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Effect of Modeling Complexities on Extreme Wind Hazard

Performance of Steel Lattice Transmission Towers

Reliable computational models of transmission towers are key to improved
hurricane risk management of transmission systems. However, a comprehensive
understanding of involved complexities and their effects on the extreme wind
performance of towers is not available. Particularly, buckling effects have not been
captured properly and the failure of joints and the post buckling behavior of towers
have not been investigated. Moreover, contributions of these and other
complexities to key tower responses in the presence of uncertainties are not known.
This paper presents an approach to modeling lattice towers that captures buckling
and post buckling, and joint slippage and failure and analyzes their effects, while
considering uncertainties, through a set of probabilistic, nonlinear pushover
analyses in OpenSEES. Results for a double circuit lattice tower indicate that
buckling can lead to 30% reduction in the load bearing capacity of towers. Joint
slippage reduces the load bearing capacity of the tower by 6%. It also considerably
increases tower displacement. Connection failure can also occur in rare cases and
it subsequently, changes tower’s failure mode. The proposed modeling approach
can be used in risk analysis of transmission systems to investigate various

performance levels and improve the design of towers.

Keywords: Power transmission system; steel lattice towers; Finite Element

method; joint slippage; joint failure; pushover analysis

1. Introduction

Overhead electric transmission lines face substantial risk of damage in hurricane prone
regions around the world. Past failures of these systems resulted in considerable economic

losses as well as societal and organizational disruptions (Campbell, 2012; Hoffman and



Bryan, 2013). These events highlight the critical role of transmission systems in
supporting power delivery to large geographical areas. High intensity wind-related hazard
events such as hurricanes can result in different failure modes in transmission towers as
these structures are composed of a large number of elements and connections with
different behaviors. Moreover, uncertainties in the demand and capacity of transmission
towers and the complex behaviors of tower elements including post yielding and post
buckling behavior of the members, joint slippage, and joint failure, along with
imperfections enlarge the space of potential failure modes (De Souza, 2019, Kempner et
al., 2002). However, these complexities are commonly neglected in the design and
analysis of transmission towers. For example, Tapia-Herndndez et al. (2017) and Tapia-
Hernéndez and Sordo (2017) investigated the collapse mechanism of transmission towers
through pushover analysis. They observed that the failure is commonly associated with a
stress concentration in the main vertical elements of the tower at the bottom or mid height
of the tower. The stress concentration results in buckling of the elements, which
subsequently leads to the collapse of the tower due to the development of a failure
mechanism. Although the aforementioned studies tried to capture the nonlinear behavior
of lattice towers, the effect of imperfection on the buckling capacity of steel elements as
well as the effect of joint slippage and uncertainty (in material and loading) on the
development of failure modes are not considered. Moreover, Jiang et al. (2011),
performed pushover analyses of transmission towers by considering joint slippage and
buckling effects. However, the model does not account for the effect of uncertainties in
demand and capacity on the performance of towers. Imperfections, post yielding
elasticity, and connection failure effects were not considered as well. Neglecting
imperfections in the alignment of elements can induce errors in the estimation of buckling

in steel elements, as the additional P-0 effects are not captured. Moreover, the generated



model appears to follow an elasto-plastic behavior and therefore does not account for post
yielding elasticity. More recently, Jiang et al. (2017) investigated effects of joint slippage
by enhancing their Finite Element model to consider imperfection effects. However, post
yielding and post buckling effects, failure of joints, and effects of uncertainties were not
captured in the model. In another recent study, Fu and Li (2018) performed a probabilistic
analysis of transmission towers to develop wind fragility functions. These fragility
models offer an important initial step toward reliability and risk analysis of transmission
systems. However, the generated numerical model of towers does not consider joint
slippage, joint failure, post buckling, and post yielding behaviors. The individual and
collective effects of these factors can impact the emergence and likelihood of failure
modes in transmission towers as load distribution and element stresses may not be
estimated properly. Furthermore, the study assumes that if the displacement of the tower
exceeds a predefined buckling displacement, the tower fails. The buckling displacement,
there, is defined as the displacement corresponding to a significant change in the slope of
pushover curve for a deterministic analysis of tower based on mean values of uncertain
variables. However, according to the provided probabilistic pushover curves, for a large
percentage of realizations, the tower can resist against further loading after the predefined
buckling displacement is reached. This inconsistency in the definition and observations
of failures in simulation results is, in part, due to the inability of the implemented Finite
Element models to capture element and joint failures, and the propagation of
nonlinearities because of load redistributions. This further highlights the need for reliable
computational models for fragility and risk analysis purposes. Furthermore, Kaminski et
al. (2008) investigated the impact of uncertainty (in material and loading) on member

forces and top displacement of a transmission tower subjected to conductor failure.



However, the impact of uncertainty on the emergence and likelihood of failure modes is
not investigated in that study.

A number of studies, in addition to sharing some of the modeling limitations
explained earlier, conservatively underestimated the load bearing capacity of
transmission towers. These studies assumed that any yielding or buckling in tower
elements results in the complete failure of the structure (Rezaei et al., 2017; Rezaei et al.,
2016; Tessari et al., 2017; Kroetz et al., 2017). As towers are statically indeterminate,
failure of a single bracing does not necessarily result in the collapse of the tower as long
as there is no failure mechanism in the system. Usually a failure mechanism is
accompanied by the buckling of the main elements in the tower including the vertical
elements in the cage or the leg elements. A handful of studies performed pushover
analyses to obtain the load bearing capacity of towers. However, they failed to capture
post peak behavior of towers in pushover curves (Jiang et al., 2011; Fu and Li, 2018).
Characterizing such behaviors is important in establishing limit state functions for severe
states of damage such as partial or complete collapse. This is in part due to the inability
of their numerical models to handle highly nonlinear phenomena such as post yielding,
post buckling, and complex joint slippage behaviors. In terms of considering joint
slippage, a few studies used experimentally validated joint slippage models such as those
developed by Ungkurapinan (2000). As pointed out in (Wang et al., 2017), these models
however do not accurately represent the actual joints used in transmission towers, as the
number, type, and capacity of bolts as well as the dimension of elements and steel material
properties are different from one joint to another. Therefore, the few models presented by
Ungkurapinan (2000) cannot cover all these variations. In order to overcome this issue,
Wang et al. (2017) leveraged the capabilities of ANSYS Finite Element software to model

joints embedded in their Finite Element model. Although this method results in an



accurate estimation of joint slippage behavior, the computational cost associated with
adding contact elements that can capture joint slippage behavior is considerably
expensive. In order to avoid this issue, Wang et al. (2017) limited their joint models to
only a few connections in the tower and neglected the joint slippage behavior for the rest
of the connections. This issue exacerbates in the case of probabilistic analysis of
transmission towers where a large number of simulations are required.

In order to address the aforementioned limitations, the current study investigates the
effect of different complexities on the load bearing capacity and emergence of failure
modes. For this purpose, six different models with varying levels of complexity are
generated. Among these models, the simplest neglects buckling and joint slippage and
the most complex one considers buckling, joint slippage and joint failure. Detailed
information about these models are provided in the numerical study section. Moreover,
the impact of various uncertainties on the performance of towers is investigated by
performing a set of nonlinear static pushover analyses in OpenSEES (McKenna, 2000)
Finite Element platform through 200 realizations of uncertain variables generated by
Latin Hypercube Sampling (LHS) method for each of the six models. The considered
complexities include post buckling and post yielding behavior of tower elements,
nonlinear joint slippage models with different clearance levels, and the failure of joint.
Uncertainties include those associated with steel material behavior, imperfections, joint
slippage behavior, and wind induced loadings. In order to account for out-of-plane
displacements of steel elements and associated P-d effects, large deformations are
accounted for via a co-rotational geometric transformations. To take full advantage of
large deformations to accurately capture buckling effects, each element is divided into
four sub-elements modeled with displacement-based beam column elements. This

element discretization accurately captures the out of plane displacements when the



element buckles. Additionally, an initial camber displacement is applied to the mid-nodes
of each element to account for imperfection effects. In this study, based on the joint
slippage model of Ungkurapinan (2000), a modeling approach for joints is proposed that
can accurately account for the impact of joint slippage as well as joint failure in lattice
towers. For this purpose, three hysteretic material models in OpenSEES are put together
in parallel to generate the nonlinear force-deformation behavior of connection reported
in Ungkurapinan (2000). This model is then extended to account for joint failure by
reducing the load capacity of the connection after reaching the maximum capacity. It
should be noted that the joint slippage models suggested by Ungkurapinan (2000) are not
necessarily representative of the accurate joint slippage behaviour in the assumed lattice
tower. However, in terms of general backbone behavior, bolt numbers, and configuration,
they match the joints in the lattice tower assumed in this study.

A 27.4 m double circuit vertical steel lattice tower is considered to perform the
analyses. This type of steel tower is one of the most common towers in the US. For each
realization of uncertain variables, a nonlinear static pushover analysis is performed and
therefore, 200 pushover curves are obtained. The pushover analysis can provide better
insights regarding the impact of uncertainties and various modeling complexities on the
load bearing capacity, failure modes, and force-displacement behavior of transmission
towers. As the proposed modeling approach is able to handle highly nonlinear post peak
load behaviors, it can be easily used to investigate different performance levels of lattice
towers. This will help in risk and life cycle cost analysis of transmission lines as the

incurred cost is a direct function of the type and extent of damage to lattice towers.



2. Finite Element (FE) Modeling of Lattice Transmission Towers

Overhead lattice transmission towers exhibit complex behaviors under wind loadings.
This complexity in part stems from the fact that a large number of components in lattice
towers experience material and geometric nonlinearities especially under strong wind
loadings such as hurricanes. Although during high intensity wind hazard scenarios, a
tower may experience various levels of damage, as long as conductors are supported with
a safe distance from each other and earthed objects, the transmission of electricity will
not be interrupted. Therefore, from power delivery perspective, it is important to
distinguish damage from collapse. A collapse in a transmission tower often occurs when
a failure occurs in the main elements of the tower. This could be due to buckling or
yielding of a couple of elements in the leg such that the tower overturns, or it could be
due to the failure of vertical elements in the cage or failure of the cross arms such that the
conductors are no longer supported leading to the disruption of power delivery. In order
to capture these complex behaviors and reliably identify and characterize the various
modes of failure, high-fidelity Finite Element models for lattice transmission towers are
required. Toward this goal, a modeling procedure is proposed here that is capable of
considering material nonlinearity, P-§ and P-A effects, buckling due to imperfections, and
nonlinear joint slippage behavior and the failure of bolted connections. In the following
subsections, different modeling aspects of the proposed nonlinear Finite Element

modeling of transmission towers are presented.

2.1. Steel Elements

Steel lattice towers are mainly constructed by steel angle members and bar elements.
Although under service loads steel elements act approximately as linear elastic elements,

under severe loads such as strong winds, steel elements can undergo buckling and post



yielding behavior. Since the objective of this paper is to identify different failure modes
in transmission towers, it is imperative to accurately capture the post yielding behavior
of steel elements. OpenSEES Finite Element platform is capable of modeling nonlinear
steel elements by a broad library of materials that can account for nonlinear behavior.
Among these models, “steel01” material model considers a bilinear material model. The

behavior of this model is defined with modulus of elasticity, E, yield stress, f,,, and post

yield elasticity, E. In order to define tower elements, displacement-based nonlinear
beam-column elements and force-based nonlinear beam-column elements can be
considered. Both elements consider plasticity at multiple points along the length of the
element through defining integration points. In addition, at each integration point, the
section of the element is divided into multiple fiber elements along the height and width
of the element. Each fiber acts as an individual element with a unique material behavior
and cross sectional area. Therefore, at each cross sectional area different fiber elements
can undergo different level of loading. Subsequently, bending moments and axial stresses
can be accurately distributed along the fibers to represent the actual force distribution at
each integration point. In this case, plastic deformations can be accurately estimated.
Since displacement formulation provides better convergence during nonlinear analyses,
in this study, displacement-based beam-column elements are utilized. For each element,
5 integration points are defined and the fiber sections associated with each integration
point uses “steel01” material with 10 fibers along the height of angles and 3 fibers along
the width of angles. The number of fibers is in line with the experimentally validate

models suggested by Uriz et al. (2008).



2.2. Buckling

Buckling in lattice elements can considerably contribute to the overall performance of
towers. A number of previous investigations identified buckled elements in numerical
models based on design code recommendations for maximum compressive forces (Rezaei
etal., 2016; Tessari et al., 2017; Kroetz et al., 2017). However, this approach has limited
application as the formulas suggested in design codes are approximate. In addition, the
analyzed performance of the tower is only valid until the first buckling occurs and the
produced Finite Element (FE) model will not be able to accurately capture the behavior
of the tower post the first element buckling. In another study, Jiang et al. (2011) used the
capabilities of USFOS (2003) Finite Element platform to model buckling effects. For this
purpose, each element is modeled using a single nonlinear beam element and the stresses
are checked at the ends and mid length of the element. If the stress at each of these points
exceeds the yielding stress, a plastic hinge is assigned to the corresponding point.
Although this approach provides a better estimation of buckling effects, it is not able to
account for imperfections and post buckling effects. The imperfection effects are not
accounted for as the elements are modeled using a single straight element. Post yielding
effects are not considered as well because the plastic hinges appear to follow an elasto-
plastic behavior without any post yielding elasticity. In addition, in order to accurately
estimate buckling effects, large deformations should be considered in the Finite Element
analysis. However, large deformation effects appear to be neglected in the analysis. In
another study, Jiang et al. (2017) used NIDA (2011) Finite Element platform to account
for buckling effects. NIDA is capable of considering P-§ and P-A effects. P-6 effects
account for additional loading caused by initial bowing and P-A effects account for
additional loading caused by frames lateral displacement (Jiang et al., 2017). Similar to

USFOS, it seems that this model cannot account for large deformations. In addition, the

10



post yielding behavior of elements cannot be captured as the model is not capable of
considering post yielding elasticity of tower elements. Therefore, this model is not able
to accurately estimate the buckling effects.

In order to capture buckling appropriately, imperfections, P-A and P-§ effects, and
large deformations should be considered. OpenSEES Finite Element platform is capable
of considering buckling in the system. According to Uriz et al. (2008) to account for
buckling in OpenSEES, each element should be divided into at least two inelastic beam-
column elements with at least three integration points. In addition, 10-15 layers of fibers
along the height and 3-5 layers of fibers along the width of each section should be
considered. Moreover, the middle node should have an initial camber displacement of
0.05~0.1% of the original length of the element. The middle node is essential in the large
displacement formulation in order to account for in-plane and out-of-plane deformations
in the middle of the element (Uriz et al., 2008). In addition, in order to account for
geometric nonlinearities, large deformations should be considered through a “Co-
rotational” geometric transformation in OpenSEES. Uriz et al. (2008) validated their
inelastic buckling model by a set of cyclic loading experiments performed by Black et al.
(1980).

The model suggested by Uriz et al. (2008) in terms of the number of element
discretizations was examined for the tower elements used in this study. It was observed
that although breaking each element into half provides better estimates for the buckling
force in tower elements, to obtain an acceptable accuracy for the buckling behavior of
angle section elements, more discretizations are required. For this purpose, a single
element with two different boundary conditions was modelled in OpenSEES as shown in
Fig 1. In the first model, it is assumed that both ends of the element are pinned (Fig. 1.a)

and in the second model it is assumed that both ends are fixed. These two models are
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representative of two extreme cases. In transmission towers, the elements are connected
to one another using bolts. Depending on the number of bolts, capacity of the bolts, and
the pre-tensioning force in the bolts, the boundary conditions for each element follows a
semi-rigid connection somewhere between the two extreme cases presented in Fig. 1. If
the buckling model works for both extreme cases, it is expected that it will capture the
behavior for all the elements in the transmission tower. Table 1 and Table 2 provide the
result of a convergence study on the effect of number of discretizations and imperfection
camber displacement on the buckling force of a 1.75X1.25X0.1875 angle section for the
simply supported and fixed end models, respectively. This element is one of the smallest
sections in the tower. It is 3.024 m long with a yield stress of 245.6 MPa and a modulus
of elasticity of 192.1 GPa. The results show that for the simply supported beam, four
elements yields 2.4% error using 0.001L camber displacement in the middle. For the fixed
end beam, four and eight elements yield 15.5% and 1% error, respectively. The results
of the convergence study for a 4X4X0.3125 angle section beam are also presented in
Tables 3 and 4. This section is one of the strongest sections used in the transmission
tower. The length of the element is 1.55 m and the material properties of the section is
the same as those for the 1.75X1.25X0.1875 section. For a simply supported beam, four
elements yield 0.2% error, while for the fixed end beam, two elements result in 5.9%
error. Therefore, for the range of the elements used in the current study, if each tower
element is discretized into eight sub-elements, the accuracy of the model in terms of
capturing the true buckling force is guaranteed. However, it should be noted that
discretizing the elements into eight sub-elements will considerably increase the
computational demand. This becomes especially challenging in case of reliability analysis
as they require a large number of simulations. On the other hand, four sub-elements can

provide a faster analysis without considerable loss of accuracy, as four elements yield
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moderate error only for the case of the fixed end beam for 1.75X1.25X0.1875 angle
section. However, the rigidity of the connections for smaller sections that are usually used
as bracing elements with one bolt is closer to a pinned connection. Therefore, the
maximum error is closer to 2.4%. Subsequently, in this study, for the analysis of the
tower, each element is divided into four sub-elements to provide a sufficiently accurate
model with reduced computational costs. A sketch of the discretization model of each
element is provided in Fig. 2. It should be noted that to account for the effect of
uncertainty, the imperfection value in the mid-node is assumed to follow a uniform
distribution between 0.05% and 0.1% of the length of the element. In addition, the shape
function for Euler buckling force is defined as gp=sin(mx/L), where x is the distance from
the left side end of the element. The value of the imperfection at each node is calculated
accordingly. For the current analysis that discretizes each element into four sub-elements,
the value of imperfection at the first, and third node is obtained as 0.707 of the
imperfection in the mid-node (Fig.2).”Moreover, the buckling force is a function of the
inverse of KL/r, where K is the column effective length factor, L is the unsupported
length, and r is the radius of gyration. For an element with the same unsupported length
along all axes (same K along all axes), the smallest radius of gyration results in the lowest
stress that causes buckling in the element. The radius of gyration for the weakest axis is
the smallest, therefore, elements tend to buckle along their weakest axis. To capture this
behavior, the imperfection was applied perpendicular to the weakest axis of L-section and
bar elements (as shown in Fig. 3) as the imperfection applied perpendicular to the weak

axis causes additional moment along the weak axis.
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Eccentricity also impacts the buckling capacity of tower elements as it induces
additional moment in the elements. There are two eccentricities in transmission towers.
The first form of eccentricity is where elements are connected to one another such that
the lines passing through the centers of gravity of the sections do not coincide. However,
according to Fang et al., (1999), transmission towers are designed such that such
eccentricities are avoided. This is achieved by aligning bolted connections using gusset
plates. The second form of eccentricity exists in joints with bolts in one leg of angle
elements. As OpenSEES automatically aligns elements along their centroid, there is no
straightforward approach to account for such eccentricities in OpenSEES. In order to
accurately account for eccentricities, additional nodes should to be defined in the vicinity
of each joint. The new nodes should be located at a distance equal to the eccentricity of
the elements and subsequently it should be connected to the joint using rigid link
elements. This process becomes significantly challenging especially for transmission
towers where there are a large number of connections. In addition, defining additional
nodes increases the complexity and the computational costs of the Finite Element analysis
as the dimension of the stiffness matrix drastically increases by adding additional nodes.
Therefore, in this study the effect of eccentricity due to bolts in one leg of the angle

section is neglected.

2.3. Joint Slippage and Joint Failure Model

In performance assessment of transmission towers, joints are commonly simplified as
rigid or pinned connections (Rezaei et al., 2016; Tessari et al., 2017; Kroetz et al., 2017).
However, under strong wind loadings such as hurricanes, joints slippage occurs, which is
a nonlinear phenomenon. A few studies provided slippage behavior of bolted joints by

performing a set of static load tests (Kitipornchai et al., 1997; Ungkurapinan, 2000). The
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experimentally validated model developed by Ungkurapinan (2000) have been used in
the previous studies on the impact of joint slippage of bolted connections in steel lattice
towers (Jiang et al., 2017; Jiang et al., 2011). The study also provides uncertainties of key
points in the force-deformation behavior of the connections as well as different clearance
levels for the arrangement of the bolts. Although connections can fail under service and
severe loadings, in all the previous studies, joint failure mode is neglected. The three
connection models proposed by Ungkurapinan (2000) are shown in Fig. 4. Connection
Type A models a compression joint in transmission line towers. Therefore, it can
accurately approximate the slippage behavior of lap splices in the main legs of the tower.
The backbone curve for connection Type A is provided in Fig. 5.a. This backbone
behavior consists of four phases. In phase 1, the connection acts as an elastic element due
to a static friction between the angle elements. If the axial force becomes as large as the
friction force between the two angles, the angles start to slip with reduced frictional
stiffness (phase 2). Subsequently, if the slippage is large enough that the bolts make
contact with the edges of the holes, due to the load bearing of the bolts, a higher stiffness
is observed (phase 3). Moreover, if the load becomes large enough, a plastic deformation
can occur in the angle elements or bolts and a nonlinear behavior is observed in the
backbone curve of the connection until the connection fails (phase 5). Connection Type
B model was designed for representing tension joints. A schematic backbone curve of
this model is presented in Fig. 5.b. Ungkurapinan (2000) observed that unlike connection
Type A, in the second phase of the backbone curve of connection Type B, stiffness is
very small and a nearly pure slippage occurs in the model. Therefore, the forces at the
initial and end points of this phase are identical (Phase 2 in Fig. 5.b). Connection Type C
represents simple joints in transmission towers where there is no gusset plates or splice

angles. The backbone curve of this model is similar to connection Type B, which has a
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pure slippage in phase 2 (Fig. 5.b). Another important consideration in the slippage
behavior of connections is the level of clearance for joint bolts. Due to construction
limitations, commonly, holes are made slightly larger than the diameter of bolts. This
increase in the diameter of holes helps construction workers to fit bolts into the holes
much easier. Ungkurapinan (2000) also investigated the impact of construction clearance
on the slippage behavior of bolted connections. It was observed that the construction
clearance affects the deformation length for phase 2 of slippage. The construction
clearance was categorized into three levels called minimum, normal, and maximum
clearance (Fig. 6).

As noted earlier, the current study adopts the model developed by Ungkurapinan
(2000). Therefore, three connection types in the tower are considered. The first
connection is the lap splices for the legs of the tower. For this connection, Type A
connection model proposed by Ungkurapinan, (2000) is considered (Fig.7.a). Second
connection is the connection of bracing elements to each other (Fig. 7.b). In order to
model this connection, connection Type B suggested by Ungkurapinan (2000) is chosen.
Finally, the third connection is the connection of bracing elements to the main elements
(Fig. 7.c-e). In this study, connections of bracing to main elements are made with one,
two, and three bolts. Since Ungkurapinan (2000) provided models for connection Type C
with one to four bolts, for the connection of bracing elements to the main elements,
connection Type C is considered.

To model joint slippage behavior of joints, Zerolength elements are used in
OpenSEES. Zerolength elements can be defined between two nodes with identical
coordinates. The direction of each Zerolength element can be specified by defining its
local axes. Therefore, in order to define a joint slippage model, two nodes should be

defined at the location of the connection. Subsequently, a Zerolength element can be
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applied between the two nodes (Fig. 8). It should be noted that the nodes defined for the
Zerolength elements and shown in Fig. § are actually located at the same point. In Fig. 8
only for showcasing the direction of connections the nodes are shown in non-identical
locations. Moreover, local axis of the Zerolength element should be defined such that the
local x direction is parallel to the direction of slippage. For each Zerolength element, three
transitional and three rotational local axes can be defined. The slippage model should be
applied along local x axis of Zerolength element and a large stiffness is applied to other
transitional local axes to prevent any relative displacement in other transitional degrees
of freedom.

In order to have a reliable assessment of the slippage behavior of connections, it is
imperative to have a force-deformation model that can accurately estimate the nonlinear
connection models presented in Fig. 5. OpenSEES platform is not able to directly model
this complex behavior. However, OpenSEES provides the capability of combining
different materials in parallel and series formations. In addition, since in nonlinear
pushover analyses, there might be multiple unloading in the elements that are already
yielded or buckled, the material model should be capable of modelling hysteretic behavior
in the connections. In order to generate the required joint slippage model, three hysteretic
materials are defined in parallel configurations as shown in Fig. 9. As seen in Fig. 9, the
assumed model is able to accurately approximate the model proposed by Ungkurapinan
(2000). Moreover, the proposed model is capable of capturing failure in the connections
by reducing the capacity of the connection to « times the max load capacity of the
connection as it is shown is Fig. 9. While the configurations of the joints in the considered
tower are close to those studied experimentally by Ungkurapinan (2000), they may not
be exactly the same for all connections. However, for the purposes of this study, the

implemented models can estimate the general impact of joint slippage with an acceptable
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accuracy. The only adjustment applied to the connection model compared to the model
suggested by Ungkurapinan (2000), is in the lap splices (connection Type A), where there
are a total of eight bolts in the connection. However, the closest model presented by
Ungkurapinan (2000), has a maximum of four bolts. For this particular connection, since
the angle elements are the same, the capacity of the connection is adjusted. For this
purpose, the force capacity of the joint at point D in Fig. 5.a. is found as the minimum of
the capacity of eight bolts, capacity of the gross angle section using the yield stress of the
element, and the ultimate capacity of the net (punched) angle section using the ultimate
stress of the element. The force capacity of points B and C are adjusted proportionally
from the model suggested by Ungkurapinan (2000). In addition, the force capacity of
point A in Fig. 5.a. is found by doubling the value suggested by Ungkurapinan (2000) as
this value is only affected by the number of bolts. For this connection, the same
displacement values suggested by Ungkurapinan (2000) are used as the displacement of
each phase is not affected by the number of the bolts.

It should be noted that in practice, joints are designed such that their capacity is
higher than the capacity of the connected elements and therefore, it is expected that the
connections do not fail as elements should fail first. However, considering uncertainties
in connection capacity and construction errors, among other factors, there is a small
probability that a failure can occur in the joints. Therefore, as this study analyzes the
extreme performance of transmission towers with a probabilistic perspective, the chance
of failure in the connections cannot be neglected. For this purpose, the Finite Element

model should also be able to account for failure in connections.

2.4. End Moment Conditions at Joints

The rigidity of connections in terms of transferring moments is a function of the number
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of bolts, the arrangement of the bolts, the pre-tensioning force, and the capacity of the
bolts. In design and analysis of transmission towers, it is commonly assumed that joints
are either pinned or fixed in rotational degrees of freedom. Although the assumption of
pinned connection is valid for joints with one bolt, it is not the case for connections made
of more than one bolt. For these joints, the moment-rotation behavior of the connection
can be obtained as a function of the force-deformation behavior of the same connection
with one bolt. Let’s consider a bolt connection as presented in Fig. 10.a, for each bolt in
the connection, here, it is assumed that the force-deformation behavior follows a
backbone curve as previously shown in Fig. 5. An assumption here is that bolt holes have
circular shape, therefore, independent of the direction of the slippage, the same backbone
force-deformation applies for the bolt. In addition, it is assumed that the failure of joints
is due to the plastic deformation in bolts and not angle sections. Considering the force-
deformation in Fig. 5, the contribution of one bolt in the connection to its moment
resistance can be derived as:

M=F.r (1)
where F is the force capacity of the joint presented in Fig. 5 and r is the distance between
the center of the bolt and the center of the connection (Fig. 10.a). In addition, the rotation
(0) of each bolt is a function of the displacement (&) of the bolt presented in Fig. 5 as:

0=946/r (2)
The resulting moment-rotation curve for the contribution of a joint to the connection
behavior is shown in Fig. 10.b. Because bolts in connections work in parallel, the derived
moment-rotation relations for individual bolts are combined in parallel to define the
moment-rotation relationship of the joints. It should be noted that the moment capacity
of single bolted connections is zero, therefore, they are modelled as pin. In addition, for

lap splices as both sides of the angle sections are connected with four bolts on each side,
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the behavior is very close to a fixed connection. Therefore, a fixed connection in

rotational degrees of freedom is assumed for lap splices.

3. Wind Load on Lattice Towers and Conductors

Wind load on transmission towers depends on a number of factors, including velocity and
direction of the wind, configuration, and geometry of towers. To determine wind loads
on transmission towers, the static equivalent gust wind load model in ASCEQ07 (2016) is
adopted here. According to this model, the wind force per unit length for a non-building
structure can be determined using:

fw =q,GCD (3)
where g, is the velocity pressure at height z on the tower, G is the gust-effect factor, Cr
is the force coefficient, and D is the diameter perpendicular to the wind direction. The
wind velocity pressure is calculated from:

q, = 0.613K,K,K, K, V? 4)
where K, is the velocity pressure exposure coefficient, K; is the wind directionality
factor, K, is the wind topographic factor, K, is the elevation factor, and V is the 3-second
gust wind velocity at 10 m above the ground line. K, is a function of the height from the

ground line and exposure category and is calculated from

(5)
z

max(4.75, z)>2/ @
g

K, = 2.01(

where z is the height from the ground line, assuming the transmission line is located in
an open terrain area, the exposure category is C, and a and z; are 9.5 and 274.32 m,
respectively (ASCEQ07, 2016). Although Eq. (3) has been developed for atmospheric wind
loads, it offers a reasonable load pattern for hurricane-induced loads and it is widely used

as the hurricane load pattern ASCE07 (2016). K,4, K., and K,; are taken as 1 (ASCEQ7,
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2016). The gust-effect factor, G, accounts for the effects of the dynamic nature of wind
forces on the tower. In the case of the transmission tower, G is set as 0.85. According to
ASCEO07 (2016) the force coefficient, Cr, for squared trussed towers is calculated as
Cr=4€*-59€ +4 (6)
where € is the ratio of solid area to gross area of the tower face under consideration. In

addition, a force coefficient equal to 1 is considered for conductors (ASCE 74, 2009).

4. Uncertainties and Probabilistic Simulations

Most of the current studies consider deterministic models to investigate the performance
of towers (Jiang et al., 2017; Jiang et al., 2011). Although deterministic models provide
insights about the average behavior of towers, they cannot account for variations in the
demand and capacity and therefore, they cannot identify different failure modes in a
transmission tower. There are different uncertainties in modelling of transmission towers.
Steel material properties, wind loads, cross sectional areas, joint slippage models, and
imperfections, are uncertain variables. Although towers are commonly designed to fail
under buckling of leg elements (Tapia-Hernandez et al., 2017), uncertainty can affect the
performance of towers by changing the level of demand and capacity on the elements of
the structure, and therefore, the structure as a system. Consequently, if uncertainties are
considered, it is expected that for a percentage of realizations of the structure and loads,
other failure modes will emerge. Subsequently, it is imperative to investigate the
performance of transmission towers considering all uncertainties involved in modelling
of these structures.

In order to investigate the impact of uncertainties on the performance of towers, a
probabilistic approach is required. A Monte Carlo simulation approach is adopted here to

generate realizations of uncertain variables and investigate effects of uncertainties on the
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emergence of failure modes. The behavior of steel is defined with the modulus of
elasticity E, yield stress f,,, and post yield elasticity E;. The distribution type, mean and
coefficient of variation (COV) for these random variables are presented in Table 5. In
addition, imperfections are considered to be uncertain. It is assumed that imperfections
follow a uniform distribution between 0.0005-0.001 of the length of the element (Uriz et
al. 2008). Furthermore, it is assumed that all elements in a tower have the same material
properties; however, imperfection values are different. This is mostly due to the high
variability in imperfection since construction and assembly of elements induce random
imperfections. On the other hand, the elements used to construct the tower are usually
made from the same stack of steel profiles where their properties are considerably close
to one another. Although in a single realization, all elements are modeled with the same
material properties, the material properties from one realization to another is modeled
probabilistically using Latin Hypercube Sampling (LHS) method.

Uncertainties in the variables defining wind pressures on tower elements are also
included. The probabilistic model proposed by Ellingwood and Tekie (1999) is adopted
to obtain the probabilistic model of each uncertain parameter defining wind load
pressures. Gust effect factor, force coefficient, velocity pressure exposure coefficient and
wind directionality factor are the uncertain variables in Ellingwood and Tekie (1999) and
are included in this study. Table 5 presents the probability distribution model and COV
of the random variables adopted from Ellingwood and Tekie (1999). The mean value of
these uncertain variables are obtained from section 3.

As mentioned earlier, Ungkurapinan (2000) performed a set of experiments and
reported the mean and standard deviation of variables defining the nonlinear slip behavior
of connections. This study adopts these probabilistic models to investigate impacts of

uncertainties in the connections behavior on the performance of lattice towers.
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Ungkurapinan (2000) only reported the mean and standard deviation of key variables on
force-deformation curves. However, the probability distribution model is not reported.
Since the uncertain variables are all nonzero, a lognormal distribution is assumed to
define the probability distribution models. Therefore, all variables except the slippage
length are defined by a lognormal distribution. For the slippage length, Ungkurapinan
(2000) considered three levels of clearance and based on each clearance level, a slippage
length was obtained. However, the clearance level can be any value between the
minimum and maximum clearance limits. Therefore, instead of defining three clearance
levels, in this study, a uniform distribution is considered for the slippage length. The
minimum and maximum values of the slippage length correspond to the minimum and
maximum clearance levels, respectively. The distribution, mean and COV of each
uncertain parameter defining the slippage behavior of connections Type A-C are provided

in Table 6.

5. Numerical Study

5.1 Configuration of the tower

In performance assessment of transmission towers, uncertainties in material properties,
connection behavior, and wind-induced loadings may affect the emergence of different
failure modes. Deterministic analysis methods are not capable of identifying many of
failure modes. In order to address this limitation, probabilistic analysis procedures such
as Monte Carlo simulation method are required to account for various uncertainties in
demand and capacity of the system. In this section, a Monte Carlo simulation approach is
adopted to investigate the influence of uncertainty on the performance of the system and
associated failure modes in transmission towers. For this purpose, an actual 27.4 m double

circuit steel lattice tower located in a hurricane prone coastal area in south of the United
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States is considered for nonlinear static pushover analysis. Double circuit steel lattice
towers are commonly used in coastal regions of the United States. Therefore, the chosen
tower is representative of a large percentage of lattice towers in hurricane prone regions.
Investigating the performance of this tower can provide a better understanding regarding
the performance of transmission towers in hurricane prone regions. A sketch of the
modelled tower is provided in Fig. 11. It is assumed that two lines of three phase
conductors at three cross arm levels and two lines of neutrals at the top are carried by the
tower. Therefore, a total number of eight conductors are carried by the line. The three
phase conductors have an overall diameter of 28.1 mm with a 1627 kg/km weight. These
conductors are called Drake based on US naming system for Aluminum Conductor Steel
reinforced (ACSR). In addition, the neutrals are optical ground wires (OPGW) with a
diameter of 13.4 mm. The span length of conductors is 258 m. It is assumed that multiple
spans with identical towers, conductors, and span lengths exist in the transmission line
system. If the properties of adjacent spans in a line are identical, the structural couplings
between the adjacent spans are not significant and can be neglected (Darestani et al.,
2016a; Darestani et al. 2016b; Darestani et al. 2017; Darestani and Shafieezadeh, 2017,
Bhat et al.,, 2018; Darestani and Shafieezadeh, 2019a; Darestani and Shafieezadeh,
2019b). Subsequently, in this study, a single transmission tower is modeled without any
conductors attached to it. However, the gravity and wind induced loadings from
conductors attached to the tower are applied at the intersection of cross arms and
insulators as point loads. The gravity and wind induced loadings are distributed equally
between adjacent towers. Therefore, to calculate point loads of conductors on the tower,
an effective span length of 258/2=129 m is considered for conductors at each side of the
tower. Subsequently, an overall effective span length of 258 m is considered for gravity

and wind load calculation for each line of conductor on the tower. It is also assumed that
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there is no horizontal angle in the horizontal plane between the conductors at each side
of insulators. Therefore, there is no unbalanced loading at the insulator location due to
the tensile force in the conductors. In addition, the failure of conductors is not considered
in this study, therefore, the associated unbalanced conductor load is not considered. This
unbalanced load will be addressed in future investigations. The tower is initially designed
to withstand a wind speed of 130 mph. This wind speed is used as the reference load
factor in the pushover analysis. Therefore the load factor of 1 corresponds to the 130 mph
design wind speed. In this section, a probabilistic pushover analysis investigates the
performance of the tower through 200 realizations of uncertain variables generated by
Latin Hypercube sampling (LHS) method with uncertain material, connection,
imperfection, and wind load models defined in sections 2-4. Subsequently, each tower is

analyzed in OpenSEES Finite Element platform.

5.2 Effect of modelling complexities on force deformation behavior of the

tower

In order to investigate the effect of modelling complexities, six different models presented
in Table 7 are developed in OpenSEES. In model NBUCL&NSLIP rigid connections are
considered and the buckling effect is not captured. Model BUCL adds buckling effect to
model NBUCL&NSLIP. Model SLIP does not consider buckling, but it considers joint
slippage effect. In this model, connections are modeled by setting « in Fig. 9 as 1. In this
case, there is no drop in the backbone curve of the connection and therefore, this model
is not capable of capturing failure in connections. However, model SLIPF sets a as 0.25.
Therefore, model SLIPF is capable of capturing failure in connections. Model

BUCL&SLIP considers both buckling and joint slippage. However, this model considers
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a as 1 and therefore, it is not capable of capturing failure in joints. Model BUCL&SLIPF,
which is the most accurate model, considers buckling, joint slippage and, and joint failure.
Similar to model SLIPF, this model considers a as 0.25. To consider the effect of wind
direction on the performance of the tower, wind is applied to the tower in transverse and
longitudinal directions. When a longitudinal direction is considered, wind induced
loading on conductors is zero because the wind is parallel to conductors. When a
transverse direction is considered, wind induced loading on conductors is maximum as
the projected wind surface area on conductors is maximum. In this study, a displacement-
control pushover analysis is performed using OpenSEES. For this purpose, the
displacement of the top of the tower is initially increased with 1 mm increments and the
equivalent load that causes the corresponding displacement is calculated using Newtown
line search method. The tolerance limit for the Newton line search method is set as 1e-5.
If the analysis does not converge using the initial displacement increment, the solver
reduces the displacement increments in several steps. In this study, the displacement
increment is reduced 5, 10, 100, 1000, and 10000 times until the convergence is achieved.
If the convergence is not achieved, the solver tries Newton with initial tangent, and
Broyden methods that are available in OpenSEES. Using the aforementioned solver on a
core 17 7700 Intel CPU with a clock speed of 3.7 GHz, each analysis of the least complex
(NBUCL&NSLIP model) and the most complex (BUCL&SLIPF model) model take
approximately 3 and 15 minutes, respectively. The pushover curves of all 200 realizations
of uncertain variables for the six considered models and for longitudinal and transverse
wind directions are provided in Figs. 12 and 13. In addition, these figures show the mean
and median load factor at each displacement increment in the pushover analysis. The
mean and median curves, which represent the average behavior of tower, show that as

expected buckling has a significant impact on the performance of the tower. In particular,
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buckling decreases the load bearing capacity of the tower. In addition, joint slippage can
significantly increase the lateral displacement while it slightly decreases the load bearing
capacity of the tower. Among 200 realizations of uncertain variables there were a handful
of extreme cases, in which connection failure occurs. However, these cases are rare and
therefore, they do not affect the expected load bearing capacity of the tower. These
extreme cases are discussed later in the next sub-section.

One major objective of this paper is to investigate the effect of modeling complexities
on the performance of transmission towers. For this purpose, effects of buckling, joint
slippage, and joint failure on load bearing capacity and lateral displacement of the tower
is investigated. As mentioned previously, when wind is applied in longitudinal direction,
the wind induced force on conductors is zero. However, since the tower is weaker about
longitudinal axis (Fig. 11), the load bearing capacity of the tower about longitudinal axis
is significantly lower than transverse axis. The actual values of load bearing capacity for
each realization is obtained from Figs. 12 and 13 and the mean and standard deviation of
load bearing capacity and the displacement corresponding to the load bearing capacity of
the tower are presented in Table 8. A lognormal distribution is found to provide a good
fit to the empirical distribution obtained from 200 pushover analyses. The probability
density functions for load bearing capacity and displacement at load bearing capacity are
also provided in Figs. 14 and 15. It should be noted that lateral displacement is an
important criteria that has been used as a serviceability limit state for design and analysis
of towers (Tessari et al., 2017; Kroetz et al., 2017). For both longitudinal and transverse
wind, considering model NBUCL&NSLIP, the load bearing capacity of the tower is
noticeably overestimated (Table 8). In this model, displacement-based beam-columns are
used assuming large deformations, but the elements are not divided into four sub-

elements and the initial imperfection is not applied. For longitudinal wind, comparing
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model NBUCL&NSLIP with model BUCL, the mean load bearing capacity of the tower
is reduced from 1.54 to 1.08, which shows a 30% reduction in the estimation of load
bearing capacity of the tower. Similarly, for the transverse wind, the estimated mean load
bearing capacity of the tower reduces from 2.57 to 1.9, which shows a 26% decrease.
This confirms that in performance assessment of transmission towers, it is essential to
divide each element into multiple sub-elements and apply initial imperfection to capture
the buckling behavior of tower elements accurately. Moreover, for a longitudinal wind,
considering slippage through model SLIP results in considerable increase in the lateral
displacement of the tower. For example, for the longitudinal wind equal to design wind
load of the tower (load factor equal to 1), the displacement of the tower from the mean
curve in Fig. 12 is equal to 0.3 m and 0.35 m for model NBUCL&NSLIP and model SLIP,
respectively, which shows a 16.7% increase in the lateral displacement of the tower. The
same trend is observed for the transverse wind direction. It should be noted that model
SLIP predicts the load bearing capacity of the tower as 1.41 times the design wind load
of the tower, which shows a 8.5% reduction in the estimation of load bearing capacity
compared to model NBUCL&NSLIP. This reduction is mostly attributed to additional P-
A effects that occur due to excessive lateral displacement of the tower. However, model
SLIP is still overestimating the load bearing capacity of the tower as it does not capture
buckling effects accurately. For the longitudinal wind, model SLIPF shows a similar
behavior to model SLIP as connection failure does not occur. However, for the transverse
wind direction, the load bearing capacity reduces from 2.24 (in model SLIP) to 2.16 (in
model SLIPF), which indicates a 4% reduction. This reduction is attributed to failure of
connections. For the logitudinal wind as the tower is weaker about the longitudinal axis,
steel elements fail before any connection failure occurs. On the other hand, for the

transverse wind direction, as the tower is stronger about its transverse axis, in some cases,
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connection failure occurs before tower elements fail and therefore, a failure mode due to
rupture in connections occurs. Similar to longitudinal wind, model SLIP and SLIPF
overestimate the load bearing capacity of the tower as they do not capture buckling effects
accurately. In this case, for model NBUCL&NSLIP, SLIP, and SLIPF, in which buckling
effect is not considered, the mean load bearing capacity is noticeably overestimated. For
models BUCL&SLIP and BUCL&SLIPF, in which joint slippage and buckling effects are
both accounted for, the load bearing capacity for longitudinal wind is 1.01, which shows
a 6% reduction compared to model BUCL in which the load bearing capacity is equal to
1.08. This shows that joint slippage slightly reduces the expected load bearing capacity
of the tower while joint failure does not affect the expected behavior. Additionaly, the
lateral displacement of the tower is increased compared to model BUCL, as both buckling
effects and joint slippage contribute to the lateral dispacement of the tower. For example,
for a longitudinal wind, the lateral displacement of the tower for the load factor of 0.8 is
0.23, 0.27, 0.26, and 0.31 m for models NBUCL&NSLIP, BUCL, SLIP, and
BUCL&SLIPF, respectively. The same trend is observed for the transverse wind
direction. It should be noted that unlike models SLIP and SLIPF, in which the load
bearing capacity of the tower is reduced for the transverse wind direction, if the
connection failure is considered; for model BUCL&SLIP and BUCL&SLIPF, the
estimated mean load bearing capacities are identical. This is due to the effect of buckling,
as in most cases buckling occurs before the connection failure occurs, and therefore,
connection failure is not controlling the expected load bearing capacity of the tower. As
noted earlier, although the expected behavior of the tower (which is shown by mean
pushover curves in Figs. 12 and 13) is not impacted by connection failure, for a handful
of extreme cases, the connection failure occurs before a buckling failure mode is

developed in the tower. To further investigate this effect, a post processing code in
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MATLAB is developed to present the state of tower elements and connections at multiple
stages of pushover analyses obtained from OpenSEES. An approach to further validate
the numerical models presented in this study is to compare results with experiments;
however, due to lack of experimental data for the particular tower considered here, such
comparisons are not made here. It should be noted that the failure modes and the
performance of the tower has a good agreement with the observed performance of

transmission towers in previous wind hazard events.

5.3 Effect of joint failure on failure of tower

In Fig. 16, the performance of the tower, assuming model BUCL&SLIPF, under a
transverese wind force, for a single realization of uncertain variables that results in a
connection failure mode is presented. As it was mentioned, this case is a rare case, in
which connection failure was observed. For most of the analyses, connection failure does
not occur (Figs. 12 and 13) and therefore, the average performance of the tower is not
influenced by connection failure. This example, is provided to highlight the effect of
connection failure on the extreme performance of the tower.

In Fig. 16, the state of tower elements is provided at three different points in the
pushover responses. In this figure, damage is categorized into five different states. The
elements shown with the magenta color are those that are under compression with a
percentage of fibers yielded. These elements although partially yielded, (since some other
fibers in the same section are still in their linear state) can undergo further compressive
forces. Therefore, at this stage, although the element is damaged, it has not buckled yet.
On the other hand, the red elements indicate that all the fibers in the cross section have
yielded under the compressive force and the element cannot resist against any further

loading. This state indicates the true buckling of the element. The elements with orange
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color are the ones that are under tension but have partially yielded, while the elements in
green are those with all their fibers have yielded under tensile forces. Therefore, this state
is called plastic yielding. Additionally, joints that surpass their ultimate capacity are
considered as failed and are shown with red circles. In Fig. 16, at point 1 (indicated by
P1), the tower undergoes nonlinear behavior due to partial yielding (damage) in bracing
and cage elements. However, since there is no failure mechnism developed in the tower,
it can resist against further loading. At point 2, the tower experiences joint failure at the
lap splices and buckling in the vicinity of the lap splice (joint). At this stage, the tower
cannot resist against any further loading. At point 3, the elements are buckled and the
tower is failed. In this case, the bearing capacity of the tower is equal to 2.09 times the
design load of the tower. Although this mode of failure is not common, for decayed
towers with rusted bolts and joint elements, joint failure can occur as rusted connections
have lower capacity compared to their design capacity. Joint failure was also observed in
a set of experimental analyses of steel towers performed by Szafran (2015). Moreover, in
model BUCL, in which both joint slippage and joint failure are neglected (Fig. 17), at
point 1, there are a couple of bracing elements that exhibit nonlinear behaviors (partial
damages), however, as the true buckling has not occurred at that point, the tower has not
yet failed. At point 2, several leg, cage and bracing elements experience nonlinear
behaviors but the tower has not failed as the main elements in the leg and in the cage have
not failed. Finally, at point 3, the tower fails due to the buckling of the leg elements at the
bottom of the tower. At this stage, a failure mechanism is developed in the main elements
of the tower and therefore the tower is collapsed. Using model BUCL the estimated load
bearing capacity is equal to 2.1 times the design load of the tower. Therefore, the joint
slippage is not noticeably changing the load bearing capacity of the tower. However, it

changes the failure mode. A change in the failure mode is an important consideration
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especially for life cycle assessment procedures that involve estimation of repair time,
which affect the duration of outage and therefore, the associtaed repair costs. Moreover,
capturing the true failure mechanism is important for reliability and resilience
improvement strategies, as a change in the failure mode can completely change the
enhancement strategy. It should be noted that in Figs. 16 and 17 to present the state of the
tower more clearly, the displacements of the tower are overexaggereated, but the true

displacements are considered for analysis.

5.4 Effect of uncertainty on failure of the tower

The impact of uncertainty on the performance of towers are investigated through
Table 8 and Figs. 12-15. However, these figures do not specifically present the state of
tower elements and the impact of uncertainty on the number of failures in the tower. The
state of tower elements at the failure instance in all 200 pushover analyses is presented
through Fig. 19. In this figure, the thickness of each failed element and the diameter of
the circle shows the number of failures (including buckling, plastic yielding, and
connection failure) occurred in the corresponding element. For example, if a buckled
element is thicker than another buckled element, it shows that a larger number of buckling
failures have occurred in that element. In addition, the elements shown by blue lines are
the elements that failure has not occurred in them in all 200 analyses. Considering a
longitudinal wind, two significant failure modes are observed. First, failure due to
buckling in the cage elements, and failure due to buckling in leg elements (Fig 19.a). As
noted previously, these modes of failure have been observed in previous failure events
(Elks, 2016; IEEE TP&C line design, 2018) as well as experimental analyses of towers
(Rao et al., 2012). For the transmission tower studied in this analysis, the leg elements

are made of high strength A242 steel with a yield strength of 50 ksi while the cage
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elements are made of conventional A36 steel with a yield strength of 36 ksi. Therefore,
more failures are expected to occur in the cage. In addition, as it was mentioned
previously, a handful of connection failures occur in a lap-splice that is shown with black
circle. Moreover, for a transverse wind, most of the failures occur in the cage elements
while there are a handful of failures in the leg elements, mid height elements and
connections (fig. 19.b). More connection failure is observed for transverse wind direction.
This is due to the weakness of the tower about its longitudinal axis, which causes the
tower elements to buckle before connection failure occurs in the tower. It should be noted
that Fig. 19 highlights the importance of tower elements in the failure of the tower, and
subsequently can provide a better understanding on how to enhance the robustness of the
tower. For example, it was observed that the cage elements often buckle and control the
failure of the tower. Therefore, to improve the performance of the tower, these elements
could be replaced by high strength A242 steel elements. As mentioned earlier, the
objective of this paper is to investigate the effect of modeling complexities and
uncertainties on the wind performance of transmission towers. However, investigating
strengthening strategies is beyond the scope of the present study. These effects will be
investigated in future studies. The modelling approach proposed in this study could be
integrate with advanced reliability analysis techniques (Darestani et al., 2019; Zamanian,
2016; Rahimi et al., 2019; Sichani and Padgett 2019; Sichani et al., 2018) to generate

fragility models for transmission towers.

6. Summary and Conclusions

This study investigated the impact of uncertainties in demand and capacity along
with various modeling complexities such as buckling, joint slippage and joint failure on

the extreme wind performance of transmission towers. For this purpose, 200 realizations
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of uncertain variables are generated through LHS method and the performance of the
tower is investigated through six different models using nonlinear Finite Element static
pushover analyses in OpenSEES. Each of these six models considers a set of modeling
complexities. In order to consider buckling, each element is divided into four sub-
elements and an initial imperfection is applied to the additional nodes. Furthermore, a
nonlinear joint slippage connection model is proposed using Zerolength elements in
OpenSEES. This model is capable of capturing failure in the connections by defining a
drop in the backbone curve of the joint slippage model. The simplest model neglects
buckling and joint slippage effects, while these along with failure of joints are considered
in the most accurate of the six developed models.

Results of this study indicated that buckling can noticeably impact the response of
transmission towers. Particularly, buckling, on average, decreases the load bearing
capacity of the tower by up to 30%. Joint failure does not noticeably decrease the load
bearing capacity of lattice towers. However, in rare cases, it can change the mode of
failure and therefore, it can impact the strengthening strategy. In addition, joint slippage
slightly affects the load bearing capacity of towers by up to 6%, while it significantly
increases the lateral displacement of the tower, which can affect the serviceability of
transmission towers. Consequently, for risk and resilience assessment of steel lattice
transmission towers, especially for capturing small probabilities of failure, it is imperative
to have a model that is capable of capturing buckling effects, joint slippage, and joint
failure.

It should be noted that connections are very often designed to be stronger than their
connected elements to make sure that connection failure does not occur before the
elements fail. However, in reality, due to uncertainties in the behavior of connections and

construction errors, among other factors, it is possible that connections fail before the
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attached elements fail. Therefore, in probabilistic analysis of transmission towers,
connection failure should be considered as it may impact the extent of damage and the
mode of failure. Furthermore, results of this study confirmed that the collapse of the tower
is commonly associated with the buckling of the main elements of the tower including
the leg elements or vertical elements of the cage. Prior to this failure, several elements
may experience partial damage. The knowledge of these component-level damages can
be leveraged to devise effective strengthening and recovery procedures. It should be noted
that the derived conclusions are specifically applicable to the assumed tower
configuration and material properties. Further investigations are needed to fully
characterize impacts of uncertainties and modeling complexities on the extreme wind
hazard performance of lattice transmission towers with different configurations and

material properties.
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Table 1. Convergence study on the number of discretizations for accurate estimation of
the buckling force in OpenSEES for the case of simply support 1.75X1.25X0.1875
angle section element

Simply supported Imperfection Camber Displacement (*Length)
Theoretical
element 0.00001 0.0005 0.001
Buckling
Buckling Force Error Buckling Force Error Buckling Error
number of elements Force (kN)
(kN) (%) (kN) (%) Force (kN) (%)
2 3.94 20.1 3.90 18.9 3.87 18.0
4 342 43 3.39 34 3.36 24
3.28
8 3.29 0.3 3.26 -0.6 3.23 -1.5
16 3.26 -0.6 3.23 -1.5 3.20 2.4
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Table 2. Convergence study on the number of discretizations for accurate estimation of
the buckling force in OpenSEES for the case of fixed end 1.75X1.25X0.1875 angle
section element

fix supported Imperfection Camber Displacement (*Length)
Theoretical
element 0.00001 0.0005 0.001
Buckling
Buckling Force Error Buckling Force Error Buckling Error
number of elements Force (kN)
(kN) (%) (kN) (%) Force (kN) (%)
2 15.79 20.4 15.45 17.8 15.15 15.5
4 15.80 20.4 15.45 17.8 15.15 15.5
13.12
8 13.69 43 13.45 2.5 13.25 1.0
16 13.16 0.3 12.96 -1.2 12.77 -2.7
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Table 3. Convergence study on the number of discretizations for accurate estimation of
the buckling force in OpenSEES for the case of simply support 4X4X0.3125 angle
section element

Simply supported Imperfection Camber Displacement (*Length)
Theoretical
element 0.00001 0.0005 0.001
Buckling
Buckling Force Error Buckling Force Error Buckling Error
number of elements Force (kN)
(kN) (%) (kN) (%) Force (kN) (%)
2 570.44 39.1 483.06 17.8 447.59 9.2
4 510.70 24.6 443.72 8.2 410.78 0.2
410
8 491.37 19.8 431.73 53 399.52 -2.6
16 486.78 18.7 428.65 4.5 396.75 -3.2
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Table 4. Convergence study on the number of discretizations for accurate estimation of
the buckling force in OpenSEES for the case of fixed end 4X4X0.3125 angle section
element

Simply supported Imperfection Camber Displacement (*Length)
Theoretical
element 0.00001 0.0005 0.001
Buckling
Buckling Force Error Buckling Force Error Buckling Error

number of elements Force (kN)

(kN) (%) (kN) (%) Force (kN) (%)

2 582.60 8.1 576.70 7.0 570.87 5.9

4 582.63 8.1 576.14 6.9 569.79 5.7

539
8 582.56 8.1 572.93 6.3 563.65 4.6
16 582.54 8.1 572.00 6.1 561.87 42
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Table 5. Uncertain variables defining material behavior and wind loading

. . Type of
Properties Notation Distribution Mean cov Reference
Modulus of elasticity E LogNormal 2.0el1 (N/m?) 0.06
Steel Yield stress of main leg fym LogNormal 4.02e8(N/m?) 0.1 ASCEOT (2016) and
material i 2 an
Yield stress of other elements Fyb LogNormal 2.9¢8 (N/m”) 0.1 ASCE 74 (2009)
Post yield elasticity E LogNormal 0.02E(N/m?) 0.25
Buckling Imperfection of element Uniform 0.075(%) 0.192
Gust effect factor G Normal Section 3 0.11
. Force coefficient Cs Normal Section 3 0.12 ASCEO07 (2016),
Wind Velocit Ellingwood and
elocity pressure exposure .
load coefficient K, Normal Section 3 0.16 Tekie (1999) and
Wind directionality factor K, Normal Section 3 0.08
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Table 6. Uncertain variables defining connections

Properties Notation Di;l;ifl)euzifon Reference
Mean CovV
Load at onset of slip Force @ A* LogNormal 86.6 kKN 0.109
Load at end of slip Force @ B* LogNormal 197.3 kN 0.23
Load at onset of %
plasticity Force @ C LogNormal 317 kN 0.13
X Maximum load Force @ D* LogNormal 440 kN 0.017
Connection Dis. at elastic
Type A frictional load transfer Phase 1 LogNormal 0.29 mm 0.35
Slippage length Phase 2 Uniform 1.9 mm 0.61
Dis. at clastic load Phase 3 LogNormal 2.95(mm) 0.27
transfer
Dis. at nonlinear load Phase 4 LogNormal  0.36(mm) 0.34
transfer
Load at onset of slip Force @ A LogNormal 23.95(kN) 0.1
Load at onset of
plasticity Force @ C LogNormal 132.17(kN) 0.09
Maximum load Force @ D LogNormal 205.08(kN) 0.02
Connection . .Dls' at clastic Phase 1 LogNormal 0.11(mm) 0.1
Tvpe B frictional load transfer
yp Slippage length Phase 2 Uniform 0.45(mm) 0.15
Dis. at elastic load Phase 3 LogNormal ~ 2.09(mm) 022
transfer
Dis. at nonlinear load Phase 4 LogNormal ~ 3.99(mm) 0.16
transfer
Load at onset of slip Force @ A LogNormal 9.29(kN) 0.084
Load at onset of
plasticity Force @ C LogNormal 65.03(kN) 0.098
Maximum load Force @ D LogNormal 107.78(kN) 0.039
i i Ungkurapinan (2000
Connection . .Dls' at elastic Phase 1 LogNormal 0.39(mm) 0.29 grarap ( )
Type C1 frictional load transfer
yp Slippage length Phase 2 Uniform 1.28(mm) 0.43
Dis. at elastic load Phase 3 LogNormal ~ 2.74(mm)  0.175
transfer
Dis. at nonlinear load Phase 4 LogNormal  6.04(mm) 0.158
transfer
Load at onset of slip Force @ A LogNormal 20.14(kN) 0.219
Load at onset of
plasticity Force @ C LogNormal 97.51(kN) 0.115
Maximum load Force @ D LogNormal 157.71(kN) 0.062
. Dis. at elastic
C’(I)‘nnzc(t:l;m frictional load transfer Phase 1 LogNormal 0.25(mm) 0.26
P Slippage length Phase 2 Uniform 1.32(mm) 0.44
Dis. at elastic load Phase 3 LogNormal 1.73(mm) 0.225
transfer
Dis. at nonlinear load Phase 4 LogNormal 2.55(mm) 0.235
transfer
Load at onset of slip Force @ A LogNormal 29.28(kN) 0.069
Load at onset of
plasticity Force @ C LogNormal 152.85(kN) 0.095
Maximum load Force @ D LogNormal 204.4(kN) 0.117
. Dis. at elastic
C;nnzc(tjngn frictional load transfer Phase 1 LogNormal 0.28(mm) 0.28
yp Slippage length Phase 2 Uniform 1.11(mm) 0.37
Dis. at clastic load Phase 3 LogNormal  24(mm)  0.192
transfer
Dis. at nonlinear load Phase 4 LogNormal  2.18(mm) 0.174
transfer

*Adjusted to account for lap splices with 8 bolts
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Table 7. Various models developed in OpenSEES

Semi-rigid connection

Model No. Rigid Connection Buckling Without failure With failure
NBUCL&NSLIP® v
BUCL"® v v
SLIP® v
SLIPF* v
BUCL&SLIP* 4 v
BUCL&SLIPF” v v

*NBUCL: No Buckling, NSLIP; No Slippage, BUCL: Buckling, SLIP: Slippage, SLIPF: Slippage with failure in connection
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Table 8. Comparison of bearing capacity and displacement of tower models from Figs.
12-13

Model Dir\)\éicrgion Load b?;g:t% rc)apacny Displacement at bearing capacity (m)
Mean STD Mean STD
NBUCL&NSLIP*  Transverse 2.57 0.65 0.61 0.11
BUCL" Transverse 1.9 0.46 0.30 0.03
SLIP® Transverse 2.24 0.56 0.47 0.10
SLIPF" Transverse 2.16 0.53 0.40 0.05
BUCL&SLIP® Transverse 1.85 0.45 0.34 0.04
BUCL&SLIPF"  Transverse 1.85 0.45 0.34 0.04
NBUCL&NSLIP  Longitudinal 1.54 0.42 0.81 0.13
BUCL Longitudinal 1.08 0.30 0.41 0.07
SLIP Longitudinal 1.41 0.41 0.67 0.09
SLIPF Longitudinal 1.42 0.41 0.69 0.09
BUCL&SLIP  Longitudinal 1.01 0.27 0.46 0.11
BUCL&SLIPF  Longitudinal 1.01 0.27 0.46 0.10

*NBUCL: No Buckling, NSLIP; No Slippage, BUCL: Buckling, SLIP: Slippage, SLIPF: Slippage with failure in connection
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Figure 1. Beams for the verification of modeling buckling in OpenSEES a) pinned ends

(simply supported) and b) fixed ends
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Figure 2. Discretization and imperfection modeling of lattice elements to capture

buckling in OpenSEES
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Figure.3 The direction of imperfection with respect to the cross section
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Figure 4. Connections reported by Ungkurapinan (2000) a) Type A b) Type B ¢) Type

C1d) Type C2 e) Type C3 f) Type C4
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Figure 6. Different clearance levels a) minimum b) normal ¢) maximum
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—

a) b) c) d) e)

Figure 7. Connections considered in this study a) lap Splices b) bracing to bracing c)
bracing to main element (1 bolt) d) bracing to main element (2 bolts) e) bracing to main

element (3 bolts)
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Figure 11. Double circuit lattice tower assumed in this study
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Figure. 14 Probability density function of load bearing capacity and displacement at
max load capacity (longitudinal wind)

61



2 T T T T T T T T T lz T T T T
wr NBUCL&NSLIP J
16 | BUCL | 10t -
14 | ____SLIP | ¢
T SLIPF 1z ' i
g 1l _ _ _ BUCL&SLIP | g 6| |
Z 08 | BUCL&SLIPF |z
= =41 4
g 06 | 18 SN
] o
£ 04 | 1£ 5 N
0.2 | N |
) B i '~ 1 \\\
0 . S . . ; S 0 ; : Lo
0 05 1 15 2 25 3 35 4 45 5 0 0.2 0.4 0.6 0.8 1.2

Figure.

Load Bearing Capacity (Factor)

Top Displacement (m) at Max load Factor

15 Probability density function of load bearing capacity and displacement at max
load capacity (transverse wind)

62



2.5

Load Factor

0 0.1 0.2 0.3 0.4
Top Displacement(m)

——— Partial yielding under compression
=== Buckling

Partial yielding under tension

=== Plastic yielding

@  Connection failure

Figure 16. Investigation of failure mechanism for transverse wind direction assuming
model BUCL&SLIPF
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Figure 18. The type and location of damaged components in the transmission tower
derived from 200 pushover analyses for a) longitudinal wind and b) transverse wind
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