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ABSTRACT As a special type of big data, the big graph has wide applications. The remote data integrity
checking (RDIC) scheme enables public clouds to efficiently convince the clients that their graph data
are stored properly, without the need of retrieving the actual data contents. The existing schemes support
verifiable update often by adopting the authentication data structures (ADSs), e.g., Merkel hash tree (MHT).
The main obstacle for applying the existing RDIC schemes to big graphs is due to the lack of support
for verifiable sub-graph operations with high efficiency. In this paper, we propose a new RDIC scheme
for big graphs, called GVD-RDIC, to support public auditing and verifiable dynamic graph updates with
high efficiency. We have designed novel ADS based on the graph Voronoi diagram (GVD) and enhanced
MHT to address the integrity of graph structure and verifiable sub-graph updates. In addition, our ADS
can be applied to any type of graphs. Moreover, our GVD-RDIC scheme adopts a new construction for the
homomorphic authenticator to enable index verifications for public auditors. A server response constructed
with unchallenged block will be rejected. The proposed scheme is proven secure under a random oracle
model. Both the theoretical analysis and the simulation results show that our scheme is practicable for

real-world big graphs.

INDEX TERMS Big data integrity, big graph, public auditing, Internet cloud.

I. INTRODUCTION

The rapid growth in the data volume of real-world graphs,
drives the development of distributed, cloud-based big graph
computing systems, including Pregel [1], GraphLab [2],
Giraph [3], etc. Big graph is a special type of big data.
Typical big graph examples include Facebook-like social
networks, large wireless/wired networks (with thousands of
nodes), geographical terrain maps, big city transportation
data, etc. The big graph processing systems often adopt
distributed computation models over the shared resources
such as storage, computing power, and management services.
Due to the elasticity and scalability of distributed comput-
ing resources [4] and the pay-as-you-go payment method,
adopting cloud systems is considered as an economic solu-
tion for real-world graph storage and processing. Clients can
enjoy low-cost computing power, and access their graphs
anywhere via the Internet. However, a downside is that the
data owner loses the direct control of their graphs. Thus,
security becomes a major concern. According to a survey
from international data corporation enterprise panel, 87%
cloud users doubt the security of their data in clouds. Large
and complex network systems are vulnerable, and the hack-
ers can manipulate the data or computing process. In some

cases even the cloud provider can not be fully trusted. For
example, when the cloud storage severs suffer unexpected
failures, they may hide the data loss from the data owner
to avoid their responsibilities. An investigation [5] shows
that 25% of security incidents are related to data loss and
leakage.

Due to the large volume of big graphs and relatively con-
strained computational resources in the clients’ machines,
it is impracticable for the clients to periodically check
whether or not their graphs are stored properly by download-
ing the entire graph. Thus the critical issue here is to find
a more efficient way to check the integrity of the big graph
data. Traditional integrity verification methods, such as hash
functions and message authentication code (MAC), can not be
directly applied here due to the absence of the original data
files [6].

As a countermeasure, Ateniese et al. [7], [8] introduced
provable data possession (PDP) scheme for remote data
integrity verification. With PDP the clients can pre-compute
some small metadata units called homomorphic authentica-
tors for each data block and sends them to the cloud together
with the original dataset. Whenever a client challenges the
server for data integrity, the server can efficiently generate
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a proof based on the datafile and authenticators. The PDP
scheme is practicable since it requires only a tiny part of
the entire dataset. For example, in Ateniese’s paper, they
proved that by checking 460 randomly selected blocks among
10,000 blocks the verifier has more than 99% probability
to detect 1% data corruptions. Their construction scheme is
based on RSA, and makes use of the partial homomorphic
property of RSA signature. Shacham and Waters [9] pro-
posed a new construction method called proof of retrievabil-
ity (POR), which is based on Boneh-Lynn-Shacham (BLS)
signature that can reduce the size of homomorphic tags. The
BLS signature is based on bilinear map, and the computation
cost for paring operations is higher than the signatures based
on Elliptic Curve Cryptography (ECC) [10], [11]. These
schemes enable efficient integrity checking of static data in
the remote servers.

Another important factor to be considered is that the data
contents/operations in the clouds are often highly dynam-
ical, since the clients may not only query the clouds but
also perform dynamic operations such as updates, insertions
and deletions. Thus, it is vital for a RDIC scheme to sup-
port scalable, dynamic data operations. Some existing works
such as Merkel Hash Tree (MHT) [12] or ranked skipping-
list [13], support verifiable dynamic operations by adopting
the authentication data structures (ADS) structures.

There are a few challenging issues that we plan to address
in this paper. Firstly, no existing work addresses public audit-
ing for dynamic graph data. Let’s consider a graph G, where
each vertex contains its own content and some structural
indicators that tell the relationships among the contents of
other vertexes. The contents can include the classification
information, indexing results, or the sensitivity of the con-
tents [14]. In [15] the integrity of such relationships is referred
as “‘structural integrity’’, while the integrity of the contents
in the vertexes is called “content integrity”’. Therefore, both
the content and structure of the updated graph need to be
authenticated when verifying dynamic operations. But cur-
rent schemes only provide content verifications. Although
there are some ADS instantiations such as [15]-[18] which
may be used to verify the dynamic graph operations, they are
either restricted to certain type of graphs or not scalable for
dynamic big graph verification operations, especially for sub-
graph updates.

In this paper we propose a generic, efficient RDIC scheme
for dynamic big graphs in clouds. Our contributions include
3 aspects as follows:

1. To the best of our knowledge, this is the first work
to fill in the research blank - there is still no secure
and general RDIC scheme for big graphs that supports
verifiable dynamic graph operations. We achieve the
low-cost public auditing and scalable dynamic graph
authentication by using a new ADS, namely, graph
Voronoi diagram (GVD)-MHT.

2. To ensure that the cloud responds exactly with the block
queried, our scheme incorporates with an additional
verification process for the indices of block.
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3. We provide the detailed proof of the completeness and
soundness of our scheme. We have also conducted sim-
ulation analysis, and our performance results show that
our construction is efficient for real-world big graphs.

This paper is a significant extension of our conference
paper [19]. We have focused on a complete, new RDIC
scheme in this paper instead of just designing a simple
hash scheme as in [19]. Unlike [19], this paper will provide
the comprehensive GVD-MHT protocol details. Moreover,
it provides the detailed proof process for 3 important theo-
rems in terms of the soundness and completeness of our big
graph security scheme.

The rest of paper is organized as follows: Section II intro-
duces the existing works on RDIC system and structure
integrity verification. Section III lists the notations and secu-
rity assumption used in our construction, and reviews the
definitions of general RDIC and MHT. Section IV defines
the general system and security mode of RDIC scheme for
graphs. Section V describes the detailed construction process
for the proposed GVD-RDIC, and shows how it authen-
ticates dynamic graph operations. Section VI provides the
proof of correctness and soundness for the proposed scheme.
Section VII discusses the extensive construction for privacy
preserving and efficiency improving. Section VIII analyzes
the performance results of our implementation. Section IX
concludes this work.

Il. RELATED WORKS

Remote integrity checking enables efficient public auditing
for outsourced data in clouds. It has attracted many research
interests. Starting from the work in [8] there are already much
progress in this direction such as [12], [13], and [20]-[24],
which explored different construction models to make the
auditing schemes more efficient. These works mainly focus
on two aspects, i.e., supporting data dynamics and preserving
the privacy against the third party auditor (TPA).

A. DATA DYNAMICS

This property enables a data owner to perform dynamic data
operations including, but not limited to, insertion, deletion
and modification, with acceptable overhead after the graph
data is sent to a remote server. In an earlier work [22] a
dynamic PDP scheme based on symmetric encryption and
hash functions is proposed to support dynamic operation
queries. But the number of queries is limited and the insertion
is not fully supported. Later on, an extended PDP scheme is
proposed in [23] by adopting a modified, ranked skipping-list
to support fully dynamic data operations. The basic idea is to
replace the indices of data blocks in the homomorphic authen-
ticator with the hash values of data blocks, and use an ADS to
authenticate the correctness of the hashing operations. While
the data may be modified, only the hash and authenticator
of the modified block need to be updated. Although in this
scheme public audit is not supported and the size of data
block is fixed, the idea inspires more promising solutions. For
example, a MHT-based scheme [13] is used to support fully
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dynamic data operations. Such a work was enhanced by [21]
to support fine-grained dynamic operations.

These works improved the scalability of RDIC scheme on
dynamic data. However, replacing the indices of data blocks
makes the scheme not sound in default auditing process.
Because the public auditor does not have the original data
blocks, without indices it cannot verify whether or not the
returned authenticator is for the exact challenged data block.
Thus these schemes rely on the assumption that the server
will be honest during auditing, which contradicts the typical
assumption that the server may not be honest. Some other
works attempt to make ADS-based RDIC scheme more effi-
cient in different scenarios such as multi-replication environ-
ment [25], [26]. In [26], two indices are used incorporate with
the original MHT to precisely indicate the level of a node v in
MHT and maximum number of leaf nodes that can be reached
from v. While auditing, TPA can computer the exact index of
a block to make sure the server do not response with another
block on the verification path.

B. PRIVACY AGAINST THIRD PARTY AUDITOR

While adopting public auditor brings significant benefits,
it also raises new security issues. For example, the TPA may
gain enough information to retrieval the original data through
multiple challenges. This problem is essential when the data
is sensitive. Normally, data confidentiality can be achieved by
using symmetric encryption scheme to encrypt the dataset.
But in cloud computing applications, the encryption will
increase unnecessary overhead. Hence, in [20] a random
mask based scheme is proposed to address this problem.
Some recent works [6], [13] zero-knowledge proof is intro-
duced to preserve the data privacy. The process of identity-
based RDIC was defined in [6] to reduce the complexity of
key management. Some other works [27], [28] on medical
data access control also adopts zero-knowledge proof to audit
whether the file is encapsulated with correct access rule. The
goal of construction is quite different from RDIC scheme, but
they can also achieve data privacy through zero-knowledge
proof.

Another aspect of this research is related to ADS for
dynamic graph data. Some existing works such as [14]-[17],
have made much progress on this issue. The original
MHT [15] can authenticate tree-structured graphs. Later on
a scheme called search-DAG [16] was proposed to enable
authentication for both trees and DAGs. An efficient scheme
for graphs with different structures was proposed in [14] by
introducing graph traversal process. But the weights (con-
tents) in the edges are not authenticated. Thus it does not
work for weighted graph, a follow-up work [17] improved
the privacy. But they are not efficient enough when authenti-
cating dynamic graph operations, for an insertion or deletion
operation, the complexity can be O(N) [17], here N is the
size of the whole graph. Thus the applications are restricted
to the scenarios that the graph data has a specific type and do
not change frequently, which contradicts the dynamic nature
of big-graph applications.
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IIl. PRELIMINARIES

Notations: A graph G = (V, E) contains two sets: V denotes
all vertexes in the graph and E contains all the edges of the
graph. An edge e(u, v, w) in E is an edge from vertex u to
v with the weight w. For an undirected graph, an edge can
be represented as two directed edges. In a graph the source
nodes mean the nodes without incoming edges. For a vertex
v, if another vertex u is on the path from v to a source node,
then v is a posterity of u. The identical graphs are the graphs
with exactly the same content and structure.

Bilinear Map: Our constructions make use of symmetric
bilinear prime order groups G, = (e, Gy, Go, p, g) with a
bilinear map e : G| x G; — G». Here G and G, are two
cyclic groups of order p; and g are the generators of G1. The
map e is bilinear if it has the following three properties:

Bilinearity: Vga, g» € G1, e(gy, &) = €(8a> 86)™";

None-degeneracy: Vg #0 € Gy, e(g, g) # 1;

Computational Efficiency: Yg,, g» € G1, e(g4, g») can be
computed in polynomial time.

Also, two hash functions H; O, D)* - Gi,H
0, )* — (0, 1)} are required; here H; is a map to point hash
function which can map a message to an element in G, and
H, is a cryptographic hash function that maps a message to a
fix-size hash value. Under these setups our construction can
be proven secure under the following assumption:

Assumption 1 (Computational Diffie-Hellman): The Com-
putational Diffie-Hellman (CDH) assumption holds if every
probabilistic-polynomial-time (p.p.t) adversary A can solve
the CDH problem (For the cyclic group G of prime order p
and a,b < Zg here q is a prime number. Given g, g% and
g, compute g® without knowing a, b.) only with a negligible
probability.

Third Party Auditor
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FIGURE 1. The system model of general RDIC.

A. GENERAL RDIC SCHEME
In a public auditing scheme (Fig.1), there are three entities:
Client (C): Data owner or data user, who can request a
cloud provider for efficient computation and storage. It has
fully authority to its part of datasets.
Cloud Server (CS): Remote data sever managed by a
cloud provider, which has the required storage and computing
resources.
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Third Party Auditor (TPA): An entity authorized by a client
to periodically check the integrity of the data stored on cloud.

Here each entity has its own capability and interests. The
client has a big graph stored in the cloud without a local
copy, and wants to ensure the security of its graph with the
minimum cost. The cloud server has large storage space and
computation power to provide the service to the client, but it
has its own interest such as keeping good reputation. Thus it
may try to hide the possible data corruptions from the user.
However, we assume that the CS will not deliberately reveal
the data to the third party or manipulate data because there
is no benefit for doing that. TPA is capable of periodically
running the auditing process and is trusted by the clients, and
may have interest in retrieving the sensitive information from
the clients data through the auditing process.

A public-key-based RDIC scheme IC = (Setup, KeyGen,
TagGen, Challenge, Proof, Verify) consists of six algorithm
as described below:

o pp < Setup(1’): C takes the security parameters as
inputs, and outputs the public parameter pp.

o sk, pk < KeyGen(pp): C takes the public parameter pp
and generates a public key pair (sk, pk).

o signauth, o < TagGen(pp, sk, F): C takes the secret
key sk and file block F, returns the signature signauth
and a homomorphic authenticator o for the block.

o ¢ < Challenge(pp, signauth): TPA takes pp and signa-
ture signauth, and generates a challenge c.

o m < Proof(pp, F, o, signauth, c): CS takes pp, o,F
and signauth to generate a proof & for the challenge c.

o b < Verify(pk, m): TPA takes the public key pk to verify
the returned proof m, and outputs either » = 1 (means
Accept) or b = 0 (Reject).

A RDIC system has three major security concerns: com-
pleteness, soundness, and zero knowledge privacy against the
TPA. Here we mainly focus on completeness and soundness,
and privacy issue will be discussed in Section VII.

Definition 2 (Completeness): A RDIC scheme IC is com-
plete if for any valid server P and a proof 7 from P, we have:

Pr[Reject < Verify(sk, m, c)] =~ 0

Definition 3 (Soundness): A RDIC scheme IC is sound if,
for a valid data block m and any data block m’ (m’ # m) and
for all p.p.t attacker A, we have:

(pk, sk) < AKexGen(qrp)
Pr|m <« AP (pk,c,m', o)) | =0
(b =1) « Verify(pk, m, c)

B. MERKLE HASH TREE(MHT)

MHT [15] is a widely used cryptographic technology for
large-scale database hash management. The basic idea of
MHT is aggregating the hashes of all data units in a dataset
to one or multiple root hashes following some data structure.
In this way, MHT can support efficient verification for dataset
changes. Here we illustrate the basic procedure of MHT
construction with a simple Binary hash tree (BHT) case.
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The whole datasets are handled as independent data
unions m;. The leaf level of BHT has the hashes of all data
blocks, and each non-leaf-level node (LN = H»(m;)) contains
the hash of the concatenation of all the hashes in all its
children nodes (in BHT each node has two children, thus
NLN = H,(H,||H;)), Through bottom-up operations it will
generate a root hash representing the whole dataset.

IV. RDIC MODEL AND SECURITY MODEL
In this section we describe the system model of RDIC scheme
for big graphs and its security model.

A. RDIC SYSTEM FOR BIG GRAPHS

Our goal is to design a RDIC scheme for big graphs and
ensure that it supports dynamic updates. Recall that we are
interested in a scheme that is able to authenticate both content
integrity and structure integrity. Naturally there are two ways
to achieve this: either including structure information in data
unions or using structure information in signature aggrega-
tions. Either way the structure information of the graph is
required. Therefore, a RDIC scheme for graph /Cg consists
of seven algorithms ICg=(Setup, Extract, KeyGen, Sigag,
TagGen, ChallengeGen, ProveGen, Verify):

o pp < Setup(1”): C takes inputs the security parameter,
outputs the public parameter pp.

o G; < StrGain(G, set) : C takes the graph G, generates
a labeled graph G; that can indicate the structure of
graph G.

o sk, pk < KeyGen(pp): C takes the public parameter pp,
and generates a public key pair (sk, pk).

o signauth < Sigag(pp, Gy, sk) : C takes the secret key
sk and the labeled graph G;, computes the hash value #;
for each storage unit, then constructs the corresponding
ADS and generates a root hash R for the whole graph.
It returns the signature signauth of R, signed by the
secret key sk.

o 0,7 < TagGen(pp, sk, Gp): C takes the secret key sk
and the graph Gy, returns the homomorphic authenti-
cators o for all storage blocks in the graph together
with a verification package t that contains the required
integrity checking information for TPA.

o chall < Challenge(pp, signauth): TPA takes pp and
signature signauth, generates a challenge chal.

o 1 < Proof (pp, Gy, o, signauth, chal): CS takes pp, o,
G and signauth to generate a proof 7 for the challenge
chal.

o b <« Verify(pk, w): TPA takes the public key PK to
verify the returned proof m, and either outputs b = 1
(Accept) or b = 0 (Reject).

B. SECURITY MODEL

This work mainly considers two security properties: com-
pleteness and soundness. Another important aspect is data
privacy. But it is not the main focus of this study since
we want to emphasize our contributions in dynamic graph
operation integrity issues. We will briefly discuss privacy
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issue in the discussion section (Section VII) since some exist-
ing works have well addressed this problem. Completeness
stands if the verifier always accepts the proof from a valid
server.

Definition 4: A RDIC scheme for graphs is complete, if for
all key pairs (sk, pk) generated by KeyGen, all graphs G and
the tags (o, t) from TagGen(sk, G;), Verify will always output
Accept, i.e.,

(Proof (Gy, ) < Verify(pk, 1)) =1

Following the precise definition of soundness from
Shacham and Waters’s work [9], we define the soundness
of a RDIC scheme for graphs that supports dynamic graph
operations as follows.

Definition 5: A RDIC scheme for graphs is €—sound
if there exists an efficient extraction algorithm Extr, such
that for every p.p.t adversary A who wins the forge
game (see below) and generates a e —admissible cheating
prover P’ for a graph G, Extr is always able to recover
G, i.e., Extr(sk, pk, pp, signauth, T, P"), with a negligible
probability.

Forge Game

o sk, pk <« AK&Ge(ppy: A can generate any secret key
sk’ # sk; but TPA will still use the public key from C.

o signauth’ <« AS€%(pp, G, sk’) : A can undertake the
execution Sigag with any graph and secret key.

o 0,1 «— ATegGen(pp sk’ G}): A can query the TagGen
oracle with any graph and a specific secret key, and C
generates its secret key sk and computes tags with graph
G, then returns the set of tags to A together with the
verification package 7.

o 1 <« AP (pp o’ signauth’, chal): A can execute
Proof for a graph G it queried in 7agGen phase. It can
specify the secret key sk’ and signature signauth’ to
behave as a prover, and it can also get the output from
the verifier.

o Awinsifb =1 <« Verify(pk, ').

V. PROPOSED CONSTRUCTION SCHEME

In this section we present our proposed graph Voronoi dia-
gram based PDA scheme (GVD-RDIC). To achieve public
auditability, a PKI-based (e.g., BLS short signature or RSA
signature) homomorphic authenticator is required. In the
following description, we use the notion of BLS signature
to illustrate our scheme. It can also be implemented with
RSA signature. As mentioned before, the existing ADS-based
RDIC schemes have a critical soundness problem, that is,
the TPA can not distinguish between two valid proofs of
two sets of data blocks, since they remove the file index
information in the authenticator. According to the system
model, CS can not be fully trusted, since it may try to hide
the data corruption. And CS may falsify a valid proof for
a corrupted data block. Thus the scheme is not sound. Our
scheme fixes this problem by modifying the MHT structure
and homomorphic authenticator. Here is our concrete con-
struction process:
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pp < Setup(1*): C takes input the security parameter,
outputs the public parameter pp = {G,, Hy, Ha}.

MBFS

FIGURE 2. Voronoi blocks and labels of connected components (CCs)
through MBFS.

G; < GVD_StrGain(G, ini) : Here we use the GVD
partitioner [18] approach which uses multi-source breadth
first search (MBFS) to extract structural information from
graph G with initial parameters ini = {S, byax, dmax}, here
the parameter S is the set of all source vertexes of each
Voronoia block defined by C. by, and dj,, are two param-
eters used to limit the size of Voronoi blocks, b,,,, indicates
the largest number of vertexes in one block and d,,,,, indicates
the highest depth of a block. Also, here we assume the ID of
all vertexes in the graph are mapped to a set with arithmetic
progression of length one (this is a common operation in
graph dataset and does not change the contents of the graph).
As an example, Fig.2 shows how GVD_StrGain works on
a connected component (CC) with 24 vertexes. The basic
procedure is as follows:

1. Label each source vertex vy in the source list S as
(vb(vg) = D)||bl(vs) = O||ID(vy)||content). Here vb(v)
is the ID of the Voronoi block for a source vertex. It is
a sequence in the set S. Here b/(v) indicates the level
of a vertex in an Voronoi block; for the source vertex
the number is 0. Starting from the source vertexes, they
broadcast vb(v) and bl(v) to the neighbors. For a non-
source vertex, when it receives vb(Vparens) from one
of its parent vertexes in the first time, it will assign
vb(v) = Vb("parent), and bl(v) = bl(Vparent) + L
If several broadcast messages arrived at the same time,
it will randomly select one of them.

2. After all vertexes vote to halt (i.e., no vertexes in the
next round of broadcast or the block level exceeds the
limit), some small CCs may remain unassigned, and
some Voronoi blocks may exceed the size limit. For
huge Voronoi blocks, we break it into several small
ones; and for unassigned vertexes, we run BFS starting
from the vertexes with a smaller ID until all vertexes
are labeled. While all vertexes are labeled, we can
output the labeled graph G;. In practice, GVD_StrGain
can be executed under the distributed graph computing
model [18] with MBFS and hash-min to improve the
efficiency.

3. sk, pk < KeyGen(1*, pp): C takes the public parameter
pp and chooses a random secret value « < Z; as the
secret key and computes v = g“. Here the set (v, g) is
the public key. Thus, C outputs sk = o, pk = (v, g),
keeps sk and sends pk to TPA and CS.
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Graph-level MHT with fanout=2

Voroni-block-level MHT
with fanout=2

DeEynEe O O O O O O O O
FIGURE 3. Two-level VB-MHT for a big graph.

4. signauth < Sigag(pp, Gi, sk): C takes the secret key
sk, public parameter pp, and the graph G, to construct
a two-level (Voronoi block) VB_MHT, as shown in
Fig. 3. We assume that each vertex (including con-
tents, labels and out-edges) is divided into n storage
blocks (potentially encoded by using Reed-Solomon
codes [29]); i1, Vi2, ..., Vin € Zg, here g is a large
prime number. For the bottom level (Voronoi block
level MHT), the hash value in each leaf vertex is
the hash value of all data blocks belonging to a ver-
tex. In order to make valid proofs of two different
data blocks distinguishable by TPA, we introduce two
indices (ID(v;), n(v;)). For each leaf node, here ID(v)
is the ID of this vertex and n is the number of data
blocks under this vertex. Thus, the value in the leaf node
will be (ID(v;)||n(vi)||H2(vi.1]] - - - ||vi.n)). For all none-
leaf node the value will be Hy(H (left_sbling)||Right_
sbling). Then, it works bottom up to get a root hash for
each Voronoi block as H>(vb). For the top level MHT,
the leaf-node will be the root hash of each Voronoi block
with an indicator which tells that it is a root hash of
Voronoi block as b||H>(vb). Then it merges up to get the
root hash of the top-level MHT, denoted as R, which will
be signed by secret key 1§ as (H,(R))* as the signature.
The corresponding ADS then generates a root hash R
for the whole graph. Finally, it returns the signature
signauth of R, signed by the secrete key sk.

5. &, t <« TagGen(pp, sk, Gy, signauth): C takes the
secret key sk and the labeled graph G;. For all blocks
vij here i € m and j € n(v;), the client first gen-
erates an auditor package t for the graph as v =
max(n(v;))||m||u||signauth. Here u < G is a random
selected element from group G;. Here m is the total
number of vertexes in the graph and max(n(v;)) is the
number of data blocks in the largest vertex. Then C
computes the set of authenticators ® = {o; ;} for each
block v;; as o;; = (H{(Ha(v|[)u")¥. C will send
{G;, @, 7} to CS and 7 to TPA. Then it deletes them
from the local storage.

6. chal <« Challenge(pp, signauth): To generate a
challenge for checking the integrity of graph, TPA
first selects a random ¢ — element subset I <
{[1, m], [1, max(n(v;))]}. Then for each I;; € I, TPA
chooses a random element x;; € Z,. The challenge
request sent to CS will be chal = {(i, j, x; j), signauth}.

7. m < Proof(pp, pk, G, 0, signauth, chal): CS first
checks the signature signauth. If it is invalid,
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it rejects the request; otherwise, it computes u =
Zi,j Vi mod nv)Xij € Zgq and o = ni,jel
af ‘(/’ mod n(v)) € Gi. And the CS will retrieve
the leaf hash for the requested vertexes and aux-
iliary information(AAI) €; of the MHT used for
computing the root. Therefore, the proof 7 =
{w, o, ADW)||n(v)||Ha(vi), 2;} will be returned to the
TPA.

8. b « Verify(pk, m, signauth): TPA takes the public key
PK to verify the returned proof 7. First, it computes the
root R based on (ID(v;)||n(v;)||H2(v;) and verifies it with
signauth. If it is an invalid output b = 0 it rejects it;
otherwise, it computes e(o, g) 2 e(]_[l-’jel Hi(Hy(vil|j
mod n(v;))% - u”, v). If not matching, the outputis b =
0; else, the output is b = 1 (i.e., accept the proof).

Steps 6 8 belong to basic integrity verification process.
The whole procedure is demonstrated in Fig. 4.

A. DYNAMIC GRAPH OPERATIONS WITH VB-MHT

In this section, we will show how our scheme supports
dynamic graph operations with integrity assurance. Gener-
ally, there are three types of graph operations, i.e., Update(U),
Insertion(I), Deletion(D). In our scheme, the verification
process performs better than the existing schemes since we
have considered the case that in some operations the traver-
sal labels in vertexes and rank indices in MHT need to be
updated. Our scheme is computationally efficient since all
operations are isolated in its own Voronoi blocks. The basic
procedure is shown in Fig. 5.

1) UPDATE

In a graph, the update means the change of the content
in any vertex or the weight of any edge. Thus the struc-
ture of the graph remains the same, and the labels in ver-
texes remain unchanged. Upon receiving an update request
OP = {U,v;, (o/), sigauth}, CS first checks the signature
sigauth to determine whether or not the request is from C.
If not, it rejects the request; otherwise, it updates o; ; to Gi/, .
and v; to v}, and then replaces (ID(v;)||n(v;)||H2(v;)) with
(ID()||n(v)||[H2(v})), and retrieves the AAI ©; to compute
the new root of MHT as R’. CS generates a proof Py =
(R, Q;, IDv)||n(v)||H2(v;)) and sends it to C. After receiv-
ing the response, the client first checks the correctness of
Q; by verifying sigauth with Q;, ID(v;)||n(v;)||H>(v;) and
sk. If it fails, it rejects the update; otherwise, it computes
and verifies the new root R'. If fails, reject the update; else,
update the sigauth to (R')*. Since the update may also change
max(n(v;)), it updates T with new max(n(v;)) and sigauth, and
then sends it to TPA and CS.

2) INSERTION

Insertion is more complicated since some insertion may
change the structure of graph, and thus makes the
structural labels in vertexes out of date. Assume the
cloud receives an Insertion request from the client as
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TPA CS
1.Randomly select a challenge set ¢ = {(4,7), Zi j } (i,5)er;
2.Generate a challenge chal = (c, sigauth);
chal
3.Veirfy sigauth,if not valid then abort the process;
4.Retrive and compute:
n= Z Vi,j mod n(v;) * Li,j
ijel
Ty,
o= H Ui,j] mod n(v;)
i,j€I
O = ID(vi)||n(vi)||Hs (vi) i gyer
Q={Qi}qjen
{n,0,0.9}
6.Compute and verify RootRwith(O, ).
Reject the proof if fail.
7.Compute and verify
e(0.9) = e( [] Hv(Ha(villi mod n(v)™ -, v)
i,jel
Reject the proof if fail, otherwise accept.
FIGURE 4. Protocol for defalut remote graph integrity checking.
C CS
1.Generate an operation request:
’ ’
OP = {(Type,{vi},{0:;}, sigauth};
OP

(R, hash — AAT}

4.Computer and verify Q;withold M HT

If not valid then abort the process;

5.Compute RyewWithhash — AAT

Verify the dynamic opertion by checkingRy,eqw ZR
Abort the proof if fail.

6.Sign a new signaturesigauthlusingRL

Sendsigauth to CS and TPA

2.Veirty sigauth

If not valid then abort the process;
3.Update G, o and compute:

New root of GVD-MHT R’

hash — AAT = (ID(v;)|[n(v;)|| Hs(v;), )

FIGURE 5. Protocol for verifiable dynamic graph operations.

orP = {I, vg, (ai’),sigauth}. For an inserted new vertex 1. If vy or vy do not exist in the graph then a new
Vnew OF new edge eney = (vg, Vg, content), there are three Voronoi block will be created and the tags of all blocks
types of insertion operations, as shown in Fig. 6: belonging to this vertex will be computed.
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2. If vg and v4 belongs to one block and vy (b(vs) = b(vy))
is two level higher than (bl(vs) — bl(v4) > 1), then
for all the posterities of v; in the block their traver-
sal labels needs to be updated thus the corresponding
hash value and authentication tags same as performing
update operation.

3. Otherwise, the insertion will only affect one vertex.

3) DELETION

For a deletion operation, we have OP = {D, v}, (o), sigauth}.
In order to avoid frequent change of the graph structure,
we introduce an indicator o for each Voronoi block. It will
temporarily set the deleted vertexes and edges as deleted
form, but not exactly in deleted status as v = (b(v)||
bl(v) = —1||ID(v)) or e = (vg, vq, —1).

VI. SECURITY ANALYSIS OF THE NEW SCHEME
In this section, we analyze the security of our scheme based
on the definitions in Section I'V .

A. COMPLETENESS
Theorem 6. If the server and data owner are honest then
the valid proof for any random challenge will pass the
verification.

Proof: Setj mod n(v;) to j/

e, 0) =[] o0
(.)€l
= e( [ [ HiEH )l u")* 54, g)

(i,))el

= e( [] B - ukrer iy, g)
(i,)el

= e([ | HiH20)I)"™ - u, v)

ijel

B. SOUNDNESS

Theorem 7: Given the root R of VB-MHT and the ID of
a vertex v;. If the hash function Hy is collision-resistant,
then in random oracle no p.p.t adversarial A can convince
the verifier to accept an invalid hash-AAI tuple with non-
negligible probability, except for the tuple is computed with
the exact vertex queried.

Proof: A has access to the VB-MHT and the random
oracle H,. For any query to H, it will output a random
bit-string; For a vertex v; in G, the valid hash tuple is
ID(v)||n(v)||H2(v;), ;. Based on these settings, A can pos-
sibly generate an invalid hash-AAI tuple that passes the veri-
fication in the following ways:

1. A generates the hash-AAI with vertex v which does not
exist in the graph. This can be achieved through two
different ways: 1) find Ha(v;) = Hz(v), keep other parts
unchanged. However it contradicts the assumption that
H, is collision-resistant; 2) compute Ha(v;) # Hp(V)
and Q) # ;, but merge up to R. In MHT any none-
leaf node is computed as Ha (hashyefichita ||hashyighichiia)»
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Type 1 insertion

Type 2 insertion

FIGURE 6. Simple examples of three type insertions.

assuming the node on the path to the root in the valid
VB-MHT is vh = {hy, hy, ..., h,, R}, and for the
forged VB-MHT the path is vi' = {h}, h}, .., h,,, R}.
Then at least one node in v/’ is the same as one node
in vh, but with different (hashiefichiia ||hashyighichita Y #
(hashiefichita ||hashyighichila)- This indicates that A finds
a collision in H;, which contradicts the assumption;

2. Another possible way is that A uses existing nodes in
MHT to forge a hash-AALI If a non-leaf node is chosen,
since the verifier will verify the ID(v;) first and all non-
leaf nodes do not contain /D(v;), the authentication will
fail. If another leaf node is chosen, since the verifier
knows the ID(v;), it will retrieve and check /D(v;). Since
ID(vj) # ID(v;), the authentication will fail.

We can thus conclude that the verifier will not accept any
invalid hash-AAI with non-negligible probability, unless it is
computed with the exact vertex queried.

Theorem 8: If the Computational Diffie-Hellman is hard in
bilinear group, the two hash functions (Hy, Hy) are collision-
resistant and the signature scheme used is existentially
unforgeable, then in the random oracle model, no p.p.t adver-
sarial can convince the verifier to accept an invalid proof with
non-negligible probability.

Proof: First the two hash functions (h1, h2) used in our
scheme can be considered as collision-resistant, since H» is
a standard cryptograph hash function proven to be collision-
resistant and H is the map to point hash function used in BLS
that is also proven collision-resistant in [29]. We can thus say
TPA can verify whether the server returns the correct hash-
AAI tuple.

Then we can prove the soundness of our scheme with a
sequence of games similar to [9]. Start from the forge games
defined in Section IV (denoted as Game 0).

Game 1: It is similar to Game 0. In this game the challenger
will keep a list of tags with store-query. If the tag from prover
has valid signature but not in the list, then the challenger
declares failure and aborts.

Based on the analysis from [9], if an adversary causes
the challenger aborts in Gamel, the adversary is able to
construct a forger. And for Game 1, during the verifica-
tion process only the valid tags generated and signed by
the challenger will be used. Game 2 is similar to Game 3.
Only the challenger keeps a list of the responses to TagGen
queries made by adversary. Then the challenger observes the
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responses from the prover P'. If any response passes the
verification process except the adversary’s aggregated tag
o # [l el Uf J” mod n(vy)» the challenger declares failure and
aborts.

Analysis: If the response passes the verification, then

e(0,8) = ([ [ HitH2vp)Ili  mod n(vi)y™ - u, v)
ijel
However, in this Game the challenger aborts. Thus o # o/,
but it still passes the verification, i.e,

e’ g) = ([ | HFiHav)Ili mod n(v)y™ - u’, v)
ijel
In the above equation the correctness of Ha(v;)|lj
mod n(v;) can be verified through hash-AAI tuple as proved
in Theorem 6. Thus if u;j = p;; for all i,j, we can get

o' = o which contradicts the assumption. Therefore for

A & /L;’j — i, there must exist at least one non-zero
element in Afij;. j

We now show whether the adversary causes Game 2 to
abort with nonnegligible probability. Then a simulator can be
constructed to solve the CDH problem.

The given input of the simulator is g, g??" h e Gj.
The goal is to compute 4%Ph¢_The simulator works like the
challenger in Game 1 but with the following differences:

o The simulator programs the random oracle H;. When-
ever it answers A’s queries, it responds with an element
g" € Gy, here r A Zp.

o When the simulator is asked to store a graph G with n

vertexes and each vertex consists of m blocks as the set
Vi j» since the hash function Hj is collision-resistant and
each vertex is different, H>(v;) is unique for each v;. If the
block v(i, j) has not been queried before, Hi(Ha(v;)||j)
can be generated as follows:
For each block v;;, the simulator randomly chooses
rij, B,y — Z,. We have an element u;; = gPh? e
G1.We have H{(H(v)|lj) = g'ii/gPViihY"ii then it
computes the tag as: 0;; = (Hi(H2(v)Ilj) - u")* =
(gPVidhY Viighii | gBViipY Vi) = (g¥)'ii

o When the condition in Game 2 occurs, by dividing
the forged signature o’ with the expected signature
o in the verification process, we get e(c'/o,g) =
e([Tijer uBHij )y = e(]_[i’jel(gﬁhy)A“f-f, v). Now we
can deduce the solution of CDH problem as:

1
h® = (U, . U—l . V_ﬂ Zi,jel A/"i»j))/z{,je] Apij

As we assumed in Game 2, not all elements in Apu;; are
zero. Thus the exponent will not cause a division by zero.
Also y is hidden from A (only u is sent to the adversary).
Thus the probability of adversary winning the game is the
probability of y Zi’jel Apij =0 mod p, which is 1/p and
can be considered as negligible.

Game 3 is similar to Game 2, except that in this game
the challenger aborts if the adversary is successful. But at
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least one v;; is not equal to the expected data block in

Zi,jel Vij * Xij-
Analysis: In Game 3 we know o’ = o and the H; (H>(v;)||j)
remains the same. Thus we have the verification equation as:

e(] | HiHa i) |[i)" - u, )

ijel
= e(0, ) = e(0”, &) = e([ | HitH2 Iy - "', v)
ijel
We have:
1 = l_[ A — giﬂ Dijer i | py Xijer At

ijel
The solution of this discrete logarithm problem is as below:

BYijer Anij
e
h=g Y Xijer Apij

Same as Game 2, the denominator is zero with a probability
of 1/p, which is negligible. If there is only negligible differ-
ence of the probabilities between Game 3 and Game 2, we can
construct a simulator that uses the adversary to compute the
discrete logarithms.

Thus, if the signature scheme is secure, two hash func-
tions are collision-resistant. Computational Diffie-Hellman
and discrete logarithm are hard in bilinear groups. There is
only negligible difference in the success rate between these
games.

This completes the proof.

C. SECURITY OF VERIFIABLE DYNAMIC

GRAPH OPERATIONS

Theorem 9: If the Computational Diffie-Hellman is hard in
bilinear group, the two hash functions (H, H) are collision-
resistant and the signature scheme is existentially unforge-
able. Then in random oracle no p.p.t adversarial can convince
the client to pass the verification for any fault dynamic graph
operation with non-negligible probability.

Proof: According to Theorem 6 we know that the tuple
{ID(v))||n(vi)||H1(v)), 2;} returned from the server can pass
the authentication only if it is computed on the exact v; client
queried. Based on that we can start an analysis of verifying
a dynamic graph operation OP = ({Type,Vv;, sigauth} as
follows:

1. If Type is U or D (in our case deletion operation is
equivalent to update operation), then after update the
computed with {v} different from {v}} and €; then R”
will be different from R" which is computed with {v}}
and €2;. In this case the verification will fail, except for
A find collision for Hy;

2. IftypeisI, as we discussed before there are three type of
insertion oeprations: 1) Type 1 insertion, in this case the
AAI Q; remains the same thus same as case 1 if there
are any fault in the changed content, the verification
will fail;2) Type 2 insertion, here the traversal labels
in the posterities need to be updated, these operations
can be partitioned into the update operation of a series
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of v; thus if there are any fault in the changed content,
the verification will fail; 3) Type 3 insertion operation
is same as update operation. In conclusion, client can
detect any fault occurs in dynamic operations through
VB-MHT root verification which completes the proof.

VII. DISCUSSIONS AND EXTENSIONS

A. DESIGN FOR DATA PRIVACY

To achieve data privacy and confidentiality, a straightfor-
ward way is to encrypt the data with symmetric key before
sending it to the cloud. But in some applications especially
cloud computing, encryption may not be necessary, and it
is also resource-consuming. Therefore, some existing solu-
tions introduce zero-knowledge proof to avoid information
leakage during the interactions between TPA and server. Our
scheme can be easily enhanced to preserve the data privacy.
According to [6], in the Challenge& & Proof process, besides
the challenge chal, the TPA also picks up a random number
B < Z;f and computes POK{(8)c1 = g# A ¢z = e(u, v)P).
Then it sends both POK and chal to the server. Later on
when responding to the challenge prover, it sends w1 =
Hj(e(o, cl)c;”) back to the TPA, which can verify it based
on the following principle:

7 = Hy([ | eHi(Ex0plli - mod n(v))™, vP))
ijel

By using this protocol, the TPA can not obtain o and u from
the prover. Thus it prevents possible information leakage.
However, in our scheme, since we need to support dynamic
graph operations, we use the structure H»(v;)||j mod n(v;)
which leaks the hash value of a vertex and the number of
blocks in a vertex to the TPA. Such a piece of information
may help a malicious TPA to more easily perform the brute-
force attacks. For example, if n(v;) is small, it is easy for the
TPA to retrieve the original data block. In this case, for small-
size vertexes (defined by the security parameter), a random
number needs to be attached to avoid off-line guess.

B. ENHANCE OUR SCHEME FOR MORE

EFFICIENT VERIFICATIONS

For the basic integrity verification process, if the above
design for data privacy is adopted, the communication over-
head can be highly reduced. For the verification of dynamic
graph operations, each time one edge or the content in
vertex v; is changed, all the corresponding authentication
tags o;; for all sectors v;; € v; will also be updated.
Therefore, the communication overhead is high, compared
to the size of changed content. To make this process more
efficient, we can slightly modify the authentication tag as
o;i = (Hi(Hy(v)||n(vy)) ]_[jen(Vi) u;"’)"‘, here {u;} is a set of
random numbers from Gj. In this way there will be only
one tag for each v;, and when some sectors v;, in v; are
modified as Av; ,, the client only needs to compute and
send o/ = o; - (Hy(Ha()|In(v))/Hy (Ha(vp) | Invi)u, ™.
In this way, only one tag needs to be sent, which reduces the
communication complexity.
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VIIl. PERFORMANCE ANALYSIS

A. NUMERICAL ANALYSIS

Here we provide the numerical analysis of computation and
communication cost from the viewpoints of the client, TPA
and cloud, respectively.

1) COMPUTATION COST

Assume there is a graph G(V, E), V is the number of vertexes
in graph and E is the number of edges in G. After a graph G is
encoded, it can be considered as being stored with n blocks.

a: DEFAULT VERIFICATION

For the client, the computation cost includes four parts:
KeyGen, GVD_StrGain, Sigag and TagGen. KeyGen has the
computation cost of (1). The MBFS complexity is linear
to the total number of vertexes and edges with the cost of
GVD_StrGain is (V + E). The Sigag cost is (V) for MHT
construction. For TagGen, it generates the tags for each block,
and thus the cost of TagGen is (n). Since n > V + E,
in total the computation cost for the client will be (n). But
it is one-time cost. The TPA handles challenge generation
and proof verifications. For each challenge, we assume that
the detection rate for detecting r corrupted blocks is set to
p. Then the TPA needs to generate ¢ challenges such that
p = 1 — (1 — r)°. Here if p and r are predefined, then the
complexity will be (1). Regarding proof verification, there
are two parts of verifications for a MHT: computing proofs -
(log(V)), and checking proof - (1). Thus the computation cost
for TPA is (log(V)). To respond to a challenge, the cloud
needs to compute the aggregated signature (o, ;) and the
hash-AAI tuple, which requires (Iog(V)) complexity.

b: DYNAMIC GRAPH OPERATION

For update and deletion of a vertex, the main computation
overhead at the client side is from the computation of the root
of MHT with AAI Such a costis (log(V /vbgize) +10g(vbyize))
here vbg;,, is the average size of Voronoi blocks in the graph;
and for an insertion operation, the computation overhead in
the best case will be (log(V /vbsi..)) for inserting a new voro;
in the worst case, it will be the repetition of the traversal on
all blocks in one Voronoi block and the computation cost will
be (Vbsize).

2) COMMUNICATION COST

a: DEFAULT VERIFICATION

During Challenge&&Response, in the challenge phase the
TPA sends chal messages. The number of challenges is fixed
and relatively small compared to the size of whole graph.
Thus the communication overhead is (1). The response from
the cloud server includes the hash-AAI tuple and has the
overhead of (log(V /vbsize) 4+ 10g(vbyize)).

b: DYNAMIC GRAPH OPERATION
For one update or deletion the main communication overhead
is the hash-AAI tuple, which is (log(V /vbyize) + log(vbgize))-
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TABLE 1. Results for real world graph datasets.

Graph A\ E Cost
email-EuAll 265,214 420,045 3.23
soc-Epinions1 420,045 508,837 4.65
Slashdot0902 82,168 948,464 5.30
Amazon0302 262,111 1,234,877 | 7.54
Amazon0312 400,727 | 3,200,440 | 18.05
Wiki-Talk 2,394,385 | 5,021,410 | 36.35

For insertion, the best case is inserting a new Voronoi block
and the communication cost for verifying is (log(V /vbsize)),
and the worst case is AAI for the whole block and original
data in a Voronoi block. Since the block size is fixed, the com-
munication overhead is (10g(V /vbyize) + 10g(vbsize)).

B. SIMULATION RESULTS
Our implementation is conducted by using Java on a sin-
gle core of a 4.0Ghz Intel i17-6700K with 16 GB of RAM.
The field operations are implemented based on Java-Pairing-
based Cryptography (jpbc) [30] library. In our implemen-
tation we use the type A curve from the library with
160-bit order Z, and 512-bit order G. All results are
conducted through the average of 10 trails. Our simula-
tion focus on the additional computation cost for support-
ing structure integrity and the communication cost dur-
ing verifying dynamic graph operations of our scheme
compare to a representative public auditing scheme [12].
In the first part, we test the computation cost for the
clients to setup the system, which includes the follow-
ing 5 steps: Setup, KeyGen, GVD_StrGain, Sigag, TagGen.
Since the computation cost for Setup, KeyGen, TagGen is
similar to other existing BLS-Based RDIC system [12], here
we only test the extra cost from structure integrity and sound-
ness assurance indices. It involves the following two steps:
GVD_StrGain, Sigag. Here we set the block size limitation
parameters by,q to 50, 000, d;4x to 30. In Table 1 we list some
real-world graphs [29] from the Stanford Large Network
Dataset Collection, together with their sizes and time cost
for constructing GVD-MHT. To better describe the result,
we also use some random generated graphs by using the tools
from [31]. In Fig. 7 we can see that the computation cost
increases almost linearly as the size of graph (the number
of vertexes and edges) grows. For a graph with 11, 000, 000
edges and vertexes, the cost will be 52.5s more than the
scheme in [12]. Since GVD_StrGain and root digest compu-
tation are not encryption-related, they can be done off-line.
If the computation in cloud is considered as trustworthy by
employing the verifiable outsourcing computation [32]-[34],
these computations can be delegated to the cloud which can
make the cost almost the same as other BLS-based RDIC
schemes. Also, in later simulation results we will show how
this construction help reduce the communication cost for
verifying dynamic graph operations.
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FIGURE 7. Additional computation overhead for supporting structural
integrity verification with different sizes of graphs.

30

———— Our Scheme
—*—[10] X

Communication cost(kb)

0 1 1 i i i i i i
1 2 3 4 5 6 7 8 9 10

Number of vertexes in the updated voroni block

FIGURE 8. Size of response from server for one verifiable dynamic
operation on one Voronoi block.

In the second experiment, we investigated the communica-
tion cost for verifiable dynamic graph operations, the test is
established on a graph with 11,000,000 vertexes and edges.
Since the updated data and authentication tag is same for
both our scheme and [12], here we focus on the size of
data that need to be retrieved from server. Results are shown
in Fig. 8 and Fig. 9. In real world graph applications, one
update always involves a connected sub graph, this type of
update can be considered as a combination of updating sev-
eral Voronoi blocks and vertexes. As shown in Fig. 8, the size
of data that need to be retrieved from server for updating,
deleting or inserting a Voronoi block is significantly reduced.
It is clear that our scheme scales well while the number of
vertexes in the updated Voronoi blocks increases. From Fig. 9,
we can see that the server response for updating or inserting
a vertex is also reduced by adopting our scheme. Since in our
scheme all sectors belong to one vertexes are in the same sub-
tree in the bottom level, as the number of sectors in one ver-
texes increases the length of server response increase slightly.
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FIGURE 9. Size of response from server for one verifiable dynamic
operation on one vertex.
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FIGURE 10. Communication cost for default auditing process.

Our results indicate that the communication overheads for
verifying subgraph update in our scheme has significant
advantage compared to the scheme in [12].

We also test the communication cost during default audit-
ing process here we set the number of sectors queried each
time as 460 which can provide 99 percent detetection . The
result is shown in Figure 10. As we can see, the cost also
grows slowly as the size of graph increases, and the growth is
also due to the change of the MHT size.

Based on these simulation results, we can conclude that
our scheme has significant advantage in auditing remote big
graph. The size of data required to be retrieved from cloud
for verifying subgraph dynamic operations is only slightly
affected by the size of subgraph and vertexes in the subgraph.
The trade of for the advantage on verifying subgraph dynamic
operations and support for structural integrity is the increased
computation cost during the construction process which can
be done offline or delegate to cloud.
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IX. CONCLUSIONS AND FUTURE WORKS

In this work, we have proposed a new RDIC scheme,
i.e., GVD-based remote graph integrity checking for securing
the big graph in cloud storage. This scheme also supports
verifiable dynamic graph operations including update, inser-
tion and deletion. Our construction process utilized the GVD
to isolate dynamic operations inside each Voronoi block to
achieve efficient verification. Moreover, we have introduced
an additional step into the default auditing process to ensure
that the server does not cheat with an intact block for query-
ing against a corrupted block. We have provided theoretical
proofs to show that it achieves soundness and completeness.
Both numerical analysis and simulation results showed that
our scheme is cost-efficient and scalable for real-world big
graphs.

If our scheme is used in multi-user environment and the
graphs are divided into subgraphs with different access rules,
the data privacy may not hold during the process of verify-
ing dynamic graph operations. One of the open issues for
our future work is to support fine-grained access control of
subgraphs with efficient user revocation and join. In addition,
our scheme adopts BLS signature to reduce the signature size.
However, BLS is based on bilinear map, and its computation
cost is higher than the signatures based on ECC. Therefore,
the implementation based on ECC and the study of how its
performance differs from BLS-based scheme is another open
problem for our future works.
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