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Effect of Modeling Complexities on Extreme Wind Hazard 

Performance of Steel Lattice Transmission Towers 

Reliable computational models of transmission towers are key to improved 

hurricane risk management of transmission systems. However, a comprehensive 

understanding of involved complexities and their effects on the extreme wind 

performance of towers is not available. Particularly, buckling effects have not been 

captured properly and the failure of joints and the post buckling behavior of towers 

have not been investigated. Moreover, contributions of these and other 

complexities to key tower responses in the presence of uncertainties are not known. 

This paper presents an approach to modeling lattice towers that captures buckling 

and post buckling, and joint slippage and failure and analyzes their effects, while 

considering uncertainties, through a set of probabilistic, nonlinear pushover 

analyses in OpenSEES. Results for a double circuit lattice tower indicate that 

buckling can lead to 30% reduction in the load bearing capacity of towers. Joint 

slippage reduces the load bearing capacity of the tower by 6%. It also considerably 

increases tower displacement. Connection failure can also occur in rare cases and 

it subsequently, changes tower’s failure mode. The proposed modeling approach 

can be used in risk analysis of transmission systems to investigate various 

performance levels and improve the design of towers. 

Keywords: Power transmission system; steel lattice towers; Finite Element 

method; joint slippage; joint failure; pushover analysis 

1. Introduction 

Overhead electric transmission lines face substantial risk of damage in hurricane prone 

regions around the world. Past failures of these systems resulted in considerable economic 

losses as well as societal and organizational disruptions (Campbell, 2012; Hoffman and 
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Bryan, 2013). These events highlight the critical role of transmission systems in 

supporting power delivery to large geographical areas. High intensity wind-related hazard 

events such as hurricanes can result in different failure modes in transmission towers as 

these structures are composed of a large number of elements and connections with 

different behaviors. Moreover, uncertainties in the demand and capacity of transmission 

towers and the complex behaviors of tower elements including post yielding and post 

buckling behavior of the members, joint slippage, and joint failure, along with 

imperfections enlarge the space of potential failure modes (De Souza, 2019, Kempner et 

al., 2002). However, these complexities are commonly neglected in the design and 

analysis of transmission towers. For example, Tapia-Hernández et al. (2017) and Tapia-

Hernández and Sordo (2017) investigated the collapse mechanism of transmission towers 

through pushover analysis. They observed that the failure is commonly associated with a 

stress concentration in the main vertical elements of the tower at the bottom or mid height 

of the tower. The stress concentration results in buckling of the elements, which 

subsequently leads to the collapse of the tower due to the development of a failure 

mechanism.  Although the aforementioned studies tried to capture the nonlinear behavior 

of lattice towers, the effect of imperfection on the buckling capacity of steel elements as 

well as the effect of joint slippage and uncertainty (in material and loading) on the 

development of failure modes are not considered. Moreover, Jiang et al. (2011), 

performed pushover analyses of transmission towers by considering joint slippage and 

buckling effects. However, the model does not account for the effect of uncertainties in 

demand and capacity on the performance of towers. Imperfections, post yielding 

elasticity, and connection failure effects were not considered as well. Neglecting 

imperfections in the alignment of elements can induce errors in the estimation of buckling 

in steel elements, as the additional P-δ effects are not captured. Moreover, the generated 
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model appears to follow an elasto-plastic behavior and therefore does not account for post 

yielding elasticity. More recently, Jiang et al. (2017) investigated effects of joint slippage 

by enhancing their Finite Element model to consider imperfection effects. However, post 

yielding and post buckling effects, failure of joints, and effects of uncertainties were not 

captured in the model. In another recent study, Fu and Li (2018) performed a probabilistic 

analysis of transmission towers to develop wind fragility functions. These fragility 

models offer an important initial step toward reliability and risk analysis of transmission 

systems. However, the generated numerical model of towers does not consider joint 

slippage, joint failure, post buckling, and post yielding behaviors. The individual and 

collective effects of these factors can impact the emergence and likelihood of failure 

modes in transmission towers as load distribution and element stresses may not be 

estimated properly. Furthermore, the study assumes that if the displacement of the tower 

exceeds a predefined buckling displacement, the tower fails. The buckling displacement, 

there, is defined as the displacement corresponding to a significant change in the slope of 

pushover curve for a deterministic analysis of tower based on mean values of uncertain 

variables. However, according to the provided probabilistic pushover curves, for a large 

percentage of realizations, the tower can resist against further loading after the predefined 

buckling displacement is reached. This inconsistency in the definition and observations 

of failures in simulation results is, in part, due to the inability of the implemented Finite 

Element models to capture element and joint failures, and the propagation of 

nonlinearities because of load redistributions. This further highlights the need for reliable 

computational models for fragility and risk analysis purposes. Furthermore, Kaminski et 

al. (2008) investigated the impact of uncertainty (in material and loading) on member 

forces and top displacement of a transmission tower subjected to conductor failure. 
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However, the impact of uncertainty on the emergence and likelihood of failure modes is 

not investigated in that study. 

A number of studies, in addition to sharing some of the modeling limitations 

explained earlier, conservatively underestimated the load bearing capacity of 

transmission towers. These studies assumed that any yielding or buckling in tower 

elements results in the complete failure of the structure (Rezaei et al., 2017; Rezaei et al., 

2016; Tessari et al., 2017; Kroetz et al., 2017). As towers are statically indeterminate, 

failure of a single bracing does not necessarily result in the collapse of the tower as long 

as there is no failure mechanism in the system. Usually a failure mechanism is 

accompanied by the buckling of the main elements in the tower including the vertical 

elements in the cage or the leg elements. A handful of studies performed pushover 

analyses to obtain the load bearing capacity of towers. However, they failed to capture 

post peak behavior of towers in pushover curves (Jiang et al., 2011; Fu and Li, 2018). 

Characterizing such behaviors is important in establishing limit state functions for severe 

states of damage such as partial or complete collapse. This is in part due to the inability 

of their numerical models to handle highly nonlinear phenomena such as post yielding, 

post buckling, and complex joint slippage behaviors. In terms of considering joint 

slippage, a few studies used experimentally validated joint slippage models such as those 

developed by Ungkurapinan (2000). As pointed out in (Wang et al., 2017), these models 

however do not accurately represent the actual joints used in transmission towers, as the 

number, type, and capacity of bolts as well as the dimension of elements and steel material 

properties are different from one joint to another. Therefore, the few models presented by 

Ungkurapinan (2000) cannot cover all these variations. In order to overcome this issue, 

Wang et al. (2017) leveraged the capabilities of ANSYS Finite Element software to model 

joints embedded in their Finite Element model. Although this method results in an 



6 
 

accurate estimation of joint slippage behavior, the computational cost associated with 

adding contact elements that can capture joint slippage behavior is considerably 

expensive. In order to avoid this issue, Wang et al. (2017) limited their joint models to 

only a few connections in the tower and neglected the joint slippage behavior for the rest 

of the connections. This issue exacerbates in the case of probabilistic analysis of 

transmission towers where a large number of simulations are required.  

In order to address the aforementioned limitations, the current study investigates the 

effect of different complexities on the load bearing capacity and emergence of failure 

modes. For this purpose, six different models with varying levels of complexity are 

generated. Among these models, the simplest neglects buckling and joint slippage and 

the most complex one considers buckling, joint slippage and joint failure. Detailed 

information about these models are provided in the numerical study section. Moreover, 

the impact of various uncertainties on the performance of towers is investigated by 

performing a set of nonlinear static pushover analyses in OpenSEES (McKenna, 2000) 

Finite Element platform through 200 realizations of uncertain variables generated by 

Latin Hypercube Sampling (LHS) method for each of the six models. The considered 

complexities include post buckling and post yielding behavior of tower elements, 

nonlinear joint slippage models with different clearance levels, and the failure of joint. 

Uncertainties include those associated with steel material behavior, imperfections, joint 

slippage behavior, and wind induced loadings. In order to account for out-of-plane 

displacements of steel elements and associated P-δ effects, large deformations are 

accounted for via a co-rotational geometric transformations. To take full advantage of 

large deformations to accurately capture buckling effects, each element is divided into 

four sub-elements modeled with displacement-based beam column elements. This 

element discretization accurately captures the out of plane displacements when the 
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element buckles. Additionally, an initial camber displacement is applied to the mid-nodes 

of each element to account for imperfection effects. In this study, based on the joint 

slippage model of Ungkurapinan (2000), a modeling approach for joints is proposed that 

can accurately account for the impact of joint slippage as well as joint failure in lattice 

towers. For this purpose, three hysteretic material models in OpenSEES are put together 

in parallel to generate the nonlinear force-deformation behavior of connection reported 

in Ungkurapinan (2000). This model is then extended to account for joint failure by 

reducing the load capacity of the connection after reaching the maximum capacity. It 

should be noted that the joint slippage models suggested by Ungkurapinan (2000) are not 

necessarily representative of the accurate joint slippage behaviour in the assumed lattice 

tower. However, in terms of general backbone behavior, bolt numbers, and configuration, 

they match the joints in the lattice tower assumed in this study.  

A 27.4 m double circuit vertical steel lattice tower is considered to perform the 

analyses. This type of steel tower is one of the most common towers in the US. For each 

realization of uncertain variables, a nonlinear static pushover analysis is performed and 

therefore, 200 pushover curves are obtained. The pushover analysis can provide better 

insights regarding the impact of uncertainties and various modeling complexities on the 

load bearing capacity, failure modes, and force-displacement behavior of transmission 

towers. As the proposed modeling approach is able to handle highly nonlinear post peak 

load behaviors, it can be easily used to investigate different performance levels of lattice 

towers. This will help in risk and life cycle cost analysis of transmission lines as the 

incurred cost is a direct function of the type and extent of damage to lattice towers. 
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2. Finite Element (FE) Modeling of Lattice Transmission Towers 

Overhead lattice transmission towers exhibit complex behaviors under wind loadings. 

This complexity in part stems from the fact that a large number of components in lattice 

towers experience material and geometric nonlinearities especially under strong wind 

loadings such as hurricanes. Although during high intensity wind hazard scenarios, a 

tower may experience various levels of damage, as long as conductors are supported with 

a safe distance from each other and earthed objects, the transmission of electricity will 

not be interrupted. Therefore, from power delivery perspective, it is important to 

distinguish damage from collapse. A collapse in a transmission tower often occurs when 

a failure occurs in the main elements of the tower. This could be due to buckling or 

yielding of a couple of elements in the leg such that the tower overturns, or it could be 

due to the failure of vertical elements in the cage or failure of the cross arms such that the 

conductors are no longer supported leading to the disruption of power delivery. In order 

to capture these complex behaviors and reliably identify and characterize the various 

modes of failure, high-fidelity Finite Element models for lattice transmission towers are 

required. Toward this goal, a modeling procedure is proposed here that is capable of 

considering material nonlinearity, P-𝛿𝛿 and P-∆ effects, buckling due to imperfections, and 

nonlinear joint slippage behavior and the failure of bolted connections. In the following 

subsections, different modeling aspects of the proposed nonlinear Finite Element 

modeling of transmission towers are presented.  

2.1. Steel Elements 

Steel lattice towers are mainly constructed by steel angle members and bar elements. 

Although under service loads steel elements act approximately as linear elastic elements, 

under severe loads such as strong winds, steel elements can undergo buckling and post 
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yielding behavior. Since the objective of this paper is to identify different failure modes 

in transmission towers, it is imperative to accurately capture the post yielding behavior 

of steel elements. OpenSEES Finite Element platform is capable of modeling nonlinear 

steel elements by a broad library of materials that can account for nonlinear behavior. 

Among these models, “steel01” material model considers a bilinear material model. The 

behavior of this model is defined with modulus of elasticity, 𝐸𝐸, yield stress, 𝑓𝑓𝑦𝑦, and post 

yield elasticity, 𝐸𝐸𝑠𝑠𝑠𝑠. In order to define tower elements, displacement-based nonlinear 

beam-column elements and force-based nonlinear beam-column elements can be 

considered. Both elements consider plasticity at multiple points along the length of the 

element through defining integration points. In addition, at each integration point, the 

section of the element is divided into multiple fiber elements along the height and width 

of the element. Each fiber acts as an individual element with a unique material behavior 

and cross sectional area. Therefore, at each cross sectional area different fiber elements 

can undergo different level of loading. Subsequently, bending moments and axial stresses 

can be accurately distributed along the fibers to represent the actual force distribution at 

each integration point. In this case, plastic deformations can be accurately estimated. 

Since displacement formulation provides better convergence during nonlinear analyses, 

in this study, displacement-based beam-column elements are utilized. For each element, 

5 integration points are defined and the fiber sections associated with each integration 

point uses “steel01” material with 10 fibers along the height of angles and 3 fibers along 

the width of angles. The number of fibers is in line with the experimentally validate 

models suggested by Uriz et al. (2008). 
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2.2. Buckling 

Buckling in lattice elements can considerably contribute to the overall performance of 

towers. A number of previous investigations identified buckled elements in numerical 

models based on design code recommendations for maximum compressive forces (Rezaei 

et al., 2016; Tessari et al., 2017; Kroetz et al., 2017). However, this approach has limited 

application as the formulas suggested in design codes are approximate. In addition, the 

analyzed performance of the tower is only valid until the first buckling occurs and the 

produced Finite Element (FE) model will not be able to accurately capture the behavior 

of the tower post the first element buckling. In another study, Jiang et al. (2011) used the 

capabilities of USFOS (2003) Finite Element platform to model buckling effects. For this 

purpose, each element is modeled using a single nonlinear beam element and the stresses 

are checked at the ends and mid length of the element. If the stress at each of these points 

exceeds the yielding stress, a plastic hinge is assigned to the corresponding point. 

Although this approach provides a better estimation of buckling effects, it is not able to 

account for imperfections and post buckling effects. The imperfection effects are not 

accounted for as the elements are modeled using a single straight element. Post yielding 

effects are not considered as well because the plastic hinges appear to follow an elasto-

plastic behavior without any post yielding elasticity. In addition, in order to accurately 

estimate buckling effects, large deformations should be considered in the Finite Element 

analysis. However, large deformation effects appear to be neglected in the analysis. In 

another study, Jiang et al. (2017) used NIDA (2011) Finite Element platform to account 

for buckling effects. NIDA is capable of considering P-𝛿𝛿 and P-∆ effects. P-𝛿𝛿 effects 

account for additional loading caused by initial bowing and P-∆ effects account for 

additional loading caused by frames lateral displacement (Jiang et al., 2017). Similar to 

USFOS, it seems that this model cannot account for large deformations. In addition, the 
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post yielding behavior of elements cannot be captured as the model is not capable of 

considering post yielding elasticity of tower elements. Therefore, this model is not able 

to accurately estimate the buckling effects.  

In order to capture buckling appropriately, imperfections, P-∆ and P-𝛿𝛿 effects, and 

large deformations should be considered. OpenSEES Finite Element platform is capable 

of considering buckling in the system. According to Uriz et al. (2008) to account for 

buckling in OpenSEES, each element should be divided into at least two inelastic beam-

column elements with at least three integration points. In addition, 10-15 layers of fibers 

along the height and 3-5 layers of fibers along the width of each section should be 

considered. Moreover, the middle node should have an initial camber displacement of 

0.05~0.1% of the original length of the element. The middle node is essential in the large 

displacement formulation in order to account for in-plane and out-of-plane deformations 

in the middle of the element (Uriz et al., 2008). In addition, in order to account for 

geometric nonlinearities, large deformations should be considered through a “Co-

rotational” geometric transformation in OpenSEES. Uriz et al. (2008) validated their 

inelastic buckling model by a set of cyclic loading experiments performed by Black et al. 

(1980).   

The model suggested by Uriz et al. (2008) in terms of the number of element 

discretizations was examined for the tower elements used in this study. It was observed 

that although breaking each element into half provides better estimates for the buckling 

force in tower elements, to obtain an acceptable accuracy for the buckling behavior of 

angle section elements, more discretizations are required. For this purpose, a single 

element with two different boundary conditions was modelled in OpenSEES as shown in 

Fig 1. In the first model, it is assumed that both ends of the element are pinned (Fig. 1.a) 

and in the second model it is assumed that both ends are fixed. These two models are 
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representative of two extreme cases. In transmission towers, the elements are connected 

to one another using bolts. Depending on the number of bolts, capacity of the bolts, and 

the pre-tensioning force in the bolts, the boundary conditions for each element follows a 

semi-rigid connection somewhere between the two extreme cases presented in Fig. 1. If 

the buckling model works for both extreme cases, it is expected that it will capture the 

behavior for all the elements in the transmission tower. Table 1 and Table 2 provide the 

result of a convergence study on the effect of number of discretizations and imperfection 

camber displacement on the buckling force of a 1.75X1.25X0.1875 angle section for the 

simply supported and fixed end models, respectively. This element is one of the smallest 

sections in the tower. It is 3.024 m long with a yield stress of 245.6 MPa and a modulus 

of elasticity of 192.1 GPa. The results show that for the simply supported beam, four 

elements yields 2.4% error using 0.001L camber displacement in the middle. For the fixed 

end beam, four and eight elements yield 15.5% and 1% error, respectively.  The results 

of the convergence study for a 4X4X0.3125 angle section beam are also presented in 

Tables 3 and 4. This section is one of the strongest sections used in the transmission 

tower. The length of the element is 1.55 m and the material properties of the section is 

the same as those for the 1.75X1.25X0.1875 section. For a simply supported beam, four 

elements yield 0.2% error, while for the fixed end beam, two elements result in 5.9% 

error. Therefore, for the range of the elements used in the current study, if each tower 

element is discretized into eight sub-elements, the accuracy of the model in terms of 

capturing the true buckling force is guaranteed. However, it should be noted that 

discretizing the elements into eight sub-elements will considerably increase the 

computational demand. This becomes especially challenging in case of reliability analysis 

as they require a large number of simulations. On the other hand, four sub-elements can 

provide a faster analysis without considerable loss of accuracy, as four elements yield 
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moderate error only for the case of the fixed end beam for 1.75X1.25X0.1875 angle 

section. However, the rigidity of the connections for smaller sections that are usually used 

as bracing elements with one bolt is closer to a pinned connection. Therefore, the 

maximum error is closer to 2.4%. Subsequently, in this study, for the analysis of the 

tower, each element is divided into four sub-elements to provide a sufficiently accurate 

model with reduced computational costs. A sketch of the discretization model of each 

element is provided in Fig. 2. It should be noted that to account for the effect of 

uncertainty, the imperfection value in the mid-node is assumed to follow a uniform 

distribution between 0.05% and 0.1% of the length of the element. In addition, the shape 

function for Euler buckling force is defined as φ=sin(πx/L), where  𝑥𝑥 is the distance from 

the left side end of the element. The value of the imperfection at each node is calculated 

accordingly. For the current analysis that discretizes each element into four sub-elements, 

the value of imperfection at the first, and third node is obtained as 0.707 of the 

imperfection in the mid-node (Fig.2).”Moreover, the buckling force is a function of the 

inverse of 𝐾𝐾𝐾𝐾/𝑟𝑟, where 𝐾𝐾 is the column effective length factor, L is the unsupported 

length, and r is the radius of gyration. For an element with the same unsupported length 

along all axes (same 𝐾𝐾 along all axes), the smallest radius of gyration results in the lowest 

stress that causes buckling in the element. The radius of gyration for the weakest axis is 

the smallest, therefore, elements tend to buckle along their weakest axis.  To capture this 

behavior, the imperfection was applied perpendicular to the weakest axis of L-section and 

bar elements (as shown in Fig. 3) as the imperfection applied perpendicular to the weak 

axis causes additional moment along the weak axis. 
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Eccentricity also impacts the buckling capacity of tower elements as it induces 

additional moment in the elements. There are two eccentricities in transmission towers. 

The first form of eccentricity is where elements are connected to one another such that 

the lines passing through the centers of gravity of the sections do not coincide. However, 

according to Fang et al., (1999), transmission towers are designed such that such 

eccentricities are avoided. This is achieved by aligning bolted connections using gusset 

plates. The second form of eccentricity exists in joints with bolts in one leg of angle 

elements. As OpenSEES automatically aligns elements along their centroid, there is no 

straightforward approach to account for such eccentricities in OpenSEES. In order to 

accurately account for eccentricities, additional nodes should to be defined in the vicinity 

of each joint. The new nodes should be located at a distance equal to the eccentricity of 

the elements and subsequently it should be connected to the joint using rigid link 

elements. This process becomes significantly challenging especially for transmission 

towers where there are a large number of connections. In addition, defining additional 

nodes increases the complexity and the computational costs of the Finite Element analysis 

as the dimension of the stiffness matrix drastically increases by adding additional nodes. 

Therefore, in this study the effect of eccentricity due to bolts in one leg of the angle 

section is neglected. 

2.3. Joint Slippage and Joint Failure Model 

In performance assessment of transmission towers, joints are commonly simplified as 

rigid or pinned connections (Rezaei et al., 2016; Tessari et al., 2017; Kroetz et al., 2017). 

However, under strong wind loadings such as hurricanes, joints slippage occurs, which is 

a nonlinear phenomenon. A few studies provided slippage behavior of bolted joints by 

performing a set of static load tests (Kitipornchai et al., 1997; Ungkurapinan, 2000). The 
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experimentally validated model developed by Ungkurapinan (2000) have been used in 

the previous studies on the impact of joint slippage of bolted connections in steel lattice 

towers (Jiang et al., 2017; Jiang et al., 2011). The study also provides uncertainties of key 

points in the force-deformation behavior of the connections as well as different clearance 

levels for the arrangement of the bolts. Although connections can fail under service and 

severe loadings, in all the previous studies, joint failure mode is neglected. The three 

connection models proposed by Ungkurapinan (2000) are shown in Fig. 4. Connection 

Type A models a compression joint in transmission line towers. Therefore, it can 

accurately approximate the slippage behavior of lap splices in the main legs of the tower. 

The backbone curve for connection Type A is provided in Fig. 5.a.  This backbone 

behavior consists of four phases. In phase 1, the connection acts as an elastic element due 

to a static friction between the angle elements. If the axial force becomes as large as the 

friction force between the two angles, the angles start to slip with reduced frictional 

stiffness (phase 2). Subsequently, if the slippage is large enough that the bolts make 

contact with the edges of the holes, due to the load bearing of the bolts, a higher stiffness 

is observed (phase 3). Moreover, if the load becomes large enough, a plastic deformation 

can occur in the angle elements or bolts and a nonlinear behavior is observed in the 

backbone curve of the connection until the connection fails (phase 5).  Connection Type 

B model was designed for representing tension joints. A schematic backbone curve of 

this model is presented in Fig. 5.b. Ungkurapinan (2000) observed that unlike connection 

Type A, in the second phase of the backbone curve of connection Type B, stiffness is 

very small and a nearly pure slippage occurs in the model. Therefore, the forces at the 

initial and end points of this phase are identical (Phase 2 in Fig. 5.b). Connection Type C 

represents simple joints in transmission towers where there is no gusset plates or splice 

angles. The backbone curve of this model is similar to connection Type B, which has a 
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pure slippage in phase 2 (Fig. 5.b). Another important consideration in the slippage 

behavior of connections is the level of clearance for joint bolts. Due to construction 

limitations, commonly, holes are made slightly larger than the diameter of bolts. This 

increase in the diameter of holes helps construction workers to fit bolts into the holes 

much easier. Ungkurapinan (2000) also investigated the impact of construction clearance 

on the slippage behavior of bolted connections. It was observed that the construction 

clearance affects the deformation length for phase 2 of slippage. The construction 

clearance was categorized into three levels called minimum, normal, and maximum 

clearance (Fig. 6).  

As noted earlier, the current study adopts the model developed by Ungkurapinan 

(2000). Therefore, three connection types in the tower are considered. The first 

connection is the lap splices for the legs of the tower. For this connection, Type A 

connection model proposed by Ungkurapinan, (2000) is considered (Fig.7.a). Second 

connection is the connection of bracing elements to each other (Fig. 7.b). In order to 

model this connection, connection Type B suggested by Ungkurapinan (2000) is chosen. 

Finally, the third connection is the connection of bracing elements to the main elements 

(Fig. 7.c-e). In this study, connections of bracing to main elements are made with one, 

two, and three bolts. Since Ungkurapinan (2000) provided models for connection Type C 

with one to four bolts, for the connection of bracing elements to the main elements, 

connection Type C is considered.  

To model joint slippage behavior of joints, Zerolength elements are used in 

OpenSEES. Zerolength elements can be defined between two nodes with identical 

coordinates. The direction of each Zerolength element can be specified by defining its 

local axes. Therefore, in order to define a joint slippage model, two nodes should be 

defined at the location of the connection. Subsequently, a Zerolength element can be 
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applied between the two nodes (Fig. 8). It should be noted that the nodes defined for the 

Zerolength elements and shown in Fig. 8 are actually located at the same point. In Fig. 8 

only for showcasing the direction of connections the nodes are shown in non-identical 

locations. Moreover, local axis of the Zerolength element should be defined such that the 

local x direction is parallel to the direction of slippage. For each Zerolength element, three 

transitional and three rotational local axes can be defined. The slippage model should be 

applied along local x axis of Zerolength element and a large stiffness is applied to other 

transitional local axes to prevent any relative displacement in other transitional degrees 

of freedom.  

In order to have a reliable assessment of the slippage behavior of connections, it is 

imperative to have a force-deformation model that can accurately estimate the nonlinear 

connection models presented in Fig. 5. OpenSEES platform is not able to directly model 

this complex behavior. However, OpenSEES provides the capability of combining 

different materials in parallel and series formations. In addition, since in nonlinear 

pushover analyses, there might be multiple unloading in the elements that are already 

yielded or buckled, the material model should be capable of modelling hysteretic behavior 

in the connections. In order to generate the required joint slippage model, three hysteretic 

materials are defined in parallel configurations as shown in Fig. 9. As seen in Fig. 9, the 

assumed model is able to accurately approximate the model proposed by Ungkurapinan 

(2000). Moreover, the proposed model is capable of capturing failure in the connections 

by reducing the capacity of the connection to 𝛼𝛼 times the max load capacity of the 

connection as it is shown is Fig. 9. While the configurations of the joints in the considered 

tower are close to those studied experimentally by Ungkurapinan (2000), they may not 

be exactly the same for all connections. However, for the purposes of this study, the 

implemented models can estimate the general impact of joint slippage with an acceptable 
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accuracy. The only adjustment applied to the connection model compared to the model 

suggested by Ungkurapinan (2000), is in the lap splices (connection Type A), where there 

are a total of eight bolts in the connection. However, the closest model presented by 

Ungkurapinan (2000), has a maximum of four bolts. For this particular connection, since 

the angle elements are the same, the capacity of the connection is adjusted. For this 

purpose, the force capacity of the joint at point D in Fig. 5.a. is found as the minimum of 

the capacity of eight bolts, capacity of the gross angle section using the yield stress of the 

element, and the ultimate capacity of the net (punched) angle section using the ultimate 

stress of the element. The force capacity of points B and C are adjusted proportionally 

from the model suggested by Ungkurapinan (2000). In addition, the force capacity of 

point A in Fig. 5.a. is found by doubling the value suggested by Ungkurapinan (2000) as 

this value is only affected by the number of bolts. For this connection, the same 

displacement values suggested by Ungkurapinan (2000) are used as the displacement of 

each phase is not affected by the number of the bolts. 

It should be noted that in practice, joints are designed such that their capacity is 

higher than the capacity of the connected elements and therefore, it is expected that the 

connections do not fail as elements should fail first. However, considering uncertainties 

in connection capacity and construction errors, among other factors, there is a small 

probability that a failure can occur in the joints. Therefore, as this study analyzes the 

extreme performance of transmission towers with a probabilistic perspective, the chance 

of failure in the connections cannot be neglected.  For this purpose, the Finite Element 

model should also be able to account for failure in connections.   

2.4. End Moment Conditions at Joints 

The rigidity of connections in terms of transferring moments is a function of the number 



19 
 

of bolts, the arrangement of the bolts, the pre-tensioning force, and the capacity of the 

bolts. In design and analysis of transmission towers, it is commonly assumed that joints 

are either pinned or fixed in rotational degrees of freedom. Although the assumption of 

pinned connection is valid for joints with one bolt, it is not the case for connections made 

of more than one bolt. For these joints, the moment-rotation behavior of the connection 

can be obtained as a function of the force-deformation behavior of the same connection 

with one bolt. Let’s consider a bolt connection as presented in Fig. 10.a, for each bolt in 

the connection, here, it is assumed that the force-deformation behavior follows a 

backbone curve as previously shown in Fig. 5. An assumption here is that bolt holes have 

circular shape, therefore, independent of the direction of the slippage, the same backbone 

force-deformation applies for the bolt. In addition, it is assumed that the failure of joints 

is due to the plastic deformation in bolts and not angle sections. Considering the force-

deformation in Fig. 5, the contribution of one bolt in the connection to its moment 

resistance can be derived as: 

𝑀𝑀 = 𝐹𝐹. 𝑟𝑟 (1) 

where F is the force capacity of the joint presented in Fig. 5 and 𝑟𝑟 is the distance between 

the center of the bolt and the center of the connection (Fig. 10.a). In addition, the rotation 

(𝜃𝜃) of each bolt is a function of the displacement (𝛿𝛿) of the bolt presented in Fig. 5 as: 

𝜃𝜃 = 𝛿𝛿/𝑟𝑟 (2) 

The resulting moment-rotation curve for the contribution of a joint to the connection 

behavior is shown in Fig. 10.b. Because bolts in connections work in parallel, the derived 

moment-rotation relations for individual bolts are combined in parallel to define the 

moment-rotation relationship of the joints. It should be noted that the moment capacity 

of single bolted connections is zero, therefore, they are modelled as pin. In addition, for 

lap splices as both sides of the angle sections are connected with four bolts on each side, 
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the behavior is very close to a fixed connection. Therefore, a fixed connection in 

rotational degrees of freedom is assumed for lap splices. 

3. Wind Load on Lattice Towers and Conductors 

Wind load on transmission towers depends on a number of factors, including velocity and 

direction of the wind, configuration, and geometry of towers. To determine wind loads 

on transmission towers, the static equivalent gust wind load model in ASCE07 (2016) is 

adopted here. According to this model, the wind force per unit length for a non-building 

structure can be determined using: 

𝑓𝑓𝑤𝑤 = 𝑞𝑞𝑧𝑧𝐺𝐺𝐶𝐶𝑓𝑓𝐷𝐷 (3) 

where 𝑞𝑞𝑧𝑧 is the velocity pressure at height 𝑧𝑧 on the tower, 𝐺𝐺 is the gust-effect factor, 𝐶𝐶𝑓𝑓 

is the force coefficient, and 𝐷𝐷 is the diameter perpendicular to the wind direction. The 

wind velocity pressure is calculated from: 

𝑞𝑞𝑧𝑧 = 0.613𝐾𝐾𝑧𝑧𝐾𝐾𝑑𝑑𝐾𝐾𝑧𝑧𝑧𝑧𝐾𝐾𝑒𝑒𝑉𝑉2 (4) 

where 𝐾𝐾𝑧𝑧 is the velocity pressure exposure coefficient, 𝐾𝐾𝑑𝑑 is the wind directionality 

factor, 𝐾𝐾𝑧𝑧𝑧𝑧 is the wind topographic factor, 𝐾𝐾𝑒𝑒 is the elevation factor, and 𝑉𝑉 is the 3-second 

gust wind velocity at 10 m above the ground line. 𝐾𝐾𝑧𝑧 is a function of the height from the 

ground line and exposure category and is calculated from 

𝐾𝐾𝑧𝑧 = 2.01�
max (4.75, 𝑧𝑧)

𝑧𝑧𝑔𝑔
�
2/𝛼𝛼

 (5) 

where 𝑧𝑧 is the height from the ground line,  assuming the transmission line is located in 

an open terrain area, the exposure category is C, and 𝛼𝛼 and 𝑧𝑧𝑔𝑔 are 9.5 and 274.32 m, 

respectively (ASCE07, 2016). Although Eq. (3) has been developed for atmospheric wind 

loads, it offers a reasonable load pattern for hurricane-induced loads and it is widely used 

as the hurricane load pattern ASCE07 (2016).  𝐾𝐾𝑑𝑑, 𝐾𝐾𝑒𝑒, and 𝐾𝐾𝑧𝑧𝑧𝑧 are taken as 1 (ASCE07, 
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2016). The gust-effect factor, 𝐺𝐺, accounts for the effects of the dynamic nature of wind 

forces on the tower. In the case of the transmission tower, 𝐺𝐺 is set as 0.85. According to 

ASCE07 (2016) the force coefficient, 𝐶𝐶𝑓𝑓, for squared trussed towers is calculated as 

𝐶𝐶𝑓𝑓 = 4 ∈2− 5.9 ∈ +4 (6) 

where ∈ is the ratio of solid area to gross area of the tower face under consideration. In 

addition, a force coefficient equal to 1 is considered for conductors (ASCE 74, 2009). 

4. Uncertainties and Probabilistic Simulations   

Most of the current studies consider deterministic models to investigate the performance 

of towers (Jiang et al., 2017; Jiang et al., 2011). Although deterministic models provide 

insights about the average behavior of towers, they cannot account for variations in the 

demand and capacity and therefore, they cannot identify different failure modes in a 

transmission tower. There are different uncertainties in modelling of transmission towers. 

Steel material properties, wind loads, cross sectional areas, joint slippage models, and 

imperfections, are uncertain variables. Although towers are commonly designed to fail 

under buckling of leg elements (Tapia-Hernández et al., 2017), uncertainty can affect the 

performance of towers by changing the level of demand and capacity on the elements of 

the structure, and therefore, the structure as a system. Consequently, if uncertainties are 

considered, it is expected that for a percentage of realizations of the structure and loads, 

other failure modes will emerge. Subsequently, it is imperative to investigate the 

performance of transmission towers considering all uncertainties involved in modelling 

of these structures.  

In order to investigate the impact of uncertainties on the performance of towers, a 

probabilistic approach is required. A Monte Carlo simulation approach is adopted here to 

generate realizations of uncertain variables and investigate effects of uncertainties on the 



22 
 

emergence of failure modes.  The behavior of steel is defined with the modulus of 

elasticity 𝐸𝐸, yield stress 𝑓𝑓𝑦𝑦, and post yield elasticity 𝐸𝐸𝑠𝑠𝑠𝑠. The distribution type, mean and 

coefficient of variation (COV) for these random variables are presented in Table 5. In 

addition, imperfections are considered to be uncertain. It is assumed that imperfections 

follow a uniform distribution between 0.0005-0.001 of the length of the element (Uriz et 

al. 2008). Furthermore, it is assumed that all elements in a tower have the same material 

properties; however, imperfection values are different. This is mostly due to the high 

variability in imperfection since construction and assembly of elements induce random 

imperfections. On the other hand, the elements used to construct the tower are usually 

made from the same stack of steel profiles where their properties are considerably close 

to one another.  Although in a single realization, all elements are modeled with the same 

material properties, the material properties from one realization to another is modeled 

probabilistically using Latin Hypercube Sampling (LHS) method. 

Uncertainties in the variables defining wind pressures on tower elements are also 

included. The probabilistic model proposed by Ellingwood and Tekie (1999) is adopted 

to obtain the probabilistic model of each uncertain parameter defining wind load 

pressures.  Gust effect factor, force coefficient, velocity pressure exposure coefficient and 

wind directionality factor are the uncertain variables in Ellingwood and Tekie (1999) and 

are included in this study. Table 5 presents the probability distribution model and COV 

of the random variables adopted from Ellingwood and Tekie (1999). The mean value of 

these uncertain variables are obtained from section 3.  

As mentioned earlier, Ungkurapinan (2000) performed a set of experiments and 

reported the mean and standard deviation of variables defining the nonlinear slip behavior 

of connections. This study adopts these probabilistic models to investigate impacts of 

uncertainties in the connections behavior on the performance of lattice towers. 
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Ungkurapinan (2000) only reported the mean and standard deviation of key variables on 

force-deformation curves. However, the probability distribution model is not reported. 

Since the uncertain variables are all nonzero, a lognormal distribution is assumed to 

define the probability distribution models. Therefore, all variables except the slippage 

length are defined by a lognormal distribution. For the slippage length, Ungkurapinan 

(2000) considered three levels of clearance and based on each clearance level, a slippage 

length was obtained. However, the clearance level can be any value between the 

minimum and maximum clearance limits. Therefore, instead of defining three clearance 

levels, in this study, a uniform distribution is considered for the slippage length. The 

minimum and maximum values of the slippage length correspond to the minimum and 

maximum clearance levels, respectively. The distribution, mean and COV of each 

uncertain parameter defining the slippage behavior of connections Type A-C are provided 

in Table 6. 

5. Numerical Study 

5.1 Configuration of the tower 

In performance assessment of transmission towers, uncertainties in material properties, 

connection behavior, and wind-induced loadings may affect the emergence of different 

failure modes. Deterministic analysis methods are not capable of identifying many of 

failure modes. In order to address this limitation, probabilistic analysis procedures such 

as Monte Carlo simulation method are required to account for various uncertainties in 

demand and capacity of the system. In this section, a Monte Carlo simulation approach is 

adopted to investigate the influence of uncertainty on the performance of the system and 

associated failure modes in transmission towers. For this purpose, an actual 27.4 m double 

circuit steel lattice tower located in a hurricane prone coastal area in south of the United 
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States is considered for nonlinear static pushover analysis. Double circuit steel lattice 

towers are commonly used in coastal regions of the United States. Therefore, the chosen 

tower is representative of a large percentage of lattice towers in hurricane prone regions. 

Investigating the performance of this tower can provide a better understanding regarding 

the performance of transmission towers in hurricane prone regions. A sketch of the 

modelled tower is provided in Fig. 11. It is assumed that two lines of three phase 

conductors at three cross arm levels and two lines of neutrals at the top are carried by the 

tower. Therefore, a total number of eight conductors are carried by the line. The three 

phase conductors have an overall diameter of 28.1 mm with a 1627 kg/km weight. These 

conductors are called Drake based on US naming system for Aluminum Conductor Steel 

reinforced (ACSR). In addition, the neutrals are optical ground wires (OPGW) with a 

diameter of 13.4 mm.   The span length of conductors is 258 m. It is assumed that multiple 

spans with identical towers, conductors, and span lengths exist in the transmission line 

system. If the properties of adjacent spans in a line are identical, the structural couplings 

between the adjacent spans are not significant and can be neglected (Darestani et al., 

2016a; Darestani et al. 2016b; Darestani et al. 2017; Darestani and Shafieezadeh, 2017; 

Bhat et al., 2018; Darestani and Shafieezadeh, 2019a; Darestani and Shafieezadeh, 

2019b). Subsequently, in this study, a single transmission tower is modeled without any 

conductors attached to it. However, the gravity and wind induced loadings from 

conductors attached to the tower are applied at the intersection of cross arms and 

insulators as point loads. The gravity and wind induced loadings are distributed equally 

between adjacent towers. Therefore, to calculate point loads of conductors on the tower, 

an effective span length of 258/2=129 m is considered for conductors at each side of the 

tower. Subsequently, an overall effective span length of 258 m is considered for gravity 

and wind load calculation for each line of conductor on the tower. It is also assumed that 
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there is no horizontal angle in the horizontal plane between the conductors at each side 

of insulators. Therefore, there is no unbalanced loading at the insulator location due to 

the tensile force in the conductors. In addition, the failure of conductors is not considered 

in this study, therefore, the associated unbalanced conductor load is not considered. This 

unbalanced load will be addressed in future investigations. The tower is initially designed 

to withstand a wind speed of 130 mph. This wind speed is used as the reference load 

factor in the pushover analysis. Therefore the load factor of 1 corresponds to the 130 mph 

design wind speed. In this section, a probabilistic pushover analysis investigates the 

performance of the tower through 200 realizations of uncertain variables generated by 

Latin Hypercube sampling (LHS) method with uncertain material, connection, 

imperfection, and wind load models defined in sections 2-4. Subsequently, each tower is 

analyzed in OpenSEES Finite Element platform.  

5.2 Effect of modelling complexities on force deformation behavior of the 

tower 

 

In order to investigate the effect of modelling complexities, six different models presented 

in Table 7 are developed in OpenSEES. In model NBUCL&NSLIP rigid connections are 

considered and the buckling effect is not captured. Model BUCL adds buckling effect to 

model NBUCL&NSLIP. Model SLIP does not consider buckling, but it considers joint 

slippage effect. In this model, connections are modeled by setting 𝛼𝛼 in Fig. 9 as 1. In this 

case, there is no drop in the backbone curve of the connection and therefore, this model 

is not capable of capturing failure in connections. However, model SLIPF sets 𝛼𝛼 as 0.25. 

Therefore, model SLIPF is capable of capturing failure in connections. Model 

BUCL&SLIP considers both buckling and joint slippage. However, this model considers 
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𝛼𝛼 as 1 and therefore, it is not capable of capturing failure in joints. Model BUCL&SLIPF, 

which is the most accurate model, considers buckling, joint slippage and, and joint failure. 

Similar to model SLIPF, this model considers 𝛼𝛼 as 0.25.  To consider the effect of wind 

direction on the performance of the tower, wind is applied to the tower in transverse and 

longitudinal directions. When a longitudinal direction is considered, wind induced 

loading on conductors is zero because the wind is parallel to conductors. When a 

transverse direction is considered, wind induced loading on conductors is maximum as 

the projected wind surface area on conductors is maximum. In this study, a displacement-

control pushover analysis is performed using OpenSEES. For this purpose, the 

displacement of the top of the tower is initially increased with 1 mm increments and the 

equivalent load that causes the corresponding displacement is calculated using Newtown 

line search method. The tolerance limit for the Newton line search method is set as 1e-5. 

If the analysis does not converge using the initial displacement increment, the solver 

reduces the displacement increments in several steps. In this study, the displacement 

increment is reduced 5, 10, 100, 1000, and 10000 times until the convergence is achieved. 

If the convergence is not achieved, the solver tries Newton with initial tangent, and 

Broyden methods that are available in OpenSEES. Using the aforementioned solver on a 

core i7 7700 Intel CPU with a clock speed of 3.7 GHz, each analysis of the least complex 

(NBUCL&NSLIP model) and the most complex (BUCL&SLIPF model) model take 

approximately 3 and 15 minutes, respectively. The pushover curves of all 200 realizations 

of uncertain variables for the six considered models and for longitudinal and transverse 

wind directions are provided in Figs. 12 and 13. In addition, these figures show the mean 

and median load factor at each displacement increment in the pushover analysis. The 

mean and median curves, which represent the average behavior of tower, show that as 

expected buckling has a significant impact on the performance of the tower.  In particular, 
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buckling decreases the load bearing capacity of the tower. In addition, joint slippage can 

significantly increase the lateral displacement while it slightly decreases the load bearing 

capacity of the tower. Among 200 realizations of uncertain variables there were a handful 

of extreme cases, in which connection failure occurs. However, these cases are rare and 

therefore, they do not affect the expected load bearing capacity of the tower. These 

extreme cases are discussed later in the next sub-section.  

One major objective of this paper is to investigate the effect of modeling complexities 

on the performance of transmission towers. For this purpose, effects of buckling, joint 

slippage, and joint failure on load bearing capacity and lateral displacement of the tower 

is investigated. As mentioned previously, when wind is applied in longitudinal direction, 

the wind induced force on conductors is zero. However, since the tower is weaker about 

longitudinal axis (Fig. 11), the load bearing capacity of the tower about longitudinal axis 

is significantly lower than transverse axis. The actual values of load bearing capacity for 

each realization is obtained from Figs. 12 and 13 and the mean and standard deviation of 

load bearing capacity and the displacement corresponding to the load bearing capacity of 

the tower are presented in Table 8. A lognormal distribution is found to provide a good 

fit to the empirical distribution obtained from 200 pushover analyses. The probability 

density functions for load bearing capacity and displacement at load bearing capacity are 

also provided in Figs. 14 and 15.  It should be noted that lateral displacement is an 

important criteria that has been used as a serviceability limit state for design and analysis 

of towers (Tessari et al., 2017; Kroetz et al., 2017). For both longitudinal and transverse 

wind, considering model NBUCL&NSLIP, the load bearing capacity of the tower is 

noticeably overestimated (Table 8). In this model, displacement-based beam-columns are 

used assuming large deformations, but the elements are not divided into four sub-

elements and the initial imperfection is not applied. For longitudinal wind, comparing 
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model NBUCL&NSLIP with model BUCL, the mean load bearing capacity of the tower 

is reduced from 1.54 to 1.08, which shows a 30% reduction in the estimation of load 

bearing capacity of the tower. Similarly, for the transverse wind, the estimated mean load 

bearing capacity of the tower reduces from 2.57 to 1.9, which shows a 26% decrease. 

This confirms that in performance assessment of transmission towers, it is essential to 

divide each element into multiple sub-elements and apply initial imperfection to capture 

the buckling behavior of tower elements accurately. Moreover, for a longitudinal wind, 

considering slippage through model SLIP results in considerable increase in the lateral 

displacement of the tower. For example, for the longitudinal wind equal to design wind 

load of the tower (load factor equal to 1), the displacement of the tower from the mean 

curve in Fig. 12 is equal to 0.3 m and 0.35 m for model NBUCL&NSLIP and model SLIP, 

respectively, which shows a 16.7% increase in the lateral displacement of the tower. The 

same trend is observed for the transverse wind direction. It should be noted that model 

SLIP predicts the load bearing capacity of the tower as 1.41 times the design wind load 

of the tower, which shows a 8.5% reduction in the estimation of load bearing capacity 

compared to model NBUCL&NSLIP. This reduction is mostly attributed to additional P-

∆ effects that occur due to excessive lateral displacement of the tower. However, model 

SLIP is still overestimating the load bearing capacity of the tower as it does not capture 

buckling effects accurately. For the longitudinal wind, model SLIPF shows a similar 

behavior to model SLIP as connection failure does not occur. However, for the transverse 

wind direction, the load bearing capacity reduces from 2.24 (in model SLIP) to 2.16 (in 

model SLIPF), which indicates a 4% reduction. This reduction is attributed to failure of 

connections. For the logitudinal wind as the tower is weaker about the longitudinal axis, 

steel elements fail before any connection failure occurs. On the other hand, for the 

transverse wind direction, as the tower is stronger about its transverse axis, in some cases, 



29 
 

connection failure occurs before tower elements fail and therefore, a failure mode due to 

rupture in connections occurs. Similar to longitudinal wind, model SLIP and SLIPF 

overestimate the load bearing capacity of the tower as they do not capture buckling effects 

accurately. In this case, for model NBUCL&NSLIP, SLIP, and SLIPF, in which buckling 

effect is not considered, the mean load bearing capacity is noticeably overestimated. For 

models BUCL&SLIP and BUCL&SLIPF, in which joint slippage and buckling effects are 

both accounted for, the load bearing capacity for longitudinal wind is 1.01, which shows 

a 6% reduction compared to model BUCL in which the load bearing capacity is equal to 

1.08. This shows that joint slippage slightly reduces the expected load bearing capacity 

of the tower while joint failure does not affect the expected behavior. Additionaly, the 

lateral displacement of the tower is increased compared to model BUCL,  as both buckling 

effects and joint slippage contribute to the lateral dispacement of the tower. For example, 

for a longitudinal wind, the lateral displacement of the tower for the load factor of 0.8 is 

0.23, 0.27, 0.26, and 0.31 m for models NBUCL&NSLIP, BUCL, SLIP, and 

BUCL&SLIPF, respectively. The same trend is observed for the transverse wind 

direction. It should be noted that unlike models SLIP and SLIPF, in which the load 

bearing capacity of the tower is reduced for the transverse wind direction, if the 

connection failure is considered; for model BUCL&SLIP and BUCL&SLIPF, the 

estimated mean load bearing capacities are identical. This is due to the effect of buckling, 

as in most cases buckling occurs before the connection failure occurs, and therefore, 

connection failure is not controlling the expected load bearing capacity of the tower. As 

noted earlier, although the expected behavior of the tower (which is shown by mean 

pushover curves in Figs. 12 and 13) is not impacted by connection failure, for a handful 

of extreme cases, the connection failure occurs before a buckling failure mode is 

developed in the tower. To further investigate this effect, a post processing code in 
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MATLAB is developed to present the state of tower elements and connections at multiple 

stages of pushover analyses obtained from OpenSEES. An approach to further validate 

the numerical models presented in this study is to compare results with experiments; 

however, due to lack of experimental data for the particular tower considered here, such 

comparisons are not made here. It should be noted that the failure modes and the 

performance of the tower has a good agreement with the observed performance of 

transmission towers in previous wind hazard events. 

5.3 Effect of joint failure on failure of tower 

In Fig. 16, the performance of the tower, assuming model BUCL&SLIPF, under a 

transverese wind force, for a single realization of uncertain variables that results in a 

connection failure mode is presented. As it was mentioned, this case is a rare case, in 

which connection failure was observed. For most of the analyses, connection failure does 

not occur (Figs. 12 and 13) and therefore, the average performance of the tower is not 

influenced by connection failure. This example, is provided to highlight the effect of 

connection failure on the extreme performance of the tower.  

In Fig. 16, the state of tower elements is provided at three different points in the 

pushover responses. In this figure, damage is categorized into five different states. The 

elements shown with the magenta color are those that are under compression with a 

percentage of fibers yielded. These elements although partially yielded, (since some other 

fibers in the same section are still in their linear state) can undergo further compressive 

forces. Therefore, at this stage, although the element is damaged, it has not buckled yet. 

On the other hand, the red elements indicate that all the fibers in the cross section have 

yielded under the compressive force and the element cannot resist against any further 

loading. This state indicates the true buckling of the element. The elements with orange 
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color are the ones that are under tension but have partially yielded, while the elements in 

green are those with all their fibers have yielded under tensile forces. Therefore, this state 

is called plastic yielding. Additionally, joints that surpass their ultimate capacity are 

considered as failed and are shown with red circles. In Fig. 16, at point 1 (indicated by 

P1), the tower undergoes nonlinear behavior due to partial yielding (damage) in bracing 

and cage elements. However, since there is no failure mechnism developed in the tower, 

it can resist against further loading. At point 2, the tower experiences joint failure at the 

lap splices and buckling in the vicinity of the lap splice (joint). At this stage, the tower 

cannot resist against any further loading. At point 3, the elements are buckled and the 

tower is failed. In this case, the bearing capacity of the tower is equal to 2.09 times the 

design load of the tower. Although this mode of failure is not common, for decayed 

towers with rusted bolts and joint elements, joint failure can occur as rusted connections 

have lower capacity compared to their design capacity. Joint failure was also observed in 

a set of experimental analyses of steel towers performed by Szafran (2015). Moreover, in 

model BUCL, in which both joint slippage and joint failure are neglected (Fig. 17), at 

point 1, there are a couple of bracing elements that exhibit nonlinear behaviors (partial 

damages), however, as the true buckling has not occurred at that point, the tower has not 

yet failed. At point 2, several leg, cage and bracing elements experience nonlinear 

behaviors but the tower has not failed as the main elements in the leg and in the cage have 

not failed. Finally, at point 3, the tower fails due to the buckling of the leg elements at the 

bottom of the tower. At this stage, a failure mechanism is developed in the main elements 

of the tower and therefore the tower is collapsed. Using model BUCL the estimated load 

bearing capacity is equal to 2.1 times the design load of the tower. Therefore, the joint 

slippage is not noticeably changing the load bearing capacity of the tower. However, it 

changes the failure mode. A change in the failure mode is an important consideration 
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especially for life cycle assessment procedures that involve estimation of repair time, 

which affect the  duration of outage and therefore, the associtaed repair costs. Moreover, 

capturing the true failure mechanism is important for reliability and resilience 

improvement strategies, as a change in the failure mode can completely change the 

enhancement strategy. It should be noted that in Figs. 16 and 17 to present the state of the 

tower more clearly, the displacements of the tower are overexaggereated, but the true 

displacements are considered for analysis.  

5.4 Effect of uncertainty on failure of the tower 

The impact of uncertainty on the performance of towers are investigated through 

Table 8 and Figs. 12-15. However, these figures do not specifically present the state of 

tower elements and the impact of uncertainty on the number of failures in the tower. The 

state of tower elements at the failure instance in all 200 pushover analyses is presented 

through Fig. 19. In this figure, the thickness of each failed element and the diameter of 

the circle shows the number of failures (including buckling, plastic yielding, and 

connection failure) occurred in the corresponding element. For example, if a buckled 

element is thicker than another buckled element, it shows that a larger number of buckling 

failures have occurred in that element. In addition, the elements shown by blue lines are 

the elements that failure has not occurred in them in all 200 analyses. Considering a 

longitudinal wind, two significant failure modes are observed. First, failure due to 

buckling in the cage elements, and failure due to buckling in leg elements (Fig 19.a). As 

noted previously, these modes of failure have been observed in previous failure events 

(Elks, 2016; IEEE TP&C line design, 2018) as well as experimental analyses of towers 

(Rao et al., 2012).  For the transmission tower studied in this analysis, the leg elements 

are made of high strength A242 steel with a yield strength of 50 ksi while the cage 
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elements are made of conventional A36 steel with a yield strength of 36 ksi. Therefore, 

more failures are expected to occur in the cage. In addition, as it was mentioned 

previously, a handful of connection failures occur in a lap-splice that is shown with black 

circle. Moreover, for a transverse wind, most of the failures occur in the cage elements 

while there are a handful of failures in the leg elements, mid height elements and 

connections (fig. 19.b). More connection failure is observed for transverse wind direction. 

This is due to the weakness of the tower about its longitudinal axis, which causes the 

tower elements to buckle before connection failure occurs in the tower. It should be noted 

that Fig. 19 highlights the importance of tower elements in the failure of the tower, and 

subsequently can provide a better understanding on how to enhance the robustness of the 

tower. For example, it was observed that the cage elements often buckle and control the 

failure of the tower. Therefore, to improve the performance of the tower, these elements 

could be replaced by high strength A242 steel elements. As mentioned earlier, the 

objective of this paper is to investigate the effect of modeling complexities and 

uncertainties on the wind performance of transmission towers. However, investigating 

strengthening strategies is beyond the scope of the present study. These effects will be 

investigated in future studies. The modelling approach proposed in this study could be 

integrate with advanced reliability analysis techniques (Darestani et al., 2019; Zamanian, 

2016; Rahimi et al., 2019; Sichani and Padgett 2019; Sichani et al., 2018) to generate 

fragility models for transmission towers. 

6. Summary and Conclusions 

This study investigated the impact of uncertainties in demand and capacity along 

with various modeling complexities such as buckling, joint slippage and joint failure on 

the extreme wind performance of transmission towers. For this purpose, 200 realizations 
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of uncertain variables are generated through LHS method and the performance of the 

tower is investigated through six different models using nonlinear Finite Element static 

pushover analyses in OpenSEES. Each of these six models considers a set of modeling 

complexities. In order to consider buckling, each element is divided into four sub-

elements and an initial imperfection is applied to the additional nodes. Furthermore, a 

nonlinear joint slippage connection model is proposed using Zerolength elements in 

OpenSEES. This model is capable of capturing failure in the connections by defining a 

drop in the backbone curve of the joint slippage model. The simplest model neglects 

buckling and joint slippage effects, while these along with failure of joints are considered 

in the most accurate of the six developed models.   

Results of this study indicated that buckling can noticeably impact the response of 

transmission towers. Particularly, buckling, on average, decreases the load bearing 

capacity of the tower by up to 30%. Joint failure does not noticeably decrease the load 

bearing capacity of lattice towers. However, in rare cases, it can change the mode of 

failure and therefore, it can impact the strengthening strategy. In addition, joint slippage 

slightly affects the load bearing capacity of towers by up to 6%, while it significantly 

increases the lateral displacement of the tower, which can affect the serviceability of 

transmission towers. Consequently, for risk and resilience assessment of steel lattice 

transmission towers, especially for capturing small probabilities of failure, it is imperative 

to have a model that is capable of capturing buckling effects, joint slippage, and joint 

failure.  

It should be noted that connections are very often designed to be stronger than their 

connected elements to make sure that connection failure does not occur before the 

elements fail. However, in reality, due to uncertainties in the behavior of connections and 

construction errors, among other factors, it is possible that connections fail before the 
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attached elements fail. Therefore, in probabilistic analysis of transmission towers, 

connection failure should be considered as it may impact the extent of damage and the 

mode of failure. Furthermore, results of this study confirmed that the collapse of the tower 

is commonly associated with the buckling of the main elements of the tower including 

the leg elements or vertical elements of the cage. Prior to this failure, several elements 

may experience partial damage. The knowledge of these component-level damages can 

be leveraged to devise effective strengthening and recovery procedures. It should be noted 

that the derived conclusions are specifically applicable to the assumed tower 

configuration and material properties. Further investigations are needed to fully 

characterize impacts of uncertainties and modeling complexities on the extreme wind 

hazard performance of lattice transmission towers with different configurations and 

material properties. 
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Table 1. Convergence study on the number of discretizations for accurate estimation of 
the buckling force in OpenSEES for the case of simply support 1.75X1.25X0.1875 
angle section element 

Simply supported 

element 

Imperfection Camber Displacement (*Length) 
Theoretical 

Buckling 

Force (kN) 

0.00001 0.0005 0.001 

number of elements 
Buckling Force 

(kN) 

Error 

(%) 

Buckling Force 

(kN) 

Error 

(%) 

Buckling 

Force (kN) 

Error 

(%) 

2 3.94 20.1 3.90 18.9 3.87 18.0 

3.28 
4 3.42 4.3 3.39 3.4 3.36 2.4 

8 3.29 0.3 3.26 -0.6 3.23 -1.5 

16 3.26 -0.6 3.23 -1.5 3.20 -2.4 
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Table 2. Convergence study on the number of discretizations for accurate estimation of 
the buckling force in OpenSEES for the case of fixed end 1.75X1.25X0.1875 angle 
section element 

fix supported 

element 

Imperfection Camber Displacement (*Length) 
Theoretical 

Buckling 

Force (kN) 

0.00001 0.0005 0.001 

number of elements 
Buckling Force 

(kN) 

Error 

(%) 

Buckling Force 

(kN) 

Error 

(%) 

Buckling 

Force (kN) 

Error 

(%) 

2 15.79 20.4 15.45 17.8 15.15 15.5 

13.12 
4 15.80 20.4 15.45 17.8 15.15 15.5 

8 13.69 4.3 13.45 2.5 13.25 1.0 

16 13.16 0.3 12.96 -1.2 12.77 -2.7 
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Table 3. Convergence study on the number of discretizations for accurate estimation of 
the buckling force in OpenSEES for the case of  simply support 4X4X0.3125 angle 
section element 

Simply supported 

element 

Imperfection Camber Displacement (*Length) 
Theoretical 

Buckling 

Force (kN) 

0.00001 0.0005 0.001 

number of elements 
Buckling Force 

(kN) 

Error 

(%) 

Buckling Force 

(kN) 

Error 

(%) 

Buckling 

Force (kN) 

Error 

(%) 

2 570.44 39.1 483.06 17.8 447.59 9.2 

410 
4 510.70 24.6 443.72 8.2 410.78 0.2 

8 491.37 19.8 431.73 5.3 399.52 -2.6 

16 486.78 18.7 428.65 4.5 396.75 -3.2 
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Table 4. Convergence study on the number of discretizations for accurate estimation of 
the buckling force in OpenSEES for the case of  fixed end 4X4X0.3125 angle section 
element 

Simply supported 

element 

Imperfection Camber Displacement (*Length) 
Theoretical 

Buckling 

Force (kN) 

0.00001 0.0005 0.001 

number of elements 
Buckling Force 

(kN) 

Error 

(%) 

Buckling Force 

(kN) 

Error 

(%) 

Buckling 

Force (kN) 

Error 

(%) 

2 582.60 8.1 576.70 7.0 570.87 5.9 

539 
4 582.63 8.1 576.14 6.9 569.79 5.7 

8 582.56 8.1 572.93 6.3 563.65 4.6 

16 582.54 8.1 572.00 6.1 561.87 4.2 
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Table 5. Uncertain variables defining material behavior and wind loading  

Properties Notation Type of 
Distribution 

  
Reference 

Mean  COV 

Steel 
material 

Modulus of elasticity 𝑬𝑬 LogNormal 2.0e11 (N/m2) 0.06 

ASCE07 (2016) and 
ASCE 74 (2009) 

Yield stress of main leg 𝒇𝒇𝒚𝒚𝒚𝒚  LogNormal 4.02e8(N/m2) 0.1 
Yield stress of other elements 𝒇𝒇𝒚𝒚𝒚𝒚  LogNormal 2.9e8 (N/m2) 0.1 

Post yield elasticity 𝑬𝑬𝒔𝒔𝒔𝒔 LogNormal 0.02E(N/m2) 0.25 
Buckling Imperfection of element   Uniform 0.075(%) 0.192 

Wind 
load 

Gust effect factor 𝑮𝑮 Normal  Section 3 0.11 
ASCE07 (2016), 
Ellingwood and 

Tekie (1999) and  

Force coefficient 𝑪𝑪𝒇𝒇 Normal  Section 3 0.12 
Velocity pressure exposure 

coefficient 𝑲𝑲𝒛𝒛 Normal  Section 3 0.16 

Wind directionality factor 𝑲𝑲𝒅𝒅 Normal  Section 3 0.08 
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Table 6. Uncertain variables defining connections 

Properties Notation Type of 
Distribution 

  Reference 
Mean  COV 

Connection 
Type A 

Load at onset of slip Force @ A* LogNormal 86.6 kN 0.109 

Ungkurapinan (2000) 

Load at end of slip Force @ B* LogNormal 197.3 kN 0.23 
Load at onset of 

plasticity Force @ C* LogNormal 317 kN 0.13 

Maximum load Force @ D* LogNormal 440 kN 0.017 
Dis. at elastic 

frictional load transfer Phase 1 LogNormal 0.29 mm 0.35 

Slippage length Phase 2 Uniform 1.9 mm 0.61 
Dis. at elastic load 

transfer Phase 3 LogNormal 2.95(mm) 0.27 

Dis. at nonlinear load 
transfer Phase 4 LogNormal 0.36(mm) 0.34 

Connection 
Type B 

Load at onset of slip Force @ A LogNormal 23.95(kN) 0.1 
Load at onset of 

plasticity Force @ C LogNormal 132.17(kN) 0.09 

Maximum load Force @ D LogNormal 205.08(kN) 0.02 
Dis. at elastic 

frictional load transfer Phase 1 LogNormal 0.11(mm) 0.1 

Slippage length Phase 2 Uniform 0.45(mm) 0.15 
Dis. at elastic load 

transfer Phase 3 LogNormal 2.09(mm) 0.22 

Dis. at nonlinear load 
transfer Phase 4 LogNormal 3.99(mm

Connection 
Type C1                                                        

Load at onset of slip Force @ A LogNormal 9.29(kN) 0.084 
Load at onset of 

plasticity Force @ C LogNormal 65.03(kN) 0.098 

Maximum load Force @ D LogNormal 107.78(kN) 0.039 
Dis. at elastic 

frictional load transfer Phase 1 LogNormal 0.39(mm) 0.29 

Slippage length Phase 2 Uniform 1.28(mm) 0.43 
Dis. at elastic load 

transfer Phase 3 LogNormal 2.74(mm) 0.175 

Dis. at nonlinear load 
transfer Phase 4 LogNormal 6.04(mm) 0.158 

Connection 
Type C2 

Load at onset of slip Force @ A LogNormal 20.14(kN) 0.219 
Load at onset of 

plasticity Force @ C LogNormal 97.51(kN) 0.115 

Maximum load Force @ D LogNormal 157.71(kN) 0.062 
Dis. at elastic 

frictional load transfer Phase 1 LogNormal 0.25(mm) 0.26 

Slippage length Phase 2 Uniform 1.32(mm) 0.44 
Dis. at elastic load 

transfer Phase 3 LogNormal 1.73(mm) 0.225 

Dis. at nonlinear load 
transfer Phase 4 LogNormal 2.55(mm) 0.235 

Connection 
Type C3 

Load at onset of slip Force @ A LogNormal 29.28(kN) 0.069 
Load at onset of 

plasticity Force @ C LogNormal 152.85(kN) 0.095 

Maximum load Force @ D LogNormal 204.4(kN) 0.117 
Dis. at elastic 

frictional load transfer Phase 1 LogNormal 0.28(mm) 0.28 

Slippage length Phase 2 Uniform 1.11(mm) 0.37 
Dis. at elastic load 

transfer Phase 3 LogNormal 2.4(mm) 0.192 

Dis. at nonlinear load 
transfer Phase 4 LogNormal 2.18(mm) 0.174 

*Adjusted to account for lap splices with 8 bolts 
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Table 7. Various models developed in OpenSEES 

Model No. Rigid Connection Buckling Semi-rigid connection 
Without failure With failure 

NBUCL&NSLIP*     
BUCL *     
SLIP*     

SLIPF*     
BUCL&SLIP*     

BUCL&SLIPF*     
*NBUCL: No Buckling, NSLIP; No Slippage, BUCL: Buckling, SLIP: Slippage, SLIPF: Slippage with failure in connection 
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Table 8. Comparison of bearing capacity and displacement of tower models from Figs. 
12-13 

Model  Wind 
Direction 

Load bearing capacity 
(Factor) Displacement at bearing capacity (m) 

Mean STD Mean STD 
NBUCL&NSLIP* Transverse 2.57 0.65 0.61 0.11 

BUCL * Transverse 1.9 0.46 0.30 0.03 
SLIP* Transverse 2.24 0.56 0.47 0.10 

SLIPF* Transverse 2.16 0.53 0.40 0.05 
BUCL&SLIP* Transverse 1.85 0.45 0.34 0.04 

BUCL&SLIPF* Transverse 1.85 0.45 0.34 0.04 
NBUCL&NSLIP Longitudinal 1.54 0.42 0.81 0.13 

BUCL Longitudinal 1.08 0.30 0.41 0.07 
SLIP Longitudinal 1.41 0.41 0.67 0.09 

SLIPF Longitudinal 1.42 0.41 0.69 0.09 
BUCL&SLIP Longitudinal 1.01 0.27 0.46 0.11 

BUCL&SLIPF Longitudinal 1.01 0.27 0.46 0.10 
*NBUCL: No Buckling, NSLIP; No Slippage, BUCL: Buckling, SLIP: Slippage, SLIPF: Slippage with failure in connection 
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Figure 1. Beams for the verification of modeling buckling in OpenSEES a) pinned ends 

(simply supported) and b) fixed ends 
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Figure 2. Discretization and imperfection modeling of lattice elements to capture 

buckling in OpenSEES 
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Figure.3 The direction of imperfection with respect to the cross section 
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Figure 4. Connections reported by Ungkurapinan (2000) a) Type A b) Type B c) Type 

C1 d) Type C2 e) Type C3 f) Type C4 
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Figure 5. Backbone curve for connection a) Type A b) Type B and C (Ungkurapinan, 

2000) 
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Figure 6. Different clearance levels a) minimum b) normal c) maximum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) 



54 
 

 

Figure 7. Connections considered in this study a) lap Splices b) bracing to bracing c) 

bracing to main element (1 bolt) d) bracing to main element (2 bolts) e) bracing to main 

element (3 bolts) 
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Figure 8. Modeling semi-rigid connections in OpenSEES using Zerolength elements. 
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Figure 9. Developing connection material in OpenSEES 
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Figure 10. The configuration of a typical connection for the derivation of moment-
rotation relationships a) calculation of r for a joint with two bolts b) moment-rotation 
behavior of a single bolt 
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Figure 11. Double circuit lattice tower assumed in this study 
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Figure 12. Pushover curves for longitudinal wind direction for models a) 
NBUCL&NSLIP b) BUCL c) SLIP d) SLIPF e) BUCL&SLIP f) BUCL&SLIPF 
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Figure 13. Pushover curves for transverse wind direction for models a) 
NBUCL&NSLIP b) BUCL c) SLIP d) SLIPF e) BUCL&SLIP f) BUCL&SLIPF 
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Figure. 14 Probability density function of load bearing capacity and displacement at 
max load capacity (longitudinal wind) 
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Figure. 15 Probability density function of load bearing capacity and displacement at max 
load capacity (transverse wind) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Load Bearing Capacity (Factor)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Pr
ob

ab
ili

ty
 D

en
si

ty
NBUCL&NSLIP

BUCL

SLIP

SLIPF

BUCL&SLIP

BUCL&SLIPF

0 0.2 0.4 0.6 0.8 1 1.2

Top Displacement (m) at Max load Factor

0

2

4

6

8

10

12

Pr
ob

ab
ili

ty
 D

en
si

ty

a) b) 



63 
 

 

 

Figure 16.  Investigation of failure mechanism for transverse wind direction assuming 
model BUCL&SLIPF 
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Figure 17.  Investigation of failure mechanism for transverse wind direction assuming 
model BUCL 
 

 

 

 

 

 

 

 

 

 

 

 

 

𝑃𝑃2 𝑃𝑃1 𝑃𝑃3 

0 0.1 0.2 0.3 0.4
Top Displacement(m)

0

0.5

1

1.5

2

2.5

Lo
ad

 F
ac

to
r

𝑃𝑃1 

𝑃𝑃2 𝑃𝑃3 

Buckling 

Plastic yielding 

Partial yielding under compression 

Partial yielding under tension 



65 
 

 

Figure 18. The type and location of damaged components in the transmission tower 
derived from 200 pushover analyses for a) longitudinal wind and b) transverse wind 
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