques [Ngo et al. 2018].

Type-base analysis for probabilistic programs. Other properties of probabilistic programs, aside
from expected cost, can be analyzed by type-based approaches. Almost-sure termination of func-
tional probabilistic programs can be reasoned about through the dependent type systems of of
Dal Lago et al. [Dal Lago and Ghyselen 2018; Dal Lago and Grellois 2019]. Bhat et al. [Bhat
et al. 2012, 2013] develop a type system to check absolute continuity of probabilistic first-order
let-programs and derive corresponding density functions for the distributions specified by the
programs. Fuzz [Reed and Pierce 2010] uses linear types augmented with a probability monad to
reason about differential privacy of randomized computation, and DFuzz [Gaboardi et al. 2013] later
generalizes it with indexed types and lightweight dependent types to certify differential privacy for
a broader class of benchmarks. Recently, Lew et al. [Lew et al. 2020] have developed a type system
for programmable probabilistic inference with trace types, where well-typed inference programs
soundly derive posterior distributions by construction. In this paper, we focus on expected cost
bound analysis for probabilistic programs.

9 CONCLUSION

By combining a carefully developed probabilistic semantics with the AARA type system, we have
shown that probabilistic programs in a functional language can be effectively analyzed in an
automated manner. Our implementation pRaML infers worst-case expected bounds on resource
usage for a variety of probabilistic models and algorithms, and parameterizes the bounds by both
input sizes and symbolic probabilities. We make use of these parameterized bounds to analyze new
and interesting application domains, like sample-complexity and a generalized average-case analysis.
In the future, we hope to overcome the semantic soundness obstacles that bar non-monotone
resource usage, and in doing so provide a fully-conservative extension of non-probabilistic AARA.
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A PROOFS
A.1 Thm.53
Proor. It suffices to prove for every n € N, if V + e =" 1, then
OV :T)+q2 D (v, qo) - (@(vo : A)+qo).
(v0,q0)
Proceed by induction on n with inversion on V + e =" y then inner induction onT; g I e : A. We
show the interesting cases below.
e If n =0, then p = 0. Straightforward.
e Suppose the lemma holds for some n € N. Now we consider the case for n + 1. Below are the
proofs for L:LET, L:FrL1p, L:PROB, and L:FrIpS.
— (L:LET) By assumption, we have I';q + e; : pot(r;p), I, x : T5p F e : A,and T = I3, I
for some I, I5. By inversion, we have V + e; =" py, for all (vy, q1) € supp(py), V, x —
U1k ez S g and B = Yo g0 Ziosage) 1101, G1) * fwr.q0) (V25 G2) - 6(v2, g1 + q2). By
the induction hypothesis, we have
OV:T)+q> > m(on,q) (@1 :pot(msp)) +q1) = D m(v1,q1) - (P01 : 1)+ q1 +p),
(v1,q1) (v1,q1)
and also for all (vy, q1) € supp(p),
OV, x> v :Dyx:1)+p > Z ﬂ(vl,ql)(vz’ q2) - (®(vg : A) + q2).
(v2,92)
This results in the following chain of inequalities.
OV :T)+q=0(V :Ty) +q+0(V:Ty)

> D m(1q)- (@1 :0)+q1+p) + BV i I)
(v1,91)

> 3 (g (@@ 1) +qu+p+ OV T)
(v1,q1)

= Z (01, q1) (@ +p+O(V,x > v1 : D, x: 7))
(v1,q1)

> 3 mELg) @+ D Horng)(©292) - (D021 A) +g2))

(v1,q1) (v2,92)
> 30 m@ng) () Hepqn(©2g2) - (@02 A) + g2 + q1))
(v1,q1) (v2,92)

= Z Z H1(v1, q1) - oy, q1)(02:G2) - (P(02 : A) + g2 + q1).
(v1,q1) (v2,92)

Applying the following identities on the final term, we complete the case.

D7 w0, q0) - (@(o : A) + qo)
(v0.90)

DU DT 1) Hoyq) (@2 92) - 8(v2, 41 + g2))(v0, 90) - (@(o 5 A) + )
(v0,90) (v1,q1) (v2,q2)

DD DT m©1q0) - foy.qn(©22) <[00 = v2 Ago = g1 + g2]) - (@(vg : A) + q)
(v0,90) (v1,91) (v2,92)

Z H1(01,q1) * Boy,q1) (02, 92) - (P(v2 + A) + q1 + g2).
(v1,q1) (v2,92)
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— (L:F11p) By assumption, we have I' Y(pxTI', (1-p)XI2), g = p-q1+(1—p)-q2, I1;¢1 + €1 : A and
I;qz + e; : A By inversion, we have V + e; =" puy, V ey =" pp,and g = p-py+(1—p) - pia.
By the induction hypothesis, we have

OV i) +q12 ), pi(veqo) (Peo: A)+qo) ®V:il)+q2 . pa(vo. o) (®vo : A)+ qo).
(v0,90) (v0,90)
Thus we conclude this case by
OV :T)+q=d(V:pxT)+(V:(1-p)x)+p-q+(1-p)-qz
=p-OV:T1)+(1—-p)-dV:L)+p-q1+(1—-p)-q2
2p-( ) 100, q0) - (o : A) +g0) + (1=p)-( D p2(v0,q0) - (P(vo : A) + o))

(v0.90) (v0.90)
= > (- m(eo.q0) + (1= p) - p2(20,0)) - (o : A) + o)
(v0.90)
= > (v, q0) - (@(vo : A) + qo).
(v0.q0)
- (L:ProB) By assumption, we know thatT' = -, ¢ = p-qu + (1 —p) - g7, and A =

pot(prob{qg; qr};0) for some qy,qr € Qs¢. By inversion, we have p = §(p,0). Thus
we conclude this case by

®(V:T)+q=p-qu+(1-p)-qr = Aprob(p) : prob{gr; gr}) + 0= D" (v, o) - (@(vo : A) + o).
(v0,q0)

— (L:FL1pS) By assumption, we have I';q + qg + €1 : Aand T; ¢ + g7 + e; : A. By inversion, we
have V(x) = prob(p), V+ e =" 1, VFe; =" pp,and p = p - py + (1 — p) - p2 for some
p € [0, 1]. By the induction hypothesis, we have

OV :I)+q+qyg = Z 11(vo,qo) - (P(vo : A) +q0), YV :I)+q+qr = Z 12(v0, qo) - (P(vo : A) + qo)-
(v0,90) (v0,q0)
Thus we conclude this case by
OV :T,x : prob{qm;qr}) + q

=o(V:D)+p-qu+(1-p)-qr+q
=@p-oV:D)+0-p)-&V:T)+@-qu+0-p)-qr)+(P-q+(1-p)-q)
=p-(@V:I)+q+qu)+1-p) (®V:T)+q+qr)
2p-( Y m(00.q0) - (o A) +g0) +(1=p)-( D p2(v0,q0) - (P(vo : A) + o))

(v0,90) (v0,90)
= > (- i@ q0) + (1= p) - (00, 90)) - (Do : A) + o)
(v0,90)
= > p(vo,qo) - (@(vy : A) +qo).
(v0,q0)
O
A2 Thm.5.7

Proor. By Lemmas 5.5 and 5.6 it suffices to prove for every n € N, if V + e =" p, then

OV :T)+q2 ) po.qo) qo+ Y, (o qo) (Boy : A) +qo).
90 (v0,90)
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We can still proceed by induction on n with inversion on V + e =" p then inner induction on
T;q+ e : A We illustrate cases L:LET, L:FLip, L:PrOB, and L:FLIPS below.

o (L:LET) By assumption, we have I'; q F e; : pot(r;p), I, x : T5p F ez : A and I’ = I3, I for
some I, I5. By inversion, we have V + e; =" py, for all (vy, q1) € supp(yy) such that vy # o,
V,x > vk ey =" Hwy,q1)» and i = qu p1(0,q1) - 6(o, q1) + Z(z}l,ql):vlio Z(Uz,qz) p1(v1, qq) -
H(vr,q1)(V2, G2) - 6(v2, g1 + q2). By the induction hypothesis, we have

OV :T)+q2 Y mle,q) g+, jpi(vi,q1) - (1 : pot(r;p)) + 1)
Q1 (v1,q1):01#0

=2 mleg) -ai+ Y, mng)- (@@ :7)+q1+p),
q1

(v1,q1)v1#0

and also for all (vy, q1) € supp(y1) such that vy # o,

BV, x o 01 T x D) 4D 2 D Hong(0:2) G2+ D, Hog)(©2:02) - (@02 : A)+q2).
q2 (v2,q2):v2#0

Thus we find the following chain of inequalities.

OV :T)+q
=Q(V :Ty) +q+d(V: Ty)

> 3 (e, q1) - qi+ (o, q1) - (@01 7)+ g+ p)+ OV T)
q1 (v1,q1)v1#0

> Zpl(o, q1) - q1+ Zyl(vl, q1) - (@(v1: )+ qr+p+ DV : I2)
a1

(v1,q1)v1#0

= Do, q) g+ ) (v qn) (g +p+ @V, x = o : Ty, x5 7))
q1

(v1,q1)v1#0

> lel(ov q1)-q1+ Zul(vl, q1) - (q1 + Z Hor.qn)(© q2) - g2 + Zu(vl,ql)(vl’ q2) - (¥(v2 : A) + q2))
1 (v1,q1)v1#0 92 (v2,q2):vg#0

= > e, q) g+ ) @1, q1) - O Hiwrgn(e42) - (@1 + @)+ ) fion.qn) (2, 42) - (B2 A) + g1 + q2))
q1

(v1,q1)v1#0 CE (v2,q2)vp#0

= Z (o, q1) - q1 + Z H1(v1, q1) * Poy,q)(0 q2) - (q1 + q2) + Z 11, q1) * Boy,q1) (V25 q2) - (P(v2 1 A) + q1 + q2)-
q1

(v1,q1):v1#0 (v1,q1)v1#0
q2 (vg,q2):vp#0
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The final line satisfies the following identities, completing the case.

D (e, qo) - qo+ ) (w0, qo) - (@0 5 A) + qo)
q0

(v9,q0):vp#0

= D D mea) - 8o a) + D m(©1, 1) - oy g (@2 @2) - 502, g1 +02) | (02 90) - @0
9 | @1 (v1,q1):v1#0
(v2.92)

| D e, q1) 8o, q1) + ). (o1, q1) - oy (@2 @2) - 802, g1 + @) | (20, qo) - (D(wo 5 A) + go)
(v, qo)vp#o| q1 (v1,q1):01#0
(v2,92)

= Z Zul(o, q1) - (o, q1)+Zu1(vl,q1)-p(vl,q1>(°,qz)~5(o, q1 + q2) [(°, qo) - qo
q0 | 91 (v1,q1):v1#0
q2

+ Z Zﬂl(vls q1) * H(vy,q1)(V2, @2) - 8(v2, q1 + q2) | (0, qo) - (P(vo : A) + qo)

(v0,q0):vp#0 | (v1,q1):v1#0
(vz2,q2)v#0

= Zyl(o, q) - q+ Z“l(vl’ q1) - H(oy,q)(0 q2) - (g1 + q2) + Z#l(vl, q1) * H(vy,q) (02, G2) - (P(v2 1 A) + q1 + qa).

LAl (v1,q1)v1#0 (v1,q1)v1#0
q2 (vg,q2):vp#0

e (L:Fr1p) By assumption, we have I Y(p XT3, (1-p)XI3),q = p-q1+(1-p)-q2, T1;q1 F €1 : A, and

I2;q2 ez : A By inversion, we have V - e; =" 1, Vi ey =" pp,andp=p-p1 +(1—p) - pa.
By the induction hypothesis, we have

OV :T1)+q1 2 Zul(o, qo0) - qo + Z 11(v0, qo) - (P(vo : A) + qo),

90 (v0,q0):vo#0
OV i) +q2 2 ) mae,q)-qo+ ), p2(v,qo) (®(wo : A) +qo).
qo (v0,qo):vo#0

Thus we conclude this case by

OV :T)+q=0V :pxT)+dV:(1-p)xT)+p-q+(1—p)-qo
=p-®V:T)+(1-p)-&V:I)+p-q1 +(1-p)-q2
=p- QO mle,q)-qo+ Y. pi(vo,qo) - (@(vo s A) +go))
90

(v0,90):v0#0

+(1=p)- O pa(0,q0) - qo+ D, pa(vo,q0) - (B(vo : A) + o))
90

(v9,q0):v9#0
= 290+ (P (e, q0) + (1= p) - pra(0, Qo))
90
> (@0 A) +qo)- (P (w0, q0) + (1 - p) - pra(v0, q0)
(v0,90):v0#0

= Z (o, qo) - qo + Z u(vo, qo) - ((vg : A) + qo).

9o (v9,q0):v9#0

o (L:ProB) By assumption, we know thatT' = -, ¢ = p-qu + (1 —p) - g7, and A =
pot(prob{qy; gr};0) for some qg, qr € Qx¢. By inversion, we have p = &(p, 0). Thus we
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conclude this case by

OV:D)+q=p-qu+(1-p)-qr
= ®(prob(p) : prob{gr;qr) + 0= > p(v0,q0) - (®(vo : A) +qo)
(v0,q0):v0#0

= >0 (o, qo) - (@(o : A)+ o) + Y (o q0) - Go-

(v0,qo):vo#o 9
e (L:FrL1pS) By assumption, we have I'; g + g + €1 : Aand I'; g + g7 F e; : A. By inversion, we

have V(x) = prob(p), Ve =" u;, Ve =" u,andpy =p-p + (1 —p) -y for some
p € [0, 1]. By the induction hypothesis, we have

OV :T)+q+qu 2 Y me,q0) qo+ », m(©o,qo)- (@(vo : A) + qo),

9o (00,90)
OV :T)+q+qr = ) pa(0.q0) - qo+ . 2(v0,q0) - (®(wo : A) +qo).
9o (v0.90)

Thus we conclude this case by

OV :T,x : prob{qm;qr}) + q
=®(V:I)+p-qu+(1-p)-qr+q
=@-oV:D)+Q-p)-&(V:T)+@p-qu+(1=p)-qr)+@P-q+(1~-p)-q)
=p-(®(V:T)+q+qu)+1-p)-(&V:I)+q+qr)
ZP'(Z #1(0,qo) - qo + Z #1(v0, q0) - (P(vo : A) + qo))
o (v9,q0):v0#0

+(1=p)- (O peeiq0) - qo+ D, (0, q0) - (Do : A)+ qo))

90 (v0,qo):vp#0
= > (p- m(o,q0) + (1= p) - (0, 90)) - o
490
+ > mo.qo) + (1= p) - oo, q0)) - (@(wo : A) + o)
(v9,qo):vp#0

= D ue.q0)-qo+ ). p(ve,g0) - (@(vo : A) + o).

9o (v0,q0):vp#0

A3 Lem.54
Proor. Let’s consider the w-chain completeness. Let v(v, q) < limyoe pn(v,q) forall v # o

and q. Let P “ 2 (v,q)w#0 V(V, q). We want to construct v° to be the “limit” of {Aq.1x(0, @)}nen.

def

Define f,7(q) = pn({o} X [0, q]) for all n and q. Then for each n € N, f,; is monotone and right-w-
continuous and for all g € Q5 U {oo}, {f,7(¢)}nen is non-increasing. Let f° be the pointwise limit
of {f,; }nen. Because both Q5 U {co} and [0, 1] are w-complete partially ordered sets, the right-

w-continuous functions between them also form an w-complete partially ordered set. Therefore,
def

f° is also right-w-continuous, and we can define v°(q) = f°(q) — limg—4- f°(q’). The final step
is to prove that f°(co) = 1 — P. For each n € N, we have f;7(0) = 1= X, ¢).020 #a(0, q). Thus
Fo(00) = limyes £5(00) = limyeo(1 = N graro in0.0) = 1= imyos S groro fn(.q) =
1= X (0, q)vo iMpseo fin(v, ) = 1 — P by the Monotone Convergence Theorem. O
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A4 Lem.5.6
def

Proor. Let ,u = |_|neN Un and define f,’(q) = pn((Val U {o}) X [0, q]). Similarly to the proof
of w-chain completeness, f,; is monotone and right-w-continuous for each n € N and for all
q € QxoU{0o}, {f7(q) }nen is non-increasing. Moreover, f,’(c0) = 1foralln € N. Now we extend the
the domain of f, from Q5o U{oo} to RygU{oo} as g, (r) = limg_,+ f,;(q). By the right-o-continuity,
we know that g;,(q) = f;;(q) forall g € QxpU{co}. Therefore, 3, o) n(v, q)-q = /(gZ(OO)—gfl(r))dr.
Let g° be the pointwise limit of {g; }nen, so ¢° is also right-w-continuous. Thus

hp) =) ue.q)-q+ Y, u©,q) - (@0:A) +q)
q

(v,q):v#o0

=Zu(v,q)~q+ Z o, q) - (v : A)

(v.q) (v,q):v#0
- [ -genirs Y, weg o
(v,q):v#0
- [a-genirs Y, ueg s
(v,q):v#0
=/(1—n1£1(1>og;(r))dr+ Z lim pin(v.q) - ®(0: A)
(v,q):v#0

=/n11_1330(1-g;(r))dr+ Z lim pin(v.q) - ®(0: A)

(v,q):v#0
= lim_ /(1 ~ ga(r)dr + lim_ DT (v, 0 A).
(v,g)0%o0

Since h(/ln) - /(gn(oo) gn("))d’""‘Z(u q):v#o ﬂn(v Q) CD(U A) - /(1 gn(r))dr+z(v q):v#o lln(v q)
®(v : A) and h(u,) < M for all n € N, we conclude that h(y) < sup,, ¢ h(pn) < M.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.



	Abstract
	1 Introduction
	2 Topic Overview
	3 Language and Semantics
	4 Type System
	5 Soundness
	6 Implementation and Examples
	7 Applications
	7.1 Analysis of Discrete Distributions
	7.2 Estimation of Average Case Cost

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 the:soundness
	A.2 the:soundness:improved
	A.3 lem:partialorder
	A.4 lemma:dist bound


