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This article presents a type-based analysis for deriving upper bounds on the expected execution cost of

probabilistic programs. The analysis is naturally compositional, parametric in the cost model, and supports

higher-order functions and inductive data types. The derived bounds are multivariate polynomials that are

functions of data structures. Bound inference is enabled by local type rules that reduce type inference to

linear constraint solving. The type system is based on the potential method of amortized analysis and extends

automatic amortized resource analysis (AARA) for deterministic programs. A main innovation is that bounds

can contain symbolic probabilities, which may appear in data structures and function arguments. Another

contribution is a novel soundness proof that establishes the correctness of the derived bounds with respect

to a distribution-based operational cost semantics that also includes nontrivial diverging behavior. For cost

models like time, derived bounds imply termination with probability one. To highlight the novel ideas, the

presentation focuses on linear potential and a core language. However, the analysis is implemented as an

extension of Resource Aware ML and supports polynomial bounds and user defined data structures. The

effectiveness of the technique is evaluated by analyzing the sample complexity of discrete distributions and

with a novel average-case estimation for deterministic programs that combines expected cost analysis with

statistical methods.

1 INTRODUCTION
Probabilistic programming [Kozen 1981; McIver and Morgan 2005] is an effective tool for customiz-

ing probabilistic inference [Carpenter et al. 2017; Goodman and Stuhlmüller 2014; Mansinghka

et al. 2018] as well as for modeling and analyzing randomized algorithms [Tassarotti and Harper

2019], cryptographic protocols [Barthe et al. 2009], and privacy mechanisms [Barthe et al. 2012].

In this paper, we study probabilistic programs as models of the execution cost (or resource use)

of programs. Execution cost can be defined by a cost semantics or a programmer-defined metric.

For such a cost model, a probabilistic program defines a distribution of cost that depends on the

distribution of the inputs as well as the probabilistic choices that are made in the code.

The problem of statically analyzing the cost distribution of probabilistic programs has attracted

growing attention in recent years. Kaminski et al. [Kaminski et al. 2016; Olmedo et al. 2016] have

built on the work of Kozen [Kozen 1981], studying weakest-precondition calculi for deriving upper

bounds on the expected worst-case cost of imperative programs, as well as reasoning about lower

bounds [Hark et al. 2020]. It has been shown that this calculus can be specialized to automatically

infer constant bounds on the sampling cost of non-recursive Bayesian networks [Batz et al. 2018]

and polynomial bounds on the worst-case expected cost of arithmetic programs [Chatterjee et al.

2016a,b; Ngo et al. 2018]. The key innovation that enables the inference of symbolic bounds is a

template-based approach that reduces bound inference to efficient linear-program (LP) solving,

a reduction which has been previously applied non-probabilistic programs [Carbonneaux et al.
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2017, 2015]. This technique has been extended to best-case bounds and non-monotone cost [Wang

et al. 2019] as well as to incorporate higher-moment reasoning for deriving tail bounds using

linear [Wang et al. 2020] and non-linear [Kura et al. 2019] constraint solving.

The only existing technique for analyzing the expected cost of probabilistic (higher-order)

functional programs, is the recent work of Avanzini et al. [Avanzini et al. 2019]. It applies an affine

refinement type system, called ℓRPCF, to derive bounds on the expected worst-case cost for an affine

version of PCF [Plotkin 1977]. ℓRPCF can be seen as a probabilistic version of dℓPCF [Dal Lago and
Gaboardi 2011]. While the refinement types of ℓRPCF are expressive and flexible, a disadvantage is

that the complexity of the corresponding refinement constraints hampers type inference. It seems

unclear if type checking ℓRPCF is decidable.
This article presents the first automatic analysis of worst-case bounds on the expected cost of

probabilistic functional programs. It is based on automatic amortized resource analysis (AARA) [Hoff-
mann et al. 2011; Hofmann and Jost 2003], a type system for inferring worst-case bounds. The

expressivity of AARA’s type-based approach for probabilistic programs goes beyond existing

techniques for imperative integer programs in the following ways:

(1) The analysis infers expected cost bounds for higher-order programs.

(2) Bounds can be functions of the sizes of values of (potentially nested) inductive types

(3) Bounds can be functions of symbolic probabilities.

In addition, AARA for probabilistic programs preserves many advantageous features of classical

AARA for deterministic programs, which include

- efficient type checking (linear in the size of the type derivation),

- reduction of type inference for polynomial bounds to linear programming,
- use of the potential method to amortize operations with varying expected cost, and

- natural compositionality, as types summarize the cost behavior of functions.

Nonetheless, while AARA for deterministic programs naturally derives bounds on the high-water

mark of non-monotone resources that can become available during evaluation (like memory), this

is not the case for AARA for probabilistic programs. Reasoning about high-watermark resource

usage of probabilistic programs is in fact an open problem even for manual reasoning systems for

first-order languages. This problem is out of the scope of this article and we limit the development to

monotone resources like time. The technical difficulties with non-monotone resources are discussed

in more detail in §3.

To focus on the novel ideas, we present the analysis for a simple probabilistic functional language

with probabilistic branching and lists (§3) with linear potential functions (§4). However, the results

carry over to multivariate polynomial potential functions and user-defined inductive data structures.

We implemented the analysis as an extension of Resource Aware ML (RaML) [Hoffmann et al. 2017]

that we call pRaML (§6).

The main technical innovations are the introduction of a type rule for probabilistic branching,

and a new type for symbolic probabilities (§2 and §4). While these new features are fairly intuitive,

proving their soundness with respect to a cost semantics is not. The existing proof method for deter-

ministic AARA does not directly generalize to the probabilistic setting because of the complexities

introduced by a probabilistic cost semantics. To address the challenges of the probabilistic setting,

we present a novel soundness proof with respect to a probabilistic operational cost semantics based

on Borgström et al.’s trace-based and step-indexed-distribution-based semantics [Borgström et al.

2016] (§5). The details are discussed in §3.

We evaluate the effectiveness of pRaML by analyzing textbook examples (§6) and by exploring

novel problem domains (§7). The first domain (§7.1) is the implementation and analysis of discrete

probability distributions. Specifically, we use pRaML to analyze the sample complexity of the
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distributions, i.e., on average, how many steps a program needs to produce a sample from the

target distribution. Low sample complexity has recently become an important criterion for efficient

sampler implementations, as many probabilistic inference methods require billions of random

samples [Djuric 2019]. We also verify some more complex fractional bounds in pRaML using

a scaled model. The second domain (§7.2) is the estimation of average-case cost of functional

programs on a specific input distribution as a three step process. First, we gather statistics on the

branching behavior of conditional branches by evaluating the program on small inputs that are

representative for the input distribution. Second, the conditionals are replaced with probabilistic

branches that mirror the observed branching behavior on the small inputs. Third, the resulting

program is analyzed with pRaML to determine a symbolic bound on the expected cost of the

resulting probabilistic program for all input sizes.

In summary, we make the following contributions:

(1) Design of a novel type-based AARA for probabilistic programs

(2) Type soundness proof with respect to a probabilistic operational cost semantics

(3) Implementation as an extension of RaML

(4) Application of RaML to automatically analyze sample complexity

(5) Automatic average-case analysis that combines the use of RaML with empirical statistics

2 TOPIC OVERVIEW
AARA. The type system of automatic amortized resource analysis (AARA) is a pre-existing

framework for inferring cost bounds for deterministic functional programs [Hoffmann et al. 2017;

Hofmann and Jost 2003; Jost et al. 2010]. It imbues its types with potential energy so as to perform the

physicist’s method (or potential method) of amortized analysis [Tarjan 1985]. When performing type

inference, the system generates linear constraints on this potential that, when solved, provide the

coefficients of polynomials or other functions. These functions express concrete (non-asymptotic)

bounds on worst- or best-case [Ngo et al. 2017] execution costs, parameterized by input size.

In more detail, the potential method works as follows. We say that Φ : State → Q≥0 is a valid

potential function if, for all states S ∈ State and operations o : S → S , the following holds.

Φ(S) ≥ 0 and Φ(S) ≥ cost(S,o(S)) + Φ(o(S)).
The second inequality states that the potential of the current state is sufficient to pay for the cost

of the transition from S to o(S) and potential of the next state. It then follows that the potential of

the initial state establishes an upper bound on the worst-case cost of a sequence of operations.
The AARA type system is designed to automatically assign such potential functions to functional

programs, where we view evaluation steps as operations on machine states of an abstract machine.

Automation is enabled by fixing the format potential functions to linear combinations of base

functions, and then incorporating them into the types of values. Consider for example the function

exists from the OCaml List module in Fig. 9a. We model its cost behaviour using explicit tick(q)
expressions that consume q ≥ 0 ∈ Q when evaluated. The function exists pred lst has a cost of 1 for
in every recursive call, and therefore the worst-case cost is equal to the length of lst in addition to

the cost of the calls to the function pred.
To automatically derive this bound in linear AARA we assign the following type template where

q0,q1,q,p, r and r
′
are yet unknown non-negative coefficients.

exists : ⟨⟨τ , r ⟩ → ⟨bool, r ′⟩,q0⟩ → ⟨Lp (τ ),q1⟩ → ⟨bool,q⟩
A valid instantiation of the potential annotation would for instance be the following type.

exists : ⟨⟨τ , 0⟩ → ⟨bool, 0⟩, 0⟩ → ⟨L1(τ ), 0⟩ → ⟨bool, 0⟩
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let rec exists pred lst =
match lst with
| [] → false
| hd::tl →

let _ = tick 1 in
if pred hd
then true
else exists pred tl

(a)

let rec bernoulli lst =
match lst with
| [] → false
| hd::tl →

let _ = tick 1 in
match flip 0.5 with
| H → true
| T → bernoulli tl

(b)

let rec rdwalk lst =
match lst with
| [] → ()
| p::ps →

let _ = tick 1 in
match flip p with
| H → rdwalk (0.2::0.4::ps)
| T → rdwalk ps

(c)

Fig. 1. Implementations of probabilistic programs in pRaML.

If we ignore the potential annotations in τ and the cost of evaluating the function pred, then
this type expresses that the cost of evaluating exists pred lst is 1 · |lst|, as marked by requiring a list

argument with 1 unit of potential per element. Another valid typing is

exists : ⟨⟨τ , 2⟩ → ⟨bool, 0⟩, 0⟩ → ⟨L3(τ ), 0⟩ → ⟨bool, 0⟩ .
It now expresses that the cost of evaluating exists pred lst is 3 · |lst| if the cost of evaluating pred is
raised to 2. The pred function here is typed to take 2 units of potential to run, but is balanced by

each element of the list argument being paired with 3 units of potential, 2 more than previously.

In general, type inference constrains this type’s annotation variables with p ≥ r + 1 and q1 ≥ q,
and leaves the other annotations unconstrained. This aids in the compositionality of the approach,

as the specific constants chosen can be adapted to the arguments, including arguments that are

themselves functions like pred here.
To exemplify such compositionality, consider some function f that merely iterates over a list,

consumes 1 resource every iteration, and then returns the list. It can be typed ⟨Lp (τ ), 0⟩ → ⟨Lq(τ ), 0⟩
where p ≥ q + 1. If we chain its application to some list lst as f (f lst), then we might instantiate

the type of the inner application with p = 2,q = 1, and the outer with p = 1,q = 0, composing the

costs naturally. In this case, we would also type lst as L2(τ ).
Of course, AARA cannot do the impossible of successfully analyzing all programs. AARA uses

structural reasoning methods that cannot pick up on semantical properties that the program may

depend on, like Peano arithmetic. Further, not all resource usage can be accurately expressed in a

given class of resource functions. For instance, polynomials will over-approximate logarithms, and

simply cannot express exponentials. The resource functions we present in this paper are linear, but

we make use of polynomial resource functions in our implementation.

Probabilistic programming. In this paper, we extend AARA to deriving bounds on the expected

cost of probabilistic programs. In contrast to a deterministic program, a probabilistic program

may not always evaluate to the same value (if any), but rather to a distribution over values and

divergence. Similarly, the evaluation cost of a probabilistic program is given by a distribution.

Consider for example the function bernoulli in Fig. 1b. It is similar to the function exists, but the
conditional is replaced with the probabilistic construct match flip 0.5. Intuitively, this construct
means that we flip a coin and evaluate the heads or tails branch based on the outcome. In probabilistic

programming, we assume that such flips are truly random (as opposed to an implementation that

may rely on a pseudorandom number generator). As a result, function bernoulli describes a Bernoulli
process across the elements of an input list. It terminates with probability 1 and has the same linear

worst-case cost as exists, namely 1 · |lst|. However, the expected cost of bernoulli is only 1.

For an example with a more interesting expected cost, consider the function rdwalk in Fig. 1c.

Its argument is a list of probabilities that are used, one after another, to determine the odds in

a probabilistic branch that either pops the head off the list (in the tails case) or adds two new
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probabilities to the list (in the heads case). The random walk consumes 1 tick in each iteration and

terminates if the argument list is empty. One can show that the function rdwalk terminates with

probability 1 and the expected cost is a function of the argument [p1, . . . ,pn] as

n +
∑

1≤i≤n

5pi .

This is an example of a program with non-terminating execution that may nonetheless have

expected costs that can be bounded. If only finite cost is accrued on non-terminating execution,

nontermination may even occur with positive probability and still yield a finite bound. Conversely,

programs that terminatewith probability 1may still have unbounded expected cost, e.g., a symmetric

random walk over natural numbers that stops at 0 [McIver and Morgan 2005].

AARA for Expected Cost. Now reconsider the potential method in the presence of probabilistic

operations, that is, the cost and the next state of an operation are given by distributions. Let o(S)
denote the probability distribution over possible next states induced by o operating on S . One can
derive bounds on the worst-case expected cost by requiring that the following inequality for the

potential function holds over all states S and operations o. We use the notation ES ′∼o(S ) (defined in

§3) to weight expected cost over states S ′ by the probability given by o(S)(S ′).

Φ(S) ≥ ES ′∼o(S )(cost(S, S ′) + Φ(S ′)) = ES ′∼o(S )(cost(S, S ′)) + ES ′∼o(S )(Φ(S ′)),
The intuitive meaning of the inequality is that the potential Φ(S) ≥ 0 is sufficient to pay for the

expected cost of the operation o from the state S , and the expected potential of the next state S ′

with respect to the probability distribution o(S).
Further, if for some operation o′ we have Φ(S ′) ≥ ES ′′∼o′(S ′)(cost(S ′, S ′′)) + ES ′′∼o′(S ′)(Φ(S ′′)) for

each state S ′ the could succeed S under o, then we can compose the reasoning for o and o′ as follows.
Φ(S) ≥ ES ′∼o(S )(cost(S, S ′)) + ES ′∼o(S )(Φ(S ′))

≥ ES ′∼o(S )(cost(S, S ′)) + ES ′∼o(S )
[
ES ′′∼o′(S ′)(cost(S ′, S ′′)) + ES ′′∼o′(S ′)(Φ(S ′′))

]
= ES ′∼o(S ),S ′′∼o′(S ′)(cost(S, S ′) + cost(S ′, S ′′)) + ES ′∼o(S ),S ′′∼o′(S ′)(Φ(S ′′)).

Thus, the potential Φ(S) is sufficient to cover the expected cost of operations o and o′, as well as the
expected potential of the final state. This can be sequenced indefinitely to cover all operations of

an entire program. A valid potential assignment for the initial state of the program then provides

an upper bound on the expected total cost of running the program.

In §4, we extend the AARA type system to support this kind of potential-method reasoning

while preserving the benefits of AARA such as compositionality and reduction of type inference to

LP solving. For example, our probabilistic extension to AARA can type the code of the function

bernoulli in Fig. 1b as

bernoulli : ⟨L0(τ ), 1⟩ → ⟨bool, 0⟩
where the input can be typed as a list with 0 units of potential per element (assuming τ does

not assign potential). To cover the expected cost, it only needs 1 available potential unit per run,

indicated by the 1 paired with the input type. When typing the probabilistic flip, this single unit of
potential can pay for the expected cost of the two equally-likely branches: The H branch costs 0,

theT branch costs 2 (1 each for the recursive call and for bernoulli to consume), and they average to

1. As bernoulli can be typed to consume 1 unit of potential, the upper bound AARA finds is exact.

The functions bernoulli and exists form an example of the automatic average-case estimation

algorithm that we introduce in §7.2. Assume that you want to run exists on a certain distribution of

inputs and you want to determine the average cost of exists on this distribution. To approximately

answer this question, we collapse code like exists into code like bernoulli and use pRaML to estimate
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that the average cost is 1. In this case, such a collapse would be justified by finding empirically that

pred holds with probability 0.5.
The technical innovation that makes possible the typing of bernoulli is a new typing rule for

probabilistic branching. Another innovation is the introduction of the type P for probabilities.

The introduction form for values of type P simply takes a rational number 0 ≤ p ≤ 1 and the

elimination form is a probabilistic branch. We can assign potential

Φ(p : P
qH
qT )

def

= qH · p + qT · (1 − p)

to a value p of type P. The potential qH and qT then becomes available in the head and tails cases,

respectively, of the probabilistic branching.

Consider for example the function rdwalk in Fig. 1c again. Our probabilistic analysis can auto-

matically derive the typing

rdwalk : ⟨L1(P5

0
), 0⟩ → ⟨unit, 0⟩ .

The potential of the argument

Φ([p1, . . . ,pn] : ⟨L
1(P5

0
), 0⟩) = n +

∑
1≤i≤n

5pi ,

corresponds to the exact bounds on the expected cost.

Here we present these novel ideas for a simple functional language with lists and linear potential

functions. However, the results carry over to user-defined inductive types and multivariate polyno-

mial potential functions of RaML [Hoffmann et al. 2017] that we use in the implementation. The

main theorem of this paper (see §5) states that the expected cost bounds are sound, with respect to

a step-indexed distribution-based operational semantics inspired by Borgström et al.’s semantics

for the probabilistic lambda calculus [Borgström et al. 2016]. We then extend the semantics with

partial evaluations to capture the resource behavior of non-terminating executions of a probabilistic

program. This novel extension enables an improved soundness result, which implies that expected

bounds on run-times ensure termination with probability 1.

3 LANGUAGE AND SEMANTICS
In this section, we introduce a subset of pRaML as a functional ML-like language that includes

units, lists, recursion, pattern match, and a new flip expression for probabilistic branching. We then

present an initial form of our operational cost semantics for probabilistic programs, which keeps

track of both the probability and the cost of executions. We will use this language and semantics to

formalize and justify our type-based expected cost analysis in §4 and §5.

Syntax. We only consider expressions in share-let-normal-form [Hoffmann et al. 2011]. This is a

syntactic form that uses variables instead of arbitrary terms whenever possible, without loss of

expressivity. This is done through maximizing the use of let-expressions. The syntax also must use

share(x ;x1, x2.e) to allow multiple uses of a variable x in an expression e , due to linear properties

of the type system. The abstract and concrete syntax of our probabilistic programming language is

given by the grammar in Fig. 2. Abstract syntax is given via abstract binding trees [Harper 2016].

While the concrete syntax matches the intuitive meaning of each expression, the abstract syntax

conveys the same information and compacts some overly large expressions, allowing them to be

written down more succinctly.

The syntactic form flip{e1; e2}(p) is introduced to execute e1 or e2 at random. The intuitive

meaning of the flip expression is to flip a biased coin, which shows heads with probability p and

tails with probability (1 − p), then execute e1 if the coin shows heads, or execute e2 if the coin
shows tails. Additionally, the introduction form prob{p} and the elimination form flipS(x ; e1, e2)
are provided for the new probability type: prob{p} encapsulates a rational number 0 ≤ p ≤ 1 for
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Abstract Concrete
e F x x variable

triv ⟨⟩ null tuple

nil [] empty list

cons(x1;x2) x1 :: x2 cons list

matL{e0;x1, x2.e2}(x) case x { nil ↪→ e0 | cons (x1, x2) ↪→ e2} pattern match

fun(f , x .e) fun f x = e function

app(x1;x2) x1(x2) application

tick{q} tick q cost

let(e1;x .e2) let x = e1 in e2 definition

share(x ;x1, x2.e) share x as x1, x2 in e sharing

flip{e1; e2}(p) flip p {H ↪→ e1 | T ↪→ e2} coin flip

prob{p} p probability

flipS(x ; e1, e2) flipS x {H ↪→ e1 | T ↪→ e2} symbolic flip

Fig. 2. Syntax of the language

probability, and flipS(x ; e1, e2) is essentially the same as flip expressions except that the branching

probability is specified by a variable x of probability type. The syntactic form share(x ;x1, x2.e) has
to be used to allow multiple uses of a variable x in an expression e .

Elementary probability theory. We recount some essential concepts from elementary probability

theory. You can find more serious mathematical development of probabilities in textbooks on

measure theory [Billingsley 2012; Williams 1991].

Consider a random experiment. LetΩ denote the set of all the possible outcomes, called the sample
space. A discrete probability space is a pair (Ω, P), where P : Ω → [0, 1] is a probability distribution
on Ω, i.e.,

∑
ω ∈Ω P(ω) = 1. The probability of an event E ⊆ Ω, written P(E), is defined as

∑
ω ∈E P(ω).

We often write P(θ ) for the probability of a statement θ , i.e., P({ω | θ (ω) is true}). A random variable
X : Ω → R ∪ {−∞,+∞} is a function from a probability space to the extended real numbers. The

expected value of a random variable X is the weighted average Eω∼(Ω,P)(X )
def

=
∑

ω ∈Ω X (ω) · P(ω).
We often write E(X ) if there is no ambiguity in the choice of the probability space. An important

property of expected value is linearity: IfX and Y are random variables and a,b ∈ R, then (aX +bY )
is a random variable and E(aX + bY ) = aE(X ) + bE(Y ).

Obstacles for probabilistic semantics. To define the expected resource usage of probabilistic pro-

grams, we formulate a cost semantics based on an evaluation dynamics. This turns out to be

challenging. Previous work on AARA cost semantics for non-probabilistic programs lack the in-

frastructure to reason about certain effects of probabilistic phenomena. One such example is the

poor behaviour of high-water marks: the well-known probabilistic Martingale betting strategies

have an unbounded expected high-water mark, even while having finite expected net gain. In this

section we describe the sorts of problems faced from the perspective of the cost semantics.

The notion of values in the cost semantics can proceed unchanged: value v ∈ Val is either a
null tuple ⟨⟩, an empty list [], a cons list v1 :: v2, or a function closure clo(V ; f , x .e) that consists
of an environment V : Var → Val and a function definition fun f x = e . However, the evaluation
cost dynamics surrounding such values must be altered to deal with probability. In prior work on

AARA [Hoffmann and Hofmann 2010a], the cost semantics is defined by a judgment of the form

V ⊢ e ⇓ v | (q,q′)

This judgment means that, under an evaluation environment V , the expression e evaluates to the

value v using a high-water mark of q ∈ Q≥0 resources and leaving q′ ∈ Q≥0 resources leftover. By
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tracking both the high-water mark and leftover resources, non-probabilistic AARA was able to

reason about resources that might be returned after use, like space. This tracking is performed by

the resource monoid [Hoffmann and Hofmann 2010a], which algebraically composes the high-water

mark/leftover pairs (q,q′).
Unfortunately, this operational judgment does not adapt to the probabilistic domain. Firstly, it

distinguishes a particular value v for evaluation, rather than a distribution. Further, the resource

monoid does not compose under probability. Both points must be remedied to soundly model cost.

To illustrate the resource monoid problem, we first define it. The following accounts for how the

high-water mark and leftover resource constraints change under non-probabilistic composition.

(a,b) · (c,d)
def

= (a +max(c − d, 0),d +max(d − c, 0))

Now consider the following two expressions. Letting e1 have the associated resource monoid

term (0, 0), e2 have (4, 2) and e3 have (2, 1), we see both have an expected high-water mark resource

usage of 2 and expected leftover of 1.

flip
1

2

{H ↪→ e1 | T ↪→ e2} vs e3

However, we cannot represent the resource constraints of both expressions uniformly with

the term (2, 1). This becomes apparent if we precede both expressions by a copy of e3, as then
the expected high-water mark of each differs. The latter can be correctly calculated to be 3 with

(2, 1) · (2, 1) = (3, 1). However, the high-water mark of the former would be 3.5 since half the time

it would be 2 and half the time 5. There is no way to get two different results as a function of the

same input (2, 1), so two-place resource monoid terms cannot be salvaged for probabilistic use.

To avoid this problem, we forgo the high-water mark/leftover resource distinction, and reason

only about resources that monotonically decrease, like time. It then suffices to track only the net

cost with a more well-behaved one-place term. As a result, the AARA system described here only

consumes resources, and never provides them.

This restriction to monotonically consumed resources solves an additional problem for the cost

semantics concerning the well-definedness of expected cost in the presence of nontermination.

Even programs with finite expected cost may have nonterminating executions. However, if the

execution can be non-terminating, there can be an infinite number of execution traces, and thus the

expected value of their cost is defined over an infinite sum. Such a sum must converge absolutely to

represent an expected value, and if the costs for operations can have different signs this is not clearly

the case. Recent work [Wang et al. 2019] has proposed techniques to reason about non-monotone

resources for imperative programs; adapting these techniques to analyze functional programs is

beyond the scope of this paper, but is an interesting future research direction.

Besides the cost, a probabilistic semantics must also account for probabilistic execution resulting

in a distribution of values, rather than 1 particular value. To solve this problem, one might first

think to reason about individual executions separately by adding a component that tracks the

probability of a particular value resulting. By collecting such judgments with probabilities adding

to 1, one could then recover the desired value distributions. For this approach, one might create the

judgment V ⊢ e ⇓p v | q which would mean that there exists an execution where the expression

e evaluates to the value v with net cost q and probability p. However, this approach has a subtle

problem: There might be multiple different executions with the same evaluation result, cost, and

probability. For example, consider the following program

e ≡ flip
1

2

{H ↪→ tick 2 | T ↪→ let _ = tick 1 in tick 1}.
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V ;σ ⊢ e ⇓p v | q “in environment V , with trace σ , expression e evaluates to value v with cost q and probability p”

V ; [] ⊢ x ⇓1 V (x ) | 0
(E:Var)

V ; [] ⊢ triv ⇓1 ⟨⟩ | 0
(E:Triv)

V ; [] ⊢ nil ⇓1 [] | 0
(E:Nil)

V (x1) = v1 V (x2) = v2

V ; [] ⊢ cons(x1; x2) ⇓1 v1
:: v2 | 0

(E:Cons)

V (x ) = [] V ;σ ⊢ e0 ⇓p v | q

V ;σ ⊢ matL {x ; e0, x1 .x2 }(e1) ⇓p v | q
(E:MatL-1)

V (x ) = v1
:: v2 V , x1 7→ v1, x2 7→ v2;σ ⊢ e1 ⇓p v | q

V ;σ ⊢ matL {x ; e0, x1 .x2 }(e1) ⇓p v | q
(E:MatL-2)

V ; [] ⊢ tick{q } ⇓1 ⟨⟩ | q
(E:Tick)

V ;σ1 ⊢ e1 ⇓p1 v1 | q1 V , x 7→ v1;σ2 ⊢ e2 ⇓p2 v2 | q2
V ;σ1 @ σ2 ⊢ let(e1; x .e2) ⇓p1 ·p2 v2 | q1 + q2

(E:Let)

V ; [] ⊢ fun(f , x .e) ⇓1 clo(V ; f , x .e) | 0
(E:Fun)

V (x1) = clo(V ′
; f , x .e) V (x2) = v2 V ′, f 7→ clo(V ′

; f , x .e), x 7→ v2;σ ⊢ e ⇓p v | q

V ;σ ⊢ app(x1; x2) ⇓p v | q
(E:App)

V ;σ ⊢ e1 ⇓p1 v1 | q1
V ;H :: σ ⊢ flip{e1; e2 }(p) ⇓p ·p1 v1 | q1

(E:Flip-1)

V ;σ ⊢ e2 ⇓p2 v2 | q2

V ; T :: σ ⊢ flip{e1; e2 }(p) ⇓(1−p)·p2 v2 | q2
(E:Flip-2)

V (x ) = v V , x1 7→ v , x2 7→ v ;σ ⊢ e ⇓p v ′ | q

V ;σ ⊢ share(x ; x1, x2 .e) ⇓p v ′ | q
(E:Share)

V ; [] ⊢ prob{p } ⇓1 prob(p) | 0
(E:Prob)

V (x ) = prob(p) V ;σ ⊢ e1 ⇓p1 v1 | q1
V ;H :: σ ⊢ flipS(x ; e1, e2) ⇓p ·p1 v1 | q1

(E:FlipS-1)

V (x ) = prob(p) V ;σ ⊢ e2 ⇓p2 v2 | q2

V ; T :: σ ⊢ flipS(x ; e1, e2) ⇓(1−p)·p2 v2 | q2
(E:FlipS-2)

Fig. 3. Evaluation rules of the trace-based cost semantics

Although the program has two possible syntactically-distinct executions, there is only one valid

evaluation relation derivable from the given rules, which is

· ⊢ e ⇓
1/2 ⟨⟩ | 2.

This thwarts the idea of collecting relations with probabilities summing to 1, as some relations

would need to be counted multiple times, and the present components to the judgment leave no

way to determine the multiplicity. To solve these problems, we present the following cost semantics.

Trace-based cost semantics. We deal with obstacles surrounding cost semantics by adapting

Borgström et al.’s trace-based semantics for lambda calculus [Borgström et al. 2016] to our setting.

The key observation is that an execution is uniquely determined by the trace of outcomes of the

coin flips in the execution. We augment the evaluation relation with a component for traces, i.e., a

finite sequence of elements in {H, T}. The trace-based evaluation judgment then has the form

V ;σ ⊢ e ⇓p v | q,

The intuitive meaning is that under the environment V , with a sequence σ of coin-flip outcomes,

the expression e evaluates to a value v with cost q and probability p.
Fig. 3 presents the rules for this trace-based evaluation dynamics. We write [] for empty traces,

σ1 @ σ2 for trace concatenation, and H :: σ or T :: σ to observe a new coin flip and prepend the

outcome to σ . In the rule E:Let, we multiply the probabilities of an execution of e1 and an execution

of e2, as well as concatenate their traces of coin flips.
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1:10 Di Wang, David M Kahn, and Jan Hoffmann

Recall that in order to reason about expected resource usage, we need a notion of probability
distributions over executions, and found that accounting for the multiplicity of operational judg-

ments made this difficult. With the trace-based dynamics, we can now capture all the terminating

executions uniquely. This is because the result value v , the net cost q, and the probability p, are
determined uniquely by the environment V , the expressions e , and the trace of coin flips σ .

By induction on the structure of expression e , we prove the lemma below.

Lemma 3.1. For allV , e and σ , there is at most one combination of v , q and p s.t.V ;σ ⊢ e ⇓p v | q.

Therefore, for fixed V and e , the set of all finite traces induces a “distribution” over terminating

executions. We can extract a “distribution” JeKV
⇓
on values v and costs q as follows:

JeKV
⇓
(v,q)

def

=
∑
σ

pσ where σ ’s are finite traces satisfying V ;σ ⊢ e ⇓pσ v | q.

Note that if there are non-terminating executions with non-zero probabilities, the map defined

above is a subprobability distribution in the sense that the probabilities do not sum up to one. In

other words, the probability that e diverges under environment V is (1 −
∑

(v ,q)JeKV⇓ (v,q)).
With this trace-based cost semantics in hand, we can finally define the expected cost of evaluating

some terminating expression e with variable bindings given the values of V . The expected cost is

just the sum of costs q weighted by probability p over all execution traces σ .∑
σ :V ;σ ⊢e⇓pv |q

p · q =
∑
V ,v ,q

JeKV
⇓
(v,q) · q

However, generalizing this definition for non-termination would be nontrivial. As probability

is only countably additive, and the set of infinite traces of a non-terminating execution may be

uncountable, the above sum could no longer be used. It would appear that a more complicated

summation mechanism like integration over a cost density function would be required to deal with

such divergence, and we do not deign to develop that here. Instead, to deal with this concern and

others, the cost semantics will be revisited in §5. There we will do like [Borgström et al. 2016] and

convert from trace-based to distribution-based semantics.

4 TYPE SYSTEM
In this section, we develop an AARA type system to carry out expected cost analysis for probabilistic

programs. To focus on the changes that probabilistic choice induces on the type system, we describe

its action here in linear AARA, where all potential functions are linear in terms of list sizes. In

other work, potential functions have been expanded to cover polynomials [Hoffmann et al. 2011;

Hoffmann and Hofmann 2010b] and exponentials [Kahn and Hoffmann 2020], but this extension

to AARA is orthogonal to probabilistic choice. Indeed, we have carried over the implementation

and soundness of probabilistic AARA to support multivariate-polynomial potential functions and

user-defined datatypes without problem, which we use to perform analyses in §6 and beyond.

Abstract Concrete
τ F unit 1 nullary product

list(A) Lq (τ ) list

arr(A;B) A → B arrow

prob{qH ;qT } P
qH
qT probability

A,B F pot(τ ;q) ⟨τ ,q⟩ potential

Fig. 4. Syntax of the type system

Types and potentials. Fig. 4 presents the types

that are supported in linear AARA. Aside from

usual types like the nullary 1 and binary prod-

uct τ1 × τ2, there are three special types that have
potential-related components. The first is the po-

tential pairing ⟨τ ,q⟩, which represents storing a

constant q ∈ Q≥0 units of potential alongside a

value of type τ . The second is the list type Lq(τ )—a
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compact representation of list(⟨τ ,q⟩)—which rep-

resents a list with q ∈ Q≥0 units of potential per

element. The combination is sufficient to express potential functions that are linear combinations

of input list lengths and constants. The last is the probability type prob{qH ;qT }. As introduced in

§2, it represents qH units of potential for head cases and qT units for tail cases after a coin flip.

Formally, the potential function Φ(· : τ ) or Φ(· : A), which maps values of type τ or A to non-

negative rational numbers, is defined as follows.

Φ(⟨⟩ : unit)
def

= 0, Φ(v : pot(τ ;q))
def

= Φ(v : τ ) + q,

Φ([] : list(A))
def

= 0, Φ(v1 :: v2 : list(A))
def

= Φ(v1 : A) + Φ(v2 : list(A)),

Φ(clo(V ; f , x .e) : arr(A;B))
def

= 0, Φ(prob(p) : prob{qH ;qT })
def

= qH · p + qT · (1 − p).

From the inductive definition above, we can derive the following closed form for the potential of

a list ℓ = [v1, · · · ,vn] with respect to a type Lq(τ ), which is linear in the length of the list ℓ.

Φ(ℓ : Lq(τ )) = q · n +
n∑
i=1

Φ(vi : τ ).

Note that these definitions leave potential as a function of both type and value. Different values

of the same type may differ in their total potential. For instance, in the case of lists, one term in the

above closed form for potential depends on the length of the list, so lists of differing lengths but

the same type may differ in total potential.

Static semantics. The typing judgment for linear AARA the form Γ;q ⊢ e : A, the intuitive

meaning of which is that the potential given by Γ and q is sufficient to cover the expected evaluation

cost of e and the expected potential of the evaluation result with respect to A.
As existing AARA type systems, our typing rules form an affine linear type system, which

ensures that every variable is used at most once [Walker 2002]. Fig. 5 lists the typing rules. It turns

out that most of the rules coincide with those of non-probabilistic linear AARA systems. This fact

indicates that our type system is a conservative extension of non-probabilistic AARA for monotonic

resources, and our type system is able to derive worst-case cost bounds for deterministic programs.

To understand the new rule L:Flip for probabilistic branching, consider the expression

flip{e1; e2}(p), where e1 requires Φ1 units of potential and e2 requires Φ2. The evaluation of the flip

expression should expect to require a weighted average of Φ1 and Φ2, specifically p ·Φ1 + (1−p) ·Φ2.

This should be paid out of the typing context Γ and constant potential q, both of which are shared

between branches. The distribution of this sharing is expressed using a sharing relation τ .(τ1, τ2),
which apportions the potential indicated by τ into two parts to be associated with τ1 and τ2, along-
side a potential-scaling operation. We formally define these relations and prove they capture the

correct intuition with Lemmas 4.1 and 4.2, but first we explain why the rule does not also perform

expected value calculations for the type A.
One might think that a similar weighted average could be used to combine the types of e1 and e2

to get expected type A, rather than require both expressions have type A exactly. Perhaps equally

likely types L3(τ ) and L1(τ ) could convert to expected type L2(τ ). However, the value produced in

each branch might differ, and for lists of type Lq(τ ) total potential is a scalar q of length; taking

the expected value of the scalars without accounting for length does not succeed in finding the

expected potential. Thus, the rule L:Flip cannot be made more permissive in that manner.

Nonetheless, note that the same return type for both branches in L:Flip still can leave differing

potential after each branch, which is necessary for expected cost reasoning. For example, consider
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1:12 Di Wang, David M Kahn, and Jan Hoffmann

the following program where the function append requires 1 unit of potential per element in its

first argument.

append (flip 0.5 | H → [1;2;3] | T → [0]) [5;6]

The return types of the two branches of the flip expression are the same (L2(int)), but the actual
potential in the results is different: the heads branch returns a list with 3 units of potential, and the

tails branch returns 1 unit. This shows that the analysis properly composes and correctly reasons

that expected cost of the program is 2. This also works for symbolic lists and can derive the bound

|x | + |y | for the function

fun x y → append (flip 0.5 | H →y | T → (append x y)) []

Now we formalize the sharing and scaling relations. The sharing relation for types is defined as

follows. Note that the sharing relation is also used in L:Share to make “copies” of a variable, while

ensuring that the total potential over copies is preserved.

unit.(unit, unit)
(Sh:Unit)

A.(A1, A2)

list(A).(list(A1), list(A2))
(Sh:List)

arr(A; B).(arr(A; B), arr(A; B))
(Sh:Arrow)

qH = q
(1)

H + q
(2)

H qT = q
(1)

T + q
(2)

T

prob{qH ;qT }.(prob{q(1)H ;q(1)T }, prob{q(2)H ;q(2)T })
(Sh:Prob)

q = q1 + q2 τ .(τ1, τ2)

pot(τ ;q).(pot(τ1;q1), pot(τ2;q2))
(Sh:Pot)

We extend the sharing relation to typing contexts, as it has previously only been used on a per-type

basis. This splits the potential across all types in Γ across 2 new contexts of the same base types.

·.(·, ·)
(Sh:Empty)

Γ.(Γ1, Γ2) τ .(τ1, τ2)

Γ, x : τ .(Γ1, x : τ1, Γ2, x : τ2)
(Sh:Extend)

Potential-scaling can be defined syntactically as follows. Intuitively, p × τ (resp., p ×A) produces
a type with as much potential as that of the original type τ (resp., A) scaled by the factor p.

p × unit

def

= unit, p × pot(τ ;q)
def

= pot(p × τ ;p · q),

p × list(A)
def

= list(p ×A), p × arr(A;B) = arr(A;B),

p × prob{qH ;qT }
def

= prob{p · qH ;p · qT }.

Also, we extend the scaling operation to typing contexts.

p × (·)
def

= ·, p × (Γ, x : τ )
def

= p × Γ, x : (p × τ ).

By induction on the structure of value v , we prove the following lemmas that ensure the sharing

and scaling relations are consistent with their intuitive meaning.

Lemma 4.1. For any value v of type τ (resp., A), if τ .(τ1, τ2) (resp., A.(A1,A2)), then Φ(v : τ ) =
Φ(v : τ1) + Φ(v : τ2) (resp., Φ(v : A) = Φ(v : A1) + Φ(v : A2)) .

Lemma 4.2. For any probability p and value v of type τ (resp., A), Φ(v : p × τ ) = p ·Φ(v : τ ) (resp.,
Φ(v : p ×A) = p · Φ(v : A)).

Wenowdiscuss the rule L:Prob and L:FlipS for the new probability typeP
qH
qT . To type a probability

encapsulation prob{p}, we need Φ(prob(p) : PqH
qT ) = p · qH + (1 − p) · qT units of potential in the

context to cover its expected value. Then to type an expression flipS(x ; e1, e2) that flips a variable
x with type P

qH
qT , one might want to use the potential-scaling operation as the rule L:Flip does.

However, the probability x here is symbolic, thus we cannot define the scaling operation in linear
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AARA.
1
The rule L:FlipS avoids the problem by forcing e1 and e2 to be typed under the same

context, appealing to the equality Φ = x · Φ + (1 − x) · Φ for any x and Φ. Note that it assigns
qH units of potential to type e1, and qT units to type e2; this assignment is sound because we pay

x · qH + (1 − x) · qT to create x : P
qH
qT .

Finally, we briefly explain other typing rules. In the rule L:Cons, we have to provide potential p
to account for the potential of the new list element. Conversely, the potential of the head x1 of the
list x : Lp (τ ) becomes available in the cons branch of the pattern match in the rule L:MatL. As a

result, we have constant potential p + q available when typing e1. In the rule L:App, we require

that we have the exact potential annotations (x2 : τ and q) that are required by the argument.

The resulting potential is given by the result type B. In the rule L:Fun for (recursive) function

abstraction, we require that the potential of the variables captured in the context Γ is zero. We

write |Γ | for the context Γ in which every potential annotation q is replaced by 0. This is formally

defined below. The reason for this requirement is that we allow functions to be used an arbitrary

number of times (recall the definition of sharing). If Γ would carry potential then we could use

this potential multiple times to account for cost, which is not sound. Since functions do not carry

potential, we do not have to restrict the type of the recursively defined function f in a similar way.

An alternative would be to remove the premise Γ = |Γ | and to treat functions in an affine way.

|unit|
def

= unit, |pot(τ ;q)|
def

= pot(|τ |; 0),

|list(A)|
def

= list(|A|), |arr(A;B)|
def

= arr(A;B),

|prob{qH ;qT }|
def

= prob{0; 0}.

Note that for function types, we do not have to recursively eliminate potential with | · | since the

potential of a function is already 0. The definition is then lifted point-wise to annotated contexts Γ.

| · |
def

= ·, |Γ, x : τ |
def

= |Γ |, x : |τ |.

The structural rules L:Sub, L:Sup, L:Weak, and L:Relax can be applied to every expression.

The weakening rule L:Weak is standard. However, there is another form of weakening: The rule

L:Relax, states that, given a judgment Γ;p ⊢ e : ⟨τ ,p ′⟩, we can also have more potential q in the

context and give up some of the potential p ′. Additionally, the rule also covers the case in which

we pass through additional potential c ≥ 0 yielding the judgment Γ;p + c ⊢ e : ⟨τ ,p ′ + c⟩. The
subtyping rules L:Sub and L:Sup enable us to relax the potential requirements for potential in data

structures in the same way as T:Relax does for constant potential. The subtyping relation for types

is defined by the following rules.

unit <: unit

A <: B

list(A) <: list(B)

A2 <: A1 B1 <: B2

arr(A1; B1) <: arr(A2; B2)

q(1)H ≥ q(2)H q(1)T ≥ q(2)T
prob{q(1)H ;q(1)T } <: prob{q(2)H ;q(2)T }

q1 ≥ q2 τ1 <: τ2
pot(τ1;q1) <: pot(τ2;q2)

By induction on the structure of value v followed by inversion on the subtyping judgment, we

prove the following lemma.

Lemma 4.3. If τ <: τ ′ then Φ(v : τ ′) ≤ Φ(v : τ ) for any value v of type τ .

Example. To illustrate the type system in action, we apply it to a random-walk program in

concrete syntax below. Consider the function brdwalk which performs a biased random walk over

1
In our implementation of pRaML, we use multivariate polynomial AARA to support symbolic scaling, which unifies the two

distinct flip operations presented here. We also incorporate the ability to multiply and complement symbolic probabilities.
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Γ;q ⊢ e : A “in context Γ with constant potential q, expression e has potential-annotated type A”

x : τ ; 0 ⊢ x : ⟨τ , 0⟩
(L:Var)

·; 0 ⊢ triv : ⟨unit, 0⟩
(L:Unit)

·; 0 ⊢ nil : ⟨list(A), 0⟩
(L:Nil)

A = ⟨τ , p ⟩

x1 : τ , x2 : list(A);p ⊢ cons(x1; x2) : ⟨list(A), 0⟩
(L:Cons)

A = ⟨τ , p ⟩ Γ;q ⊢ e0 : B Γ, x1 : τ , x2 : list(A);q + p ⊢ e1 : B

Γ, x : list(A);q ⊢ matL {e0; x1, x2 .e1 }(x ) : B
(L:MatL)

·;q ⊢ tick{q } : ⟨unit, 0⟩
(L:Tick)

Γ1;q ⊢ e1 : ⟨τ , p ⟩ Γ2, x : τ ;p ⊢ e2 : B

Γ1, Γ2;q ⊢ let(e1; x .e2) : B
(L:Let)

A = ⟨τ , q ⟩

x1 : arr(A; B), x2 : τ ;q ⊢ app(x1; x2) : B
(L:App)

A = ⟨τ , q ⟩ Γ = |Γ |
Γ, f : arr(A; B), x : τ ;q ⊢ e : B

Γ; 0 ⊢ fun(f , x .e) : ⟨arr(A; B), 0⟩
(L:Fun)

τ .(τ1, τ2) Γ, x1 : τ1, x2 : τ2;q ⊢ e : B

Γ, x : τ ;q ⊢ share(x ; x1, x2 .e) : B
(L:Share)

Γ.(p × Γ1, (1 − p) × Γ2) q = p · q1 + (1 − p) · q2 Γ1;q1 ⊢ e1 : A Γ2;q2 ⊢ e2 : A

Γ;q ⊢ flip{e1; e2 }(p) : A
(L:Flip)

q = p · qH + (1 − p) · qT
·;q ⊢ prob{p } : ⟨prob{qH ;qT }, 0⟩

(L:Prob)

Γ;q + qH ⊢ e1 : A Γ;q + qT ⊢ e2 : A

Γ, x : prob{qH ;qT };q ⊢ flipS(x ; e1, e2) : A
(L:FlipS)

Γ;q ⊢ e : ⟨τ ′, q′⟩ τ ′ <: τ

Γ;q ⊢ e : ⟨τ , q′⟩
(L:Sub)

Γ, x : τ ;q ⊢ e : B τ ′ <: τ

Γ, x : τ ′;q ⊢ e : B
(L:Sup)

Γ;q ⊢ e : B

Γ, x : τ ;q ⊢ e : B
(L:Weak)

Γ;p ⊢ e : ⟨τ , p′⟩ q ≥ p q − q′ ≥ p − p′

Γ;q ⊢ e : ⟨τ , q′⟩
(L:Relax)

Fig. 5. Typing rules

the length of its input list, stopping whenever the list is empty. With
3

4
probability of shrinking the

list and
1

4
of growing it, we expect the list length to shrink by

1

2
per iteration of the walk. Thus, we

expect a stopping time of twice the input list’s length.

brdwalk ≡ fun f ℓ =

case ℓ {[] ↪→ ⟨⟩

_ :: x2 ↪→ let _ = tick 1 in flip 3/4 {H ↪→ f (x2) | T ↪→ f (⟨⟩ :: ⟨⟩ :: x2)}}

We now derive the type ⟨L2(1), 0⟩ → ⟨1, 0⟩ for brdwalk, which indicates using twice the input list’s

length for initial potential. This amount of potential provides an upper bound on expected stopping

time which happens to be exact.

In the tails case, we need four units of extra constant potential to construct the argument list.

f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 0 ⊢ x2 : ⟨L2(1), 0⟩
(L:Var)

f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 2 ⊢ ⟨⟩ :: x2 : ⟨L2(1), 0⟩
(L:Cons)

f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 4 ⊢ ⟨⟩ :: ⟨⟩ :: x2 : ⟨L2(1), 0⟩
(L:Cons)

f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 4 ⊢ f (⟨⟩ :: ⟨⟩ :: x2) : ⟨1, 0⟩
(L:App)

Otherwise, if the coin flip shows heads, the type derivation goes as follows:

f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 0 ⊢ f (x2) : ⟨1, 0⟩
(L:App)
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v : τ (or v : A) “value v has type τ or A”

⟨⟩ : unit
(V:Unit)

prob(p) : prob{qH ;qT }
(V:Prob)

[] : list(A)
(V:Nil)

v1 : A v2 : list(A)

v1
:: v2 : list(A)

(V:Cons)

v : τ

v : pot(τ ;q)
(V:Anno)

A = pot(τ ;q) V : Γ
|Γ |, f : arr(A; B), x : τ ;q ⊢ e : B

clo(V ; f , x .e) : arr(A; B)
(V:Fun)

Fig. 6. Typing rules for values

Via the definition of potential scaling, we find that

L2(1).(3/4 × L2(1), (1 − 3/4) × L2(1)) and 1 = 3/4 · 0 + 1/4 · 4.

Then we apply the rule L:Flip, deriving the desired type ⟨L2(1), 0⟩ → ⟨1, 0⟩ for brdwalk.
f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 0 ⊢ f (x2) : ⟨1, 0⟩

f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 4 ⊢ f (⟨⟩ :: ⟨⟩ :: x2) : ⟨1, 0⟩

f : ⟨L2(1), 0⟩ → ⟨1, 0⟩, x2 : L2(1); 1 ⊢ flip 3/4 {H ↪→ f (x2) | T ↪→ f (⟨⟩ :: ⟨⟩ :: x2)} : ⟨1, 0⟩
(L:Flip)

5 SOUNDNESS
In this section, we formalize our intuition that our type system derives expected cost bounds

and sketch a soundness proof (Thm. 5.3). We also study nontrivial non-termination behavior of

probabilistic programs, and prove a stronger result (Thm. 5.7) which implies that derived expected

bounds on resources like time imply that the analyzed program terminates with probability one

(Cor. 5.8). Proofs are included in appendix A.

Values. Before we can state the theorem, we need to properly extend the definition of potential

to typing contexts and evaluation environments. We introduce a type judgment v : τ (or v : A) for
values, which is defined in Fig. 6. This relation ignores potential annotations and checks only the

values are well-typed. An evaluation environmentV is said to have type context Γ, writtenV : Γ, if
for all x bound in Γ, we have V (x) : Γ(x). The most interesting rule is the rule V:Fun for function

closures. It uses the type rule L:Fun for expressions and existentially quantifies over the context Γ.
This rule ensures that we only consider functions that are well-formed with respect to the type

system, which is necessary to prove the soundness of the analysis.

Let V : Γ. We define the potential of V with respect to Γ as follows.

Φ(V : Γ)
def

=
∑

x ∈dom(Γ)

Φ(V (x) : Γ(x)).

A first attempt. With the trace-based evaluation dynamics, we might state the soundness theorem

for probabilistic programs as follows. Intuitively, it says that the initial potential is sufficient to pay

for the expected evaluation cost and the typing of the result.

Let Γ;q ⊢ e : A and V : Γ. Then

Φ(V : Γ) + q ≥
∑

σ0:V ;σ0⊢e⇓p0v0 |q0

p0 · (Φ(v0 : A) + q0).

Note that the summation is taken over traces σ0, and by Lem. 3.1, the tuple (p0,v0,q0) is uniquely
determined by V , e , and σ0. However, it is unclear how to prove the theorem by induction on

the evaluation judgment. The reason is that we now have to deal with a collection of evaluation

judgments, instead of one. Intuitively, the trace-based evaluation dynamics talks about individual
executions, while the goal of our resource analysis for probabilistic programs is to reason about

aggregated information over all possible executions. We therefore develop another evaluation
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dynamics that deals with distributions of executions more directly, and show that it agrees with

our previous semantics.

First we illustrate why a naive approach here will not work. One might start with a new judgment

V ⊢ e ⇒ µ where µ is a distribution over pairs (v,q), v is the evaluation result, and q is the net cost.

Then one might use the following rule for composition under probabilistic branching.

V ⊢ e1 ⇒ µ1 V ⊢ e2 ⇒ µ2

V ⊢ flip{e1; e2}(p) ⇒ p · µ1 + (1 − p) · µ2
(Bad:Flip)

Here, we denote the weighted sum of two distributions µ1 and µ2 by p · µ1 + (1 − p) · µ2, defined as

λω .p · µ1(ω) + (1 − p) · µ2(ω).
For the leaf cases, such as unit values, one might then introduce the rule where δ (ω) = λω ′.[ω =

ω ′] denotes the point distribution on ω, and where the Iverson brackets [·] are defined by [φ] = 1 if

φ is true and otherwise [φ] = 0.

V ⊢ triv ⇒ δ (⟨⟩, 0)
(Bad:Triv)

However, the attempt does not work well for almost-sure termination, i.e., terminating with

probability 1. The issue is that the inductive definition of such a distribution dynamics will fail if

there is a non-terminating execution. Consider the following program

f ≡ fun f _ = flip
1

2

{H ↪→ ⟨⟩ | T ↪→ f (⟨⟩)}

and suppose that we want to derive an evaluation judgment for f (⟨⟩). There does not exist a

distribution µ such that V ⊢ f (⟨⟩) ⇒ µ, because if we try to apply the rules inductively, we will

end up with a derivation tree with an infinite depth.

V ⊢ ⟨⟩ ⇒ δ (⟨⟩, 0)
(Bad:Triv)

.

.

.

V ⊢ f (⟨⟩) ⇒???

(Bad:App)

V ⊢ flip 1/2 {H ↪→ ⟨⟩ | T ↪→ f (⟨⟩)} ⇒???

(Bad:Flip)

V ⊢ f (⟨⟩) ⇒???

(Bad:App)

Distribution-based semantics. To cope with possible non-terminating executions, we develop

a partial-evaluation-like dynamics equivalent to our trace-based one. Unlike partial evaluation

dynamics used in AARA literature to deal with non-termination [Hoffmann and Hofmann 2010a],

we do care about the evaluation results. For our new dynamics, we adapt the distribution-based

semantics of [Borgström et al. 2016], which index judgments by their derivation depth to be able to

construct a “complete” semantics from the “partial” ones. To this end, we need only modify the

subprobability distributions to be over value-cost pairs, resulting in judgments of the following

form:

V ⊢ e ⇒n µ .

The meaning is that the expression e reduces to a subprobability distribution with an at-most-n
derivation depth. We use subprobability distributions, whose probabilities sum to possibly less than

one, because there could be terminating executions with a derivation tree whose depth is more than

n. Fig. 7 presents the rules for this distribution-based semantics. In addition to the syntax-directed

rules, we introduce a special base case where n = 0 and µ is set to a zero distribution 0 def

= λω .0.
We can now approximate the distribution over terminating executions using the depth-indexed

distributions by making use of the following lemma.

Lemma 5.1. If V ⊢ e ⇒n µ1, V ⊢ e ⇒m µ2 and n ≤ m, then µ1 ≤ µ2 pointwise. As a consequence,

we can define JeKV⇒
def

= sup{µn : V ⊢ e ⇒n µn} = limn→∞ µn as the subprobability distribution of all
possible terminating executions of a probabilistic program e under environment V .
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V ⊢ e ⇒n µ “in environment V , expression e reduces to result distribution µ within n steps

V ⊢ e ⇒0 0
(DE:Base)

n > 0

V ⊢ x ⇒n δ (V (x ), 0)
(DE:Var)

n > 0

V ⊢ triv ⇒n δ (⟨⟩, 0)
(DE:Triv)

n > 0

V ⊢ nil ⇒n δ ([], 0)
(DE:Nil)

n > 0 V (x1) = v1 V (x2) = v2

V ⊢ cons(x1; x2) ⇒n δ (v1
:: v2, 0)

(DE:Cons)

V (x ) = [] V ⊢ e0 ⇒n µ

V ⊢ matL {e0; x1, x2 .e1 }(x ) ⇒n+1 µ
(DE:MatL-1)

V (x ) = v1
:: v2

V , x1 7→ v1, x2 7→ v2 ⊢ e1 ⇒n µ

V ⊢ matL {e0; x1, x2 .e1 }(x ) ⇒n+1 µ
(DE:MatL-2)

n > 0

V ⊢ tick{q } ⇒n δ (⟨⟩, q)
(DE:Tick)

n > 0

V ⊢ fun(f , x .e) ⇒n δ (clo(V ; f , x .e), 0)
(DE:Fun)

V (x1) = clo(V ′
; f , x .e) V (x2) = v2 V ′, f 7→ clo(V ′

; f , x .e), x 7→ v2 ⊢ e ⇒n µ

V ⊢ app(x1; x2) ⇒n+1 µ
(DE:App)

V ⊢ e1 ⇒n µ ∀(v1, q1) ∈ supp(µ) : V , x 7→ v1 ⊢ e2 ⇒n µ(v1 ,q1)

V ⊢ let(e1; x .e2) ⇒n+1 ∑
(v1 ,q1)

∑
(v2 ,q2) µ(v1, q1) · µ(v1 ,q1)(v2, q2) · δ (v2, q1 + q2)

(DE:Let)

V (x ) = v
V , x1 7→ v , x2 7→ v ⊢ e ⇒n µ

V ⊢ share(x ; x1, x2 .e) ⇒n+1 µ
(DE:Share)

V ⊢ e1 ⇒n µ1 V ⊢ e2 ⇒n µ2

V ⊢ flip{e1; e2 }(p) ⇒n+1 p · µ1 + (1 − p) · µ2
(DE:Flip)

n > 0

V ⊢ prob{p } ⇒n δ (prob(p), 0)
(DE:Prob)

V (x ) = prob(p) V ⊢ e1 ⇒n µ1 V ⊢ e2 ⇒n µ2

V ⊢ flipS(x ; e1, e2) ⇒n+1 p · µ1 + (1 − p) · µ2
(DE:FlipS)

Fig. 7. Evaluation rules of the distribution-based cost semantics

Proof. By induction on the derivation of V ⊢ e ⇒m µ2, followed by inversion on V ⊢ e ⇒n µ1.
The existence of the sequence appeals to the Monotone Convergence Theorem. □

Recall the problem case from attempting a non-indexed distribution-based operational semantics:

f ≡ fun f _ = flip
1

2

{H ↪→ ⟨⟩ | T ↪→ f (⟨⟩)}

With the depth-indexed distribution-based dynamics, we can now derive the following judgments:

V ⊢ f (⟨⟩) ⇒0 0, V ⊢ f (⟨⟩) ⇒3
1/2 · δ (⟨⟩, 0),

V ⊢ f (⟨⟩) ⇒5
1/2 · δ (⟨⟩, 0) + 1/4 · δ (⟨⟩, 0), · · · , V ⊢ f (⟨⟩) ⇒2k+1 ∑k

i=1(
1/2)i · δ (⟨⟩, 0).

Letting k approach infinity, we derive that Jf (⟨⟩)KV⇒ = δ (⟨⟩, 0), i.e., the program terminates with

probability one. Further, the evaluation result is always unit, and the net cost is always zero.

Finally, we show that the distribution-based dynamics is equivalent to the trace-based one, so

we can proceed to prove soundness with respect to the distribution-based semantics.

Proposition 5.2. Let V be an environment and e be an expression. Then JeKV⇒ = JeKV
⇓
.

Proof. We proceed by proving both JeKV⇒ ≤ JeKV
⇓
and JeKV

⇓
≤ JeKV⇒. For the first inequality, it is

sufficient to show that µn ≤ JeKV
⇓
for all n ∈ N where V ⊢ e ⇒n µn . For the second one, it suffices

to show that νn ≤ JeKV⇒ for all n ∈ N where νn is a sub-distribution of executions in JeKV
⇓
whose

trace has length at most n. Both cases are done by induction on n. □
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Soundness. We now restate and prove the soundness theorem using the distribution-based se-

mantics. Again, it states that the initial potential can pay for the expected evaluation cost and the

typing of the result.

Theorem 5.3 (Soundness of AARA). Let Γ;q ⊢ e : A and V : Γ. Then

Φ(V : Γ) + q ≥
∑

(v0,q0)

JeKV⇒(v0,q0) · (Φ(v0 : A) + q0).

Proof. It suffices to prove for every n ∈ N, if V ⊢ e ⇒n µ, then

Φ(V : Γ) + q ≥
∑

(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0).

Proceed by induction on n with inversion on V ⊢ e ⇒n µ then inner induction on Γ;q ⊢ e : A. □

Non-termination. So far we have only considered terminating executions in the evaluation dy-

namics, dealing with non-termination indirectly. Recall that the distribution over e’s evaluations in
environment V is defined as

JeKV
⇓
(v,q)

def

=
∑
σ

pσ where σ ’s are finite traces satisfying V ;σ ⊢ e ⇓pσ v | q,

thus infinite traces (e.g., non-terminating executions) are totally ignored. Hence, the soundness

theorem (Thm. 5.3) does not imply that the typing judgment Γ;q ⊢ e : A (where e is instrumented

with ticks to count evaluation steps) entails that the expected termination time of e is finite. We

therefore now extend the dynamics to account for non-terminating behavior directly.

To deal with non-termination, we first introduce a dummy value ◦ to represent some partial

evaluation. We can then enrich the distribution-based dynamics with partial evaluation by forcing

the result distribution µ in the judgmentV ⊢ e ⇒n µ to be a full probability distribution instead of a

subprobability one. To achieve this, we extend µ’s distributions to be over (Val∪{◦})×(Q≥0∪{∞}),

including this new dummy value. Most of the rules stay unchanged, except the following two:

V ⊢ e ⇒0 δ (◦, 0)
(PE:Base)

V ⊢ e1 ⇒n µ ∀(v1, q1) ∈ supp(µ) : (v1 , ◦) =⇒ V , x 7→ v1 ⊢ e2 ⇒n µ(v
1
,q

1
)

V ⊢ let(e1; x .e2) ⇒n+1 ∑
q
1
µ(◦, q1) · δ (◦, q1) +

∑
(v

1
,q

1
):v

1
,◦

∑
(v

2
,q

2
) µ(v1, q1) · µ(v

1
,q

1
)(v2, q2) · δ (v2, q1 + q2)

(PE:Let)

However, we can no longer take the previous approach of defining JeKV⇒ by the limit of {µn}n∈N
where V ⊢ e ⇒n µn , because it no longer holds that, if n ≤ m ,then µn ≤ µm pointwise. To get

around this, we define a new ordering on complete distributions, extending it to cover the dummy

value differently. We define µ1 ⊑ µ2 as

• ∀v,q : (v , ◦) =⇒ µ1(v,q) ≤ µ2(v,q), and
• ∀q : µ1((Val ∪ {◦}) × [0,q]) ≥ µ2((Val ∪ {◦}) × [0,q]).

For concrete values, the order above is the same as the pointwise order on subprobability dis-

tributions, but for divergence, we take the other direction—the property above implies that

µ1({◦} × [0,q]) ≥ µ2({◦} × [0,q]) for all q ∈ Q≥0 ∪ {∞}. Since we assume non-negative ticks,

the probability that the cost is smaller than any q with respect to µ1 should be greater than or

equal to that with respect to µ2. Formally, we prove that ⊑ defines an ω-complete partial order on
distributions.

Lemma 5.4. The relation ⊑ defines a partial order on the distributions. Further, let {µn}n∈N be a
sequence such that µ1 ⊑ µ2 ⊑ · · · ⊑ µn ⊑ · · · . Then there exists a least distribution µ such that for all
n ∈ N, µn ⊑ µ. Further, we denote µ by

⊔
n∈N µn .

We now restate Lem. 5.1 in terms of the partial order ⊑ over distributions.
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Lemma 5.5. If V ⊢ e ⇒n µ1, V ⊢ e ⇒m µ2 and n ≤ m, then µ1 ⊑ µ2 pointwise. As a consequence,

we can define JeKV⇒
def

=
⊔

n∈N µn as the distribution of all possible terminating and non-terminating
executions of a probabilistic program e under environment V .

Proof. By induction on the derivation of V ⊢ e ⇒m µ2, followed by inversion on V ⊢ e ⇒n µ1.
The existence of the sequence appeals to Lem. 5.4. □

Recall that in the soundness proof, we induct on the index n of V ⊢ e ⇒n µ. The reason why

this approach works is that the expected cost with respect to µ is ω-continuous, i.e., monotone and

interchangeable with a limit operator. Although it is unclear whether the continuity still holds for

⊑ or not, we can prove the following weaker result that is sufficient for our soundness proof.

Lemma 5.6. Let h(µ) def

=
∑
q µ(◦,q) ·q+

∑
(v ,q):v,◦ µ(v,q) · (Φ(v : A)+q). Let {µn}n∈N be a sequence

such that µ1 ⊑ µ2 ⊑ · · · ⊑ µn ⊑ · · · . LetM ∈ R≥0. If h(µn) ≤ M for all n ∈ N, then h(
⊔

n∈N µn) ≤ M .

Nowwe can strengthen the soundness theorem to capture both termination and non-termination.

Theorem 5.7 (Soundness of AARA, improved). Let Γ;q ⊢ e : A and V : Γ. Then

Φ(V : Γ) + q ≥
∑
q0

JeKV⇒(◦,q0) · q0 +
∑

(v0,q0):v0,◦

JeKV⇒(v0,q0) · (Φ(v0 : A) + q0).

Proof. By Lemmas 5.5 and 5.6 it suffices to prove for every n ∈ N, if V ⊢ e ⇒n µ, then

Φ(V : Γ) + q ≥
∑
q0

µ(◦,q0) · q0 +
∑

(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0).

Again proved by induction on n with inversion onV ⊢ e ⇒n µ, then Γ;q ⊢ e : A inner induction. □

Corollary 5.8. Let Γ;q ⊢ e : A andV : Γ. If a program e is instrumented with ticks that account for
evaluation steps, then e terminates with probability one, i.e., JeKV⇒(◦,q0) = 0 for all q0 ∈ Q≥0 ∪ {∞}.

Proof. For all q0 ∈ Q≥0, the probability JeKV⇒(◦,q0) is zero because if an execution does not

terminate, the cost will keep increasing. For the case where q0 = ∞, by Thm. 5.7, JeKV⇒(◦,∞) · ∞ is

bounded by Φ(V : Γ) + q < ∞, thus the probability JeKV⇒(◦,∞) must be zero. □

6 IMPLEMENTATION AND EXAMPLES
In this section we present some non-trivial probabilistic models which our implementation pRaML

can handle in the same manner as described in previous sections. We follow up with a collection of

experimental benchmarks from typing variants of our examples, and other examples from literature.

For these complex examples, we use our implementation pRaML of the probabilistic AARA

type system extended to multivariate polynomial potential functions with user-defined data types.

While the potential functions supported in linear AARA are already multivariate, as each addend

can depend on a different input size, the term multivariate in the setting of potential functions

refers to each addend depending on products of input sizes - and in this case, also products of

symbolic probabilities. With user-defined data types, those sizes can also measure the number

of particular constructor types. We also include additional support for symbolic probabilities by

allowing complementation (i.e., subtraction from 1). Extending the probabilistic type system laid

out here to these domains does not involve significant conceptual changes; the potential function

extensions - described in [Hoffmann et al. 2011] and [Hoffmann et al. 2017] - are orthogonal to the

new probabilistic operation.

Tab. 1 shows some analysis data given by pRaML on models described below and some examples

from literature. It displays the number of linear constraints generated by typing the program using

resource polynomials at a fixed degree for all programs of the same class, as well as how fast pRaML
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let rec gr Alice Bob =
match Alice with
| [] → ()
| ha::ta →

match Bob with
| [] → ()
| hb::tb →

let _ = tick 1 in
match flip 0.5 with
| H → gr ta (ha::Bob)
| T → gr (hb::Alice) tb

(a) Gambler’s ruin

let rec goat below at above =
let _ = tick 1 in
match at with
| Lichen → match flip 0.75 with
| H → match below with
| [] → ()
| hd::tl → goat tl hd (at::above)

| T → match above with
| [] → ()
| hd::tl → goat (at::below) hd tl

| Grass → match flip 0.5 with
| H → match below with
| [] → ()
| hd::tl → goat tl hd (at::above)

| T → match above with
| [] → ()
| hd::tl → goat (at::below) hd tl

(b) The life expectancy of a goat

Fig. 8. Implementations probabilistic programs in pRaML.

can complete type inference on consumer hardware. The literature examples include some example

probabilistic loop code and conditional sampling model [Gordon et al. 2014], the simulation of

a fair die with a fair coin using a Markov chain [Knuth and Yao 1976], a probabilistic variant of

example code demonstrating quadratic resource usage [Carbonneaux et al. 2017], and the program

miner [Ngo et al. 2018]. The final example, fill and consume, fills a list with probability values of
1/2

or
1/3 randomly according to a symbolic probability p, then iterates over the list, flipping a coin

biased by each probability, and paying cost 1 for each heads flip.

Random walks form the core of stochastic algorithms and simulations. The Internet is so large

that the tractability of measuring its contents is real concern, and it can be solved by random walks

[Bar-Yossef and Gurevich 2008]. Modeling problems from various fields also use random walks,

ranging from economics [Meese and Rogoff 1983], to biology [Codling et al. 2008], to ecology

[Visser 1997], to astrophysics [MacLeod et al. 2010], and beyond. However, many random walks are

non-trivial to analyze, which obscures properties like code efficiency from a non-expert programmer,

and obscures stochastic model properties from their users. Even knowing the bounds of complex

random walk first, the bounds can be nontrivial to verify by hand. Nonetheless, AARA can find

them quickly, giving non-experts automatic access to expert bounds.

Example 6.1 (Gambler’s Ruin). There is an old problem in probability called the Gambler’s Ruin.
Fig. 8a shows an implementation. It is set up so that Alice and Bob continually bet one dollar against

each other on the results of a coin-flip until one player runs out of money. This is essentially a

2-sided random walk. If the coin is fair, Alice starts with A dollars and Bob starts with B dollars,

then this series of bets is expected to take AB time. Our multivariate implementation finds this

bound exactly.

Example 6.2 (The Life Expectancy of a Goat). Consider modeling the following scenario: A moun-

tain goat lives high up in the RockyMountains, eating grasses and lichens from the rocks. Depending

on the food it find abundant, it either moves up or down the mountain. When it finds only lichens,

it moves down with probability 75% in an attempt to find better food sources. When it finds grasses,

it moves with equal probability in either direction. However, if the goat moves too far down the

mountain, it passes the treeline and gets hunted by wolves. On the other hand, if the goat tries to

go up the mountain when at the very top, it falls off a cliff. Given some distribution of grasses and

lichens on the mountain, and where the goat starts, what is the expected lifetime of the goat?
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Table 1. Experimental data of typing with pRaML.

Program description Bound #Constraints Time (in sec.)

goat with 1

2
, 3

4
(B + 1)(2(G + 1) −GB ) 2084 0.15

goat with 2

3
, 3

4
3B + 3 2084 0.14

goat with 1

2
, 2

3
, 3

4
(B + 1)(2(G + 1.5) −GB ) 5336 0.25

goat with 1

2
, 3

5
, 2

3
, 3

4
(B + 1)(2(G + 2.5) −GB ) 10996 1.95

trade with 3

5
, 1

3

1

15
T 2 + 1

3
T P + 4

15
T 157 0.04

trade with 3

5
, 1 1

5
T 2 +T P + 4

5
T 157 0.03

trade with 2

5
, 1 3

10
T 2 +T P + 7

10
T 157 0.03

trade with 2

5
, 1

3

1

10
T 2 + 1

3
T P + 7

30
T 157 0.04

probabilistic loop Ex 3 [Gordon et al. 2014]
4/3 probability 61 0.01

bayes sampling Ex 6 [Gordon et al. 2014]
3/5 probability 112 0.01

die simulation from coin [Knuth and Yao 1976]
1/6 per die face 5731 0.33

random no-op nested variant [Carbonneaux et al. 2017] M2 +M 205 0.03

miner from [Ngo et al. 2018]
15/2M 31 0.01

fill and consume ( 1
3
+

p
6
)M 633 0.11

This is nontrivial to analyze by hand, but easy to code with the function goat in Fig. 8b. Then

pRaML can find a cost bound. Letting B be the distance from the goat to the treeline below, GA be

the number of grassy areas above the goat, andG be the total number of grassy areas, the expected

lifetime is bounded above by (B + 1)(2(G + 1) −GB ). This bound is rather complex, but its generality

reveals some interesting cost dependencies. For instance, the derived bound is independent of the

actual distance to the top of the mountain. It also makes it easy to get a sense of cost behaviour for

particular cases: If the whole mountain is covered in lichen, then the expected lifespan is 2(B + 1),
in line with the goat’s expected movement of half-a-space down the mountain per iteration. On

the other hand, if the mountain is all grassy, then the lifetime more like the stopping time of the

Gambler’s Ruin experiment.

Tab. 1 lists the analysis data for many different movement probabilities for varying amounts of

plants. There we also use A to represent the distance to the top of the mountain.

Example 6.3 (Stock Buying). Stock prices may behave like a random walk. In Fig. 9c we simulate

a buyer occasionally buying some stock over time, similarly to [Ngo et al. 2018]. Analysis with

pRaML finds that the expected expenditure is
1

15
T 2 + 1

3
TP + 4

15
T , where T is the time span and P is

the starting stock price. Results for other parameters for the price’s walk and buy rate, respectively,

may be found under trade in Tab. 1.

7 APPLICATIONS
In this section, we discuss two application domains of pRaML: analysis of discrete distributions

(§7.1) and estimation of average-case cost (§7.2).

let reprice price =
match flip 0.6 with
| H →

match price with
| [] → []
| _::t → t

| T → ()::price

(a)

let rec buy price =
match price with
| [] → ()
| _::t →

let _ = tick 1 in
buy t

(b)

let rec trade price time =
match time with
| [] → ()
| _::t →

let () = match flip 1/3 with
| H → buy price
| T → ()

in
trade (reprice price) t

(c)

Fig. 9. Stock buying
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7.1 Analysis of Discrete Distributions
Although the only probabilistic fragment introduced by our programming language is probabilistic

branching, we are able to implement a broad suite of discrete probability distributions and analyze

their properties in our system. In this section, we demonstrate how our tool can be used to not only

verify that a program implements the desired distribution, but also analyze sample complexity of the

program, i.e., the expected number of flips consumed by the program to obtain a sample. Sampling

from probability distributions is a fundamental activity in many fields, e.g., Bayesian inference

on probabilistic programs [Goodman and Stuhlmüller 2014; Wingate and Weber 2013], and the

efficiency of sampling algorithms becomes increasingly important because Monte Carlo methods for

probabilistic inference have a trend of requiring billions of random samples per second [Djuric 2019].

Our work provides an approach for understanding sample complexity of discrete distributions.

Case study: Discrete distribution generating (DDG) trees. Recent work provides a universal repre-

sentation of sampling algorithms for finite supports as discrete distribution generating (DDG) binary
trees [Saad et al. 2020]. The idea is to implement discrete distributions by only fair coin flips. Given

a DDG binary tree T , the sample algorithm starts at the root of T , then repeatedly flips a fair coin,

takes the left (resp., right) branch if the coin shows heads (resp., tails) until it reaches a leaf node

labeled with an outcome from the support of the distribution. Note the tree T may contain back

edges, i.e., the algorithm goes back to an ancestor after taking a branch of the current non-leaf node.

Back-edges are crucial for implementing non-dyadic probabilities, and they make the running time

of the sampling algorithm nontrivial because the algorithm can have non-terminating executions.

Fig. 10 presents two sample algorithms modified from an example in prior work [Saad et al. 2020].

Both programs are supposed to implement a distribution over {Red, Black}, and return Red with
probability 0.3, otherwise return Black. First, we verify that both programs correctly implement the

target distribution. We achieve this by inserting ticks such that the program has one unit of cost

when returning Red. Our tool then derives that the expected cost for both programs is bounded by

0.3 from above. Meanwhile, we insert ticks in original programs where the program returns Black
instead of Red, and our tool infers that the expected cost for both programs is at most 0.7. Because
the expectation of an indicator function for an event E equals to the probability of E, i.e.,

E(λω .[E(ω) is true]) =
∑
ω

P(ω) · [E(ω) is true] =
∑
ω ∈E

P(ω) = P(E),

we conclude that P(result is Red) ≤ 0.3 and P(result is Black) ≤ 0.7, thus the programs implement

the desired distribution, by the fact that probabilities sum up to one.

Then, we study the expected performance of the two sample algorithms in Figs. 10a and 10b. We

instrument the two programs with ticks to count the number of probabilistic choices made during

the execution. Our expected cost analysis successfully derives an upper bound for both programs:

2.0 for Fig. 10a, and 4.2 for Fig. 10b. By a manual analysis, we also verify that these bounds are tight.

The result suggests that Fig. 10a is better than Fig. 10b. We leave automatic tightness checking (e.g.,

by integrating a lower-bound analysis [Wang et al. 2020, 2019]) for future work.

Case study: Negative binomial distributions. Beyond distributions with fixed, finite supports, our

system is also capable of analyzing discrete distributions with infinite supports and symbolic

probabilities. Fig. 10c gives an implementation of negative binomial distributions; it returns a unit

list whose length is the number of heads in a series of independent coin flips with probability p
before |ℓ | number of tails occurs. The consume expression is used to specify value-dependent costs,
which we explain later.

In this example, we want to study the program’s sample complexity with respect to p and ℓ. At
first glance, the task seems impossible for our system, because while our AARA-based approach is
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let sample_fast () =
let rec aux () =
let _ = tick 1 in
match flip 0.5 with
| H →let _ = tick 1 in
match flip 0.5 with
| H →let _ = tick 1 in
match flip 0.5 with
| H →let _ = tick 1 in
match flip 0.5 with
| H → aux ()
| T → Red

| T → Black
| T → Black

| T → Red
in
let _ = tick 1 in
match flip 0.5 with
| H → aux ()
| T → Black

(a)

let rec sample_slow () =
let _ = tick 1 in
match flip 0.5 with
| H →let _ = tick 1 in
match flip 0.5 with
| H →let _ = tick 1 in
sample_slow ()

| T →let _ = tick 1 in
match flip 0.5 with
| H →

sample_slow ()
| T →let _ = tick 1 in
match flip 0.5 with
| H → Red
| T → Black

| T →let _ = tick 1 in
match flip 0.5 with
| H →let _ = tick 1 in
match flip 0.5 with
| H → Black
| T → Red

| T → Black

(b)

let rec negative_binomial p l =
match l with
| [] → []
| _::l' →

let _ =
consume p : prob{0}{1}

in
match flip p with
| H →

()::(negative_binomial p l)
| T →

negative_binomial p l'

(c)

Fig. 10. (a) and (b) are samplers that return Red with probability 0.3 or Black with probability 0.7. (c) is a
program for negative binomial distributions.

able to derive multivariate-polynomial bound, the expected number of flips for negative binomial

distributions involves fractions like
1

1−p , which is not expressible in our system. Nevertheless,

we come up with a workaround that scales all the costs in program by a factor of (1 − p) to get

rid of the resource bound’s denominator. This is achieved by the consume expression. Intuitively,
consume x : τ specifies a cost that equals to the potential of the value of x with respect to τ . Recall

thatΦ(p : prob{qH ;qT })
def

= p ·qH+(1−p)·qT ; thus, the consume expression in the program introduces

a cost of (1 − p). Our type system succeeds in finding a linear bound |ℓ | on the expected number of

flips. Taking the scale factor into account, we conclude that the expected sample complexity for

negative binomial distributions is at most
|ℓ |
1−p .

More examples. A summary of all the case studies in the analysis of discrete distributions carried

out in our system can be found in Tab. 2 . All the analyses were processed in around one second. The

fractional bounds are derived using the scaling technique mentioned above. For distributions dist
with integer supports, we also create a variant distE that specifies the value of the output sample as

the cost. For such a case, our tool essentially performs a first-moment analysis that computes the

mean value of the distributions.

7.2 Estimation of Average Case Cost
Understanding resource requirements of computer programs is important for software engineering.

Much of the research has been focused on analyzing worst-case resource usage and generating an

input that exhibits the worst-case performance, e.g. [Noller et al. 2018; Wang and Hoffmann 2019].

However, in practice, software performance can be sensitive to the distribution of the actual inputs.

For example, although quicksort has a worst-case quadratic time complexity, it usually outperforms

many other sorting algorithms (e.g., insertion sort) on randomly generated inputs. Understanding

the performance distribution induced by the real-world input distribution can then help carry out

important tasks in software development such as performance evaluation and algorithm selection.
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Table 2. Examples for sample-complexity or first-moment analysis of discrete distributions. In the bounds,
p is the value of the first probability argument, n is the length of the first list argument, and pi ’s are the
probability-valued elements in the first list argument.

Function Description Inferred Bound

sample_fast : 1 → red_or_black Fig. 10a 2.00

sample_slow : 1 → red_or_black Fig. 10b 4.20

dice : 1 → dice A fair dice 3.67

von_neumann : P → bool Make a fair coin from a biased one
1

p(1−p)
binomial : P → L(1) → L(1) Binomial distribution n
binomialE : P → L(1) → L(1) Binomial distribution; output as cost p · n
geometric : P → L(1) Geometric distribution

1

p

geometricE : P → L(1) Geometric distribution; output as cost
1−p
p

poisson_binomial : L(P) → L(1) Poisson binomial distribution n
poisson_binomialE : L(P) → L(1) Poisson binomial distribution; output as cost

∑
1≤i≤n pi

negative_binomial : P → L(1) → L(1) Negative binomial distribution
n

1−p
negative_binomialE : P → L(1) → L(1) Negative binomial distribution; output as cost

p ·n
1−p

In this section, we illustrate how our tool can be used to characterize performance distributions of

deterministic programs by their average-case resource usage, through a combination with profiling
techniques.

Program tranformation. Profiling techniques, such as edge profiling and path profiling, have

been used for speculative optimization (especially of branch conditions) [Da Silva and Steffan

2006; Ramalingam 1996], symbolic execution [Filieri et al. 2013, 2014], and performance analy-

sis [Chen et al. 2016]. The idea is to approximate a deterministic branch condition as a probabilistic

choice, whose probability is determined by counting frequencies of the two branches executed by

a program on a collection of real-world inputs. For example, if the then-branch e1 of the expres-
sion if x then e1 else e2 is executed 90% of the time, then we transform the conditional with a

probabilistic choice flip 0.9 {H ↪→ e1 | T ↪→ e2}. Benefits of such profiling-based program trans-

formation are: (i) it does not require complicated analyses to account for the conditional probability

of branches, (ii) it provides insights how the input distribution influences the control-flow of a

program via an empirical probabilistic model, and (iii) it can accrue profiling information from

samples with small sizes but still generalize its average-case cost bounds to inputs with large sizes.

We have implemented an interpreter for the deterministic fragment of our programming lan-

guage, which executes programs with concrete inputs and collects profiling information including

frequencies of control-flow transitions. We then use the profiling information to transform branch

conditions to proper probabilistic choices. Note that we have also implemented a statistical inde-

pendence test to ensure that branch probabilities are constants, rather than dependent on structural

features (e.g., lengths of lists) of the input. Then we pass the transformed program to our type-based

expected cost analysis to obtain a symbolic bound as the average-case estimation for the cost of

the original program.

Case study: Sorting nearly-sorted lists. It is known that comparison-based sorting algorithms can-

not beat the Θ(n logn) time complexity for input lists of length n. However, if the sorting function

is intended to process nearly-sorted data—where every element may on average be misplaced by

at most some constant number k of positions from the correct sorted order—then some sorting

algorithms, e.g., insertion sort, can achieve linear time complexity. Fig. 11a presents an implementa-

tion for insertion sort that uses ticks to count the number of comparisons. Our tool derives that

the worst-case cost bound for isort(ℓ) is
(
|ℓ |
2

)
, which is quadratic in the length |ℓ | of the list ℓ. The
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let rec insert x l =
match l with
| [] → [x]
| y::ys →

let _ = tick 1.0 in
match (x > y) with
| true → y::(insert x ys)
| false → x::y::ys

let rec isort l =
match l with
| [] → []
| x::xs →

insert x (isort xs)

(a) Original

let rec insert' x l =
match l with
| [] → [x]
| y::ys →

let _ = tick 1.0 in
match flip 0.9 with
| H → y::(insert' x ys)
| T → x::y::ys

let rec isort' l =
match l with
| [] → []
| x::xs →

insert' x (isort' xs)

(b) Transformed

Fig. 11. Average-case cost estimation for insertion sort on nearly-sorted inputs

only conditional expression occurs when the insert function compares the inserted element x and

the head y of the sorted list ℓ, and it recurses on the tail of ℓ if x > y. Since an element may be

misplaced by k positions on average, intuitively, there should on average be k recursions when

inserting an element, which means that the condition x > y evaluates to true with a constant

probability
k−1
k .

In our experiments, our tool managed to detect from a set of nearly-sorted lists that the conditional

expression in insert can be approximated by a probabilistic choice with a constant probability.

Fig. 11b illustrates one case where the branching probability is about 0.9. Our tool derives that the
expected cost bound for isort’(ℓ) is 10 · |ℓ |, which is linear in the length |ℓ | of the list ℓ. The linear
bound also reflects that the list ℓ should be nearly sorted, in the sense that every element in ℓ, on
average, is misplaced by 10 positions from the correct sorted order.

Case study: Short-circuit Boolean interpretation. When implementing a compiler, one usually must

decide how to interpret Boolean expressions. Most commonly, the decision is made to short-circuit
the and and or connectives. That is, if the first term determines the whole expression - false for and
or true for or - then one skips evaluation of the second. Programmatically, this can be implemented

with conditionals as in the following code for interpret in Fig. 12a.

In the worst case, the code in Fig. 12a must iterate over every node of its input Boolean expression

tree, which is exactly the non-probabilistic bound given by our tool. Specifically, letting C be the

number of constants, B the number of binary connectives, and N the number of negations, the

bound isC + B +N . This is the same cost bound as naively evaluating every sub-expression, so it is

unclear what value short-circuiting provides. However, if the Boolean constants used are uniformly

random, one finds that the branching probability at each conditional can be approximated by a

constant: about 0.5 probability for each branch. Converting the code into interpret’, our tool now
finds a better expected cost bound of 1.5B + N . Because C is always equal to B + 1, this is a strictly
better cost bound.

Case study: Sequential insertions in a hash table. We implement a program in our language to

model the hash table function from prior work on worst-case analyisis [Noller et al. 2018; Wang

and Hoffmann 2019]. This is a complicated program where each key in the hash table is a string of

length 8 and the hash function is DJBX33A from a PHP implementation. The resource model is

defined as the number of hash collisions. In the worst case, our system derives that the number of

collisions is bounded by

(n
2

)
where n is the number of insertions. The worst-case quadratic bound

makes sense because one may construct a list of different strings with the same hash key. However,
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let rec interpret exp =
let _ = tick 1 in
match exp with
| True → true
| False → false
| Or (a,b) →

match interpret a with
| true → true
| false → interpret b

| And (a,b) →

match interpret a with
| true → interpret b
| false → false

| Neg a → not (interpret a)

(a) Original

let rec interpret' exp =
let _ = tick 1 in
match exp with
| True → true
| False → false
| Or (a,b) →

let _ = interpret' a in
match flip 0.5 with
| H → true
| T → interpret' b

| And (a,b) →

let _ = interpet' a in
match flip 0.5 with
| H → interpret' b
| T → false

| Neg a → not (interpret' a)

(b) Transformed

Fig. 12. Average-case cost estimation for short-circuiting Boolean interpretation across uniform inputs

if the hash table is used in a setting where security vulnerabilities like Denial-of-Service are not

crucial and the inputs are sufficiently random, then the quadratic bound is not meaningful because

it is usually assumed that an insertion into a hash table takes constant time.

In our experiments, from a set of randomly generated strings, our tool found out that both the

probability that two input strings have the same hash key—and the probability that two input

strings with the same hash key are different—are small constants. Our tool then derives 0.11 · n as

an expected cost bound for the transformed hash-table program with n insertions, which indicates

that the number of hash collisions should be linear in the number of insertions in practice.

8 RELATEDWORK
We discuss the most-closely related work on expected cost analysis of probabilistic programs in

§1. Other related work includes cost analysis of deterministic programs and other (type-based)

analyses of probabilistic programs.

Cost analysis for deterministic programs. Automatic and semiautomatic resource bound analysis

for deterministic programs has been extensively studied. Our work is based on AARA, which was

initially introduced [Hofmann and Jost 2003] to automatically derive linear heap-space bounds for

first-order functional programs. AARA has been extended to polynomial bounds [Hoffmann et al.

2011; Hoffmann and Hofmann 2010b; Hofmann and Moser 2015], exponential bounds [Kahn and

Hoffmann 2020], logarithmic bounds [Hofmann and Moser 2018], higher-order functions [Hoff-

mann et al. 2017; Jost et al. 2010], user-defined datatypes [Hoffmann et al. 2017; Jost et al. 2009], and

separation logic [Atkey 2010]. The technique has also been generalized to imperative arithmetic

programs [Carbonneaux et al. 2017, 2015], as well as integrated into formal proof assistants [Char-

guéraud and Pottier 2015; Nipkow 2015].

Beyond AARA, there have been many other approaches to formal resource analysis of deter-

ministic programs. Some approaches, similarly to AARA, do so via a type system, including sized

types [Vasconcelos 2008] refinement types [Çiçek et al. 2017, 2015; Knoth et al. 2019; Radicek et al.

2018; Wang et al. 2017; Xi 2002], linear dependent types [Dal Lago and Gaboardi 2011; Dal Lago

and Petit 2013], and annotated type systems [Crary and Weirich 2000; Danielsson 2008]. Such

a type-based approach usually involves constraint solving, some notion of linearity, and high

composability, like AARA. However, there is often a tradeoff in programmer burden, like requiring

more user annotation for better results. There are also non-typed-based approaches, recurrence
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solving [Albert et al. 2009, 2015; Danner et al. 2015; Flores-Montoya and Hähnle 2014; Kavvos et al.

2020; Kincaid et al. 2017], abstract interpretation [Blanc et al. 2010; Gulwani 2009; Sinn et al. 2014;

Zuleger et al. 2011], term-rewriting techniques [Avanzini and Moser 2013; Brockschmidt et al. 2014;

Frohn et al. 2016; Noschinski et al. 2013], defunctionalization [Avanzini et al. 2015], and symbolic

execution [Burnim et al. 2009; Noller et al. 2018]. These approaches vary more wildly from the

system used in this work.

Despite the number of such approaches to resource analysis, exceedingly few have been adapted

to the probabilistic domain, and even less automated. The work in this article represents the first

such automated system for probabilistic functional programs. Imperative probabilistic programs

have already enjoyed such automated resource analysis in prior work, first established through

imperative AARA techniques [Ngo et al. 2018].

Type-base analysis for probabilistic programs. Other properties of probabilistic programs, aside

from expected cost, can be analyzed by type-based approaches. Almost-sure termination of func-

tional probabilistic programs can be reasoned about through the dependent type systems of of

Dal Lago et al. [Dal Lago and Ghyselen 2018; Dal Lago and Grellois 2019]. Bhat et al. [Bhat

et al. 2012, 2013] develop a type system to check absolute continuity of probabilistic first-order

let-programs and derive corresponding density functions for the distributions specified by the

programs. Fuzz [Reed and Pierce 2010] uses linear types augmented with a probability monad to

reason about differential privacy of randomized computation, and DFuzz [Gaboardi et al. 2013] later

generalizes it with indexed types and lightweight dependent types to certify differential privacy for

a broader class of benchmarks. Recently, Lew et al. [Lew et al. 2020] have developed a type system

for programmable probabilistic inference with trace types, where well-typed inference programs

soundly derive posterior distributions by construction. In this paper, we focus on expected cost

bound analysis for probabilistic programs.

9 CONCLUSION
By combining a carefully developed probabilistic semantics with the AARA type system, we have

shown that probabilistic programs in a functional language can be effectively analyzed in an

automated manner. Our implementation pRaML infers worst-case expected bounds on resource

usage for a variety of probabilistic models and algorithms, and parameterizes the bounds by both

input sizes and symbolic probabilities. We make use of these parameterized bounds to analyze new

and interesting application domains, like sample-complexity and a generalized average-case analysis.

In the future, we hope to overcome the semantic soundness obstacles that bar non-monotone

resource usage, and in doing so provide a fully-conservative extension of non-probabilistic AARA.
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A PROOFS
A.1 Thm. 5.3

Proof. It suffices to prove for every n ∈ N, if V ⊢ e ⇒n µ, then

Φ(V : Γ) + q ≥
∑

(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0).

Proceed by induction on n with inversion on V ⊢ e ⇒n µ then inner induction on Γ;q ⊢ e : A. We

show the interesting cases below.

• If n = 0, then µ = 0. Straightforward.
• Suppose the lemma holds for some n ∈ N. Now we consider the case for n + 1. Below are the

proofs for L:Let, L:Flip, L:Prob, and L:FlipS.

– (L:Let) By assumption, we have Γ1;q ⊢ e1 : pot(τ ;p), Γ2, x : τ ;p ⊢ e2 : A, and Γ = Γ1, Γ2
for some Γ1, Γ2. By inversion, we have V ⊢ e1 ⇒n µ1, for all (v1,q1) ∈ supp(µ1), V , x 7→

v1 ⊢ e2 ⇒n µ(v1,q1), and µ =
∑

(v1,q1)
∑

(v2,q2) µ1(v1,q1) · µ(v1,q1)(v2,q2) · δ (v2,q1 + q2). By
the induction hypothesis, we have

Φ(V : Γ1) + q ≥
∑

(v1,q1)

µ1(v1,q1) · (Φ(v1 : pot(τ ;p)) + q1) =
∑

(v1,q1)

µ1(v1,q1) · (Φ(v1 : τ ) + q1 + p),

and also for all (v1,q1) ∈ supp(µ1),

Φ(V , x 7→ v1 : Γ2, x : τ ) + p ≥
∑

(v2,q2)

µ(v1,q1)(v2,q2) · (Φ(v2 : A) + q2).

This results in the following chain of inequalities.

Φ(V : Γ) + q = Φ(V : Γ1) + q + Φ(V : Γ2)

≥
∑

(v1,q1)

µ1(v1,q1) · (Φ(v1 : τ ) + q1 + p) + Φ(V : Γ2)

≥
∑

(v1,q1)

µ1(v1,q1) · (Φ(v1 : τ ) + q1 + p + Φ(V : Γ2))

=
∑

(v1,q1)

µ1(v1,q1) · (q1 + p + Φ(V , x 7→ v1 : Γ2, x : τ ))

≥
∑

(v1,q1)

µ1(v1,q1) · (q1 +
∑

(v2,q2)

µ(v1,q1)(v2,q2) · (Φ(v2 : A) + q2))

≥
∑

(v1,q1)

µ1(v1,q1) · (
∑

(v2,q2)

µ(v1,q1)(v2,q2) · (Φ(v2 : A) + q2 + q1))

=
∑

(v1,q1)

∑
(v2,q2)

µ1(v1,q1) · µ(v1,q1)(v2,q2) · (Φ(v2 : A) + q2 + q1).

Applying the following identities on the final term, we complete the case.∑
(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0)

=
∑

(v0,q0)

(
∑

(v1,q1)

∑
(v2,q2)

µ1(v1,q1) · µ(v1,q1)(v2,q2) · δ (v2,q1 + q2))(v0,q0) · (Φ(v0 : A) + q)

=
∑

(v0,q0)

(
∑

(v1,q1)

∑
(v2,q2)

µ1(v1,q1) · µ(v1,q1)(v2,q2) · [v0 = v2 ∧ q0 = q1 + q2]) · (Φ(v0 : A) + q)

=
∑

(v1,q1)

∑
(v2,q2)

µ1(v1,q1) · µ(v1,q1)(v2,q2) · (Φ(v2 : A) + q1 + q2).
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– (L:Flip) By assumption, we have Γ .(p×Γ1, (1−p)×Γ2),q = p·q1+(1−p)·q2, Γ1;q1 ⊢ e1 : A, and
Γ2;q2 ⊢ e2 : A. By inversion, we haveV ⊢ e1 ⇒

n µ1,V ⊢ e2 ⇒
n µ2, and µ = p ·µ1+(1−p) ·µ2.

By the induction hypothesis, we have

Φ(V : Γ1) + q1 ≥
∑

(v0,q0)

µ1(v0,q0) · (Φ(v0 : A) + q0), Φ(V : Γ2) + q2 ≥
∑

(v0,q0)

µ2(v0,q0) · (Φ(v0 : A) + q0).

Thus we conclude this case by

Φ(V : Γ) + q = Φ(V : p × Γ1) + Φ(V : (1 − p) × Γ2) + p · q1 + (1 − p) · q2

= p · Φ(V : Γ1) + (1 − p) · Φ(V : Γ2) + p · q1 + (1 − p) · q2

≥ p · (
∑

(v0,q0)

µ1(v0,q0) · (Φ(v0 : A) + q0)) + (1 − p) · (
∑

(v0,q0)

µ2(v0,q0) · (Φ(v0 : A) + q0))

=
∑

(v0,q0)

(p · µ1(v0,q0) + (1 − p) · µ2(v0,q0)) · (Φ(v0 : A) + q0)

=
∑

(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0).

– (L:Prob) By assumption, we know that Γ = ·, q = p · qH + (1 − p) · qT , and A =
pot(prob{qH ;qT }; 0) for some qH ,qT ∈ Q≥0. By inversion, we have µ = δ (p, 0). Thus
we conclude this case by

Φ(V : Γ) + q = p · qH + (1 − p) · qT = Φ(prob(p) : prob{qH ;qT }) + 0 =
∑

(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0).

– (L:FlipS) By assumption, we have Γ;q + qH ⊢ e1 : A and Γ;q + qT ⊢ e2 : A. By inversion, we

have V (x) = prob(p), V ⊢ e1 ⇒
n µ1, V ⊢ e2 ⇒

n µ2, and µ = p · µ1 + (1 − p) · µ2 for some

p ∈ [0, 1]. By the induction hypothesis, we have

Φ(V : Γ) + q + qH ≥
∑

(v0,q0)

µ1(v0,q0) · (Φ(v0 : A) + q0), Φ(V : Γ) + q + qT ≥
∑

(v0,q0)

µ2(v0,q0) · (Φ(v0 : A) + q0).

Thus we conclude this case by

Φ(V : Γ, x : prob{qH ;qT }) + q

= Φ(V : Γ) + p · qH + (1 − p) · qT + q

= (p · Φ(V : Γ) + (1 − p) · Φ(V : Γ)) + (p · qH + (1 − p) · qT ) + (p · q + (1 − p) · q)

= p · (Φ(V : Γ) + q + qH ) + (1 − p) · (Φ(V : Γ) + q + qT )

≥ p · (
∑

(v0,q0)

µ1(v0,q0) · (Φ(v0 : A) + q0)) + (1 − p) · (
∑

(v0,q0)

µ2(v0,q0) · (Φ(v0 : A) + q0))

=
∑

(v0,q0)

(p · µ1(v0,q0) + (1 − p) · µ2(v0,q0)) · (Φ(v0 : A) + q0)

=
∑

(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0).

□

A.2 Thm. 5.7
Proof. By Lemmas 5.5 and 5.6 it suffices to prove for every n ∈ N, if V ⊢ e ⇒n µ, then

Φ(V : Γ) + q ≥
∑
q0

µ(◦,q0) · q0 +
∑

(v0,q0)

µ(v0,q0) · (Φ(v0 : A) + q0).
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We can still proceed by induction on n with inversion on V ⊢ e ⇒n µ then inner induction on

Γ;q ⊢ e : A. We illustrate cases L:Let, L:Flip, L:Prob, and L:FlipS below.

• (L:Let) By assumption, we have Γ1;q ⊢ e1 : pot(τ ;p), Γ2, x : τ ;p ⊢ e2 : A, and Γ = Γ1, Γ2 for
some Γ1, Γ2. By inversion, we have V ⊢ e1 ⇒

n µ1, for all (v1,q1) ∈ supp(µ1) such that v1 , ◦,

V , x 7→ v1 ⊢ e2 ⇒
n µ(v1,q1), and µ =

∑
q1 µ1(◦,q1) · δ (◦,q1) +

∑
(v1,q1):v1,◦

∑
(v2,q2) µ1(v1,q1) ·

µ(v1,q1)(v2,q2) · δ (v2,q1 + q2). By the induction hypothesis, we have

Φ(V : Γ1) + q ≥
∑
q1

µ1(◦,q1) · q1 +
∑

(v1,q1):v1,◦

µ1(v1,q1) · (Φ(v1 : pot(τ ;p)) + q1)

=
∑
q1

µ1(◦,q1) · q1 +
∑

(v1,q1):v1,◦

µ1(v1,q1) · (Φ(v1 : τ ) + q1 + p),

and also for all (v1,q1) ∈ supp(µ1) such that v1 , ◦,

Φ(V , x 7→ v1 : Γ2, x : τ ) + p ≥
∑
q2

µ(v1,q1)(◦,q2) · q2 +
∑

(v2,q2):v2,◦

µ(v1,q1)(v2,q2) · (Φ(v2 : A) + q2).

Thus we find the following chain of inequalities.

Φ(V : Γ) + q

= Φ(V : Γ1) + q + Φ(V : Γ2)

≥
∑
q1

µ1(◦, q1) · q1 +
∑

(v1 ,q1):v1,◦

µ1(v1, q1) · (Φ(v1 : τ ) + q1 + p) + Φ(V : Γ2)

≥
∑
q1

µ1(◦, q1) · q1 +
∑

(v1 ,q1):v1,◦

µ1(v1, q1) · (Φ(v1 : τ ) + q1 + p + Φ(V : Γ2))

=
∑
q1

µ1(◦, q1) · q1 +
∑

(v1 ,q1):v1,◦

µ1(v1, q1) · (q1 + p + Φ(V , x 7→ v1 : Γ2, x : τ ))

≥
∑
q1

µ1(◦, q1) · q1 +
∑

(v1 ,q1):v1,◦

µ1(v1, q1) · (q1 +
∑
q2

µ(v1 ,q1)(◦, q2) · q2 +
∑

(v2 ,q2):v2,◦

µ(v1 ,q1)(v2, q2) · (Φ(v2 : A) + q2))

=
∑
q1

µ1(◦, q1) · q1 +
∑

(v1 ,q1):v1,◦

µ1(v1, q1) · (
∑
q2

µ(v1 ,q1)(◦, q2) · (q1 + q2) +
∑

(v2 ,q2):v2,◦

µ(v1 ,q1)(v2, q2) · (Φ(v2 : A) + q1 + q2))

=
∑
q1

µ1(◦, q1) · q1 +
∑

(v1 ,q1):v1,◦
q2

µ1(v1, q1) · µ(v1 ,q1)(◦, q2) · (q1 + q2) +
∑

(v1 ,q1):v1,◦
(v2 ,q2):v2,◦

µ1(v1, q1) · µ(v1 ,q1)(v2, q2) · (Φ(v2 : A) + q1 + q2).
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The final line satisfies the following identities, completing the case.∑
q0

µ(◦, q0) · q0 +
∑

(v0 ,q0):v0,◦

µ(v0, q0) · (Φ(v0 : A) + q0)

=
∑
q0

©­­­­«
∑
q1

µ1(◦, q1) · δ (◦, q1) +
∑

(v1 ,q1):v1,◦
(v2 ,q2)

µ1(v1, q1) · µ(v1 ,q1)(v2, q2) · δ (v2, q1 + q2)
ª®®®®¬
(◦, q0) · q0

+
∑

(v0 ,q0):v0,◦

©­­­­«
∑
q1

µ1(◦, q1) · δ (◦, q1) +
∑

(v1 ,q1):v1,◦
(v2 ,q2)

µ1(v1, q1) · µ(v1 ,q1)(v2, q2) · δ (v2, q1 + q2)
ª®®®®¬
(v0, q0) · (Φ(v0 : A) + q0)

=
∑
q0

©­­­«
∑
q1

µ1(◦, q1) · δ (◦, q1) +
∑

(v1 ,q1):v1,◦
q2

µ1(v1, q1) · µ(v1 ,q1)(◦, q2) · δ (◦, q1 + q2)
ª®®®¬ (◦, q0) · q0

+
∑

(v0 ,q0):v0,◦

©­­­­«
∑

(v1 ,q1):v1,◦
(v2 ,q2):v2,◦

µ1(v1, q1) · µ(v1 ,q1)(v2, q2) · δ (v2, q1 + q2)
ª®®®®¬
(v0, q0) · (Φ(v0 : A) + q0)

=
∑
q1

µ1(◦, q1) · q1 +
∑

(v1 ,q1):v1,◦
q2

µ1(v1, q1) · µ(v1 ,q1)(◦, q2) · (q1 + q2) +
∑

(v1 ,q1):v1,◦
(v2 ,q2):v2,◦

µ1(v1, q1) · µ(v1 ,q1)(v2, q2) · (Φ(v2 : A) + q1 + q2).

• (L:Flip) By assumption, we have Γ .(p×Γ1, (1−p)×Γ2),q = p ·q1+(1−p)·q2, Γ1;q1 ⊢ e1 : A, and
Γ2;q2 ⊢ e2 : A. By inversion, we haveV ⊢ e1 ⇒

n µ1,V ⊢ e2 ⇒
n µ2, and µ = p · µ1 + (1−p) · µ2.

By the induction hypothesis, we have

Φ(V : Γ1) + q1 ≥
∑
q0

µ1(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ1(v0,q0) · (Φ(v0 : A) + q0),

Φ(V : Γ2) + q2 ≥
∑
q0

µ2(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ2(v0,q0) · (Φ(v0 : A) + q0).

Thus we conclude this case by

Φ(V : Γ) + q = Φ(V : p × Γ1) + Φ(V : (1 − p) × Γ2) + p · q1 + (1 − p) · q2

= p · Φ(V : Γ1) + (1 − p) · Φ(V : Γ2) + p · q1 + (1 − p) · q2

= p · (
∑
q0

µ1(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ1(v0,q0) · (Φ(v0 : A) + q0))

+ (1 − p) · (
∑
q0

µ2(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ2(v0,q0) · (Φ(v0 : A) + q0))

=
∑
q0

q0 · (p · µ1(◦,q0) + (1 − p) · µ2(◦,q0))

+
∑

(v0,q0):v0,◦

(Φ(v0 : A) + q0) · (p · µ1(v0,q0) + (1 − p) · µ2(v0,q0))

=
∑
q0

µ(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ(v0,q0) · (Φ(v0 : A) + q0).

• (L:Prob) By assumption, we know that Γ = ·, q = p · qH + (1 − p) · qT , and A =
pot(prob{qH ;qT }; 0) for some qH ,qT ∈ Q≥0. By inversion, we have µ = δ (p, 0). Thus we
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conclude this case by

Φ(V : Γ) + q = p · qH + (1 − p) · qT

= Φ(prob(p) : prob{qH ;qT }) + 0 =
∑

(v0,q0):v0,◦

µ(v0,q0) · (Φ(v0 : A) + q0)

=
∑

(v0,q0):v0,◦

µ(v0,q0) · (Φ(v0 : A) + q0) +
∑
q0

µ(◦,q0) · q0.

• (L:FlipS) By assumption, we have Γ;q + qH ⊢ e1 : A and Γ;q + qT ⊢ e2 : A. By inversion, we

have V (x) = prob(p), V ⊢ e1 ⇒n µ1, V ⊢ e2 ⇒n µ2, and µ = p · µ1 + (1 − p) · µ2 for some

p ∈ [0, 1]. By the induction hypothesis, we have

Φ(V : Γ) + q + qH ≥
∑
q0

µ1(◦,q0) · q0 +
∑

(v0,q0)

µ1(v0,q0) · (Φ(v0 : A) + q0),

Φ(V : Γ) + q + qT ≥
∑
q0

µ2(◦,q0) · q0 +
∑

(v0,q0)

µ2(v0,q0) · (Φ(v0 : A) + q0).

Thus we conclude this case by

Φ(V : Γ, x : prob{qH ;qT }) + q

= Φ(V : Γ) + p · qH + (1 − p) · qT + q

= (p · Φ(V : Γ) + (1 − p) · Φ(V : Γ)) + (p · qH + (1 − p) · qT ) + (p · q + (1 − p) · q)

= p · (Φ(V : Γ) + q + qH ) + (1 − p) · (Φ(V : Γ) + q + qT )

≥ p · (
∑
q0

µ1(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ1(v0,q0) · (Φ(v0 : A) + q0))

+ (1 − p) · (
∑
q0

µ2(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ2(v0,q0) · (Φ(v0 : A) + q0))

=
∑
q0

(p · µ1(◦,q0) + (1 − p) · µ2(◦,q0)) · q0

+
∑

(v0,q0):v0,◦

(p · µ1(v0,q0) + (1 − p) · µ2(v0,q0)) · (Φ(v0 : A) + q0)

=
∑
q0

µ(◦,q0) · q0 +
∑

(v0,q0):v0,◦

µ(v0,q0) · (Φ(v0 : A) + q0).

□

A.3 Lem. 5.4
Proof. Let’s consider the ω-chain completeness. Let ν (v,q)

def

= limn→∞ µn(v,q) for all v , ◦

and q. Let P
def

=
∑

(v ,q):v,◦ ν (v,q). We want to construct ν◦ to be the “limit” of {λq.µn(◦,q)}n∈N.

Define f ◦n (q)
def

= µn({◦} × [0,q]) for all n and q. Then for each n ∈ N, f ◦n is monotone and right-ω-
continuous and for all q ∈ Q≥0 ∪ {∞}, { f ◦n (q)}n∈N is non-increasing. Let f ◦ be the pointwise limit

of { f ◦n }n∈N. Because both Q≥0 ∪ {∞} and [0, 1] are ω-complete partially ordered sets, the right-

ω-continuous functions between them also form an ω-complete partially ordered set. Therefore,

f ◦ is also right-ω-continuous, and we can define ν◦(q)
def

= f ◦(q) − limq′→q− f ◦(q′). The final step
is to prove that f ◦(∞) = 1 − P . For each n ∈ N, we have f ◦n (∞) = 1 −

∑
(v ,q):v,◦ µn(v,q). Thus

f ◦(∞) = limn→∞ f ◦n (∞) = limn→∞(1 −
∑

(v ,q):v,◦ µn(v,q)) = 1 − limn→∞

∑
(v ,q):v,◦ µn(v,q) =

1 −
∑

(v ,q):v,◦ limn→∞ µn(v,q) = 1 − P by the Monotone Convergence Theorem. □
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A.4 Lem. 5.6
Proof. Let µ

def

=
⊔

n∈N µn and define f ◦n (q)
def

= µn((Val ∪ {◦}) × [0,q]). Similarly to the proof

of ω-chain completeness, f ◦n is monotone and right-ω-continuous for each n ∈ N and for all

q ∈ Q≥0∪{∞}, { f ◦n (q)}n∈N is non-increasing. Moreover, f ◦n (∞) = 1 for alln ∈ N. Nowwe extend the

the domain of f ◦n fromQ≥0∪{∞} to R≥0∪{∞} as д◦n(r ) = limq→r+ f
◦
n (q). By the right-ω-continuity,

we know thatд◦n(q) = f ◦n (q) for allq ∈ Q≥0∪{∞}. Therefore,
∑

(v ,q) µn(v,q)·q =
∫
(д◦n(∞)−д◦n(r ))dr .

Let д◦ be the pointwise limit of {д◦n}n∈N, so д
◦
is also right-ω-continuous. Thus

h(µ) =
∑
q

µ(◦,q) · q +
∑

(v ,q):v,◦

µ(v,q) · (Φ(v : A) + q)

=
∑
(v ,q)

µ(v,q) · q +
∑

(v ,q):v,◦

µ(v,q) · Φ(v : A)

=

∫
(д◦(∞) − д◦(r ))dr +

∑
(v ,q):v,◦

µ(v,q) · Φ(v : A)

=

∫
(1 − д◦(r ))dr +

∑
(v ,q):v,◦

µ(v,q) · Φ(v : A)

=

∫
(1 − lim

n→∞
д◦n (r ))dr +

∑
(v ,q):v,◦

lim

n→∞
µn (v,q) · Φ(v : A)

=

∫
lim

n→∞
(1 − д◦n (r ))dr +

∑
(v ,q):v,◦

lim

n→∞
µn (v,q) · Φ(v : A)

= lim

n→∞

∫
(1 − д◦n (r ))dr + lim

n→∞

∑
(v ,q):v,◦

µn (v,q) · Φ(v : A).

Sinceh(µn) =
∫
(д◦n(∞)−д◦n(r ))dr+

∑
(v ,q):v,◦ µn(v,q)·Φ(v : A) =

∫
(1−д◦n(r ))dr+

∑
(v ,q):v,◦ µn(v,q)·

Φ(v : A) and h(µn) ≤ M for all n ∈ N, we conclude that h(µ) ≤ supn∈N h(µn) ≤ M . □
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